
A Conditional Logical Framework ?

Furio Honsell, Marina Lenisa, Luigi Liquori, and Ivan Scagnetto

INRIA, France & UNIUD, Italy

[honsell,lenisa,scagnett]@dimi.uniud.it,Luigi.Liquori@inria.fr

Abstract. The Conditional Logical Framework LFK is a variant of the Harper-
Honsell-Plotkin’s Edinburgh Logical Framemork LF. It features a generalized
form of λ-abstraction where β-reductions fire under the condition that the argu-
ment satisfies a logical predicate. The key idea is that the type system memorizes
under what conditions and where reductions have yet to fire. Different notions of
β-reductions corresponding to different predicates can be combined in LFK . The
framework LFK subsumes, by simple instantiation, LF (in fact, it is also a sub-
system of LF!), as well as a large class of new generalized conditional λ-calculi.
These are appropriate to deal smoothly with the side-conditions of both Hilbert
and Natural Deduction presentations of Modal Logics. We investigate and char-
acterize the metatheoretical properties of the calculus underpinning LFK , such as
subject reduction, confluence, strong normalization.

1 Introduction

The Edinburgh Logical Framework LF of [HHP93] was introduced both as a general
theory of logics and as a metalanguage for a generic proof development environment.
In this paper, we consider a variant of LF, called Conditional Logical Framework LF

K
,

which allows to deal uniformly with logics featuring side-conditions on the application
of inference rules, such as Modal Logics. We study the language theory of LF

K
and

we provide proofs for subject reduction, confluence, and strong normalization. By way
of example, we illustrate how special instances of LF

K
allow for smooth encodings of

Modal Logics both in Hilbert and Natural Deduction style.
The motivation for introducing LF

K
is that the type system of LF is too coarse as

to the “side conditions” that it can enforce on the application of rules. Rules being
encoded as functions from proofs to proofs and rule application simply encoded as
lambda application, there are only roundabout ways to encode provisos, even as simple
as that appearing in a rule of proof. Recall that a rule of proof can be applied only to
premises which do not depend on any assumption, as opposed to a rule of derivation
which can be applied everywhere. Also rules which appear in many natural deduction
presentations of Modal and Program Logics are very problematic in standard LF. Many
such systems feature rules which can be applied only to premises which depend solely
on assumptions of a particular shape [CH84], or whose derivation has been carried out
using only certain sequences of rules. In general, Modal, Program, Linear or Relevance

? Supported by AEOLUS FP6-IST-FET Proactive.

Logics appear to be encodable in LF only encoding a very heavy machinery, which
completely rules out any natural Curry-Howard paradigm, see e.g. [AHMP98]. As we
will see for Modal Logics, LF

K
allows for much simpler encodings of such rules, which

open up promising generalizations of the proposition-as-types paradigm.

The idea underlying the Conditional Logical Framework LF
K

is inspired by the
Honsell-Lenisa-Liquori’s General Logical Framework GLF see [HLL07], where we
proposed a uniform methodology for extending LF, which allows to deal with pattern
matching and restricted λ-calculi. The key idea, there, is to separate two different no-
tions that are conflated in the original LF. As already mentioned, much of the rigidity
of LF arised from the fact that β-reduction can be applied always in full generality. One
would like to fire a β-reduction under certain conditions on typed terms, but the type
system is not rich enough to be able to express such restrictions smoothly. What we
proposed in [HLL07] is to use as type of an application, in the term application rule,
(O·Appl) below, not the type which is obtained by carrying out directly in the metalan-
guage the substitution of the argument in the type, but a new form of type which simply
records the information that such a reduction can be carried out. An application of the
Type Conversion Rule can then recover, if possible,
the usual effect of the application rule. This key idea
leads to the following object application rule:

Γ `M : Πx:A.B Γ ` N : A

Γ `M N : (λx:A.B)N
Once this move has been made, we have a means of annotating in a type the information
that a reduction is waiting to be carried out in the term. If we take seriously this move,
such a type need not be necessarily definitionally equal to the reduced one as in the case
of LF. Without much hassle we have a principled and natural way of typing calculi fea-
turing generalized or restricted forms of β-reduction, which wait for some condition to
be satisfied before they can fire. Furthermore, such calculi can be used for underpinning
new powerful Logical Frameworks, where all the extra complexity in terms can be nat-
urally tamed using the expressive power of the new typing system. Once this program is
carried out in a sufficiently modular form, we have a full-fledged Logical Framework.

More specifically, in LF
K

we consider a new form of λ and corresponding Π ab-
straction, i.e. λPx:A.M and ΠPx:A.M , where P is a predicate, which ranges over a
suitable set of predicates. The reduction (λPx:A.M)N fires only if the predicate
P holds on N , and in this case the redex pro-
gresses, as usual, to M [N/x]. Therefore the fi-
nal object application rule in LF

K
will be:

Γ Σ̀ M : ΠPx:A.B Γ Σ̀ N : A

Γ Σ̀ M N : (λPx:A.B)N

In this rule a type where a reduction is “stuck”, if the predicate P is not true on N , is
assigned to an object application. However, when we view this object as a subterm of
another term, such reduction could become allowed in the future, after other reductions
are performed in the term, which provide substitutions for N . In LF

K
more predicates

can be combined. LF
K

subsumes standard LF, which is recovered by considering the
trivial predicate that is constantly true.

Historically, the idea of introducing stuck-reduction in objects and types, in the
setting of higher-order term rewriting systems with sophisticated pattern-matching ca-
pabilities, was first introduced in Cirstea-Kirchner-Liquori’s Rho-cube [CKL01b], in
order to design a hierarchy of type systems for the untyped Rewriting Calculus of
[CKL01a], and then it was generalized to a more general framework of Pure Type

2

Systems with Patterns [BCKL03]. This typing protocol was essential to preserve the
strong normalization of typable terms, as proved in [HLL07]. The idea underlying the
Conditional Logical Framework LF

K
is the same exploited in [HLL07] for the General

Logical Framework GLF. However, there is an important difference between the two
frameworks in the definition of predicates. On one hand, predicates in [HLL07] are
used both to determine whether β-reduction fires and to compute a substitution, while
in the present paper they are used only to determine whether β-reduction fires. On the
other hand, in [HLL07] predicates are defined on terms, while here they are defined on
typed judgments. This adds extra complexity both in the definition of the system and in
the study of its properties, but it greatly simplifies the treatment of Modal Logics and
of other situations where conditions depending on types have to be expressed.

Apart from Modal Logics, we believe that our Conditional Logical Framework
could also be very helpful in modeling dynamic and reactive systems: for example bio-
inspired systems, where reactions of chemical processes take place only provided some
extra structural or temporal conditions; or process algebras, where often no assumptions
can be made about messages exchanged through the communication channels. Indeed,
it could be the case that a redex, depending on the result of a communication, can re-
main stuck until a “good” message arrives from a given channel, firing in that case an
appropriate reduction (this is a common situation in many protocols, where “bad” re-
quests are ignored and “good ones” are served). Such dynamical (run-time) behaviour
could be hardly captured by a rigid type discipline, where bad terms and hypotheses are
ruled out a priori, see e.g. [NPP08].

In this paper we develop all the metatheory of LF
K
. In particular, we prove subject

reduction, strong normalization, confluence; this latter under the sole assumption that
the various predicate reductions nicely combine, i.e. no reduction can prevent a redex,
which could fire, from firing after the reduction. Since β-reduction in LF

K
is defined only

on typed terms, in order to prove subject reduction and confluence, we need to devise a
new approach, alternative to the one in [HHP93]. Our approach is quite general, and in
particular it yields alternative proofs for the original LF.

In conclusion, the work on LF
K

carried out in this paper is valuable in three ways.
First, being LF

K
so general, the results in this paper potentially apply to a wide range

of Logical Frameworks, therefore many fundamental results are proved only once and
uniformly for all systems. Secondly, the LF

K
approach is useful in view of implementing

a “telescope” of systems, since it provides relatively simple sufficient conditions to
test whether a potential extension of the framework is safe. Thirdly, LF

K
can suggest

appropriate extensions of the proposition-as-types paradigm to a wider class of logics.

Synopsis. In Section 2, we present the syntax of LF
K
, its type system, and the predicate

reduction. In Section 3, we present instantiations of LF
K

to known as well as to new
calculi, and we show how to encode smoothly Modal Logics. The LF

K
’s metatheory is

carried out in Section 4. Conclusions and directions for future work appear in Section 5.
Proofs appear in a Web Appendix available at the author’s web pages.

2 The System
Syntax. In the following definition, we introduce the LF

K
pseudo-syntax for kinds, fam-

ilies, objects, signatures and contexts.

3

Definition 1 (LF
K

Pseudo-syntax)

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, f :A Signatures

Γ,∆ ∈ C Γ ::= ∅ | Γ, x:A Contexts

K ∈ K K ::= Type | ΠPx:A.K | λPx:A.K | KM Kinds

A,B,C ∈ F A ::= a | ΠPx:A.B | λPx:A.B | AM Families

M,N,Q ∈ O M ::= f | x | λPx:A.M |M N Objects

where a, f are typed constants standing for fixed families and terms, respectively, and
P is a predicate ranging over a set of predicates, which will be specified below.

LF
K

is parametric over a set of predicates of a suitable shape. Such predicates are defined
on typing judgments, and will be discussed in the section introducing the type system.

Notational conventions and auxiliary definitions. Let “T ” range over any term in the
calculus (kind, family, object). The abstractions XPx:A.T (X∈ {λ,Π}) bind the vari-
able x in T . Domain Dom(Γ) and codomain CoDom(Γ) are defined as usual. Free
Fv(T) and bound Bv(T) variables are defined as usual. As usual, we suppose that, in
the context Γ, x:T , the variable x does not occur free in Γ and T . We work modulo
α-conversion and Barendregt’s hygiene condition.

Type System. LF
K

involves type judgments of the following shape:

Σ sig Σ is a valid signature

Σ̀ Γ Γ is a valid context in Σ

Γ Σ̀ K K is a kind in Γ and Σ

Γ Σ̀ A : K A has kind K in Γ and Σ

Γ Σ̀ M : A M has type A in Γ and Σ

Γ Σ̀ T 7→β T ′(: T ′′) T reduces to T ′ in Γ,Σ (and T ′′)

Γ Σ̀ T =β T
′(: T ′′) T converts to T ′ in Γ,Σ (and T ′′)

The typing rules of LF
K

are presented in Figure 1. As remarked in the introduction,
rules (F·Appl) and (O·Appl) do not utilize metasubstitution as in standard LF, but rather
introduce an explicit type redex. Rules (F·Conv) and (O·Conv) allow to recover the usual
rules, if the reduction fires.

Typed Operational Semantics. The “type driven” operational semantics is presented
in Figure 2, where the most important rule is (O·Red), the remaining ones being the
contextual closure of β-reduction. For lack of space we omit similar rules for kinds and
constructors. According to rule (O·Red), reduction is allowed only if the argument in
the context satisfies the predicate P . In this sense, reduction becomes “conditioned” by
P . In LF

K
, we can combine more predicate reductions, i.e., we can define and combine

several predicates guarding β-reduction, whose shape is as follows. Each predicate is
determined by a set A of families (types), and the intended meaning is that it holds on

4

Signature and Context rules

∅ sig
(S·Empty)

Σ sig

Σ̀ ∅
(C·Empty)

Σ sig Σ̀ K a 6∈ Dom(Σ)

Σ, a:K sig
(S·Kind)

Σ sig Σ̀ A : Type f 6∈ Dom(Σ)

Σ, f :A sig
(S·Type)

Σ̀ Γ Γ Σ̀ A : Type x 6∈ Dom(Γ)

Σ̀ Γ, x:A
(C·Type)

Kind rules

Σ̀ Γ

Γ Σ̀ Type
(K·Type)

Γ, x:A Σ̀ K

Γ Σ̀ ΠPx:A.K
(K·Pi)

Γ, x:A Σ̀ K

Γ Σ̀ λPx:A.K
(K·Abs)

Γ Σ̀ λPx:A.K Γ Σ̀ N : A

Γ Σ̀ (λPx:A.K)N
(K·Appl)

Family rules

Σ̀ Γ a:K ∈ Σ

Γ Σ̀ a : K
(F·Const)

Γ, x:A Σ̀ B : Type

Γ Σ̀ ΠPx:A.B : Type
(F·Pi)

Γ, x:A Σ̀ B : K

Γ Σ̀ λPx:A.B : ΠPx:A.K
(F·Abs)

Γ Σ̀ A : ΠPx:B.K Γ Σ̀ N : B

Γ Σ̀ AN : (λPx:B.K)N
(F·Appl)

Γ Σ̀ A : K′

Γ Σ̀ K Γ Σ̀ K =β K
′

Γ Σ̀ A : K
(F·Conv)

Object rules

Σ̀ Γ x:A ∈ Γ

Γ Σ̀ x : A
(O·Var)

Σ̀ Γ f :A ∈ Σ

Γ Σ̀ f : A
(O·Const)

Γ, x:A Σ̀ M : B

Γ Σ̀ λPx:A.M : ΠPx:A.B
(O·Abs)

Γ Σ̀ M : ΠPx:A.B Γ Σ̀ N : A

Γ Σ̀ M N : (λPx:A.B)N
(O·Appl)

Γ Σ̀ M : A
Γ Σ̀ B : Type Γ Σ̀ A =β B : Type

Γ Σ̀ M : B
(O·Conv)

Fig. 1. LFK Type System

a typed judgment Γ Σ̀ M : A and a set of variables X ⊆ Dom(Γ) if “Γ Σ̀ M : A
is derivable and all the free variables in M which are in X appear in subterms typable
with a type in A”. This intuition is formally stated in the next definition.

Definition 2 (Good families (types) and predicates)
Let A ⊆ F be a set of families. This induces a predicate PA (denoted by P , for sim-
plicitly), defined on typed judgments Γ ` M : A and sets X such that X ⊆ Dom(Γ).
The truth table of P appears in Figure 3.
We call good a predicate P defined as above, and good types the set of types in A
inducing it.

The following lemma states formally the intended meaning of our predicates:

Lemma 1 (P Satisfiability).
Given a predicate P ∈ L induced by a set of families (types) A, P holds on a typed

5

Γ Σ̀ (λPx:A.M)N : C
Γ Σ̀ M [N/x] : C P(Fv(N);Γ Σ̀ N : A)

Γ Σ̀ (λPx:A.M)N 7→β M [N/x] : C
(O·Red)

Γ Σ̀ λPx:A.M : ΠPx:A.B
Γ Σ̀ λPx:A.N : ΠPx:A.B Γ, x:A Σ̀ M 7→β N : B

Γ Σ̀ λPx:A.M 7→β λPx:A.N : ΠPx:A.B
(O·λ·Red1)

Γ Σ̀ λPx:A.M : C
Γ Σ̀ λPx:B.M : C Γ Σ̀ A 7→β B : Type

Γ Σ̀ λPx:A.M 7→β λPx:B.M : C
(O·λ·Red2)

Γ Σ̀ M N : (λPx:A.B)N
Γ Σ̀ P N : (λPx:A.B)N Γ Σ̀ M 7→β P : ΠPx:A.B

Γ Σ̀ M N 7→β P N : (λPx:A.B)N
(O·Appl·Red1)

Γ Σ̀ M N : (λPx:A.B)N
Γ Σ̀ M P : (λPx:A.B)N Γ Σ̀ N 7→β P : A

Γ Σ̀ M N 7→β M P : (λPx:A.B)N
(O·Appl·Red2)

Γ Σ̀ M 7→β N : A Γ Σ̀ A =β B : Type

Γ Σ̀ M 7→β N : B
(O·Conv·Red)

Fig. 2. LFK Reduction (Object rules)

Γ Σ̀ M :A A ∈ A

P(X ;Γ Σ̀ M : A)
(O·Start1)

Γ Σ̀ M :A

P(∅;Γ Σ̀ M : A)
(O·Start2)

P(X ;Γ, x:A Σ̀ M : B)

P(X \ {x};Γ Σ̀ λPx:A.M : ΠPx:A.B)
(O·Abs)

P(X ;Γ Σ̀ M : ΠPx:A.B) P(X ;Γ Σ̀ N : A)

P(X ;Γ Σ̀ M N : (λPx:A.B)N)
(O·Appl)

P(X ;Γ Σ̀ M : A) Γ Σ̀ B : Type Γ Σ̀ A =β B : Type

P(X ;Γ Σ̀ M : B)
(O·Conv)

Fig. 3. P’s truth table

judgment Γ Σ̀ M : B and a set of variables X ⊆ Dom(Γ), if Γ Σ̀ M : B is
derivable and all the free variables in M which are in X appear in subterms typable
with a type in A.

Hence, if we take X = Fv(M), then P(X ;Γ Σ̀ M : A) will take into account
exactly the free variables of M , according to the abovementioned intended meaning.

6

Γ Σ̀ A : K

Γ Σ̀ A =β A : K
(F·Refl·eq)

Γ Σ̀ B =β A : K

Γ Σ̀ A =β B : K
(F·Sym·eq)

Γ Σ̀ A =β B : K Γ Σ̀ B =β C : K

Γ Σ̀ A =β C : K
(F·Trans·eq)

Γ Σ̀ A 7→β B : K

Γ Σ̀ A =β B : K
(F·Red·eq)

Fig. 4. LFK Definitional Equality (Family rules)

A1 : φ→ (ψ → φ) K : 2(φ→ ψ)→ (2φ→ 2ψ)

A2 : (φ→ (ψ → ξ))→ (φ→ ψ)→ (φ→ ξ) 4 : 2φ→ 22φ

A3 : (¬φ→ ¬ψ)→ ((¬φ→ ψ)→ φ) > : 2φ→ φ

MP :
φ φ→ ψ

ψ
NEC :

φ

2φ

Fig. 5. Hilbert style rules for Modal Logic S4

Moreover, it is worth noticing that, once the “good families” are chosen, predicates are
automatically defined as a consequence (look at the examples in the next section).

As far as definitional equality is concerned, due to lack of space, we give in Fig-
ure 4 only the rules on families, the ones for kinds and objects being similar. Notice
that typing, β-reduction, and equality are mutually defined. Moreover, β-reduction is
parametric over a (finite) set of good predicates, that is in LF

K
we can combine several

good predicates at once.
Finally, notice that our approach is different from static approaches, where “bad”

terms are ruled out a priori via rigid type disciplines. Namely, in our framework stuck
redexes can become enabled in the future. Consider, e.g. a redex (λP1x:A.M)N which
is stuck because a free variable y occurring into N does not satisfy the constraint im-
posed by predicate P1. Then, it could be the case that such redex is inserted into a con-
text where y will be instantiated by a term P , by means of an outer (non-stuck) redex,
like, e.g. in (λP2y:B.(λP1x:A.M)N)P . The resulting redex (λP1x:A[P/y].M [P/y])
N [P/y] could then fire since the constraint imposed by the predicate P1 is satisfied by
N [P/y].

3 Instantiating LF
K

to Modal Logics
The Conditional Logical Framework is quite expressive. By instantiating the set of pred-
icates, we can recover various known and new interesting Logical Frameworks. The
original LF can be recovered by considering the trivial predicate induced by the set A
of all families. More interesting instances of LF

K
are introduced below for providing

smooth encodings of Modal Logics.

Modal Logic in Hilbert style. The expressive power of the Conditional Logical Frame-
work allows to encode smoothly and uniformly both rules of proof as well as rules of
derivation. We recall that the former are rules which apply only to premises which do
not depend on any assumption, such as the rule of necessitation in Modal Logics, while

7

the latter apply to all premises, such as modus ponens. The idea is to use a conditioned
Π-abstraction in rules of proof and a standard Π-abstraction in rules of derivation.

We shall not develop here the encodings of all the gamut of Modal Logics, in Hilbert
style, which is extensively treated in [AHMP98]. By way of example, we shall only
give the signature for classical S4 (see Figure 5) in Hilbert style (see Figure 6), which
features necessitation (rule NEC in Figure 5) as a rule of proof. For notational conven-
tion in Figure 6 and in the rest of this section, we will denote by on the expression
o→ o→ . . .→ o︸ ︷︷ ︸

n

. The target language of the encoding is the instance of LF
K
, obtained

by combining standard β-reduction with the β-reduction conditioned by the predicate
Closedo induced by the setA = {o}. Intuitively, Closedo(Fv(M);Γ `S4 M : True(φ))
holds iff “all free variables occurring in M belong to a subterm which can be typed in
the derivation with o”. This is precisely what is needed to encode it correctly, provided
o is the type of propositions. Indeed, if all the free variables of a proof term satisfy such
condition, it is clear, by inspection of the typing system’s object rules (see Figure 1),
that there cannot be subterms of type True(. . .) containing free variables. Intuitively,
this corresponds to the fact that the proof of the encoded modal formula does not depend
on any assumptions. The following Adequacy Theorem can be proved in the standard
way, using the properties of LF

K
in Section 4.

Theorem 1 (Adequacy of the encoding of S4 - Syntax)
Let ε be an encoding function (induced by the signature in Figure 6) mapping object
level formulæ of S4 into the corresponding canonical terms1 of LF

K
of type o. If φ is

a propositional modal formula with propositional free variables x1, . . . , xk, then the
following judgment Γ `S4 ε(φ) : o is derivable, where Γ ≡ x1:o, . . . , xk:o and each
xi is a free propositional variable in φ. Moreover, if we can derive in LF

K
Γ `S4 M : o

where Γ ≡ x1:o, . . . , xk:o and M is a canonical form, then there exists a propositional
modal formula φ with propositional free variables x1, . . . , xk such that M ≡ ε(φ).

The proof amounts to a straightforward induction on the structure of φ (first part) and on
the structure of M (second part). After proving the adequacy of syntax, we can proceed
with the more interesting theorems about the adequacy of the truth judgments.

Theorem 2 (Adequacy of the encoding of S4 - Truth Judgment)
φ1, . . . , φh `S4 φ if and only if there exists a canonical form M such that

Γ, y1:True(ε(φ1)), . . . , yh:True(ε(φh)) `S4 M : True(ε(φ))

where Γ ≡ x1:o, . . . , xk:o for each xi free propositional variable in φ1, . . . , φh, φ.

Classical Modal Logic S4 and S5 in Prawitz Style. By varying the notion of good types
in the general format of LF

K
, one can immediately generate Logical Frameworks which

accommodate both classical Modal Logics S4 and S5 in Natural Deduction style intro-
duced by Prawitz. Figure 7 shows common and specific rules of S4 and S5.

1 In this case, as in [HHP93], in stating the adequacy theorem it is sufficient to consider long
λβη-normal forms without stuck redexes as canonical forms. Namely, non-reducible terms
with stuck redexes must contain free variables not belonging to subterms typable with o, and
clearly such terms do not correspond to any S4-formula.

8

Propositional Connectives and Judgments

o : Type ⊃: o3 ¬ : o2 2 : o2 True :o→ Type

Propositional Axioms

A1 :Πφ:o. Πψ:o. True(φ ⊃ (ψ ⊃ φ))

A2 :Πφ:o. Πψ:o. Πξ:o. True((φ ⊃ (ψ ⊃ ξ)) ⊃ (φ ⊃ ψ) ⊃ (φ ⊃ ξ))
A3 :Πφ:o. Πψ:o. True((¬ψ ⊃ ¬φ) ⊃ ((¬ψ ⊃ φ) ⊃ ψ))

Modal Axioms

K :Πφ:o. Πψ:o. True(2(φ ⊃ ψ) ⊃ (2φ ⊃ 2ψ))

4 :Πφ:o. True(2φ ⊃ 22φ)

> :Πφ:o. True(2φ ⊃ φ)

Rules

MP :Πφ:o. Πψ:o. True(φ)→ True(φ ⊃ ψ)→ True(ψ)

NEC :Πφ:o. ΠClosedox:True(φ). True(2φ)

Fig. 6. The signature ΣS4 for classic S4 Modal Logic in Hilbert style

Modal Logic common rules in Natural Deduction style

Γ ` φ Γ ` ψ

Γ ` φ ∧ ψ
(∧I)

Γ ` φ ∧ ψ

Γ ` φ
(∧E1)

Γ ` φ ∧ ψ

Γ ` ψ
(∧E2)

Γ ` φ

Γ ` φ ∨ ψ
(∨I1)

Γ ` ψ

Γ ` φ ∨ ψ
(∨I2)

Γ ` φ ∨ ψ Γ, φ ` ξ Γ, ψ ` ξ

Γ ` ξ
(∨E)

Γ, φ ` ψ

Γ ` φ→ ψ
(→ I)

Γ ` φ→ ψ Γ ` φ

ψ
(→ E)

Γ, φ ` ¬φ

Γ ` ¬φ
(¬I)

Γ ` ¬φ Γ ` φ

Γ ` ψ
(¬E)

Γ,¬φ ` φ

Γ ` φ
(RAA)

Specific rules for Modal Logic S4 in Natural Deduction style

2Γ ` φ

2Γ ` 2φ
(2I)

Γ ` 2φ

Γ ` φ
(2E)

Specific rules for Modal Logic S5 in Natural Deduction style

2Γ0,¬2Γ1 ` φ

2Γ0,¬2Γ1 ` 2φ
(2I)

Γ ` 2φ

Γ ` φ
(2E)

Fig. 7. Modal Logic (common rules and S4,5 rules) in LFK

We combine again standard β-reduction with a suitable notion of β-reduction con-
ditioned by a predicate Boxed. As in the previous case such predicate can be defined by
fixing a suitable notion of good type. In the case of S4 a type is good if it is of the shape

9

Propositional Connectives and Judgments

o : Type and : o3 or : o3 ⊃: o3 ¬ : o2 2 : o2 True : o→ Type

Propositional Rules

AndI :Πφ:o. Πψ:o. True(φ)→ True(ψ)→ True(φ and ψ)

AndE1 :Πφ:o. Πψ:o. True(φ and ψ)→ True(φ)

AndE2 :Πφ:o. Πψ:o. True(φ and ψ)→ True(ψ)

OrI1 :Πφ:o. Πψ:o. True(φ)→ True(φ or ψ)

OrI2 :Πφ:o. Πψ:o. True(ψ)→ True(φ or ψ)

OrE :Πφ:o. Πψ:o. True(φ or ψ)→ (True(φ)→ True(ξ))→ (True(ψ)→ True(ξ))→ True(ξ)

ImpI :Πφ:o. Πψ:o. (True(φ)→ True(ψ))→ True(φ ⊃ ψ)

ImpE :Πφ:o. Πψ:o. True(φ ⊃ ψ)→ True(φ)→ True(ψ)

NegI :Πφ:o. (True(φ)→ True(¬φ))→ True(¬φ)

NegE :Πφ:o. Πψ:o. True(¬φ)→ True(φ)→ True(ψ)

RAA :Πφ:o. (True(¬φ)→ True(φ))→ True(φ)

Modal Rules

BoxI :Πφ:o. ΠBoxedx:True(φ). True(2φ)

BoxE :Πφ:o. Πx:True(2φ). True(φ)

Fig. 8. The signature ΣS for classic S4 or S5 Modal Logic in Natural Deduction style

True(2A) for a suitableA or o. In the case of S5 a type is good if it is either of the shape
True(2A) or True(¬2A) or o. Again the intended meaning is that all occurrences of
free variables appear in subterms having a 2-type or within a syntactic type o in the
case of S4, and a 2-type or ¬2-type or within a syntactic type o in the case of S5.

Thus, e.g. for S4, the encoding of the Natural Deduction (2I) rule of Prawitz (see
Figure 7) can be rendered as Πφ:o. ΠBoxedx:True(φ). True(2φ), where o:Type repre-
sents formulæ, while True:o→ Type and 2:o→ o.

Quite a remarkable property of this signature is that it encodes a slightly more usable
version of Natural Deduction S4 than the one originally introduced by Prawitz. Our
formulation is precisely what is needed to achieve a normalization result in the logic
which could not be done in the original system of Prawitz. Being able to refer to boxed
subterms, rather than just boxed variables, is what makes the difference. Once again LF

K

encodings improve presentations of logical systems!

4 Properties of LF
K

In this section, we study relevant properties of LF
K
. We show that, without any extra

assumption on the predicates, the type system satisfies a list of basic properties, includ-
ing the subderivation property, subject reduction and strong normalization. The latter
follows easily from the strong normalization result for LF, see [HHP93]. Confluence
and judgment decidability can be proved under the assumption that the various pred-
icate reductions nicely combine, in the sense that no reduction can prevent a redex,

10

which could fire, from firing after the reduction. The difficulty in proving subject re-
duction and confluence for LF

K
lies in the fact that predicate β-reductions do not have

corresponding untyped reductions, while standard proofs of subject reduction and con-
fluence for dependent type systems are based on underlying untyped β-reductions (see
e.g. [HHP93]). We provide an original technique, based solely on typed β-reductions,
providing a fine analysis of the structure of terms which are β-equivalent to Π-terms.

In the following, we will denote by Γ Σ̀ α any judgment defined in LF
K
. The proof

of the following theorem is straightforward.

Theorem 3 (Basic Properties)
Subderivation Property

1. Any derivation of Γ Σ̀ α has subderivations of Σ sig and Σ̀ Γ .
2. Any derivation of Σ, a:K sig has subderivations of Σ sig and Σ̀ K.
3. Any derivation of Σ, f :A sig has subderivations of Σ sig and Σ̀ A : Type.
4. Any derivation of Σ̀ Γ, x:A has subderivations of Σ sig and Γ Σ̀ A : Type.
5. Given a derivation of Γ Σ̀ α and any subterm occurring in the subject of the

judgment, there exists a derivation of a smaller length of a judgment having
that subterm as a subject.

6. If Γ Σ̀ A : K, then Γ Σ̀ K.
7. If Γ Σ̀ M : A, then Γ Σ̀ A : Type if there are no stuck redexes in A.

Derivability of Weakening and Permutation
If Γ and ∆ are valid contexts, and every declaration occurring in Γ also occurs in
∆, then Γ Σ̀ α implies ∆ Σ̀ α.

Transitivity
If Γ, x:A,∆ Σ̀ α and Γ Σ̀ M : A, then Γ,∆[M/x] Σ̀ α[M/x].

Convertibility of types in domains
1. For all Γ, x:A,∆ Σ̀ α and Γ,∆ Σ̀ A =β A

′ : K, then Γ, x:A′, ∆ Σ̀ α.
2. If P(X ;Γ, x:A,∆ Σ̀ M : B) holds and Γ,∆ Σ̀ A =β A′ : K, then
P(X ;Γ, x:A′, ∆ Σ̀ M : B) holds.

Strong normalization of LF
K

follows from the one of LF, since there is a trivial map of
LF

K
in LF, which simply forgets about predicates. Thus, if there would be an infinite

reduction in LF
K
, this would be mapped into an infinite reduction in LF.

Theorem 4 (Strong Normalization)
1. If Γ Σ̀ K, then K ∈ SNK.
2. if Γ Σ̀ A : K, then A ∈ SNF .
3. if Γ Σ̀ M : A, then M ∈ SNO.

Where SN{K,F,O} denotes the set of strongly normalizing terms of kinds, families, and
objects, respectively.

In the following we will denote by Γ Σ̀ A
β B : K the fact that either Γ Σ̀

A 7→β B : K or Γ Σ̀ B 7→β A : K holds. Moreover, in the next results we will use a
measure of the complexity of the proofs of judgments which takes into account all the
rules applied in the derivation tree. More precisely, we have the following definition:

11

Definition 3 (Measure of a derivation)
Given a proof D of the judgment Γ Σ̀ α, we define the measure of D, denoted by #D,
as the number of all the rules applied in the derivation of D itself.

The following lemma is easily proved by induction on #D.

Lemma 2 (Reduction/Expansion).
For any derivation D : Γ Σ̀ A =β B : K, either A ≡ B or there exist C1, . . . , Cn
(n ≥ 0) such that:

1. There exist D1 : Γ Σ̀ A
β C1 : K and D2 : Γ Σ̀ C1
β C2 : K . . . and
Dn : Γ Σ̀ Cn−1
β Cn : K and Dn+1 : Γ Σ̀ Cn
β B : K and, for all
1 ≤ i ≤ n+ 1, we have #Di < #D.

2. For any 1 ≤ i ≤ n, we have that there exist D′1 : Γ Σ̀ A =β Ci : K and
D′2 : Γ Σ̀ Ci =β B : K and #D′1,#D′2 < #D.

This lemma allows us to recover the structure of a term which is β-equivalent to a
Π-term. The proof proceeds by induction on #D.

Lemma 3 (Key lemma).

1. If D : Γ Σ̀ ΠPx:A.K =β K
′ holds, then either ΠPx:A.K ≡ K ′ or there are

P1, ...,Pn, and D1, ..., Dn, and M1, ...,Mn (n ≥ 0), and KA, D1, D2 such that:
(a) K ′ ≡ ((λP1y1:D1. . . . ((λPnyn:Dn.(ΠPx:A′.K ′′))Mn) . . .)M1).
(b) D1 : Γ Σ̀ A =β ((λP1y1:D1. . . . ((λPnyn:Dn.A

′)Mn) . . .)M1) : KA.
(c) D2 : Γ, x:A Σ̀ K =β ((λP1y1:D1. . . . ((λPnyn:Dn.K

′′)Mn) . . .)M1).
(d) #D1,#D2 < #D.

2. If D : Γ Σ̀ ΠPx:A.B =β C : K holds, then either ΠPx:A.B ≡ C or there are
P1, ...,Pn, and D1, ..., Dn, and M1, ...,Mn (n ≥ 0), and KA, KB , and D1, D2

such that:
(a) C ≡ ((λP1y1:D1. . . . ((λPnyn:Dn.(ΠPx:A′.B′))Mn) . . .)M1).
(b) D1 : Γ Σ̀ A =β ((λP1y1:D1. . . . ((λPnyn:Dn.A

′)Mn) . . .)M1) : KA.
(c) D2 : Γ, x:A Σ̀ B =β ((λP1y1:D1. . . . ((λPnyn:Dn.B

′)Mn) . . .)M1) : KB .
(d) #D1,#D2 < #D.

Corollary 1 (Π’s injectivity).

1. If Γ Σ̀ ΠPx:A.K =β ΠPx:A′.K ′, then Γ Σ̀ A =β A
′ : KA and Γ, x:A Σ̀

K =β K
′.

2. If Γ Σ̀ ΠPx:A.B =β ΠPx:A′.B′ : K, then Γ Σ̀ A =β A
′ : K ′ and Γ, x:A Σ̀

B =β B
′ : K ′′.

The proof of the following theorem uses the Key Lemma.

Theorem 5 (Unicity, Abstraction and Subject Reduction)

Unicity of Types and Kinds
1. If Γ Σ̀ A : K1 and Γ Σ̀ A : K2, then Γ Σ̀ K1 =β K2.
2. If Γ Σ̀ M : A1 and Γ Σ̀ M : A2, then Γ Σ̀ A1 =β A2 : K.

Abstraction Typing
1. If Γ Σ̀ λPx:A.T : ΠPx:A′.T ′, then Γ Σ̀ A =β A

′ : K.

12

2. If Γ Σ̀ λPx:A.T : ΠPx:A.T ′, then Γ, x:A Σ̀ T : T ′.
Subject Reduction

1. If Γ Σ̀ (λPx:A.K)N , then Γ Σ̀ K[N/x].
2. If Γ Σ̀ (λPx:A.B)N : K and P(Fv(N);Γ Σ̀ N : A) holds, then Γ Σ̀

B[N/x] : K.
3. If Γ Σ̀ (λPx:A.M)N : C and P(Fv(N);Γ Σ̀ N : A) holds, then Γ Σ̀

M [N/x] : C.

In the following, we consider notions of reduction for LF
K

that are well-behaved in the
following sense:

1. a redex which can fire, can still fire after any β-reduction in its argument (possibly
corresponding to a different predicate);

2. a redex which can fire, can still fire after application to its argument of a substitution
coming from another reduction.

Formally:

Definition 4 (Well behaved β-reduction)
Assume that the LF

K
β-reduction is determined by the set P of good predicates. Then

the β-reduction is well-behaved if, for all P,P ′ ∈ P, the following two conditions are
satisfied:

1. If P(Fv(N);Γ Σ̀ N : A) holds and Γ Σ̀ N 7→β N ′ : A, then P(Fv(N ′);Γ Σ̀

N ′ : A) holds.
2. If P(Fv(N);Γ ′, y:A′;Γ Σ̀ N : A) and P ′(Fv(N ′);Γ ′ Σ̀ N ′ : A′) hold, then
P(Fv(N [N ′/y]);Γ ′, Γ [N ′/y] Σ̀ N [N ′/y] : A[N ′/y]) holds.

Definition 4 above allows one to combine several notions of predicate reduction, pro-
vided the latter are all well-behaved.

Since LF
K

is strongly normalizing, in order to prove confluence of the system, by
Newman’s Lemma, it is sufficient to show that LF

K
β-reduction is locally confluent, i.e.

(in the case of objects) if Γ Σ̀ M1 7→β M2 : C and Γ Σ̀ M1 7→β M3 : C, then
there exists M4 such that Γ Σ̀ M2 7→→βM4 : C and Γ Σ̀ M3 7→→βM4 : C. Under the
hypothesis that β-reduction is well-behaved, using Theorem 5, we can prove that the
reduction is locally confluent.

Theorem 6 (Local Confluence)
If β-reduction is well behaved, then it is locally confluent.

Finally, from Newman’s Lemma, using Theorems 4 and 6, we have:

Theorem 7 (Confluence)
Assume β-reduction is well behaved. Then the relation 7→β is confluent, i.e.:

1. If Γ Σ̀ K1 7→→βK2 and Γ Σ̀ K1 7→→βK3, then there exists K4 such that Γ Σ̀

K2 7→→βK4 and Γ Σ̀ K3 7→→βK4.
2. If Γ Σ̀ A1 7→→β A2 : K and Γ Σ̀ A1 7→→β A3 : K, then there exists A4 such that
Γ Σ̀ A2 7→→β A4 : K and Γ Σ̀ A3 7→→β A4 : K.

13

3. If Γ Σ̀ M1 7→→βM2 : C and Γ Σ̀ M1 7→→βM3 : C, then there exists M4 such that
Γ Σ̀ M2 7→→βM4 : C and Γ Σ̀ M3 7→→βM4 : C.

Judgements decidability show that LF
K

can be used as a framework for proof checking.

Theorem 8 (Judgements decidability of LF
K
)

If 7→β is well-behaved, then it is decidable whether Γ Σ̀ α is derivable.

The standard pattern of the proof applies, provided we take care that reductions are
typed in computing the normal form of a type.

It is easy to show that, for all instances of LF
K

considered in Section 3, the corre-
sponding β-reductions are well behaved, thus judgement decidability holds.

5 Conclusions and Directions for Future Work
In this paper, we have investigated the language theory of the Conditional Logical
Framework LF

K
, which subsumes the Logical Framework LF of [HHP93], and gen-

erates new Logical Frameworks. These can feature a very broad spectrum of general-
ized typed (possibly by value) β-reductions, together with an expressive type system
which records when such reductions have not yet fired. The key ingredient in the typ-
ing system is a decomposition of the standard term-application rule. A very interesting
feature of our system is that it allows for dealing with values induced by the typing
system, i.e. values which are determined by the typing system, through the notion of
good predicates. We feel that our investigation of LF

K
is quite satisfactory: we have

proved major metatheoretical results, such as strong normalization, subject reduction
and confluence (this latter under a suitable assumption). For LF

K
we have achieved de-

cidability, which legitimates it as a metalanguage for proof checking and interactive
proof editing. We have shown how suitable instances of LF

K
provide smooth encodings

of Modal Logics, compared with the heavy machinery needed when we work directly
into LF, see e.g. [AHMP98]. Namely, the work of specifying the variable occurrence
side-conditions is factored out once and for all into the framework.

Here is a list of comments and directions for future work.

– Some future efforts should be devoted to the task of investigating the structure of
canonical forms including stuck redexes. Such analysis could clarify the rôle of
stuck β-reductions and stuck terms in the activity of encoding object logics into
LF

K
. Moreover, following the approach carried out in [WCPW02], we could benefit

from a presentation of LF
K

based upon a clear characterization of canonical forms
in order to avoid the notion of β-conversion and the related issues.

– We believe that our metalogical Framework has some considerable potential. In
particular, it could be useful for modeling dynamic situations, where the static ap-
proach of rigid typed disciplines is not sufficient. We plan to carry out more exper-
iments in the future, e.g. in the field of reactive systems, where the rôle of stuck
redexes could be very helpful in modeling the dynamics of variables instantiations.

– Our results should scale up to systems corresponding to the full Calculus of Con-
structions [CH88].

– Is there an interesting Curry-Howard isomorphism for LF
K
, and for other systems

blending rewriting facilities and higher order calculi?

14

– Investigate whether LF
K

could give sharp encodings of Relevance and Linear Log-
ics. Is the notion of good predicate involved in the definition of LF

K
useful in this

respect? Or do we need a different one?
– Compare with work on Deduction Modulo [DHK03].
– In [KKR90], Kirchner-Kirchner-Rusinowitch developed an Algebraic Logical Frame-

work for first-order constrained deduction. Deduction rules and constraints are
given for a first-order logic with equality. Enhancing LF

K
with constraints seems

to be a perfect fit for a new race of metalanguages for proof checking and auto-
matic theorem proving. Without going much into the details of our future research,
the abstraction-term could, indeed, have the shape λPx; C.M , where P records the
first-order formula, x is a vector of variables occurring in the formula and C are
constraints over x.

– Until now, the predicate states a condition that takes as input the argument and
its type. It would be interesting to extend the framework with another predicate,
say Q, applied to the body of the function. The abstraction would then have the
form λPx:A.MQ. This extension would put conditions on the function output, so
leading naturally to a framework for defining Program Logics à la Hoare-Floyd.

– Implement new proof assistants based on dependent type systems, like e.g. Coq,
based on LF

K
.

References

[AHMP98] A. Avron, F. Honsell, M. Miculan, and C. Paravano. Encoding Modal Logics in
Logical Frameworks. Studia Logica, 60(1):161–208, 1998.

[BCKL03] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure Pattern Type Systems. In
Proc. of POPL, pages 250–261. The ACM Press, 2003.

[CH84] M. Cresswell and G. Hughes. A companion to Modal Logic. Methuen, 1984.
[CH88] T. Coquand and G. Huet. The Calculus of Constructions. Information and Compu-

tation, 76(2/3):95–120, 1988.
[CKL01a] H. Cirstea, C. Kirchner, and L. Liquori. Matching Power. In Proc. of RTA, volume

2051 of Lecture Notes in Computer Science, pages 77–92. Springer-Verlag, 2001.
[CKL01b] H. Cirstea, C. Kirchner, and L. Liquori. The Rho Cube. In Proc. of FOSSACS,

volume 2030 of Lecture Notes in Computer Science, pages 166–180, 2001.
[DHK03] G. Dowek, T. Hardin, and C. Kirchner. Theorem Proving Modulo. Journal of Auto-

mated Reasoning, 31(1):33–72, 2003.
[HHP93] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal of

the ACM, 40(1):143–184, 1993. Preliminary version in proc. of LICS’87.
[HLL07] F. Honsell, M. Lenisa, and L. Liquori. A Framework for Defining Logical Frame-

works. Computation, Meaning and Logic. Articles dedicated to Gordon Plotkin,
Electr. Notes Theor. Comput. Sci., 172:399–436, 2007.

[KKR90] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with Symbolic
Constraints. Technical Report 1358, INRIA, Unité de recherche de Lorraine,
Vandoeuvre-lès-Nancy, FRANCE, 1990.

[NPP08] A. Nanevski, F. Pfenning, and B. Pientka. Contextual Model Type Theory. ACM
Transactions on Computational Logic, 9(3), 2008.

[WCPW02] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A Concurrent Logical Frame-
work I: Judgments and Properties. Technical Report CMU-CS-02-101, Department
of Computer Science, Carnegie Mellon University, 2002.

15

A Proof appendix

Proof of Theorem (Adequacy of the encoding of S4 - Truth Judgment).
When proving ⇒, we proceed by induction on the depth of the φ1, . . . , φh `S4 φ
derivation. On the other hand, when dealing with the opposite direction (⇐), we pro-
ceed by induction on the structure of the canonical termM . We deal only with the cases
involving the necessitation rule, since the remaining ones are routine.

(⇒) Let us suppose that the last applied rule is NEC (see Figure Hilbert style rules
for Modal Logic S4), then, φ ≡ 2ψ and φ1, . . . , φh ≡ ψ. Hence, by inductive hypothe-
sis, since NEC is a rule of proof (i.e., its premise does not depend on any hypotheses), if
Γ ≡ x1:o, . . . , xk:o for each xi free propositional variable in ψ, there exists a canonical
termM such that Γ `S4 M : True(ε(ψ)) is derivable. Whence, Closedo(Fv(M);Γ `S4

M :True(ε(ψ))) holds2 and Γ `S4 (NEC ε(ψ) M) : True(2ε(ψ)) is also derivable,
proving our thesis.

(⇐) If we are in the case such that M ≡ (NEC F N), then we have that Γ `S4

(NECF N) : True(2F), where Γ contains the free variables occurring intoF , andN is
s.t. Γ Σ̀ N :True(F). Thus, by the adequacy of the encoding and by inductive hypoth-
esis, there exists a modal formula φ s.t. ε(φ) ≡ F and Γ, φ1, . . . , φh `S4 φ for some
φ1, . . . , φh. Moreover, since the type of NEC is Πφ:o. ΠClosedox:True(φ). True(2φ)
(see Figure 6 (The signatureΣS4 for classic S4 Modal Logic in Hilbert style)), Closedo(Fv(N);Γ `S4

N :True(F)) holds. Whence, all free variables occurring inN belong to a subterm which
can be typed in the derivation with o. This amounts to say that no free variable ofN can
appear into a subterm of N of type True(. . .)3, i.e., the proof of the formula F does not
depend on any assumptions. This means that φ1, . . . , φh ≡ ∅. Whence, we may apply
the necessitation rule, obtaining φ `S4 2φ. ut

Proof of Lemma 3 (Key lemma).
We show 1 and 2 by mutual induction on #D. We only deal with the second part of the
lemma, the first one being similar (and easier). When #D = 1, the only applicable rule
is reflexivity, whence ΠPx:A.B ≡ C and we conclude (notice that (F·Red·eq) implies
#D ≥ 2). In the inductive case, by the first part of Lemma 2 (Reduction/Expansion)
we know that either ΠPx:A.B ≡ C, and by the Subderivation Property we have the
thesis, or there exist C1, . . . , Cn (n ≥ 0) such that D1 : Γ Σ̀ ΠPx:A.B
β C1 :
K and D2 : Γ Σ̀ C1
β C2 : K . . .Dn : Γ Σ̀ Cn−1
β Cn : K and
Dn+1 : Γ Σ̀ Cn
β C : K and, for all 1 ≤ i ≤ n + 1, we have #Di < #D.
Then, by the second part of Lemma 2 (Reduction/Expansion), choosing C ′ ≡ Cn,
we have D′1 : Γ Σ̀ ΠPx:A.B =β C ′ : K and D′2 : Γ Σ̀ C ′
β C : K with
#D′1,#D′2 < #D. Thus, by inductive hypothesis, either ΠPx:A.B ≡ C ′ or C ′ ≡
((λP1y1:D1. . . . ((λPn′ yn′ :Dn′ .(ΠPx:A′.B′))Mn′) . . .)M1) and DA : Γ Σ̀ A =β

((λP1y1:D1. . . . ((λPn′ yn′ :Dn′ .A
′)Mn′) . . .)M1) : KA and DB : Γ, x:A Σ̀ B =β

((λP1y1:D1. . . . ((λPn′ yn′ :Dn′ .B
′)Mn′) . . .)M1) : KB with #DA,#DB < #D.

The former case is subsumed by the second one, so let us consider the latter and
examine the subcases D′2 : Γ Σ̀ C ′ 7→β C : K and D′2 : Γ Σ̀ C 7→β C ′ : K.

2 The only free variables occurring into M are exactly those declared in Γ .
3 Indeed, by inspection of the typing system’s object rules (see Fig. 1 (the LFK Type System)), a

term cannot contain any subterms typable with a kind such as True(. . .).

16

From D′1 : Γ Σ̀ ΠPx:A.B =β C ′ : K, it follows that there is a subderivation of
Γ Σ̀ C ′ : K. By inspection of the typing rules and by applying the induction hypoth-
esis, we get that Γ Σ̀ K =β ((λP1y1:D1. . . . ((λPn′ yn′ :Dn′ .Type)Mn′) . . .)M1),
and Γ, y1:D1, . . . , yi−1:Di−1 Σ̀ Mi : Di (for 1 ≤ i ≤ n′). Namely, if Γ Σ̀

((λP1y1:D1. . . . ((λPn′ yn′ :Dn′ .(ΠPx:A′.B′))Mn′) . . .)M1) : K, then we can deduce
Γ Σ̀ K =β (λP1y1:D

′
1.K

′
1)M1 and Γ Σ̀ M1 : D′1 and Γ Σ̀ ΠP1y1:D

′
1.K

′
1 =β

ΠP1y1:D1.K1. By induction hypothesis, Γ Σ̀ D1 =β D
′
1 and Γ, y1:D1 Σ̀ K1 =β

K ′1. Thus Γ Σ̀ K =β (λP1y1:D1.K1)M1 and Γ Σ̀ M1 : D1. We can apply a similar
reasoning to Γ, y1:D1 Σ̀ ((λP2y2:D2. . . . ((λPn′ yn′ :Dn′ .(ΠPx:A′.B′))Mn′) . . .)M2) :
K1, getting Γ, y1:D1 Σ̀ K1 =β (λP2y2:D2.K2)M2 and Γ, y1:D1 Σ̀ M2 : D2, and
so on.

IfD′2 : Γ Σ̀ C ′ 7→β C : K holds, then the one-step reduction may take place either
“internally” into some Di, Mi (for some 1 ≤ i ≤ n′), A′, B′ or by reducing one of the
“external” redexes.

Then, let us suppose that the internal reduction is due to the fact that Γ Σ̀ Mi 7→β
M ′i : D; again, by inspection of the rules and by induction hypothesis (where equations
of the form Γ Σ̀ Π . . . =β Π . . . are involved) it must be that Γ Σ̀ D =β Di.
Whence, we may conclude by transitivity obtaining Γ Σ̀ KA =β ((λP1y1:D1. . . .
((λPiyi:Di. . . . ((λPn′ yn′ :Dn′ .KA′)Mn′) . . .)M ′i . . .)M1) and Γ Σ̀ A =β

((λP1y1:D1. . . . ((λPiyi:Di. . . . ((λPn′ yn′ :Dn′ .A
′)Mn′) . . .)M ′i . . .)M1) : KA, where

KA′ is s.t. Γ, y1:D1, . . . , yn′ :Dn′ Σ̀ A′ : KA′ (similarly, we may conclude for KB′

and B′). Note that the measures of the inferred proofs are smaller than the original
one (D), since we only added a transitivity application to the ones given by inductive
hypothesis. The remaining subcases involving “internal” reductions are dealt with sim-
ilarly.

Now, let us take into consideration the case involving a reduction of the i-th “exter-
nal” redex and let us denote the related substitution by θi ≡ {Mi/yi}.
We have Γ Σ̀ ((λP1y1:D1. . . . ((λPn′ yn′ :Dn′ .(ΠPx:A′.B′))Mn′) . . .)M1)→β

((λP1y1:D1. . . . ((λPi−1yi−1:Di−1.((λPi+1yi+1:Di+1θi. . . . ((λPn′ yn′ :Dn′θi.
(ΠPx:A′.B′)θi)Mn′θi) . . .)Mi+1θi)Mi−1) . . .)M1) : K.
In order to prove that Γ Σ̀ ((λP1y1:D1. . . . ((λPn′ yn′ :Dn′ .A

′)Mn′) . . .)M1)→β

((λP1y1:D1. . . . ((λPi−1yi−1:Di−1.((λPi+1yi+1:Di+1θi . . . ((λP′nyn′ :Dn′θi.
A′θi)Mn′θi) . . .)Mi+1θi)Mi−1) . . .)M1) : KA′ , it is sufficient to show that
Γ Σ̀ ((λP1y1:D1. . . . ((λPi−1yi−1:Di−1.((λPi+1yi+1:Di+1θi . . . ((λP′nyn′ :Dn′θi.
A′θi)Mn′θi) . . .)Mi+1θi)Mi−1) . . .)M1) : KA′ .
Similarly, we can prove that
Γ, y1:D1, . . . , yi:Di Σ̀ ((λPi+1yi+1:Di+1. . . . ((λPn′ yn′ :Dn′ .A

′)Mn′) . . .)M1) : K ′A′
and Γ Σ̀ Mj : Dj , for all j, and
Γ Σ̀ ((λP1y1:D1. . . . ((λPiyi:Di.K

′
A′)Mi) . . .)M1) = KA′ .

Then, by the Transitivity Property (Theorem 3 (Basic Properties)), we get Γ, y1:D1, . . . , yi−1:Di−1 Σ̀

((λPi+1yi+1:Di+1θ. . . . ((λPn′ yn′ :Dn′ .A
′θ)Mn′θ) . . .)M1θ) : K ′A′θ.

Moreover Γ Σ̀ ((λP1y1:D1. . . . ((λPi−1yi−1:Di−1.((λPi+1yi+1:Di+1θi. . . .
((λPn′ yn′ :Dn′θi.K

′
A′θi)Mn′θi) . . .)Mi+1θi)Mi−1) . . .)M1) =β KA′ .

Hence the thesis. ut

Proof of Theorem 5 (Unicity, Abstraction and Subject Reduction).

17

Unicity of Types and Kinds: by induction on the two derivations. The critical case
is when the last rule in both derivations is (O·Appl) (or (F·Appl)). Then, e.g. for
(O·Appl), Γ Σ̀ M N : (λPx:A.B)N and Γ Σ̀ M N : (λPx:A′.B′)N . By
inductive hypothesis, we have that Γ Σ̀ ΠPx:A.B =β ΠPx:A′.B′ : K and
Γ Σ̀ A =β A

′ : K ′; then, by Corollary 3 (Key Lemma), Γ, x:A Σ̀ B =β B
′ : K.

Hence, using Convertibility of Types in Domains (Theorem 3 (Basic Properties)),
we can deduce that Γ Σ̀ λPx:A.B =β λPx:A′.B′ : ΠPx:A.K holds.

Abstraction Typing: all the items are easily proved by induction on derivations. By
way of example, let us show the last item. If the last rule in the derivation of
Γ Σ̀ λPx:A.T : ΠPx:A.T ′ is (O·Abs), then the thesis is immediate. Otherwise,
if the last rule of the derivation is (O·Conv), then the derivation ends with a se-
quence of applications of the rule (O·Conv), preceded by an application of the rule
(O·Abs). Then, by the form of the rule (O·Conv), using the induction hypothesis
and Corollary 3 (Key Lemma), we get the thesis.

Subject Reduction: the proof of items 1,2,3 is similar, but for the fact that item 2
uses item 1 and item 3 uses item 2. E.g., for item 2, if Γ Σ̀ (λPx:A.B)N : K,
then, by inspection of the typing rules in Figure 1 (The LF

K
Type System), LF

K

Type System, we see that only (F·Conv) and (F·Appl) apply. Hence it must be
that Γ Σ̀ (λPx:A.B)N : (λPx:A.K ′)N with Γ Σ̀ K =β (λPx:A.K ′)N .
Thus, Γ Σ̀ λPx:A.B : ΠPx:A.K ′, Γ Σ̀ N : A, and, by Abstraction Typing,
Γ, x:A Σ̀ B : K ′. Moreover, applying the transitivity property, we obtain Γ Σ̀

B[N/x] : K ′[N/x]. Since P(Fv(N);Γ Σ̀ N : A) holds, then, by item 2, we get
Γ Σ̀ K ′[N/x] and Γ Σ̀ (λPx:A.K ′)N =β K

′[N/x], and hence Γ Σ̀ B[N/x] :
(λPx:A.K ′)N . ut

Proof of Theorem 6 (Local confluence).
We sketch the proof for the case of objects. First, we prove a Substitution lemma:

– If Γ Σ̀ N →β N
′ : A and Γ Σ̀ M [N/x] : C and Γ Σ̀ M [N ′/x] : C, then

Γ Σ̀ M [N/x] 7→→βM [N ′/x] : C.
– If Γ, x:A Σ̀ M →β M

′ : B and Γ Σ̀ N : A, then Γ Σ̀ M [N/x] 7→→βM
′[N/x] :

B[N/x].

The first item is proved by induction on M and the second one by induction on deriva-
tions, using the hypothesis that β-reduction is well behaved.
Then the proof of local confluence proceeds by induction on derivations, using Theo-
rem 5 (Unicity, Abstraction and Subject Reduction). We discuss only some cases. As-
sume Γ Σ̀ λPx:A.M →β λPx:A.M ′ : C and Γ Σ̀ λPx:A.M →β λPx:A.M ′′ : C.
Then Γ Σ̀ C =β ΠPx:A.B : Type and Γ, x:A Σ̀ M →β M ′ : B and Γ Σ̀

C =β ΠPx:A.B′ : Type and Γ, x:A Σ̀ M →β M ′′ : B′. By Unicity of types,
Γ, x:A Σ̀ B =β B′ : Type, and by induction hypothesis there exists M such that
Γ, x:A Σ̀ M ′ 7→→βM : B and Γ, x:A Σ̀ M ′′ 7→→βM : B. Hence we have the thesis.
Now assume that Γ Σ̀ (λPx:A.M)N →β M [N/x] : C and P(Fv(N);Γ Σ̀ N : A)
holds, and Γ Σ̀ (λPx:A.M)N →β (λPx:A.M)N ′ : C and Γ Σ̀ N →β N

′ : A.
Now, from Γ Σ̀ (λPx:A.M)N ′ : C, it follows that Γ Σ̀ C =β (λPx:A.B)N ′ : K
and Γ, x:A Σ̀ M : B. Thus, by Transitivity, Γ Σ̀ M [N ′/x] : B[N ′/x]. Moreover,
by Subject reduction, Γ Σ̀ C =β B[N ′/x] : K. Hence, by the Substitution lemma

18

Γ Σ̀ M [N/x] 7→→βM [N ′/x] : C. Moreover, since β-reduction is well-behaved, then
P(Fv(N ′);Γ Σ̀ N ′ : A) holds, and hence Γ Σ̀ (λPx:A.M)N ′ →β M [N ′/x] : C.

ut

19

