
The involutions-as-principal types/

application-as-unification Analogy

Alberto Ciaffaglione, Furio Honsell, Marina Lenisa, and Ivan Scagnetto

Università di Udine, Italy
{alberto.ciaffaglione,furio.honsell,marina.lenisa,ivan.scagnetto}@uniud.it

Abstract

In 2005, S. Abramsky introduced various universal models of computation based on
Affine Combinatory Logic, consisting of partial involutions over a suitable formal language
of moves, in order to discuss reversible computation in a game-theoretic setting. We in-
vestigate Abramsky’s models from the point of view of the model theory of λ-calculus,
focusing on the purely linear and affine fragments of Abramsky’s Combinatory Algebras.

Our approach stems from realizing a structural analogy, which had not been hitherto
pointed out in the literature, between the partial involution interpreting a combinator and
the principal type of that term, with respect to a simple types discipline for λ-calculus.
This analogy allows for explaining as unification between principal types the somewhat
awkward linear application of involutions arising from Geometry of Interaction (GoI).

Our approach provides immediately an answer to the open problem, raised by Abram-
sky, of characterising those finitely describable partial involutions which are denotations of
combinators, in the purely affine fragment. We prove also that the (purely) linear combi-
natory algebra of partial involutions is a (purely) linear λ-algebra, albeit not a combinatory
model, while the (purely) affine combinatory algebra is not. In order to check the com-
plex equations involved in the definition of affine λ-algebra, we implement in Erlang the
compilation of λ-terms as involutions, and their execution.

1 Introduction

In [3], S. Abramsky discusses reversible computation in a game-theoretic setting. In particular,
he introduces various kinds of reversible pattern-matching automata whose behaviour can be
finitely described as partial injective functions, actually involutions, over a suitable language
of moves. These automata are universal in that they yield affine combinatory algebras. They
are reversible not in the direct sense that application between combinators is itself reversible,
as in e.g. [13]. What is “reversible” is the evaluation of the partial involutions interpreting the
combinators, but this is surprisingly enough to achieve a reversible model of computation1. The
crucial notion is that of application between automata, or between partial involutions. This is
essentially the application between history-free strategies used in Game Semantics, which itself
stems from Girard’s Execution Formula, or Abramsky’s symmetric feedback [1]. The former
was introduced by J. Y. Girard [17, 18] in the context of “Geometry of Interaction” (GoI) to
model, in a language-independent way, the fine semantics of Linear Logic.

Constructions similar to the Combinatory Algebra of partial involutions, introduced in [3],
appear in various papers by S. Abramsky, e.g. [4, 5], and are special cases of a general categorical
paradigm explored by E. Haghverdi [22] (Sections 5.3, 6), called “Abramsky’s Programme”.
This Programme amounts to defining a linear λ-algebra starting from a GoI Situation in a

1Since the partial involutions interpreting, say 0 and 1, have different behaviours on simple “tell-tale” words,
we can test reversibly any characteristic function expressed in terms of applications of combinators, without
evaluating the applications of combinators, see [3] for more details.

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

“traced symmetric monoidal category”. We shall not discuss here this abstract approach,
actually the purpose of this paper is to factor it out and offer an alternative understanding of
“why things work” in the context of involutions.

Reversible computation has both foundational and practical interest, spanning from low
power design, reversible programming languages, optimal reductions, process algebras, quantum
computation and many more [6, 21, 12, 13, 20, 28, 26]. In this paper, which is self-contained
as far as technical definitions, we do not address reversibility as such, but discuss instead
Abramsky’s algebras from the point of view of the model theory of λ-calculus. We think that
the involutions-as-principal types/GoI application-as-unification analogy, which we introduce,
offers a new perspective on Girards’s Geometry of Interaction, but also on how its reversible
dynamics can arise.

We focus on the purely linear and purely affine fragments of Abramsky’s affine algebras, i.e.
without replication. More specifically, we introduce purely linear and purely affine combinatory
logic, their λ-calculus counterparts, and their models, i.e. BCI-combinatory algebras and BCK-
combinatory algebras. For each calculus we discuss also the corresponding notion of λ-algebra2.

Our approach stems from realizing a structural analogy, which to our knowledge had not
been hitherto pointed out in the literature, between the Geometry of Interaction interpretation
of a λ-term in Abramsky’s model of partial involutions and the principal type of that term,
with respect to a simple types discipline for λ-calculus. We call this analogy the involutions-as-
types analogy. In particular, we define an algorithm which, given a principal type of a λ-term,
reads off the partial involution corresponding to the interpretation of that term. Thus showing
that the principal type of an affine λ-term provides a characterisation of the partial involution
interpreting the term in Abramsky’s model. Conversely, we show how to extract a “principal
type” from any partial involution, possibly not corresponding to any λ-term.

The involutions-as-types analogy is very fruitful. It allows for simply explaining as a unifi-
cation between principal types the somewhat awkward linear application between involutions
used in [3], deriving from the notion of application used throughout the literature on GoI and
games semantics. We call this the “GoI application-as-unification of principal types” analogy,
or more simply the application-as-unification analogy. The overall effect of linear application
amounts, indeed, to unifying the left-hand side of the principal type of the operator with the
principal type of the operand, and applying the resulting substitution to the right hand side
of the operator. Hence, the notion of application between partial involutions, corresponding to
λ-terms M and N , can be explained as computing the involution corresponding to the principal
type of MN , given the principal types of M and N . Actually this unification mechanism works
even if the types do not correspond to any λ-term.

Our analysis, therefore, unveils three conceptually independent, but ultimately equivalent,
accounts of application in the λ-calculus: β-reduction, the GoI application of involutions based
on symmetric feedback/Girard’s Execution Formula, and unification of principal types.

These results provide an answer, for the affine part, to the open problem raised in [3] of
characterising the partial involutions which are denotations of combinators, or equivalently,
arising from Abramsky’s bi-orthogonal pattern matching automata. Namely, we show that
these are precisely those partial involutions whose corresponding principal type is the principal
type of a λ-term. In our view, this insight sheds new light on the deep nature of Game Semantics
itself.

We prove, furthermore, that the purely linear combinatory algebra of partial involutions
is also a purely linear λ-algebra, albeit not a purely linear combinatory model, while both

2This notion was originally introduced by D. Scott for the standard λ-calculus as the appropriate notion of
categorical model for the calculus, see Section 5.2 of [8].

2

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

the purely affine combinatory algebra and the full combinatory algebra (including replication)
are not λ-algebras. We also show that the last step of Abramsky’s programme, namely the
one taking from a linear/affine combinatory algebra to a λ-algebra, is not immediate, since in
general combinatory algebras cannot be quotiented non trivially to obtain λ-algebras. For the
sake of readability, since we shall not discuss replication, throughout the paper we will refer
to purely linear and purely affine combinatory algebras, and related concepts, simply as linear
and affine.

In order to check all the necessary equations of λ-algebras, we implement in Erlang [14, 7]
application of involutions, as well as compilation of λ-terms as combinators and their interpre-
tation as involutions.

We conjecture that, by suitably generalizing the type discipline, the analogies introduced
in this paper as well as all the results can be extended to the full affine algebra including
replication.

Synopsis. In Section 2, we introduce the linear and affine versions of: combinatory logic,
λ-calculus, combinatory algebra, and combinatory model, and we isolate the equations for
the linear and affine combinatory algebras to be λ-algebras. In Section 3, we provide a type
discipline for the linear and affine λ-calculus, and we define a corresponding notion of principal
type. In Section 4, we recall Abramsky’s combinatory algebra of partial involutions, and we
provide a characterisation of partial involutions via principal types. Furthermore, we prove that
partial involutions are a linear λ-algebra but they are not an affine λ-algebra. In Section 5, we
discuss the implementation in Erlang of the application between partial involutions, and the
compilation and interpretation of λ-terms. Concluding remarks appear in Section 6. The Web
Appendix [31] includes the detailed Erlang programs implementing compilations and effective
operations on partial involutions.

2 Linear Notions and their Affine Extensions

We introduce linear and affine versions of combinatory logic, λ-calculus, combinatory algebras,
λ-algebras, and λ-models. These notions are the restrictions of the corresponding notions of
combinatory logic, λ-calculus [8], and their models, to the purely linear (affine) terms. Some of
these notions, although natural, are probably original, e.g. the equational characterization of
(purely linear/affine) λ-algebras.

It is best if the reader has some familiarity with the basic notations and results in combi-
natory logic and λ-calculus, as presented e.g. in [8], and in [3], but we will be self-contained as
much as possible.

Definition 1 (Linear (Affine) Combinatory Logic). The language of linear (affine) combi-
natory logic CLL (CLA) is generated by variables x, y, . . . and constants, which include the
distinguished constants (combinators) B,C, I (and K in the affine case) and it is closed under
application, i.e.:

M ∈ CLX N ∈ CLX

M ·N ∈ CLX for X ∈ {L,A}

Combinators satisfy the following equations (we associate · to the left and omit it when clear
from the context):

BMNP = M(NP) IM = M CMNP = (MP)N KMN = M
where M,N,P denote terms of combinatory logic.

3

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

Definition 2 (Linear (Affine) Lambda Calculus). The language ΛL (ΛA) of the linear (affine)
λ-calculus, i.e. λL-calculus (λA-calculus) is inductively defined from variables x, y, z, . . . ∈ Var,
constants c, . . . ∈ Const, and it is closed under the following formation rules:

ΛL: M ∈ ΛL N ∈ ΛL

MN ∈ ΛL
M ∈ ΛL E(x,M)

λx.M ∈ ΛL

ΛA: M ∈ ΛA N ∈ ΛA

MN ∈ ΛA
M ∈ ΛA O(x,M)

λx.M ∈ ΛA

where E(x,M) means that the variable x appears free in M exactly once.
where O(x,M) means that the variable x appears free in M at most once.

The rules of the λL-calculus (λA-calculus) are the restrictions of the standard β-rule and
ξ-rule to linear (affine) abstractions, namely:

(βL) (λx.M)N = M [N/x] (ξL)
M = N E(x,M) E(x,N)

λx.M = λx.N
.

(βA) (λx.M)N = M [N/x] (ξA)
M = N O(x,M) O(x,N)

λx.M = λx.N
.

All the remaining rules are the standard rules which make = a congruence.

Proposition 1. Well-formedness in ΛL (ΛA), i.e. linear (affine) λ-abstractions are preserved
under λ-reduction. The corresponding reduction calculi are Church-Rosser.

Proof. Routine.

In the sequel of this section, for conciseness, we discuss only the λA-calculus, since the corre-
sponding notions/results carry over straightforwardly to the linear version by simple restriction.

We start by specialising to the affine case the results in [8] on the encoding of λ-calculus
into combinatory logic.

Definition 3. We define two homomorphisms w.r.t. application:
(i) ()λA : CLA → ΛA, given a term M of CLA, yields the term of ΛA obtained from M by
replacing each combinator with the corresponding ΛA-term as follows

(B)λA = λxyz.x(yz) (I)λA = λx.x (C)λA = λxyz.(xz)y (K)λA = λxy.x
(ii) ()CLA : ΛA → CLA, given a term M ∈ ΛA, replaces each λ-abstraction by a λ∗-abstraction.
Terms with λ∗-abstractions amount to CLA-terms via the Abstraction Operation defined below.

Definition 4 (Affine Abstraction Operation). The following operation, defined by induction
on M ∈ CLA, provides an encoding of λA-calculus into CLA:
λ∗x.x = I λ∗x.c = Kc λ∗x.y = Ky , for c ∈ Const, x 6= y

λ∗x.MN =

C(λ∗x.M)N if x ∈ FV (M),

BM(λ∗x.N) if x ∈ FV (N),

K(MN) otherwise.

Theorem 1 (Affine Abstraction Theorem). For all terms M,N ∈ CLA, (λ∗x.M)N = M [N/x].

Proof. By straightforward induction on the definition of λ∗.

The notion of linear (affine) combinatory algebra, or BCI-algebra (BCK-algebra) is the
restriction of the notion of combinatory algebra to linear (affine) combinatory logic:

4

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

Definition 5 (Linear (Affine) Combinatory Algebra, BCI-algebra (BCK-algebra)).
(i) A linear (affine) combinatory algebra, LCA, (ACA) A = (A, ·) is an applicative structure,
with distinguished elements (combinators) B,C, I (and K in the affine case) satisfying the
following equations: for all x, y, z ∈ A,

Bxyz =A x(yz) Ix =A x Cxyz =A (xz)y Kxy =A x
(ii) For a linear (affine) combinatory algebra A, we define [[]]A : CLA → A as the natural
interpretation of closed terms of CLL (CLA) into A.
(iii) For a linear (affine) combinatory algebra A, we define the set of linear (affine) combinatory
terms T (A) as the extension of CLL (CLA) with constants ca for a ∈ A.

In what follows, when clear from the context, we will simply write = in place of =A.
As we did earlier for the syntactic notions, we will discuss semantic notions only for the affine

case. If not stated explicitly, the corresponding notions/theorems carry over straightforwardly,
mutatis mutandis, to the linear case.

First we introduce affine λ-algebras. These were originally introduced by D. Scott for stan-
dard λ-calculus as the appropriate notion of categorical model for the calculus, see Defini-
tion 5.2.2(i) of [8].

Definition 6 (Affine λ-algebra). An ACA A is an affine λ-algebra if, for all closed M,N ∈
T (A),

` (M)λA =λA (N)λA =⇒ [[M]]A = [[N]]A ,

where =λA denotes provable equivalence on λ-terms, and [[]]A denotes (by abuse of notation)
the natural extension to terms in T (A) of the interpretation [[]]A : CLA → A.

Given a BCK-algebra, there exists a smallest quotient giving rise to a (possibly trivial)
affine λ-algebra, namely:

Definition 7. Let A = (A, ·) be an ACA. For all a, b ∈ A, we define a ≡A b if and only if there
exist closed M,N ∈ T (A) such that a = [[M]]A, b = [[N]]A, and (M)λA =λA (N)λA .

We have:

Proposition 2.
(i) Not all ACA’s are affine λ-algebras.
(ii) Let A = (A, ·) be an ACA. Then the quotient (A/ ≡A, ·≡A) is an affine λ-algebra.
(iii) Not all non-trivial ACA’s can be quotiented to a non-trivial affine λ-algebra.

Proof. (i) A trivial example is the closed term model of affine combinatory logic, i.e. the quo-
tient of closed terms under equality, e.g. CKK 6= I. A more subtle example is the algebra of
partial involutions P discussed in Section 4.
(ii) ≡A is a congruence w.r.t. application, since =λ is a congruence. Then the thesis follows
from definitions.
(iii) Consider the closed term model of standard combinatory algebra induced by the equa-
tions (SII)(SII) = I and (S(BII)(BII))(S(BII)(BII)) = K. This is clearly an ACA. S is
the standard combinator from Combinatory Logic, see e.g. [8]. The lhs’s are terms reducing
to themselves, and thus can be consistently (i.e. without producing a trivial model) inde-
pendently equated to whatever; but they are equated to each other in any affine λ-algebra.
Hence any quotient of this term model to an affine λ-algebra is trivial, because I = K. In
the linear case the argument has to be modified by taking the second equation to be e.g.
(S(BII)(BII))(S(BII)(BII)) = B.

5

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

We give now the notion of affine combinatory model. The corresponding one for standard
λ-calculus was introduced by A. Meyer in his seminal paper [27].

Definition 8 (Affine Combinatory λ-model). An ACA A is an affine combinatory λ-model if
there exists a selector combinator ε such that, for all x, y ∈ A, εxy = xy and (∀z. xz = yz) =⇒
εx = εy.

Proposition 3. Not all affine λ-algebras are affine combinatory λ-models.

Proof. In the case of standard combinatory logic, and hence affine combinatory logic, this is
implied by the well known conjecture of Barendregt on the failure of the ω-rule, finally proved
by G. Plotkin using universal generators, (see [8], Section 17.3-4). Theorem 6 below provides
such a counterexample for the linear case, namely the algebra of partial involutions P.

Curry was the first to discover that λ-algebras have purely equational definitions. We give
corresponding results for linear and affine combinatory logic, which, although natural, are
probably original. The significance of the following theorem is that a finite number of equations
involving combinators, Aβ , are enough to ensure that the congruence on CLA-terms is closed
under the ξA-rule, as a rule of proof, namely if CLA + Aβ ` M = N then ` [[λ∗x.M]]A =
[[λ∗x.N]]A.

Theorem 2. An ACA A satisfying the following sets of equations is an affine λ-algebra:

•

B = λ∗xyz.x(yz) = λ∗xyz.Bxyz
C = λ∗xyz.(xz)y = λ∗xyz.Cxyz
I = λ∗x.x = λ∗x.Ix
K = λ∗xy.x = λ∗xy.Kxy

• equation necessary for λ∗x.IP = λ∗x.P to hold: λ∗y.BIy = λ∗yz.yz

• equations necessary for λ∗x.BPQR = λ∗x.P (QR) to hold:

– λ∗uvw.C(C(BBu)v)w = λ∗uvw.Cu(vw)

– λ∗uvw.C(B(Bu)v)w = λ∗uvw.Bu(Cvw)

– λ∗uvw.B(Buv)w = λ∗uvw.Bu(Bvw)

• equations necessary for λ∗x.CPQR = λ∗x.PRQ to hold:

– λ∗uvw.C(C(BCu)v)w = λ∗uvw.C(Cuw)v

– λ∗uvw.C(B(Cu)v)w = λ∗uvw.B(uw)v

– λ∗uvw.B(Cuv)w = λ∗uvw.C(Buw)v

• equations necessary for λ∗x.KPQ = λ∗x.P to hold :

– λ∗xy.C(BKx)y = λ∗xyz.xz

– λ∗xy.B(Kx)y = λ∗xyz.x

• 2 more equations are necessary for K in dealing with ξ over axioms:

– λ∗xy.Bx(Ky) = λ∗xy.K(xy)

– λ∗xy.C(Kx)y = λ∗xy.K(xy)

6

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

Proof. (Sketch) The proof follows closely the argument in [8], Section 7.3. The equations allow
for proving that CLA is closed under the ξA-rule. For each combinator we have therefore as
many equations as there are possible branches in the Abstraction Operation. At the very end,
suitable λ∗-abstractions need to be carried out in order to remove the parameters.

The corresponding theorem in the linear case is obtained by deleting all the equations
referring to K.

3 Linear and Affine Type Disciplines for the λ-calculus

In this section we introduce the key type-theoretic tools for understanding the fine structure
of partial involutions, namely principal simple type schemes. Principal types were introduced
by Hindley, see e.g. [24], but with a different purpose. We discuss the linear and affine cases
separately, because they exhibit significantly different properties.

Definition 9 (Simple Types). (Type 3) µ ::= α | µ → µ , where α ∈ TVar denotes a type
variable.

Definition 10 (Linear Type Discipline). The linear type system for the λL-calculus is given
by the following set of rules for assigning simple types to terms of ΛL. Let Γ,∆ denote
environments, i.e. sets of the form Γ = x1 : µ1, . . . , xm : µm, where each variable in
dom(Γ) = {x1, . . . , xm} occurs exactly once:

x : µ `L x : µ
Γ, x : µ `L M : ν

Γ `L λx.M : µ→ ν

Γ `L M : µ→ ν ∆ `L N : µ (dom(Γ) ∩ dom(∆)) = ∅
Γ,∆ `L MN : ν

.

We introduce now the crucial notion of principal type scheme:

Definition 11 (Principal Type Scheme). Given a λL-term M , the judgement Γ L M : σ
denotes that σ is the principal type scheme of M :

x : α L x : α
Γ, x : µ L M : ν

Γ L λx.M : µ→ ν

Γ L M : µ ∆ L N : τ (dom(Γ) ∩ dom(∆)) = ∅ (TVar(Γ) ∩ TVar(∆)) = ∅
(TVar(µ) ∩ TVar(τ)) = ∅ U ′ = MGU(µ, α→ β) U = MGU(U ′(α), τ) α, β fresh

U(Γ,∆) L MN : U ◦ U ′(β)

where MGU gives the most general unifier, and it is defined (in a standard way) below. By
abuse of notation, U denotes also the substitution on contexts induced by U .

Definition 12 (MGU(σ, τ)). Given two types σ and τ , the partial algorithm MGU yields a
substitution U on type variables (the identity almost everywhere) such that U(σ) = U(τ):

MGU(α, τ) = U α ∈ TV ar τ 6∈ TV ar
MGU(τ, α) = U

α ∈ TV ar α 6∈ τ
MGU(α, τ) = id[τ/α]

MGU(σ1, τ1) = U1 MGU(U1(σ2), U1(τ2)) = U2

MGU(σ1 → σ2, τ1 → τ2) = U2 ◦ U1

where U2 ◦ U1 denotes composition between the extensions of the substitutions to the whole set
of terms; id denotes the identical substitution.

7

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

As is well known, the above algorithm yields a substitution which factors any other unifier,
see e.g. [29].

The following theorem, which can be proved by induction on derivations, connects the
systems defined above.

Theorem 3. For all M ∈ ΛL:
(i) if Γ L M : σ and Γ′ L M : σ′ are derivable, then σ =α σ

′ and Γ =α Γ′, i.e. dom(Γ) =
dom(Γ′) and x : µ ∈ Γ, x : µ′ ∈ Γ′ ⇒ µ =α µ

′.
(ii) if Γ L M : σ is derivable, then each type variable occurs at most twice in Γ L M : σ.
(iii) if Γ L M : σ, then, for all substitutions U , U(Γ) `L M : U(σ).
(iv) if Γ `L M : σ, then there exists a derivation Γ′ L M : σ′ and a type substitution U , such
that U(Γ′) = Γ and U(σ′) = σ.

Here are some well known examples of principal types:

I λx.x α→ α
B λxyz.x(yz) (α→ γ)→ (β → α)→ β → γ
C λxyz.xzy (α→ β → γ)→ β → α→ γ

Theorem 4 (Linear Subject Conversion). Let M ∈ ΛL, M =βL M ′, and Γ L M : σ, then
Γ L M ′ : σ.

Proof. First we prove subject conversion for `L, i.e.:
Γ `L M : σ ∧ M =βL M ′ =⇒ Γ `L M ′ : σ. This latter fact follows from:
Γ, x : µ `L M : ν ∧ ∆ `L N : µ ⇐⇒ Γ,∆ `L M [N/x] : ν ∧ ∆ `L N : µ ,
which can be easily proved by induction on M .
Now, let M =βL M ′ and Γ L M : σ. Then, by Theorem 3(iii), Γ `L M : σ, and by
subject conversion of `L, Γ `L M ′ : σ. Hence, by Theorem 3(iv), there exist U,Γ′, σ′ such that
Γ′ L M ′ : σ′ and U(Γ′) = Γ, U(σ′) = σ. But then, by Theorem 3(iii), Γ′ `L M ′ : σ′, and by
subject conversion of `L, Γ′ `L M : σ′. Hence, by Theorem 3(iv), there exist U ′,Γ′′, σ′′ such
that Γ′′ L M : σ′′ and U ′(Γ′′) = Γ′, U ′(σ′′) = σ′. Finally, by Theorem 3(i), Γ =α Γ′′ and
σ =α σ

′′, and hence also Γ =α Γ′ and σ =α σ
′.

3.1 The Affine Case: Discussion

The extension to the λA-calculus of Definition 10 is apparently unproblematic. We can just

add to ` the natural rule
Γ `A M : ν x 6∈ dom(Γ) TV ar(µ) fresh

Γ `A λx.M : µ→ ν

and its counterpart to , namely
Γ A M : ν x 6∈ dom(Γ) α fresh

Γ A λx.M : α→ ν
.

However, in doing this, we get type assignment systems which satisfy the extension of Theorem 3
to the affine case, but the affine version of Theorem 4, i.e. subject conversion, fails. This cannot
be recovered and it is the key reason for the failure of the affine combinatory algebra P defined
in Section 4 to be an affine λ-algebra. As a counterexample consider λxyz.(λw.x)(yz) and
its βA-reduct λxyz.x. We have ` λxyz.x : α1 → α2 → α3 → α1, but we cannot derive
A λxyz.(λw.x)(yz) : α1 → α2 → α3 → α1. We can derive only A λxyz.(λw.x)(yz) : α1 →
(α2 → α3) → α2 → α1, which is an instance of the former, because the variables, which are
erased, are erased after having been applied, and the principal type keeps track of this.

8

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

4 Abramsky’s Model of Reversible Computation

S. Abramsky, in [3], impressively exploits the connection between automata and strategies, and
introduces various reversible universal models of computation. Building on earlier work, e.g.
[5, 22], S. Abramsky defines models arising from Geometry of Interaction (GoI) situations,
consisting of history-free strategies. He discusses I, the model of partial injections and P, its
substructure consisting of partial involutions. In particular, S. Abramsky introduces notions of
reversible pattern-matching (bi-orthogonal) automata as finitary concrete devices for implemen-
ting such strategies. In the rest of this paper, we focus on the model P of partial involutions and,
apart from these introductory remarks, concepts and definitions are fully introduced, making
this and the remaining sections essentially self-contained.

The model of partial involutions P yields a full affine combinatory algebra, i.e. including
replication. This notion extends that of affine combinatory algebra, introduced in Definition 5,
with a ! operation and extra combinators:

Definition 13 (Full Affine Combinatory Algebra, [3]). A full affine combinatory algebra A =
(A, ·, !) is an applicative structure (A, ·) with a unary (injective) operation !, and combinators
B,C, I,K,W,D, δ, F satisfying the following equations: for all x, y, z ∈ A,

Bxyz = x(yz) Ix = x Cxyz = (xz)y Kxy = x
Wx!y = x!y!y δ!x = !!x D!x = x F !x!y = !(xy).

Full affine combinatory algebras are models of full affine combinatory logic, which extends
affine combinatory logic, introduced in Definition 1, with !-operator and combinators W , δ, D,
and F .

Partial involutions are defined over a suitable language of moves, and they can be endowed
with a structure of a full affine combinatory algebra:

Definition 14 (The Model of Partial Involutions P).
(i) TΣ, the language of moves, is defined by the signature Σ0= {e}, Σ1 = {l,r}, Σ2 = {< , >};
terms r(x) are output words, while terms l(x) are input words (often denoted simply by rx and
lx);
(ii) P is the set of partial involutions over TΣ, i.e. the set of all partial injective functions
f : TΣ ⇀ TΣ such that f(u) = v ⇔ f(v) = u;
(iii) the operation of replication is defined by !f = {(< t, u >,< t, v >) | t ∈ TΣ ∧ (u, v) ∈ f};
(iv) the notion of linear application is defined by f · g = frr ∪ (frl; g; (fll; g)∗; flr), where fij =
{(u, v)|(i(u), j(v)) ∈ f}, for i, j ∈ {r, l} (see Fig. 1), where “;” denotes postfix composition.

in // •
frr //

frl

��

• // out

•
g // •
fll

oo

flr

OO

Figure 1: Flow of control in executing f · g.

Following [3], we make a slight abuse of notation and assume that TΣ contains pattern
variables for terms. The intended meaning will be clear from the context. In the sequel, we
will use the notation u1 ↔ v1, . . . , un ↔ vn, for u1, . . . , un, v1, . . . , vn ∈ TΣ, to denote the graph

9

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

of the (finite) partial involution f defined by ∀i.(f(ui) = vi ∧ f(vi) = ui). Again, following
[3], we will use the above notation in place of a more automata-like presentation of the partial
involution.

Proposition 4 ([3], Th.5.1). P can be endowed with the structure of a full affine combinatory
algebra, (P, ·, !), where combinators are defined by the following partial involutions:
B : r3x↔ lrx , l2x↔ rlrx , rl2x↔ r2lx I : lx↔ rx
C : l2x↔ r2lx , lrlx↔ rlx , lr2x↔ r3x K : lx↔ r2x
F : l〈x, ry〉 ↔ r2〈x, y〉 , l〈x, ly〉 ↔ rl〈x, y〉 δ : l〈〈x, y〉, z〉 ↔ r〈x, 〈y, z〉〉
W : r2x↔ lr2x , l2〈x, y〉 ↔ rl〈lx, y〉 , lrl〈x, y〉 ↔ rl〈rx, y〉 D : l〈e, x〉 ↔ rx .

In Section 4 we focus on the purely linear and affine parts of the above combinatory algebra,
i.e. (P, ·) together with combinators B,C, I (and K).

4.1 From Principal Types to Involutions and back

As pointed out in the Introduction, our approach builds on an analogy, which could be viewed
also as a duality in the style of [2], between principal type schemes and the interpretation as
involutions, in P, of linear and affine combinators. The following algorithm is a transform
which, given a principal type scheme, i.e. a global representation of an object, yields for each
type-variable (a component of) an involution:

Definition 15. Given a closed term M of λA-calculus such that A M : µ, for each type
variable α ∈ µ, the judgements T (α, µ) yield a pair in the graph of a partial involution, if α
occurs twice in µ, or an element of TΣ, if α occurs once in µ:

T (α, α) = α T (α, µ(α)→ ν(α)) = l(T (α, µ(α))) ↔ r(T (α, ν(α)))

T (α, µ(α)→ ν) = l[T (α, µ(α))] T (α, µ→ ν(α)) = r[T (α, ν(α))]

where r[x] =

{
rx1 ↔ rx2 if x = x1 ↔ x2 ∧ x1, x2 ∈ TΣ

rx otherwise

and similarly for l[x].

We define the partial involution fµ = {T (α, µ) | α appears twice in µ} .

Vice versa, any partial involution interpreting a closed CLA-term M induces the corre-
sponding principal type, inverting the clauses in Definition 15. Notice that so doing we can
derive, actually, a “principal type scheme” from any partial involution, not just those which are
indeed interpretations of λ-terms. This remark will be crucial in addressing Abramsky’s open
question in Section 4.1.1.

Definition 16. We denote by [[]]P the interpretation of closed CLA-terms in (P, ·).

Theorem 5. Given a closed term of CLA, say M , the partial involution interpreting M ,
namely [[M]]P , can be read off the principal type scheme of (M)λA , i.e. (M)λA : µ if and only
if [[M]]P = fµ.

Proof. (Sketch) By induction on the structure of CLA-terms. One can easily check that the
thesis holds for combinators B, C, I, K. The inductive step amounts to showing that the notion
of application in P corresponds to computing the principal type scheme of the application, i.e.,
for MN closed CLA-term, if M : µ, N : τ , TVar(µ)∩TVar(τ) = ∅, U ′ = MGU(µ, α→ β),
U = MGU(U ′(α), τ), α, β fresh, then fU◦U ′(β) = fµ · fτ . This latter fact can be proved by
chasing, along the control flow diagram in the definition of application, the behaviour of the
MGU.

10

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

We are finally in the position of justifying the claims, in the introduction, that our analysis
unveils three conceptually independent, but ultimately equivalent, accounts of application in
the λ-calculus: β-reduction, the GoI application of involutions based on symmetric feedback/-
Girard’s Execution Formula, and unification of principal types. In effect, computing the partial
involutions [[M]]P · [[N]]P , according to Definition 14, amounts by Theorem 5 to unifying the
left-hand side of the principal type of M with the principal type of N , thus computing the
principal type of MN . Using Definition 15 we can finally read off from this type scheme the
partial involution [[MN]]P .

Notice that the proof of Theorem 5 above shows also that linear application between partial
involutions per se, even when these are not interpretations of combinators, can be explained
as unification (resolution) between their corresponding “principal type scheme” in the general
sense!

The following theorem concludes our model theoretic analysis:

Theorem 6.
(i) The linear combinatory algebra of partial involutions (P, ·) is a linear λ-algebra, albeit not
a linear combinatory λ-model.
(ii) The affine combinatory algebra of partial involutions (P, ·) is not an affine λ-algebra.

Proof.
(i) All the equations in Theorem 2 have been verified. In order to avoid errors we used the
Erlang program described in Section 5, where we will discuss also the epistemic impact of this
approach.

The proof that there does not exist a term which behaves as a selector combinator, namely
that ε does not exist, follows from Lemma 1 below. The combination of items (i) and (ii) of
Lemma 1 below contradicts the unique selection property of ε, namely we exhibit two objects,
i.e. ∅ and {lα ↔ lα}, which have the same empty applicative behaviour, but for any E which
satisfies ∀x, y. E · x · y = x · y, we have E · ∅ 6= E · {lα ↔ lα}. Consider first the terms
X = {rα ↔ lα, lβ ↔ lβ} and Y = {α ↔ β}, with α 6= β. Clearly we have X · Y = {α ↔ α}.
But E ·X = E · {rα↔ lα} ∪E · {lβ ↔ lβ}, by Lemma 1 (ii). Now E · {rα↔ lα} · Y = {rα↔
lα} · Y = ∅. Hence E · {lβ ↔ lβ} 6= ∅, since E ·X · Y = X · Y 6= ∅.
(ii) We have that (BBK)λA = (BKK)λA , but [[BBK]]P 6= [[BKK]]P . Namely, [[BBK]]P =
[[λ∗xyz.Kx(yz)]]P = {lx↔ r3x, rl2x↔ r2lx} while [[BKK]]P = [[λ∗xyz.x]]P = {lx↔ r3x}.

Lemma 1. Assume that there exists E ∈ P such that ∀x, y. E · x · y = x · y, then
(i) Err = ∅, and hence E · ∅ = ∅;
(ii) Ell = ∅, and hence E has an “additive” applicative behaviour, namely E · (A ∪ B) =
(E ·A) ∪ (E ·B).

Proof.
(i) We proceed in stages.

• rα↔ rβ /∈ Err, for any α, β, otherwise α↔ β ∈ E · ∅ ·X = ∅ ·X = ∅, contradiction.

• rα ↔ lβ /∈ Err, for any α, β, otherwise let A = {rα ↔ lδ, rδ ↔ lα} with δ and β not
unifiable. Then A · {β ↔ β} = ∅ , but E ·A · {β ↔ β} = {α↔ α}. Contradiction.

• lα↔ lβ /∈ Err, for any α 6= β, otherwise let A = {rα↔ lα}, then A·{α↔ α} = {α↔ α}.
Now, since E is a selector, E ·A · {α↔ α} = {α↔ α}, there must occur in E ·A a term
rα ↔ lρ such that ρ can unify with the l.h.s. of the only pair in the argument, i.e.
α = ρ, but then E · A would no longer be a non-ambiguous reversible relation, because
by assumption lα↔ lβ ∈ E ·A. Contradiction.

11

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

• Similar arguments can be used to rule out the remaining cases, i.e. lα ↔ lα ∈ Err and
the case where one of the components is garbage, i.e. it has no functional effect.

(ii) We proceed in stages.

• From the very definition of application in P, we have immediately that, if All = ∅, then A
has an “additive” behaviour under application, because it calls the argument only once.

• Ell = ∅ because for all l(α) either llα↔ rrα ∈ E or lrα↔ rrα ∈ E and rlα↔ llα ∈ E,
and hence there are no lα −→ lβ ∈ Ell, since E is an involution and the rewrite rules are
deterministic. To see the above, first notice that rα ↔ lα ∈ E · {rα ↔ lα} for all α,
otherwise, checking the control-flow diagram, one can easily see that we could not have
that E · {rα↔ lα} · {α↔ α} = {α↔ α}. But now, again with just a little case analysis
on the control-flow diagram, one can see that there are only two alternatives in Erl and
Elr, which give rise to the cases above.
The only case left is le↔ le ∈ Ell. But then we would have that
α↔ α ∈ (E · {rα↔ lα} · {α↔ e}), but {rα↔ lα} · {α↔ e} = ∅, contradiction.
Hence we have that {rα↔ lα, rδ ↔ lδ} · {α↔ β, γ ↔ δ} = ∅,
but E · {rα↔ lα, rδ ↔ lδ} · {α↔ β, γ ↔ δ} ⊇ {α↔ β}, contradiction.

4.1.1 Abramsky’s Open Problem

In [3], S. Abramsky raised the question: “Characterize those partial involutions which arise from
bi-orthogonal pattern-matching automata, or alternatively, those which arise as denotations of
combinators”.

Theorem 5 suggests an answer to the above question for the affine fragment, i.e. without
the operator < , > in the language of partial involutions. The first issue to address is how to
present partial involutions. To this end we consider the language TΣX , which is the initial term
algebra over the signature ΣX for ΣX0 ≡ X, where X is a set of variables, and ΣX1 = {l, r}. Sets
of pairs in TΣX denote schemata of pairs over TΣ\Σ2

, i.e. partial involutions in P. As pointed
out in the previous section, given a partial involution defined by a finite collection of pairs in
TΣX , say H ≡ {ui ↔ vi}i∈I for ui, vi ∈ ΣX , we can synthesize a type τH from H by gradually
specifying its tree-like format. Finally we check whether τH is the principal type of a linear
term. We proceed as follows. Each pair in H will denote two leaves in the type τH , tagged with
the same type variable. The sequence of l’s and r’s, appearing in the prefix before a variable in
a pair ui, vi, denotes the path along the tree of the type τH , which is under formation, where
the type variable will occur. A fresh type variable is used for each different pair. At the end
of this process we might not yet have obtained a complete type. Some leaves in the tree might
not be tagged yet, these arise in correspondence of vacuous abstractions. We tag each such
node with a new fresh type variable. H is finite otherwise we end up with an infinite type,
which cannot be the principal type of a finite combinator. The type τH thus obtained has the
property that each type variable occurs at most twice in it. Potentially it is a principal type.

The type τH is indeed a principal type of a closable λ-term (i.e. a term which reduces to a
closed term) if and only if it is an implication tautology in minimal logic. This can be effectively
checked in polynomial-space [30].

To complete the argument we need to show that if the type τH is inhabited it is indeed
inhabited by a term for which it is the principal type.

12

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

Proposition 5. If µ is a type where each type variable occurs at most twice and it is inhabited
by the closed term M , then there exists N such that Γ A N : µ and N =βAη M .

Proof. (Sketch) If M is a closed term, then there exists ν such that Γ L M : ν. The variables
in Γ will be eventually erased. If M inhabits µ, then by Theorem 3 there exists a substitution
U such that U(ν) = µ. For each variable which is substituted by U , say α, two cases can arise,
either α occurs twice or once. In the first case we will replace the term variable, say x, in
M in whose type α occurs, which must exist, by a suitable long-η-expansion of x. This long
η-expansion can always be carried out because the typed η-expansion rule is a derivable rule in
the typing system.
In case the type variable α occurs only once in M , there is a subterm of M which is embedded
in a vacuous abstraction. The term N is obtained by nesting that subterm with a new vacuous
λ-abstraction applied to a long-η-expansion of the variable vacuously abstracted in M .
Here are two examples. From H1 = {lllx↔ rllx, llrx↔ lrx, rrx↔ rlx} we can synthesize the
type ((α → β) → γ) → (α → β) → γ. The identity, λx.x, inhabits this type, but the type is
not the principal type of the identity. It is instead the principal type of an η-expansion of the
identity, namely λxy.x(λz.yz).
From H2 = {lllx ↔ lrrx, llrx ↔ lrlx, lrrx ↔ rrrx} we can synthesize the type ((α → β) →
(β → α)) → γ → γ. The term λyx.x inhabits this type which is the principal type of its
β-expansion λyx.(λw.x)(λzw.yzw).

So we can finally state the result which provides an answer to Abramsky’s open problem
[3], in the purely linear case:

Theorem 7. In the affine case, the denotations of combinators in P are precisely the partial
involutions from which we can synthesize, according to the procedure outlined above, a principal
type scheme which is a tautology in minimal logic.

Proof. Use Proposition 5 above in one direction, and Definition 15 and Theorem 5 in the
opposite direction.

The above is a satisfactory characterisation because it is conceptually independent both
from λ-terms and from involutions.

5 Machine Verification of Semantical Equalities

Since the manual verification of complicated equations like those appearing in Theorem 2 is
a lengthy and error-prone task, we developed an Erlang program to automate the proof of
equivalence of expressions involving involutions (see [31] for the details). The main components
of this program are the implementations of the Affine Abstraction Operator (see Definition 4)
and of the linear application operator f ·g (see Definition 14) introduced by S. Abramsky in [3].

The epistemic significance of using a machine to verify a set of equations, according to a set
of computation rules, is known to reduce to the problem of the correctness of the implementation
of the language and the correctness of the specification of the program. Using a machine to this
end is therefore different, and in principle less reliable, than checking a proof with the assistance
of a Logical Framework, such as e.g. [23, 10]. Nevertheless when the amount of details, as in this
case, escapes human alertness, even formal proof assistants resort to computation and rewriting
tools to verify equations. Therefore we briefly discuss the program we developed to assist us in

13

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

verifying the equations between involutions, both for the sake of completeness, but also because
morally it is part of the proof of Theorem 6.

There are several reasons behind the choice of Erlang: expressive pattern matching mecha-
nisms, avoidance of side effects thanks to one-time assignment variables, powerful libraries for
smooth handling of lists, tuples etc. However, other functional languages can be an effective
and viable choice as well.

In our program we allow the user to input involution rules, using <-> to denote rewritings,
much as one would do with pencil and paper, using the language TΣX of Section 4.1.1. Capital
letters or strings with initial capital letter denote variables, according to Erlang conventions.
Parentheses need not be specified if they can be automatically inferred. The notation 〈x, y〉
stands for p(x, y). We use leex and yecc (i.e. the Erlang versions of Lex and Yacc) to build
lexical analyzers and parser for the language of partial involutions, combinators, and λ-terms
in order to yield appropriate internal representations.

For instance, combinator B is defined by inputting the string representing its three rules
(i.e. "rrrX<->lrX, llX<->rlrX, rllX<->rrlX"). From this we obtain the following inter-
nal representation (each rule involving <-> yields two internal rules corresponding to the two
possible directions of rewriting):

[{{r,{r,{r,{var,"X"}}}},{l,{r,{var,"X"}}}}, {{l,{r,{var,"X"}}},{r,{r,{r,{var,"X"}}}}},

{{l,{l,{var,"X"}}},{r,{l,{r,{var,"X"}}}}}, {{r,{l,{r,{var,"X"}}}},{l,{l,{var,"X"}}}},

{{r,{l,{l,{var,"X"}}}},{r,{r,{l,{var,"X"}}}}},

{{r,{r,{l,{var,"X"}}}},{r,{l,{l,{var,"X"}}}}}]

We can compute the composition f ; g (compose(F,G)) of two involutions f and g as the set of
rules {(R1, R2) | R1 = s(F1), R2 = s(G2), (F1, F2) ∈ f, (G1, G2) ∈ g, and s = m.g.u.(F2, G1)},
where m.g.u. stands for most general unifier which can be implemented following Robinson’s
unification algorithm [29]. There is only a subtle issue to take into account, namely unification
may not work correctly if the sets of variables of f and g are not disjoint. Hence, we pre-
ventively rename variables of f , if this is not the case, in the computation of f ; g. Once the
implementation of f ; g is completed, it is trivial to define f ·g by unfolding its definition in terms
of the composition operator and calculating frr (extract(F,r,r)), frl (extract(F,r,l)), fll
(extract(F,l,l)), flr (extract(F,l,r)), exploiting in extract the pattern matching features
of Erlang.

Let us see, as an example, how the verification of equation λ∗xyz.C(C(BBx) y)z =
λ∗xyz.Cx(yz) from Theorem 2 is carried out. First, we parse the two members of the above
mentioned equation, yielding an internal representation of the two λ-abstractions. Then, we
apply the implementation of the Affine Abstraction Operator to yield the following expressions:

1. ((C((BC)((B(BB))((B(BC))((C((BB)((BC)((B(BB))I))))I)))))I)

2. ((C((BB)((BB)((BC)I))))((C((BB)I))I))

corresponding, respectively, to λ∗xyz.C(C(BBx)y)z and to λ∗xyz.Cx(yz).

Finally, since each combinator can be internally represented as a list of rewriting clauses
(according to [3]), it is only a matter of applying the application operation between partial
involutions (i.e. f · g) in order to check that the combinator expressions are indeed equal, i.e.,
they generate the same involution.

All the equations appearing in this paper have been machine checked using this program.

For further details and for the implementation of the replication operator (!) we refer the
interested reader to the Web Appendix [31].

14

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

6 Final Remarks and Directions for Future Work

In this paper, we have analysed from the point of view of the model theory of λ-calculus
the purely linear and affine fragments of the combinatory algebra of partial involutions, P,
introduced in [3]. The interest of this algebra lies in the fact that it yields a reversible model of
computation. Moreover, we have shown that the last step of “Abramsky’s Programme”, taking
from a full linear combinatory algebra to a λ-algebra is not immediate. Actually, we have
proved that non trivial quotients do not exist in general. In the setting of partial involutions,
only in the purely linear case we have a λ-algebra. Already in the affine case the model of
partial involutions cannot be immediately turned into a λ-algebra. In order to check all the
necessary complex details, we have implemented the verification of equalities between partial
involutions in the language Erlang.

The key insight which has allowed us to analyze the fine structure of the partial in-
volutions interpreting combinators has been what we termed the involutions-as-principal
types/application-as-unification analogy, which highlights a form of structural duality between
involutions and principal types, w.r.t. a suitable simple type discipline. This alternate and
novel characterization of partial involutions suggested immediately an answer to an open prob-
lem raised by S. Abramsky in [3], in the purely linear and affine cases. Namely, the partial
involutions which are interpretations of combinators are those whose corresponding principal
type is inhabited.

We conjecture that all the above results can be generalized also to Abramsky’s full com-
binatory algebra, including replication. In the abstract [11], we outlined a notion of affine
λ-calculus with replication, the λ!-calculus, which includes a unary ! operator on terms, and
has two kinds of λ-abstractions, affine abstraction and !-abstraction. The former can abstract
only affine terms, while the latter is a pattern abstraction which can abstract all λ-terms but can
fire only if the operand has an outermost ! operator. The Abstraction Operation in Definition 4
and the Abstraction Theorem 1, as well as a counterpart to Theorem 2 can then be extended
to the full affine case. We conjecture that the quotient of P, obtained by an applicative equiv-
alence defined by induction on a suitable measure of the complexity of the words in TΣ, yields
a λ!-algebra.

In order to obtain the analogous of Theorems 3 and 5, we need to extend the type system to
the λ!-calculus, so as to be able to express some kind of “principal type”. We conjecture that
the simple type discipline needs to be extended to a suitable intersection type system ([9]), in
the line of [15, 16], and equipped with a !u type operator, indexed by words u ∈ TΣ. We also
conjecture that a connection between partial involutions in the algebra P and principal type
schemes in this extended intersection type discipline, generalizing Proposition 5, can be given.
This latter result will provide an answer to the full version of Abramsky’s open problem along
the lines of the procedure described in the present paper for the affine case.

An interesting problem to address is to characterize the fine theory of P. This can be
done by proving a suitable Approximation Theorem, again relying on a complexity measure on
involutions, induced by a complexity measure on words in TΣ. A further line of investigation
is that of generalizing to the combinatory algebra of partial injections or other GoI situations,
in the sense of [4, 22], the duality and the results detected in the case of partial involutions.

We conclude this broad spectrum of future work by pointing out once again what we
think is the novelty of our paper, namely the involutions-as-principal types/GoI application-
as-unification, which, to our knowledge, had not been hitherto noticed. Clearly, there are
interesting connections between the l and r language constructors of involutions and other op-
erators such as Levy labels [25], or the p and q constructors in dynamic algebras [19, 12]. Hence

15

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

our analogy can have a bearing, in providing alternate accounts based on principal types, also in
these contexts, as well as in the field of optimal and reversible implementations of GoI machines
(see, e.g., [20, 26, 12, 28]). But even more interesting, in our view, is to assess whether our
reading based on unification of types, outlined in the case of involutions, can shed more light
on the fine structure of application in GoI or game semantics, which are apparently type-less.

References

[1] S. Abramsky and R. Jagadeesan. New foundations for the geometry of interaction. Information
and Computation, 111:53–119, 1994.

[2] Samson Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic, 51(1-2):1–77, 1991.

[3] Samson Abramsky. A structural approach to reversible computation. Theoretical Computer Sci-
ence, 347(3):441 – 464, 2005.

[4] Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of interaction and linear
combinatory algebras. Mathematical Structures in Computer Science, 12(5):625–665, 2002.

[5] Samson Abramsky and Marina Lenisa. Linear realizability and full completeness for typed lambda-
calculi. Annals of Pure and Applied Logic, 134(2):122 – 168, 2005.

[6] T. Altenkirch and J. Grattage. A functional quantum programming language. In 20th Annual
IEEE Symposium on Logic in Computer Science (LICS’ 05), pages 249–258, June 2005.

[7] J. Armstrong. Making reliable distributed systems in the presence of software errors. PhD thesis,
The Royal Institute of Technology Stockholm, Sweden, 2003.

[8] Hendrik Pieter Barendregt et al. The Lambda Calculus, Its Syntax and Semantics, volume 103 of
Studies in Logic. North-Holland Amsterdam, 1984.

[9] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic, 48(4):931940, 1983.

[10] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliâtre, Ed-
uardo Giménez, Hugo Herbelin, Gérard Huet, César Muñoz, Chetan Murthy, Catherine Parent,
Christine Paulin-Mohring, Amokrane Säıbi, and Benjamin Werner. The Coq Proof Assistant
Reference Manual : Version 6.1. Research Report RT-0203, INRIA, May 1997. Projet COQ.

[11] A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto. Reversible Com-
putation and Principal Types in λ!-calculus. In H. Dugald Macpherson, editor, The Bulletin of
Symbolic Logic, Logic Colloquium 2018, to appear.

[12] Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal λ-machines. Theoretical
Computer Science, 227(1):79 – 97, 1999.

[13] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Reversible combinatory logic. Math-
ematical Structures in Computer Science, 16(4):621637, 2006.

[14] Erlang official website. http://www.erlang.org. Last access: 19/01/2018.

[15] Pietro Di Gianantonio, Furio Honsell, and Marina Lenisa. A type assignment system for game
semantics. Theoretical Computer Science, 398(1):150 – 169, 2008. Calculi, Types and Applications:
Essays in honour of M. Coppo, M. Dezani-Ciancaglini and S. Ronchi Della Rocca.

[16] Pietro Di Gianantonio and Marina Lenisa. Innocent Game Semantics via Intersection Type As-
signment Systems. In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL
2013), volume 23 of Leibniz International Proceedings in Informatics (LIPIcs), pages 231–247,
Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[17] Jean-Yves Girard. Geometry of Interaction 1: Interpretation of System F. In R. Ferro, C. Bonotto,
S. Valentini, and A. Zanardo, editors, Logic Colloquium ’88, volume 127 of Studies in Logic and
the Foundations of Mathematics, pages 221 – 260. Elsevier, 1989.

[18] Jean-Yves Girard. Geometry of interaction 2: Deadlock-free algorithms. In Per Martin-Löf and
Grigori Mints, editors, COLOG-88, pages 76–93, Berlin, Heidelberg, 1990. Springer Berlin Heidel-

16

http://www.erlang.org

Involutions-as-Principal Types/Application-as-Unification Ciaffaglione, Honsell, Lenisa and Scagnetto

berg.

[19] Jean-Yves Girard. The Blind Spot: lectures on logic. European Mathematical Society, 2011.

[20] Georges Gonthier, Mart́ın Abadi, and Jean-Jacques Lévy. The geometry of optimal lambda re-
duction. In Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’92, pages 15–26, New York, NY, USA, 1992. ACM.

[21] Alexander S. Green and Thorsten Altenkirch. From reversible to irreversible computations. Elec-
tronic Notes in Theoretical Computer Science, 210:65 – 74, 2008. Proceedings of the 4th Interna-
tional Workshop on Quantum Programming Languages (QPL 2006).

[22] Esfandiar Haghverdi. A Categorical Approach to Linear Logic, Geometry of Proofs and full com-
pleteness. PhD thesis, University of Ottawa, 2000.

[23] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J. ACM,
40(1):143–184, January 1993.

[24] Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, pages 29–60, 1969.

[25] Jean-Jacques Lévy. An algebraic interpretation of the λβk-calculus; and an application of a labelled
λ-calculus. Theoretical Computer Science, 2(1):97 – 114, 1976.

[26] Ian Mackie. The geometry of interaction machine. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’95, pages 198–208, New
York, NY, USA, 1995. ACM.

[27] Albert R. Meyer. What is a model of the lambda calculus? Information and Control, 52(1):87 –
122, 1982.

[28] Koko Muroya and Dan R. Ghica. Efficient implementation of evaluation strategies via token-guided
graph rewriting. In Horatiu Cirstea and David Sabel, editors, Proceedings Fourth International
Workshop on Rewriting Techniques for Program Transformations and Evaluation, Oxford, UK,
8th September 2017, volume 265 of Electronic Proceedings in Theoretical Computer Science, pages
52–66. Open Publishing Association, 2018.

[29] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–41,
January 1965.

[30] Richard Statman. Intuitionistic propositional logic is polynomial-space complete. Theoretical
Computer Science, 9:67–72, 1979.

[31] Web appendix with erlang code. http://www.dimi.uniud.it/scagnett/pubs/automata-erlang.
pdf.

17

http://www.dimi.uniud.it/scagnett/pubs/automata-erlang.pdf
http://www.dimi.uniud.it/scagnett/pubs/automata-erlang.pdf

	Introduction
	Linear Notions and their Affine Extensions
	Linear and Affine Type Disciplines for the -calculus
	The Affine Case: Discussion

	Abramsky's Model of Reversible Computation
	From Principal Types to Involutions (and back)

	Machine Verification of Semantical Equalities
	Final Remarks and Directions for Future Work

