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Abstract. First, we extend Leifer-Milner RPO theory, by giving general conditions to
obtain IPO labelled transition systems (and bisimilarities) with a reduced set of transitions,
and possibly finitely branching. Moreover, we study the weak variant of Leifer-Milner
theory, by giving general conditions under which the weak bisimilarity is a congruence.
Then, we apply such extended RPO technique to the lambda-calculus, endowed with lazy
and call by value reduction strategies. We show that, contrary to process calculi, one
can deal directly with the lambda-calculus syntax and apply Leifer-Milner technique to
a category of contexts, provided that we work in the framework of weak bisimilarities.
However, even in the case of the transition system with minimal contexts, the resulting
bisimilarity is infinitely branching, due to the fact that, in standard context categories,
parametric rules such as the beta-rule can be represented only by infinitely many ground
rules. To overcome this problem, we introduce the general notion of second-order context
category. We show that, by carrying out the RPO construction in this setting, the lazy
observational equivalence can be captured as a weak bisimilarity equivalence on a finitely
branching transition system. This result is achieved by considering an encoding of lambda-
calculus in Combinatory Logic.

1. Introduction

Recently, much attention has been devoted to derive labelled transition systems and
bisimilarity congruences from reactive systems, in the context of process languages and
graph rewriting, [Sew02, LM00, SS03, GM05, BGK06, BKM06, EK06]. In the theory of
process algebras, the operational semantics of CCS was originally given via a labelled transi-
tion system (lts), while more recent process calculi have been presented via reactive systems
plus structural rules. Reactive systems naturally induce behavioral equivalences which are
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congruences w.r.t. contexts, while lts’s naturally induce bisimilarity equivalences with coin-
ductive characterizations. However, such equivalences are not congruences in general, or
else it is an heavy, ad-hoc task to prove that they are congruences.

Generalizing [Sew02], Leifer and Milner [LM00] presented a general categorical method
for deriving a transition system from a reactive system, in such a way that the induced
bisimilarity is a congruence. The labels in Leifer-Milner’s transition system are those con-
texts which are minimal for a given reaction to fire. Minimal contexts are identified via the
categorical notion of relative pushout (RPO). Leifer-Milner’s central result guaranties that,
under a suitable categorical condition, the induced bisimilarity is a congruence w.r.t. all
contexts.

In the literature, some case studies have been carried out, especially in the setting of
process calculi, for testing the expressivity of Leifer-Milner’s approach. Some difficulties
have arisen in applying the approach directly to such languages, viewed as Lawvere theo-
ries, because of structural rules. To overcome this problem, two different approaches have
been considered. The first approach consists in using more complex categorical construc-
tions, where structural rules are accounted for explicitly, [Lei01, SS03, SS05]. In the second
approach, intermediate encodings have been considered in graph theory, for which the ap-
proach of “borrowed contexts” has been developed [EK06], and in Milner’s bigraph theory.
Here structural rules are avoided, since structurally equivalent terms are equated in the
target language.

Moreover, the following further issues have arisen in applying Leifer-Milner’s technique.
(i) Leifer-Milner’s bisimilarity is still redundant, and many labels have to be eliminated

a posteriori, by an ad-hoc reasoning. Thus general results are called for, in order to
reduce the complexity of the bisimilarity a priori.

(ii) In some cases it is useful to consider weak variants of Leifer-Milner technique. How-
ever, for the weak bisimilarity we only have a partial congruence result, stating that
such bisimilarity is a congruence w.r.t. a certain class of contexts. However, in
many concrete cases, the weak bisimilarity turn out to be a full congruence. Thus
it will be useful to study general conditions under which this happens.

(iii) When Leifer-Milner technique is applied in the standard setting of term and con-
text categories (Lawvere theories), the rules in the rewriting system cannot be rep-
resented parametrically, but only at a ground level through a (infinite) series of
possible instantiations. As a consequence, the bisimilarity turns out to be infin-
itely branching. In [KSS05], a generalization of Leifer-Milner technique for dealing
with parametric rules has been introduced. This approach is rather complex and
not completely satisfactory. An alternative approach (which is considered in the
present paper) consists in studying second-order versions of term and context cat-
egories, which allow parametric representations of rewriting rules, and carrying out
Leifer-Milner technique in this setting.

In this paper, we address all the above issues. In particular, in the first part of the paper,
we extend Leifer-Milner theory, by providing general results for reducing the complexity of
the bisimilarity, and by studying conditions under which the weak bisimilarity is a full
congruence. Then, we focus on the prototypical example of reactive system given by the
λ-calculus, endowed with lazy and call by value (cbv) reduction strategies. We show that,
in principle, contrary to most of the case studies considered in the literature, one could
deal directly with the λ-calculus syntax and apply Leifer-Milner technique to the category
of term contexts induced by the λ-terms, provided that we work in the setting of weak
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bisimilarities. Applying our general results, we get quite economical weak bisimilarities
which are congruences and we recover exactly both lazy and cbv contextual equivalences.
As a by-product, we also get an alternative proof of the Context Lemma for the lazy case.
However, the bisimilarities that we obtain are still infinitely branching. This is mainly due
to the fact that, in the category of contexts, the β-rule cannot be described parametrically,
but it needs to be described extensionally using an infinite set of pairs of ground terms. In
order to overcome this problem, we consider the combinatory logic and we introduce the
general notion of category of second-order term contexts, which provide a solution to the
third issue above. Our main result amounts to the fact that, by carrying out Leifer-Milner’s
construction in this setting, the lazy contextual equivalence can be captured as a weak
bisimilarity equivalence on a (finitely branching) transition system, while for the cbv case,
the finitely branching transition system induces a bisimilarity which is strictly included
in the contextual equivalence. Technically, these results are achieved by considering an
encoding of the lazy (cbv) λ-calculus in KS Combinatory Logic (CL), endowed with a lazy
(cbv) reduction strategy, and by showing that the lazy (cbv) contextual equivalence on
λ-calculus can be recovered as a lazy (cbv) equivalence on CL. It is necessary to consider
such encoding, since the approach of second-order context categories proposed in this paper
works for reaction rules which are “local”, that is the reaction does not act on the whole
term, but only locally. But the substitution operation on λ-calculus is not local.

Finally, the correspondence results obtained in this paper about the observational equiv-
alences on λ-calculus and CL are interesting per se and, although natural and ultimately
elementary, had not appeared previously in the literature.

Summary. In Section 2, we summarize the theory of reactive systems of [LM00]. In Sec-
tion 3, we extend such theory with new general results about weak bisimilarity, and about
the “pruning” of Leifer-Milner lts and the induced bisimilarity. In Section 4, we present the
λ-calculus together with lazy and cbv reduction strategies and observational equivalences,
and we discuss the RPO approach applied to the λ-calculus endowed with a structure of
context category. In Section 5, we focus on Combinatory Logic (CL), we show how to re-
cover on CL the lazy and cbv strategies and observational equivalences, and we discuss the
RPO approach applied to CL, viewed as a context category. In Section 6, we introduce the
notion of second-order context category, and we apply the RPO approach to CL viewed as
a second-order rewriting system, thus obtaining a characterization of the lazy observational
equivalence as a weak bisimilarity on a finitely branching lts. Final remarks and directions
for future work appear in Section 7.

The present paper extends [DHL08]. The main new contribution of the present paper
is the extension of Leifer-Milner theory, which appears in Section 3. This allows to deal
with the λ-calculus in the subsequent sections in a smoother way, to get stronger results
about the lts and the induced bisimilarity, both for the lazy and for the cbv case, and also
to provide an alternative proof of the Context Lemma in the lazy case.

Acknowledgements. The authors thank the referees for many useful comments, which helped
in greatly improving the paper.
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2. The Theory of Reactive Systems

In this section, we summarize the theory of reactive systems proposed in [LM00] to
derive lts’s and bisimulation congruences from a given reduction semantics. Moreover, we
discuss weak variants of Leifer-Milner’s bisimilarity equivalence.

The theory of [LM00] is based on a categorical formulation of the notion of reactive
system, whereby contexts are modeled as arrows of a category, terms are arrows having as
domain 0 (a special object which denotes no holes), and reaction rules are pairs of terms.

Definition 2.1 (Reactive System). A reactive system C consists of:
• a category C;
• a distinguished object 0 ∈ |C|;
• a composition-reflecting subcategory D of reactive contexts;
• a set of pairs R ⊆

⋃
I∈|C| C[0, I]× C[0, I] of reaction rules.

The reactive contexts are those in which a reaction can occur. By composition-reflecting
we mean that dd′ ∈ D implies d, d′ ∈ D.

Reactive systems on term languages can be viewed as a special case of reactive systems
in the sense of Leifer-Milner by instantiating C as a suitable category of term and contexts,
also called the (free) Lawvere category, [LM00]. In this view, we often call terms the arrows
with domains 0, and contexts the other arrows.

From the set of reaction rules one generates the reaction relation by closing them under
all reactive contexts:

Definition 2.2 (Reaction Relation). Given a reaction system with reactive contexts D and
reaction rules R, the reaction relation → is defined by:

t→ u iff t = dl, u = dr for some d ∈ D and 〈l, r〉 ∈ R .

The behavior of a reactive system is expressed as an unlabelled transition system. On
the other hand, many useful behavioral equivalences are only defined for lts’s. The passage
from reactive systems to lts’s is obtained as follows.

Definition 2.3 (Context Labelled Transition System). Given a reactive system C, the
associated context lts is defined as follows:

• states: arrows t : 0→ I in C, for any I;
• transitions: t c−→Cu iff c ∈ C and ct→ u.

In the case of a reactive system defined on a category of contexts, a state is a term t, and
an associated label is a context c such that ct reduces. In the following, we will consider
also lts’s obtained by reducing the set of transitions of the context lts. In the sequel, we
will use the word lts to refer to any such lts obtained from a context lts.

Any lts induces a bisimilarity relation as follows:

Definition 2.4 (Bisimilarity). Let c−→ be a lts.
(i) A symmetric relation R ⊆

⋃
I∈C C(0, I)× C(0, I) on the states of the lts is a bisim-

ulation if: 〈a, b〉 ∈ R ∧ a
f−→a′ =⇒ ∃b′. b f−→b′ ∧ 〈a′, b′〉 ∈ R .

(ii) We call bisimilarity the largest bisimulation.
(iii) The bisimilarity on the context lts is called context bisimilarity ∼C .

It is easy to check that the context bisimilarity is a congruence w.r.t. all contexts, i.e.
if a∼Cb, then for any context c, ca∼Ccb. However, intuitively only those contexts which
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Figure 1: Redex Square and Relative Pushout.

contain the minimal amount of information for a reaction to fire are relevant, while the
others are redundant. Moreover, often context bisimilarity gives an equivalence which is too
coarse, as we will see also in this paper. Thus, in [LM00], the authors proposed a categorical
criterion for identifying the “smallest context allowing a reaction”. They defined relative
pushouts (RPOs), of which idem relative pushouts (IPOs) are a special case. One can define
a lts using IPOs. Leifer-Milner’s central result consists in showing that, under a suitable
categorical condition, such lts is well-behaved, in the sense that the induced bisimilarity is
a congruence.

Definition 2.5 (RPO/IPO).
(i) Let C be a category and let us consider the commutative diagram in Fig. 1(i). Any

tuple 〈I5, e, f, g〉 which makes diagram in Fig. 1(ii) commute is called a candidate
for (i). A relative pushout (RPO) is the smallest such candidate, i.e. it satisfies
the universal property that given any other candidate 〈I6, e′, f ′, g′〉, there exists a
unique mediating morphism h : I5 → I6 such that both diagrams in Fig. 1(iii) and
Fig. 1(iv) commute.

(ii) A commuting square such as diagram in Fig 1(i) is an idem pushout (IPO) if
〈I4, c, d, id I4〉 is its RPO.

Definition 2.6 (IPO Transition System).
• States: arrows t : 0→ I in C, for any I;
• Transitions: t c−→Idr iff d ∈ D, ct = dl, 〈l, r〉 ∈ R and the diagram in Fig. 1(i) is an

IPO.

Let ∼I denote the bisimilarity induced by the IPO lts.

Definition 2.7 (Redex Square). Let C be a reactive system and t : 0 → I2 an arrow in
C. A redex square (see Fig. 1(i)) consists of a left-hand side l : 0 → I3 of a reaction rule
〈l : 0 → I3, r : 0 → I3〉 ∈ R, a context c : I2 → I4 and a reactive context d : I3 → I4 such
that ct = dl.
A reactive system C is said to have redex RPOs if every redex square has an RPO.

The following is a fundamental lemma stating a property of IPO squares.

Lemma 2.8 (IPO pasting, [LM00]). Suppose that the square in Fig. 2(i) has an RPO and
that both squares in Fig. 2(ii) commute.
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Figure 2: IPO pasting.

(i) If the two squares of Fig. 2(ii) are IPOs so is the outer rectangle.
(ii) It the outer rectangle and the left square of Fig. 2(ii) are IPOs so is the right square.

From the above lemma Leifer and Milner derived their central result:

Theorem 2.9 ([LM00]). Let C be a reactive system having redex RPOs. Then the IPO
bisimilarity ∼I is a congruence w.r.t. all contexts, i.e. if a∼Ib then for all c of the appro-
priate type, ca∼Icb.

2.1. Weak Bisimilarity. For dealing with the λ-calculus, it will be useful to consider the
weak versions of the context and IPO lts’s defined above, together with the corresponding
notions of weak bisimilarities.

One can proceed in general, by defining a weak lts from a given lts:

Definition 2.10 (Weak lts and Bisimilarity). Let α−→ be a lts, and let τ be a label (iden-
tifying an unobservable action).

(i) We define the weak lts α=⇒ by

t
α=⇒u iff

{
t
τ−→
∗
u if α = τ

t
τ−→
∗
t′

α−→u′ τ−→
∗
u otherwise ,

where τ−→
∗

denotes the reflexive and transitive closure of τ−→.
(ii) Let us call weak bisimilarity the bisimilarity induced by the weak lts.

The above definition differs from the one proposed in [LM00], where, in case α 6= τ , α=⇒ is
defined by α−→ ◦ τ−→

∗
. We cannot use the latter, since it discriminates λ-terms which are

equivalent in the usual semantics.
The following easy lemma gives a useful characterization of the weak bisimilarity,

whereby any α−→-transition is mimicked by a α=⇒-transition:

Lemma 2.11. Let α−→ be a lts and let α=⇒ be the corresponding weak lts. The induced weak
bisimilarity is the greatest symmetric relation R s.t.:

〈a, b〉 ∈ R ∧ a
f−→a′ =⇒ ∃b′. b f

=⇒b′ ∧ 〈a′, b′〉 ∈ R .

The following lemma provides a coinduction “up-to” principle, which will be useful in
the sequel:
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Lemma 2.12. Let α−→ be a lts and let α=⇒ be the corresponding weak lts. The induced weak
bisimilarity is the greatest symmetric relation R s.t.:

〈a, b〉 ∈ R ∧ a
f

=⇒′a′ =⇒ ∃b′. b f
=⇒b′ ∧ 〈a′, b′〉 ∈ R∗ ,

where
f

=⇒′ denotes τ−→
∗
◦ f−→ (f is possibly τ), and R∗ denotes the reflexive and transitive

closure of R.

Proof. Let us call “bisimulation up-to” a relation R as in the statement of the lemma. In
order to prove the thesis, it is sufficient to prove that, if R is a bisimulation up-to, then
R∗ is a bisimulation. Let R be a bisimulation up-to. First, one can easily check that
(aR∗b ∧ a =⇒ a′) =⇒ ∃b′. (b =⇒ b′ ∧ a′R∗b′) (by induction on the length of the

chain a R . . .R b). Now, let a = a0 R a1 . . . an−1 R an = b and a
f

=⇒ a′. We prove that

∃b′. (b
f

=⇒ b′ ∧ a′R∗b′), by induction on n ≥ 0. If n = 0, the thesis is immediate. If n > 0

and a
f

=⇒′a′′ =⇒ a′, then, since R is a bisimulation up-to, a1
f

=⇒ a′′1 ∧ a′′R∗a′′1, and, by
what we have proved before, ∃a′1. (a′′1 =⇒ a′1 ∧ a′R∗a′1). Finally, by induction hypothesis,

∃b′. (b
f

=⇒ b′ ∧ a′1R∗b′). Hence a′R∗b′.

For dealing with the λ-calculus, we will consider a notion of weak IPO bisimilarity,
where the identity context is unobservable. Such notions of weak IPO bisimilarities are
not congruences w.r.t. all contexts, in general, however, as observed in [LM00] (end of
Section 5), they are congruences at least w.r.t. reactive contexts:

Theorem 2.13. Let C be a reactive system having redex RPOs. Then the weak IPO
bisimilarity ≈I , where the identity context is unobservable, is a congruence w.r.t. reactive
contexts.

3. Extending the Theory of Reactive Systems

In this section, we present some original results concerning the lts obtained by the RPO
construction. These results concern two issues:

Weak-bisimilarity: Since in the λ-calculus the weak bisimilarity is the equivalence
to be used, we present some general conditions assuring that the weak bisimilarity,
on the lts obtained by an IPO construction, is a congruence w.r.t. all contexts.

Pruning the lts tree: In order to obtain a feasible lts, i.e. a lts with a reduced
set of transitions, possibly finitely branching, it is often necessary to prune the lts
obtained by an IPO construction. We present some general conditions allowing to
prune IPO lts, without modifying the induced (weak)-bisimilarity.

We present our results in two different versions, the first one is quite simple, but it does not
apply to our particular case, so we present a second version that is more involved but suits
our needs. We choose to present the simple first version of our results as an introduction to
the second one, and also because it can have applications in modeling languages different
from the λ-calculus.

Some preliminary definitions are necessary.

Definition 3.1. Given a lts obtained by the IPO construction:
• Given a set of labels L, the L-restricted IPO lts is the lts obtained by removing

from the IPO lts all transitions not labeled by elements in L. We denote by ≈L the
weak bisimilarity induced by the L-restricted IPO lts.
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• We denote by R the set of labels that are reactive contexts. We denote by ≈R the
weak bisimilarity induced by the R-restricted IPO lts.
• In a reactive system, we say that the family of IPO transitions with label f : I0 → I1

is definable by contexts if there exists a list of contexts e1, . . . , eh : I0 → I1 such that,
for all t : 0→ I0, we have that: ∀i. t f−→Ieit and t

f−→It
′ =⇒ ∃i. t′ = eit.

Intuitively, a family of IPO transitions with label f : I0 → I1 is definable by contexts if f is
an IPO for any arrow t : 0→ I0 and the IPO transitions on f can be described by contexts,
that is, they do not modify the internal structure of the term t.

Proposition 3.2. Let C be a reactive system having redex RPOs. If any IPO context is
either reactive or definable by contexts (or both), then the weak IPO bisimilarity ≈I (with
the identity IPO context unobservable) is a congruence. Moreover ≈I coincides with ≈R.

Proof. Consider the relation S = {〈ct, cu〉 | t≈Ru, c context}. It is immediate that ≈I ⊆
≈R, and from this, ≈I ⊆ {〈ct, cu〉 | t≈Iu, c context} ⊆ S. If we prove also the inclusion
S ⊆ ≈I , then all relations are equal and ≈I coincides with its contextual closure, i.e. it is
congruence. By Lemma 2.11, in order to prove S ⊆ ≈I it is sufficient to show that, for any
〈ct, cu〉 ∈ S, if ct

f−→It
′ then there exists u′ s.t. cu

f
=⇒Iu

′ with t′Su′.
Consider the following diagram:

0
t //

l
��

I0
c //

f ′

��

I2

f

��
I3

d
// I1

d′
// I4

where the outermost rectangle is the IPO inducing the transition ct
f−→It

′, namely t′ = d′dr
with 〈l, r〉 a reaction rule, while the left square is a RPO of the redex square. By Lemma 2.8,
the IPO pasting property, we have that also the right-hand square of the diagram is an IPO.

There are two cases to consider:

(i) If the context f ′ is definable by contexts, since t
f ′−→Idr, there exists a context e such

that dr = et and t′ = d′et, it follows that u
f ′−→Ieu. That is there exist a reaction

rule 〈l1, r1〉 and a reactive context d1 s.t. eu = d1r1, and the left-hand square of the
following diagram is a IPO.

0
u //

l1
��

I0
c //

f ′

��

I2

f

��
I3

d1
// I1

d′
// I4

Since the right-hand square is IPO, by the IPO pasting property, Lemma 2.8, also
the outermost rectangle is an IPO. It follows that cu

f−→Id
′d1r1 = d′eu, from which

the thesis.
(ii) If the context f ′ is reactive, then it so also the context d′f ′ (composition of re-

active contexts) and the context c (reactive contexts are composition-reflecting).

Moreover, by the definition of bisimilarity, there exists u0 such that u
f ′

=⇒Iu0 (i.e.
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u
Id−→I

∗
u1

f ′−→Iu2
Id−→I

∗
u0) with u0≈Rdr. Since c is reactive and squares of the form

I0
c //

Id
��

I2

Id
��

I1 c
// I3

are IPOs, by composition of IPO squares (and by induction) it is easy to prove that

cu
Id−→I

∗
cu1

f−→Id
′u2

Id−→I

∗
d′u0, from which the thesis.

For dealing with the λ-calculus, we present a second proposition that is similar in spirit
to Proposition 3.2, although it is not a direct generalization. The second proposition consid-
ers both the category of unary linear term contexts and a category of “multi-holed” linear
term contexts. The category of unary contexts is the most suitable for the IPO construc-
tion, while the category of multi-holed contexts is useful to represent some transitions (in
the lts) through insertions of terms in suitable contexts.

The following definition formalizes the relation existing between the two categories of
contexts.

Definition 3.3. A category D is a list extension of a category C if the following hold:
• C contains a distinguished object 0.
• The objects of D are finite lists of objects of C different from 0.
• By identifying 0 with the empty list 〈 〉, and any other object I in C with the

singleton list 〈I〉, C is a full subcategory of D.
• There exists a concatenation functor ⊗ from D×D to D acting as concatenation on

objects 〈I0, . . . , In〉 ⊗ 〈J0, . . . , Jm〉 = 〈I0, . . . , In, J0, . . . , Jm〉 and being associative
on arrows.

In the spirit of the previous remark we will call unary (single-holed) contexts the arrows in
C (with domain different from 0), and multi-holed contexts the arrows in D.

Two other definitions are necessary.

Definition 3.4. Given a reactive system C on a category C, and a category D, list extension
of C:

(i) we define a multi-holed context g : 〈I0, . . . , In〉 → I IPO uniform if for any context
f : I → J appearing as label in the IPO lts, there exists a list of multi-holed contexts
g1 : 〈I1,0, . . . , I1,n1〉 → J, . . . , gh : 〈Ih,0, . . . , Ih,nh〉 → J , and a list of functions
l1 : {0, . . . , n1} → {0, . . . , n}, . . . , lh : {0, . . . , nh} → {0, . . . , n} such that, for any
n-tuple of C terms t0 : 0→ I0, . . . , tn : 0→ In, we have that:

– ∀i. g(t0 ⊗ . . .⊗ tn)
f−→Igi(tli(0) ⊗ . . .⊗ tli(ni)) and

– g(t0 ⊗ . . .⊗ tn)
f−→It

′ =⇒ ∃i. t′ = gi(tli(0) ⊗ . . .⊗ tli(ni));
(ii) a context g : 〈I0, . . . , In〉 → I has a reactive index i if for any list of n terms

t0 : 0→ I0, . . . , ti−1, ti+1, . . . , tn : 0→ In, the context g(t0⊗ . . .⊗ ti−1⊗ idIi ⊗ ti+1⊗
. . .⊗ tn) : Ii → I, seen as a context in C, is reactive.

Intuitively, a context g is IPO uniform if the behaviour wrt the IPO reaction of the term
g(tli(0) ⊗ . . . ⊗ tli(ni)) does not depend on the terms tli(0), . . . , tli(ni). We remark that the
notion of “uniform” is not a generalization of the notion of “definable by contexts”.
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Proposition 3.5. Let C be a reactive system having redex RPOs.
(i) The weak IPO bisimilarity ≈I (with the identity IPO context unobservable) is a

congruence if there exists a category D, list extension of C such that any (multi-
holed) context g : 〈I0, . . . , In〉 → I is either IPO uniform or it has a reactive index
(or both).

(ii) Moreover, if the reaction relation is deterministic, i.e. any term can react in at
most one possible way, then the relation ≈I coincides with ≈R.

Proof. Here we present only the proof of point (ii). The proof of point (i) is almost identical
and can be derived, from the present proof, by substituting the relation ≈R with ≈I , and
by simplifying some steps.

By repeating the same arguments used at the beginning of the proof of Proposition 3.2,
it is sufficient to prove that the relation S = {〈 g(t0 ⊗ . . . ⊗ tn), g(u0 ⊗ . . . ⊗ un)〉 | g :
〈I0, . . . , In〉 → I, ∀i.ti≈Rui} is contained in the weak bisimilarity. By Lemma 2.12, it is
sufficient to show that for any 〈g(t0⊗ . . .⊗ tn), g(u0⊗ . . .⊗ un)〉 ∈ S and f IPO-transition,

if g(t0 ⊗ . . . ⊗ tn)
f

=⇒It, with
f−→I the last step of the chain of reactions, then there exists

u s.t. g(u0⊗ . . .⊗ un)
f

=⇒Iu with tS∗u. The proof is by double induction on the number of

steps of the transition g(t0⊗ . . .⊗ tn)
f

=⇒It, and on the number n of holes in the list context
g.

The basic case is when g(t0 ⊗ . . . ⊗ tn)
f

=⇒It in 0 steps (f = id), in this case there is
nothing to prove.

Let suppose g(t0⊗ . . .⊗ tn)
f ′−→It

′ f ′′
=⇒It, in this case (f ′ = id∧f ′′ = f) or (f ′ = f ∧f ′′ =

id ∧ t′ = t),
There are two cases to consider:
(i) The context g is IPO-uniform: in this case there exists a context e : 〈I ′0, . . . , I ′n′〉 →

J1 and a function l : {0, . . . n′} → {0, . . . , n} such that t′ = e(tl(0) ⊗ . . .⊗ tl(n′)) and

g(u0⊗ . . .⊗un)
f ′−→Ie(ul(0)⊗ . . .⊗ul(n′)). By application of the inductive hypothesis,

on a smaller number of transitions steps, there exists u s.t. e(ul(0)⊗. . .⊗ul(n′))
f ′′

=⇒Iu
with tS∗u, and from which the thesis.

(ii) The context g has a reactive index i, for the sake of simplicity, assume i = 0.
Consider the arrow g′ = g(t0 ⊗ idI1 ⊗ . . . ⊗ idIn) : 〈I1, . . . , In〉 → I. Since g′(t1 ⊗
. . . ⊗ tn) = g(t0 ⊗ . . . ⊗ tn)

f
=⇒It, by inductive hypothesis, on the number of holes

in the multi-holed contexts, there exists u such that g′(u1 ⊗ . . .⊗ un) = g(t0 ⊗ u1 ⊗
. . .⊗ un)

f
=⇒Iu, with tS∗u.

Now consider the context g′′ = g(IdI0 ⊗u1⊗ . . .⊗un) : Io → I. The context g′′ is

reactive and g′′(t0)
f

=⇒Iu. To obtain the thesis it remains to prove that there exists

u′ s.t. g′′(u0) = g(u0 ⊗ . . .⊗ un)
f

=⇒Iu
′, with uS∗u′.

More generally we prove that for any reactive context go : J0 → J1, any IPO
context f : J1 → J2, and any pair of terms to, uo, if to≈Ruo and go(to)

f
=⇒It

′
o then

there exists u′o s.t. go(uo)
f

=⇒Iu
′
o and t′oS

∗u′o. The proof is by induction on the

number of steps in the transition g′′(t0)
f

=⇒It
′
o. The basic case is when the reaction

is of zero steps; in this case there is nothing to prove.
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For the inductive case consider the following diagram of IPO squares defining the
first reaction in the chain

0
to //

l
��

J0
go //

f ′′

��

J1

f ′

��
J3

d
// J4

d′
// J5

We need to consider two cases. The first one is where f ′ is a reactive context
(f ′ ∈ {f, Id}). Since reactive contexts are composition-reflecting, then also the IPO

context f ′′ is reactive. By the definition of bisimilarity, uo
f ′′

=⇒Iui with ui≈Rdr. By

reactivity of go, using suitable IPO pasting diagrams, we can prove go(uo)
f ′

=⇒Id
′ui.

Now by applying the inductive hypothesis to the reduction d′(dr)
f

=⇒It
′
o, we obtain

the thesis.
The second case is where f ′ is a non reactive context (f ′ = f). Since reactive

contexts are compositional reflecting, then also the IPO context f ′′ is non reactive
and therefore, by hypothesis, IPO uniform. Notice that the context Id is an IPO
context for the term f ′′(to), by the IPO uniformity of f ′′, Id is an IPO context also

for f ′′(uo) and there exist a list context g′〈J1, . . . J1〉 → J s.t. to
f ′′−→Ig

′(to, . . . , to) and

also uo
f ′′−→Ig

′(uo, . . . , uo). Notice that, if the reduction relation is deterministic, two
terms that reduce one to the other via τ transitions are weakly bisimilar. It follows
that go(to)

f−→Id
′g′(t0, . . . , t0)≈Rt′o and, by IPO pasting, go(uo)

f−→Id
′g′(uo, . . . , uo),

from which we derive the thesis.

Remark 3.6. Propositions 3.2 and 3.5 above, about congruence of the weak IPO bisimilar-
ity, are more related than what they look at first glance. From one side, by exploiting the
fact that the composition of a non-reactive context with any context gives a non-reactive
context, one can show that, if the non-reactive IPOs are definable by contexts, then any
non-reactive context is IPO-uniform. Note that the condition of “definability by context”
is in general simpler to verify than the one of “IPO-uniformity”, and so we prefer to present
the given formulation of Proposition 3.2. On the other side, it would be possible to extend
the notion of “definability by context” to the case of list extension categories, however to
this aim it would be necessary to present a series of new definitions, necessary to lift the
IPO construction to the list extension categories. For the sake of simplicity, we prefer to
avoid the introduction of these further notions.

4. The Lambda Calculus

First, we recall the λ-calculus syntax together with lazy and cbv reduction strategies and
observational equivalences. Then, we show how to apply the RPO technique to λ-calculus,
viewed as a context category, and we discuss some problematic issues.
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4.1. Syntax, Reduction Strategies, Observational Equivalences.

Definition 4.1 (Syntax). The set of λ-terms Λ is defined by

(Λ 3) M ::= x | MM | λx.M ,

where x ∈ Var is an infinite set of variables.
Let FV (M) denote the set of free variables in M , and let us denote by Λ0 the set of closed
λ-terms.

As usual, λ-terms are taken up-to α-conversion, and application associates to the left.
We consider the standard notions of β-rule and βV -rule:

Definition 4.2.
(i) β-rule: (λx.M)N →β M [N/x];
(ii) βV -rule: (λx.M)N →βV M [N/x], if N is a variable or a λ-abstraction.

As usual, we denote by =β and =βV the corresponding conversions.
A reduction strategy on the λ-calculus determines, for each term which is not a value,

a suitable β-redex appearing in it to be contracted. The lazy and cbv reduction strategies
are defined on closed λ-terms as follows:

Definition 4.3 (Reduction Strategies).
(i) The lazy strategy →l⊆ Λ0 × Λ0 reduces the leftmost β-redex, not appearing within

a λ-abstraction. Formally, →l is defined by the rules:

(λx.M)N →l M [N/x]
N →l N

′

NP →l N
′P

(ii) The call by value strategy →v⊆ Λ0×Λ0 reduces the leftmost βV -redex, not appearing
within a λ-abstraction. Formally, →v is defined by the following rules:

(λx.M)V →v M [V/x]
N →v N

′

NP →v N
′P

N →v N
′

(λx.M)N →v (λx.M)N ′

where V is a closed value, i.e. a λ-abstraction.

We denote by →∗σ the reflexive and transitive closure of a strategy →σ, for σ ∈ {l, v}, by
Valσ the set of values, i.e. the set of terms on which the reduction strategy halts (which
coincides with the set of λ-abstractions in both cases), and by M ⇓σ the fact that there
exists V ∈ Valσ such that M →∗σ V .

As we will see in Section 4.2 below, each strategy defines a (deterministic) reactive
system on λ-terms in the sense of Definition 2.1. To this aim, it is useful to notice that
the above reduction strategies can be alternatively determined by specifying suitable sets of
reactive contexts (see Remark 4.5 below), which are subsets of the following unary contexts,
i.e. contexts with a single hole:

Definition 4.4 (Unary Contexts). Let P ∈ Λ. The unary contexts are:

C[ ] ::= [ ] | PC[ ] | C[ ]P | λx.C[ ] .

The closed unary contexts are the unary contexts with no free variables.

Remark 4.5.
(i) The lazy strategy →l is the closure of the β-rule under the reactive contexts, corre-

sponding to the closed applicative contexts: D[ ] ::= [ ] | D[ ]P , where P ∈ Λ0.
(ii) The cbv strategy→v is the closure of the βV -rule under the following closed reactive

contexts: D[ ] ::= [ ] | D[ ]P | (λx.M)D[ ] , where P, λx.M ∈ Λ0.
12



Each strategy induces an observational (contextual) equivalence à la Morris on closed terms,
when we consider programs as black boxes and only observe their “halting properties”.

Definition 4.6 (σ-observational Equivalence). Let →σ be a reduction strategy and let
M,N ∈ Λ0. The observational equivalence ≈σ is defined by

M ≈σ N iff for any closed unary context C[ ]. C[M ] ⇓σ⇔ C[N ] ⇓σ .

The definition of ≈σ can be extended to open terms by considering closing (by-value)
substitutions, i.e. for M,N ∈ Λ s.t. FV (M,N) ⊆ {x1, . . . , xn}, we define:

M≈̂σN iff for all closing (by-value) substitutions ~P , M [~P/~x] ≈σ N [~P/~x] .

Remark 4.7. Often in the literature, the observational equivalence is defined by considering
multi-holed contexts. However, it is easy to see that the two notions of observational
equivalences, obtained by considering just unary or all multi-holed contexts, coincide.

The problem of reducing the set of contexts in which we need to check the behavior
of two terms has been widely studied in the literature. In particular, for both strategies
in Definition 4.3 above, a Context Lemma holds, which allows us to restrict ourselves to
applicative contexts of the shape [ ]~P ([ ]~V ), where ~P (~V ) denotes a list of closed terms
(values). Let us denote by ≈appσ the observational equivalence which checks the behavior of
terms only in applicative (by-value) contexts. This admits a coinductive characterization
as follows:

Definition 4.8 (Applicative σ-bisimilarity).
(i) A relation R ⊆ Λ0 × Λ0 is

– an applicative lazy bisimulation if the following holds:
〈M,N〉 ∈ R =⇒ (M ⇓l ⇔ N ⇓l) ∧ ∀P ∈ Λ0. 〈MP,NP 〉 ∈ R.

– an applicative cbv bisimulation if the following holds:
〈M,N〉 ∈ R =⇒ (M ⇓v ⇔ N ⇓v) ∧ ∀V closed value. 〈MV,NV 〉 ∈ R.

(ii) The applicative equivalence ≈appσ is the largest applicative bisimulation.

The following is a well-known result [AO93, EHR92]:

Lemma 4.9 (Context Lemma). ≈σ=≈appσ .

By the Context Lemma, the class of contexts in which we have to check the behavior
of terms is smaller, however it is still infinite, thus the applicative bisimilarity is infinitely
branching. In the following, we will study alternative coinductive characterizations of the
observational equivalences, arising from the application of Leifer-Milner technique.

4.2. Lambda Calculus as a Reactive System. Both lazy and cbv λ-calculus can be
endowed with a structure of reactive system in the sense of Definition 2.1, by considering
corresponding context categories.

Definition 4.10 (Lazy, cbv λ-reactive Systems). Cλ
σ, for σ ∈ {l, v}, consists of

• the category whose objects are 0, 1, where the morphisms from 0 to 1 are the closed
terms (up-to α-equivalence), the morphisms from 1 to 1 are the unary closed contexts
(up-to α-equivalence), and composition is context insertion;
• the subcategory of reactive contexts is determined by the reactive contexts for the

lazy and cbv strategy, respectively, presented in Remark 4.5;
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Lazy IPO lts’s
term IPO contexts reactive IPO contexts
λx.M [ ]P, (λx.C[ ])P , PC[ ] [ ]P
(λx.M)N ~P [ ], (λx.C[ ])P , PC[ ] [ ]

Cbv IPO lts’s
term M IPO contexts reactive IPO contexts
λx.M1 [ ]P, (λx.C[ ])P , RC[ ], (λx.Q)C1[ ] [ ]P , (λx.Q)[ ]
(λx.M1)N ~P [ ], (λx.C[ ])P , RC[ ], (λx.Q)C1[ ] [ ]

where R is not a value and C1[M ] is a value.

Figure 3: IPO contexts for the lazy/cbv lts’s.

• the (infinitely many) reaction rules are (λx.M)N →βσ M [N/x], for all M,N , where
→βl is →β-rule, while →βv is →βV -rule.

The above definition is well-posed, in particular the subcategory of reactive contexts is
composition-reflecting.

One can easily check that the reactive system Cλ
σ has redex RPOs; this fact can be

proved by rephrasing the corresponding proof for the category of term contexts of [Sew02].
Here it is essential the fact that we consider only closed terms and closed contexts.

Lemma 4.11. The reactive system Cλ
σ, for σ ∈ {l, v}, has redex RPOs.

The IPO contexts of a closed term for the lazy and cbv reactive systems are summarized
in the second columns of the tables in Fig. 3. Intuitively, such contexts are minimal for the
given reduction to fire. Vice versa, contexts different from the ones above are not IPO; e.g.
C[ ]P , for terms of the shape λx.M , is not IPO if C[ ] is different from λx.C1[ ] and [ ],
because otherwise the reduction can fire already in C[ ].

The strong versions of context and IPO bisimilarities are too fine, since they take
into account reaction steps, and tell apart β-convertible terms. Trivially, I and II, where
I = λx.x, are equivalent neither in the context bisimilarity nor in the IPO bisimilarity, since

I
[ ]

6→, while II
[ ]→ (both in the lazy and cbv case). On the other hand, one can easily check

that the weak context bisimilarity, where the identity context [ ] is unobservable, equates
all closed terms. The appropriate notion is that of weak IPO bisimilarity, which, as we will
see, turns out to capture exactly the lazy and cbv equivalences.

It is interesting to observe that also the observational equivalence and the applicative
bisimilarity can be characterized as weak bisimilarities on suitable context lts’s. In fact it is
easy to prove that the observational equivalence ≈σ coincides with the weak bisimilarity on

a restriction of the context lts built on Cλ
σ, defined by M

C[ ]−→ N iff M
C[ ]−→C N and M ⇓σ.

Similarly, the applicative equivalence can be characterized by considering only applicative
contexts in the lts.

In the following we will show that all these lts’s induce the same notion of equivalence.
Moreover, using the results of Section 3, we will show that the set of IPO contexts in the
weak IPO bisimilarity to be considered can be significantly simplified. Then, from the fact
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that the weak IPO lts is the smallest of the ones above, it follows that it induces the simplest
proofs that two terms are bisimilar.

Now, let us denote by ≈σI , for σ ∈ {l, v}, the lazy/cbv weak IPO bisimilarity, where
the identity context is unobservable. In order to prove that ≈σI is a congruence w.r.t. all
contexts, we need to consider the category Dλσ, list extension of Cλσ , where the objects are
finite lists 〈1, . . . , 1〉, and an arrow from 〈1, . . . , 1〉︸ ︷︷ ︸

n

→ 〈1, . . . , 1〉︸ ︷︷ ︸
m

is a m-tuple of possibly

closed multi-holed contexts 〈C1, . . . , Cm〉 with n holes all together. Multi-holed contexts
are defined by

C[ ] ::= [ ] | P | C[ ]C[ ] | λx.C[ ] .
Then, in the lazy case one can show that any closed multi-holed context either is IPO
uniform or it is of the shape [ ]C1[ ] . . . Ck[ ] with the first hole reactive. Namely, if C[ ] is of
the shape [ ]C1[ ] . . . Ck[ ], then clearly the first hole is reactive. Otherwise, it is of the shape
PC1[ ] . . . Ck[ ] or (λx.C0[ ])C1[ ] . . . Ck[ ]. In the first case, the reduction (if any) involves
only P or at most PC1[ ], where C1[ ] together with the term put in the holes, plays only a
passive role as argument. In the latter case, since the term put in the holes is closed, again
it will be not affected by the substitution induced by the reduction. Similarly, for the cbv
case, all the multi-holed contexts are IPO uniform, apart from the contexts ranging on the
following grammar, which have a reactive hole:

D[ ] ::= [ ] | D[ ]C[ ] | (λx.C[ ])D[ ] ,

where C is a closed multi-holed context. Moreover, the reduction relation is obviously
deterministic. Thus, by applying Proposition 3.5, we have:

Corollary 4.12.
(i) For all M,N ∈ Λ0, for any closed unary context C[ ],

M ≈σI N =⇒ C[M ] ≈σI C[N ] .

(ii) Moreover
≈σI=≈σR ,

where ≈σR denotes the weak IPO bisimilarity where only reactive contexts are con-
sidered (see the third columns in the tables of Fig. 3).

Now, we are left to prove that the IPO bisimilarity coincides with the original observational
equivalence. Notice that, in the above proposition, we also provide a new alternative proof
of the Context Lemma for the lazy case.

Proposition 4.13. ≈l=≈appl =≈lI and ≈v=≈vI .

Proof. For the lazy case, we proceed by proving the following chain of inclusions:

≈l⊆≈appl ⊆≈lR⊆≈lI⊆≈l . (4.1)

The first inclusion, ≈l⊆≈appl , holds by definition. The third inclusion, ≈lR⊆≈lI , follows by
Corollary 4.12(ii). The others are proved as follows:

• ≈appl ⊆≈lR. We prove that ≈appl is a “weak IPO reactive bisimulation”. Let M ≈appl

N . AssumeM
C[ ]→I M

′ in the IPO reactive system. We have to prove that ∃N ′. N C[ ]⇒
N ′ ∧ M ′ ≈appl N ′. We proceed by case analysis on M and C[ ].

If M ≡ (λx.M1)Q~P and C[ ] ≡ [ ], then N
[ ]⇒ N , M ′ =β M ≈appl N , and since ≈appl
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is closed under β-conversion, we have the thesis.

If M ≡ λx.M1 and C[ ] ≡ [ ]P , then, since M ≈appl N , ∃λx.N1. N
[ ]⇒ λx.N1

[ ]P→ N ′.
Then M ′ =β MP ≈appl NP =β N

′, and since ≈l is closed under β-conversion, we
have the thesis.
• ≈lI⊆≈l. Let M ≈lI N . We have to show that, for any unary closed context C[ ],
C[M ] ⇓ ⇔ C[N ] ⇓. From M ≈lI N , by Corollary 4.12(i), we have C[M ] ≈lI C[N ].

Now assume that C[M ] ⇓l, then there exists M ′ such that C[M ]
[ ]P⇒ M ′, hence also

there exists N ′ such that C[N ]
[ ]P⇒ N ′, thus C[N ] ⇓l.

The above argument provides a new proof of the Context Lemma.
For the cbv case, considering the applicative equivalence ≈appv does not help, but one

can prove directly:
≈v⊆≈vR⊆≈vI⊆≈v (4.2)

• ≈v⊆≈vR. One can easily check that ≈v is a “weak IPO reactive bisimulation”, using
the fact that ≈v is closed under β-reduction.
• ≈vR⊆≈vI . Immediate by Corollary 4.12(ii).
• ≈vI⊆≈v. Let M ≈vI N . We have to show that, for any unary context C[ ],
C[M ] ⇓v⇐⇒ C[N ] ⇓v. From M ≈vI N , by Corollary 4.12(i), we have C[M ] ≈vI
C[N ]. Now assume that C[M ] ⇓v, then there exists M ′ such that C[M ]

[ ]V⇒ M ′,

hence also there exists N ′ such that C[N ]
[ ]V⇒ N ′, thus C[N ] ⇓v.

Remark 4.14. Corollary 4.12(ii) allows us to reduce the set of IPO contexts to be consid-
ered in the IPO bisimilarities. For the lazy case, only applicative contexts can be considered
(see the first table in Figure 3), while for the cbv case, the set of reactive IPO contexts is
larger (see the second table in Figure 3). However, also for the cbv case, one can prove that
applicative (by-value) IPO contexts are sufficient. We omit the details.

Proposition 4.13 above gives us interesting characterizations of lazy and cbv observa-
tional equivalences, in terms of lts’s where the labels are significantly reduced. However,
such lts’s (and bisimilarities) are still infinitely branching, e.g. λx.M P−→I , for all P ∈ Λ0.
This is due to the fact that the context categories underlying the reactive systems Cλ

l and
Cλ
v allow only for a ground representation of the β-rule through infinitely many ground

rules. In order to overcome this problem, one should look for alternative categories which
allow for a parametric representation of the β-rule as (λx.X)Y → X[Y/x], where X,Y
are parameters. To this aim, we introduce the category of second-order term contexts (see
Section 6 below). However, as we will see, this approach works only if the reaction rules
are “local”, that is they do not act on the whole term, but only locally. In particular, the
operation of substitution on the λ-calculus is not local and thus it is not describable by
a finite set of reaction rules. To avoid this problem, in the following section we consider
encodings of the λ-calculus into Combinatory Logic (CL) endowed with suitable strategies
and equivalences, which turn out to correspond to lazy and cbv equivalences.

5. Combinatory Logic

In this section, we focus on Combinatory Logic [HS86] with Curry’s combinators K,S,
and we study its relationships with the λ-calculus endowed with lazy and cbv reduction

16



strategies. An interesting result that we prove is that we can define suitable reduction
strategies on CL-terms, inducing observational equivalences which correspond to lazy and
cbv equivalences on λ-calculus. As a consequence, we can safely shift our attention from the
reactive system of λ-calculus to the simpler reactive system of CL. In this section, we apply
Leifer-Milner construction to CL viewed as a (standard) context category, and we study
weak versions of context and IPO bisimilarities. Our main result is that we can recover
lazy and cbv observational equivalences as weak IPO equivalences on CL∗, a variant of
standard CL. Here the approach is first-order, thus the IPO equivalences are still infinitely
branching. However, the results in this section are both interesting in themselves, and
useful for our subsequent investigation of Section 6, where CL is viewed as a second-order
rewriting system, and a characterization of the lazy observational equivalence as a finitely
branching IPO bisimilarity is given.

In [Sew02], a construction, similar to Leifer-Milner construction, has been applied to
the Combinary Logic case. However, in that paper, it has been left open the question of
whether the weak bisimilarity on the derived LTS is a congruence. In this paper, using
Proposition 3.5, we can positively answer that question.

Definition 5.1 (Combinatory Terms). The set of combinatory terms is defined by:

(CL 3) M ::= x | K | S | MM ,

where K, S are combinators.
Let CL0 denote the set of closed CL-terms.

5.1. Correspondence with the λ-calculus. Let Λ(K,S) denote the set of λ-terms built
over constants K,S. The following is a well-known encoding:

Definition 5.2 (λ-encoding). Let T : Λ(K,S) → CL be the transformation defined as
follows:

T (x) = x T (C) = C if C ∈ {K,S}
T (MN) = T (M)T (N) T (λx.MN) = ST (λx.M)T (λx.N)
T (λx.x) = SKK T (λx.λy.M) = T (λx.T (λy.M))
T (λx.y) = Ky T (λx.C) = KT (C) if C ∈ {K,S}

In particular, if we restrict the domain of T to Λ, we get an encoding of λ-terms into CL.
Vice versa, there is a natural embedding of CL into the λ-calculus E : CL→ Λ:
E(K) = λxy.x E(S) = λxyz.(xz)(yz) E(x) = x E(MN) = E(M)E(N)

The following lemma holds:

Lemma 5.3. For all M ∈ Λ, E(T (M)) =σ M , for σ ∈ {β, βV }.
Proof. First, one can easily prove that, if M is λ-free, then ET (λx.M) =σ λx.M (by
induction on M). Then, using the fact that T (M) is λ-free for all M , by definition of T ,
one gets that T 2(M) = T (M) for all M . Finally, we are ready to prove the thesis in its full
generality by induction on M . The only non-trivial case is when M = λx.λy.N . Then we
have ET (λx.λy.N) = ET (λx.T (λy.N)), where T (λy.N) = PQ is λ-free. Then
ET (λx.λy.N) = ET (λx.PQ) = E(S)ET (λx.P )ET (λx.Q)
= (λxyz.(xz)(yz))ET (λx.P )ET (λx.Q)
=σ (λxyz.(xz)(yz))λx.Pλx.Q, since PQ is λ-free,
=σ λx.PQ =σ λx.ET (PQ), since PQ is λ-free,
= λx.ET T (λy.N) = λx.ET (λy.N), since T 2 = T ,
=σ λx.λy.N , by induction hypothesis.
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5.1.1. Lazy/cbv observational equivalence on CL. Usually, the set of combinatory terms are
endowed with the following reaction rules:

KMN →M SMNP → (MP )(NP )

We will also consider a cbv version of the above rules, reducing CL redexes only when the
arguments are values, i.e. terms on the following grammar:

V ::= K | S | KV |SV | SV V .

The cbv rules are the following:

KV1V2 → V1 SV1V2V3 → (V1V3)(V2V3)

Definition 5.4 (Lazy/cbv Reduction Strategy on CL).
(i) The lazy reduction strategy →l⊆ CL0 × CL0 reduces the leftmost outermost CL-

redex. Formally:

SM1M2M3 →l (M1M3)(M2M3) KM1M2 →l M1

M →l M
′

MP →l M
′P

(ii) The cbv strategy →v⊆ CL0 × CL0 is defined by

SV1V2V3 →v (V1V3)(V2V3) KV1V2 →v V1

M1 →v M
′
1

KM1 →v KM ′1
M2 →v M

′
2

KV1M2 →v KV1M
′
2

M1 →v M
′
1

SM1 →v SM ′1
M2 →v M

′
2

SV1M2 →v SV1M
′
2

M3 →v M
′
3

SV1V2M3 →v SV1V2M
′
3

M →v M
′

MP →v M
′P

where V1, V2, V3 are values.

Definition 5.5 (Unary Contexts on CL). The set of unary contexts on CL is defined by

C[ ] ::= [ ] | C[ ]P | PC[ ] .

Alternatively we could define the lazy strategy →l as the closure of the standard CL-
reaction rules under the following reactive contexts (which coincide with the applicative
ones):

D[ ] ::= [ ] | D[ ]P .

Similarly, we could define the cbv strategy→v as the closure of the cbv reaction rules under
the following reactive contexts:

D[ ] ::= [ ] | D[ ]P | KD[ ] | KV D[ ] | SD[ ] | SV D[ ] | SV1V2D[ ].

Let ↓σ denote the convergence relation on CL, for σ ∈ {l, v}.

Definition 5.6 (Lazy/cbv Equivalence on CL).
(i) A relation R ⊆ CL0 × CL0 is a

– CL lazy bisimulation if:
〈M,N〉 ∈ R =⇒ (M ↓l ⇔ N ↓l) ∧ ∀P ∈ CL0. 〈MP,NP 〉 ∈ R.

– CL cbv bisimulation if:
〈M,N〉 ∈ R =⇒ (M ↓v ⇔ N ↓v) ∧ ∀ closed value V ∈ CL0. 〈MV,NV 〉 ∈ R.

(ii) Let 'σ⊆ CL0 × CL0 be the largest CL lazy/cbv bisimulation.
(iii) Let '̂σ ⊆ CL × CL denote the extension of 'σ to open terms defined by: for

M,N ∈ CL s.t. FV (M,N) ⊆ {x1, . . . , xn}, M'̂σN iff for all closing (by-value)
substitutions ~P , M [~P/~x] 'σ N [~P/~x].
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Notice that we use two different symbols for equivalences (≈ and '), in this way we distin-
guish the equivalence relation on λ-terms from the corresponding relation on CL.

The following theorem is interesting per se:

Theorem 5.7. For all M,N ∈ Λ, M≈̂σN ⇐⇒ T (M)'̂σT (N) .

Proof of Theorem 5.7. We carry out the proof of the above theorem for the lazy case,
the proof for the cbv case being similar.

Lemma 5.8.
(i) For all M ∈ CL0, M↓l ⇐⇒ E(M)⇓l.
(ii) For all M ∈ Λ0, M⇓l ⇐⇒ T (M)↓l.

Proof. (i) By definition of the lazy strategies on λ-terms and on CL-terms.
(ii) (⇒) Let M⇓l. Then, since by Lemma 5.3 E(T (M)) =β M , and ≈l is closed under
β-conversion, we have also E(T (M))⇓l. Thus, by (i), T (M)↓l.
(ii) (⇐) Let T (M)↓l. By (i), E(T (M))⇓l, by Lemma 5.3, M =β E(T (M)), thus M⇓l.

Lemma 5.9. For all M,N ∈ CL0, if E(M) =β E(N), then M'lN .

Proof. The proof follows from the fact that R = {〈M,N〉 ∈ CL0 | E(M) =β E(N)} is
a CL lazy bisimulation. Namely M↓l iff N↓l, because, by Lemma 5.8(i), M↓l iff E(M)↓l
and N↓l iff E(N)↓l, and ≈appl is closed under β-conversion. Moreover, for any P ∈ CL0,
〈MP,NP 〉 ∈ R, since E(MP ) = E(M)E(P ) =β E(N)E(P ) = E(NP ).

Lemma 5.10. ∀P ∈ CL0, P 'l T (E(P )).

Proof. We prove that R = {(P ~R, T (E(P ))~R) | P, ~R ∈ CL0} is a bisimulation. To this
aim, it is sufficient to prove that, for all P, ~R, P ~R ↓l ⇔ T (E(P ))~R ⇓l. By Lemma 5.8,
P ~R ↓l ⇔ E(P ~R) ⇓l. Now E(P ~R) = E(P )E(~R) =β (E ◦ T ◦ E(P ))E(~R) = E((T ◦ E(P ))~R).
Finally, by Lemma 5.8, E((T ◦ E(P ))~R ⇓l ⇐⇒ T (E(P ))~R ↓l.

Lemma 5.11. Let M ∈ Λ and let ~P be closed such that M [~P/~x] ∈ Λ0, then

T (M [~P/~x]) 'l T (M)[T (~P )/~x] .

Proof. By Lemma 5.9, it is sufficient to show that E(T (M [~P/~x])) =β E(T (M)[T (~P )/~x]).
Now E(T (M [~P/~x])) =β M [~P/~x], by Lemma 5.3. On the other hand, from the definition
of E , one can prove by induction that E(T (M)[T (~P )/~x]) = ET (M)[ET (~P )/~x], which, by
Lemma 5.3, =β M [~P/~x].

Now we proceed to prove Theorem 5.7 (⇒). Assuming M≈̂lN , we have to prove
that, for all closing ~P , T (M)[~P/~x] 'l T (N)[~P/~x]. From M≈̂lN it follows M [E(~P )/~x] ≈l
N [E(~P )/~x]. By Lemmata 5.8, 5.10, using the fact that 'l is a congruence, we have
T (M [E(~P )/~x]) 'l T (N [E(~P )/~x]). By Lemma 5.11, T (M)[T E(~P )/~x] 'l T (N)[T E(~P )/~x],
hence by Lemma 5.11, using the fact that 'l is a congruence, we have T (M)[~P/~x] 'l
T (N)[~P/~x].

In order to prove Theorem 5.7 (⇐), assume T (M)'̂lT (N). We have to prove that,
for all closing ~P , M [~P/~x] ≈l N [~P/~x]. From T (M)'̂lT (N) it follows T (M)[T (~P )/~x] 'l
T (N)[T (~P )/~x]. From Lemma 5.11, we have T (M [~P/~x]) 'l T (N [~P/~x]). By Lemma 5.8,
we have M [~P/~x] ≈l N [~P/~x].
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5.2. The First-order Approach: CL as a Context Category. We endow CL with a
structure of reactive system in the sense of [LM00], by considering the context category of
closed unary contexts:

Definition 5.12 (Lazy, cbv CL Reactive Systems). C1
σ, for σ ∈ {l, v}, consists of:

• the context category whose objects are 0, 1, where the morphisms from 0 to 1 are
the closed terms, the morphisms from 1 to 1 are the closed unary contexts, and
composition is context substitution;
• the subcategory of reactive contexts is determined by the reactive contexts for the

lazy and cbv strategy, respectively, presented in Definition 5.4;
• the reaction rules are the standard CL reduction rules for the lazy case, and the cbv

reduction rules for the cbv case.

Lemma 5.13. The reactive systems C1
σ have redex RPOs.

One can easily check that the IPO contexts are the following.
• Lazy. The IPO contexts for a given term M are:

– [ ]~P , where ~P has the minimal length for the top-level reaction of M to fire,
– KC[ ]P1, KP1C[ ], KP1

~QC[ ], for any C[ ], ~Q, P1,
– SC[ ]P1P2, SP1C[ ]P2, SP1P2C[ ], SP1P2

~QC[ ], for any P1, P2, C[ ], ~Q.
• Cbv.

For M not a value, the following contexts are IPOs:
– [ ],

For M value, the following contexts are IPOs:
– [ ]V1 . . . Vi, where i is the minimum number of arguments necessary for the

top-level reaction of M to fire,
– [ ]V1 . . . ViP , where P is not a value, and i, possibly 0, is less than the minimum

number of arguments necessary for the top-level reaction of M to fire,
– V C[ ]V1 . . . Vi where V and C[M ] are values and i+ 1 is the minimum number

of arguments necessary for the top-level reaction of V to fire, in more detail:
KC[ ]V , KV C[ ], SC[ ]V1V2, SV1C[ ]V2, SV1V2C[ ],

– V C[ ]V1 . . . ViP , where V and C[M ] are values, P is not a value, and i+1 is less
than the minimum number of arguments necessary for the top-level reaction of
V to fire, in more detail: KC[ ]P , SC[ ]P , SC[ ]V1P , SV1C[ ]P .

For any term M , the following contexts are IPOs:
– PC[ ], where P is not a value and C[ ] is any context.

For any of the above contexts there is a reduction rule which applies, and the context
is minimal for the given reduction to fire. By case analysis, one can show that all the other
contexts are not IPO contexts.

The strong versions of context and IPO bisimilarities are too fine, since, as in the λ-
calculus case, they take into account reduction steps, and tell apart β-convertible terms.
Thus we consider weak variants of such equivalences, where the identity context [ ] is un-
observable. Weak context bisimilarity is too coarse, since it equates all terms. However, we
will prove that the weak IPO bisimilarity “almost” coincides with the lazy/cbv equivalence.
Moreover, we will show how to recover the exact correspondence by considering a suitable
variant of CL.

First of all, let 'σI , for σ ∈ {l, v}, denote the lazy/cbv weak IPO bisimilarity obtained
by considering the identity context as unobservable. Similarly to the case of the λ-calculus,
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we can define a list extension category by taking the category of multi-holed contexts. In
this category all contexts with no reactive indexes are IPO uniform. In the lazy case, the
contexts with a reactive index are of the shape [ ]C1[ ] . . . Ck[ ] (with the leftmost hole being
reactive), and the remaining ones have not reactive indexes and are IPO uniform. For the
cbv case, one can show that the multi-holed contexts with a reactive index are given by the
grammar:

D[ ] ::= [ ] | D[ ]C[ ] | KD[ ] | KV D[ ] | SD[ ] | SV D[ ] | SV1V2D[ ] ,

where C[ ] is any closed multi-holed context.
Thus, by Proposition 3.5(i), we have:

Proposition 5.14. For all M,N ∈ CL0, for any closed unary context C[ ],

M 'σI N =⇒ C[M ] 'σI C[N ] .

The rest of this section is devoted to compare the lazy/cbv weak IPO bisimilarity 'σI
with the lazy/cbv equivalence on CL 'σ defined in Definition 5.6. The following lemma
can be easily proved by coinduction, using Proposition 5.14.

Lemma 5.15. 'σI⊆'σ.

Proof. We prove that 'σI is a lazy/cbv bisimulation on CL. Let M 'σI N . If M ↓σ, then
also N ↓σ, since a convergent term has different IPO-transitions from a divergent term. We
are left to prove that for all P , MP 'σI NP . But this follows from Proposition 5.14.

However, the converse inclusion 'σ⊆'σI does not hold, since for instance K 'σ
S(KK)(SKK), because, e.g. for the lazy case, for all P , S(KK)(SKK)P →∗ KP . But

K 6'σI S(KK)(SKK). Namely S(KK)(SKK)
[ ]V−→I , while K

[ ]V

6→I . The problem, which was
already noticed in [Sew02], arises since the equivalence 'σI tells apart terms whose top-level
combinators expect a different number of arguments to reduce. In order to overcome this
problem, we consider an extended calculus, CL∗, where the combinators K and S become
unary, at the price of adding new intermediate combinators and intermediate reductions
(the reactive contexts are the ones in Definition 5.12).

Definition 5.16. The CL∗ lazy combinatory calculus is defined by
• Terms: M ::= x | K | S | K′M | S′M | S′′MN | MN

where K, K′, S, S′, S′′ are combinators.
• Rules: KM → K′M K′MN →M

SM → S′M S′MN → S′′MN S′′MNP → (MP )(NP )
The CL∗ cbv combinatory calculus is defined by
• Terms: M ::= x | K | S | MN | K′V | S′V | S′′V V

Values: V ::= K | K′V | S | S′V | S′′V V
where K, K′, S, S′, S′′ are combinators.
• Rules: KV1 → K′V1 K′V1V2 → V1

SV1 → S′V1 S′V1V2 → S′′V1V2 S′′V1V2V3 → (V1V3)(V2V3)

Notice that the calculus in the above definition is well-defined, since the set of terms is
closed under the reaction rules. One can define lazy/cbv reduction strategies on CL∗ as in
Definition 5.4, or as the closures of the reaction rules under the following reactive contexts:
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Lazy IPO lts’s on CL∗

term M IPO contexts reactive IPO contexts
M value [ ]P, PC[ ] [ ]P
M not a value [ ], PC[ ] [ ]

Cbv IPO lts’s on CL∗

term M IPO contexts reactive IPO contexts
M value [ ]P, RC[ ], V [ ] [ ]P , V [ ]
M not a value [ ], RC[ ] [ ]

where R is not a value, V is a value, C[ ] is a generic unary context.

Figure 4: IPO contexts for the lazy/cbv lts’s on CL∗.

Definition 5.17 (CL∗ Reactive Contexts).
• Lazy. D[ ] ::= [ ] | D[ ]P .
• Cbv. D[ ] ::= [ ] | D[ ]P | V D[ ].

Let '∗σ be the lazy/cbv equivalence defined on CL∗, similarly as in Definition 5.6 for CL.
There is a trivial embedding of CL-terms into CL∗. Moreover, one can easily check that,
when restricted to terms of CL, '∗σ coincides with 'σ.

Analogously to the CL case, we define the reactive system over CL∗. In the context
category, the unary closed contexts are defined by the grammar

C[ ] ::= [ ] | C[ ]M | MC[ ]

where M is a closed term. Notice that, under the above definition, expressions like K′[ ]
do not represent unary closed context. In defining the IPO transitions, it is important to
observe that C[M ] is a value iff M is a value and C[ ] is the identity context [ ]. Let us
denote by '∗σI the weak IPO bisimilarity obtained by considering the lazy/cbv reactive
system over CL∗. Since CL∗-terms expect at most one argument, the IPO contexts for CL∗

are simpler than the ones for CL, and they are summarized in Figure 4.
Similarly to the previous case, one can consider the multi-holed contexts category as

a list extension category. In this category all contexts are either IPO uniform or have
a reactive index. Moreover the reduction relation is deterministic. Thus Proposition 3.5
applies and we have:

Proposition 5.18.
(i) The equivalence '∗σI is a congruence w.r.t. unary contexts.
(ii) '∗σI='∗σR, where '∗σR denotes the IPO bisimilarity where only reactive IPO contexts

are considered.

By Proposition 5.18(ii) above, the weak IPO equivalence can be significantly simplified.
Namely, in the lazy case, we obtain the weak IPO bisimilarity 'lR, where only applicative
IPO contexts are considered (see Figure 4). In the cbv case, Proposition 5.18 allows us to
reduce ourselves to contexts of the shape [ ], [ ]P, V [ ] (see Figure 4). However, one can
prove that also in this case we can consider only applicative by-value contexts. We skip the
details of such proof.
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Moreover, we have K '∗σI S(KK)(SKK). More in general, the weak IPO bisimilarity
'∗σI coincides with the lazy/cbv equivalence on CL:

Theorem 5.19. For all M,N ∈ CL0, M '∗σI N ⇐⇒ M 'σ N .

Proof. (⊆) One can show that '∗σI⊆'∗σ by coinduction, as in the proof of Lemma 5.15, by
showing that '∗σI is a bisimulation on CL∗, also using Proposition 5.18. Then, since '∗σ
coincides with 'σ on CL-terms, we have the thesis.
(⊇) By coinduction, showing that 'σ is a weak IPO bisimulation on CL∗.

As a consequence of Theorem 5.7 and Theorem 5.19 above, we can recover the lazy/cbv
observational equivalence on λ-terms as weak IPO bisimilarity on CL∗.

Proposition 5.20. For all M,N ∈ Λ0, M ≈σ N ⇐⇒ T (M) '∗σI T (N).

However, such notions of weak IPO bisimilarities still suffer of the problem of being
infinitely branching, since the IPO contexts are [ ], [ ]P for the lazy case, and [ ], [ ]V for
the cbv case, for all P, V ∈ (CL∗)0.

This problem will be solved in the next section, where we introduce the notion of
second-order context category, and we endow CL∗ with such a structure.

6. Second-order Term Contexts

The definition of term context category [LM00] can be generalized to a definition of
second-order term context category. The generalization is obtained by extending the term
syntax with function (second-order) variables, that is variables not standing for terms but
instead for functions on terms. The formal definition is the following

Definition 6.1 (Category of Second-order Term Contexts). Let Σ be a signature for a term
language. The category of second-order term contexts over Σ is defined by: objects are finite
lists of naturals 〈n1, . . . , nk〉, an arrow 〈m1, . . . ,mh〉 → 〈n1, . . . , nk〉 is a k-tuple 〈t1, . . . , tk〉,
where the term ti is defined over the signature Σ∪{Fm1

1 , . . . , Fmhh }∪{Xi,1 . . . , Xi,ni}, where
Fmii is a function variable of arity mi, Xi,j is a ground variable. The category of second-
order linear term contexts is the subcategory whose arrows are n-tuples of terms, satisfying
the condition that the n-tuples have to contain exactly one use of each function variable
Fmii and ground variable Xi,j . The category of second-order function-linear term contexts,
T ∗2 (Σ), is the subcategory whose arrows are n-tuples of terms, satisfying the condition that
the n-tuples have to contain exactly one use of each function variable Fmii , moreover no
function variable appears inside the argument of another function variable.

Remark. Notice that the above definition of second-order linear term contexts is different
from that given in the conference version of the present paper, [DHL08]. The modification
was necessary for fixing a technical problem (linear contexts were not closed by composition).

In the following we are going to use just a subcategory of the category of second-order
function-linear term contexts, however, at this point, we prefer to present the original idea
of second-order term contexts in its full generality.

Example 6.2. Given the signature of natural numbers {0, S,+}, examples of second-order
linear contexts representing arrows in 〈2, 0〉 → 〈0, 2〉 are:

〈F 0
2 (), F 2

1 (S(X2,2) +X2,1)〉, 〈F 2
1 (0, 0), F 0

2 () + (X2,1 +X2,2)〉, 〈F 2
1 (0, F 0

2 ()), (X2,1 +X2,2)〉
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Note that the last context is not function-linear. Examples of second-order function-linear
contexts are:

〈F 0
2 (), F 2

1 (X2,2, 0)〉, 〈F 2
1 (0, 0), F 0

2 () +X2,2 +X2,2〉, 〈F 2
1 (0, 0) + F 0

2 (), X2,2 +X2,2〉
None of the above contexts is linear. Examples of second-order contexts that are neither
function-linear nor linear are:

〈0, F 2
1 (X1,2, X2,2)〉, 〈F 2

1 (0, F 0
2 ()), X2,2〉, 〈F 2

1 (0, 0), (F 0
2 () +X1,2) + (F 0

2 () +X2,2)〉

Intuitively, an arrow in 〈2, 0〉 → 〈0, 2〉 represents a pair of contexts containing two holes
F 2

1 , F
0
2 , where F 2

1 is a hole that must be filled by a term representing a function with two
arguments while F 0

2 is a hole that must be filled by a term representing function with no
arguments, i.e. a ground term. The first context in the pair 〈2, 0〉 → 〈0, 2〉 represents
a function with no arguments, while the second context represent a function with two
arguments X2,1, X2,2.

One can check that the standard category of term contexts over Σ coincides with the
subcategory whose objects are the lists containing only copies of the natural number 0; in
fact this subcategory uses function variables with no arguments and the ground variables
do not appear.

The identity arrow on the object 〈n1, . . . , nk〉 is:

〈Fn1
1 (X1,1, . . . X1,n1), . . . , Fnkk (Xk,1, . . . Xk,nk)〉

In order to define composition in the categories of second-order term contexts, it is
convenient to consider the λ-closure of the tuple of terms representing arrows and to define
arrow composition through β-reduction.

The λ-closure of a term t on the signature Σ ∪ {Fm1
1 , . . . , Fmhh } ∪ {X1, . . . , Xn} is

λλλFm1
1 . . . Fmhh .λλλX1 . . . Xn.t, which, for brevity, can also be written as λλλ~F .λλλ ~X.t. In general,

given a second-order context 〈t1, . . . , tk〉 : 〈m1, . . . ,mh〉 → 〈n1, . . . , nk〉, we consider the
λ-closure: λλλ~F .〈λλλ ~X1.t1, . . . ,λλλ ~Xk.tk〉. The composition between the morphisms:

λλλ~F .〈λλλ ~X1.s1, . . . ,λλλ ~Xk.sk〉 : 〈l1, . . . , lh〉 → 〈m1, . . . ,mk〉

λλλ~G.〈λλλ~Y1.t1, . . . ,λλλ~Yj .tj〉 : 〈m1, . . . ,mk〉 → 〈n1, . . . , nj〉
is the β-normal form of the λ-expression

λλλ~F .(λλλ~G.〈λλλ~Y1.t1, . . . ,λλλ~Yj .tj〉)(λλλ ~X1.s1, . . . ,λλλ ~Xk.sk) : 〈l1, . . . , lh〉 → 〈n1, . . . , nj〉
To give an example, the composition between

λλλF.λλλX1.F (X1, 0) : 〈2〉 → 〈1〉 and λλλG.λλλY1Y2.G(S(Y1)) + Y2 : 〈1〉 → 〈2〉
is given by:

λλλF.(λλλG.λλλY1Y2.G(S(Y1)) + Y2)(λλλX1.F (X1, 0))
→β λλλF.λλλY1Y2.(λλλX1.F (X1, 0))(S(Y1))) + Y2)
→β λλλF.λλλY1Y2.F ((S(Y1), 0) + Y2) : 〈2〉 → 〈2〉.

In other words, the composition is given by a j-tuple of expressions ti in which every
function variable Gl is substituted by the corresponding expression sl, with the ground
variables of sl substituted by the corresponding parameters of Gl in ti.

Note that the identity morphism is defined as a λ-term implementing the identity
function, while composition on morphisms is defined by the function composition in the
λ-setting. Given this correspondence, it is easy to prove that the categorical properties for
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the identity hold, while the associativity of composition essentially follows from the unicity
of the normal form.

Finally one need to prove that composition preserve linearity and function-linearity.
For what concerns linearity, it is a well-known result that linear λ-terms are closed by β-
reduction. From this fact one can immediately prove that second-order linear contexts are
closed by composition.

Preservation of function-linearity can be proved similarly. First we generalize the notion
of function-linearity to λ-terms stating that a function-linear λ-term is a typed lambda-term
with constants, where

• all the variables and constants have either a ground type or a first-order function
type;
• each bound function variable (e.g. F ) appears exactly once in the term, and only

inside the arguments of constants (e.g. S(F (0) + 0), or inside the arguments of λ-
expressions having a second-order function type (e.g. (λλλGλλλY.G(Y )+Y )(λλλX.F (X+
S(0)))). That is, no function variable appears inside the argument of an expression
that has first order function type and is not a constant (e.g. G(S(F (0)) + 0) and
(λλλX.X +X)(F (0))).

It is straightforward to prove that function-linear λ-terms are closed by β-reduction and
that, given two function-linear second-order contexts, the term, whose β-normal form defines
composition, is a function-linear λ-term. From this the thesis.

The main general result on second-order term contexts is the following:

Proposition 6.3. For any signature Σ, in the category of second-order (linear) (function-
linear) term contexts over Σ, any commuting square, having as initial vertex the empty list
ε, has an RPO.

Proof. First we present the proof for the special case useful in this paper, namely we con-
sider the restricted category containing as objects the lists with at most one element. Given
two arrows with domain the empty list: t1 : ε → 〈n1〉 and t2 : ε → 〈n2〉, and two arrows
s1 : 〈n1〉 → 〈m〉, s2 : 〈n2〉 → 〈m〉 forming a commuting square (s1 ◦ t1 = s1 ◦ t1 : ε→ 〈m〉),
the corresponding RPO for this commuting square is inductively defined on the structures
of s1, s2. There are several cases to consider:
(i) s1 = c1(s1,1, . . . , s1,k1) and s2 = c2(s2,1, . . . , s2,k2), with c1, c2 function symbols in the
signature Σ. Necessarily c1 = c2 (and k1 = k2). We have to consider in which subterms
of s1 and s2 the function variables, Fn1

1 and Fn2
2 , appear. If Fn1

1 and Fn2
2 appear in cor-

responding subterms, that is, there is an i such that all Fn1
1 appears in s1,i and all Fn2

2 in
s2,i, then we have that s1,i and s2,i, together with t1, t2, form a commuting square, and the
RPO, inductively defined, for this second commuting square, immediately induces the RPO
for s1 and s2. The subcase where Fn1

1 and Fn2
2 do not appear in corresponding subterms is

treated at point (iii).
(ii) s1 = Fn1

1 (s1,1, . . . , s1,n1) and s2 = Fn2
2 (s2,1, . . . , s2,n2), and, for the general case, Fn1

1 ,
Fn2

2 not appearing in the subterms sh,i. In this case, we have that t1[s11/X1,1, . . . , s1,n1/X1,n1 ] =
t2[s21/X2,1, . . . , s2,n2/X2,n2 ], that is there is a unifier i.e. a substitution making t1 and t2
equal. Consider the most general unifier (mgu) for t1 and t2, this is given by two tu-
ples of terms, s′1,1, . . . , s

′
1,n1

and s′2,1, . . . , s
′
2,n2

, such that t1[s′11
/X1,1, . . . , s

′
1,n1

/X1,n1 ] =
t2[s′21

/X2,1, . . . , s
′
2,n2

/X2,n2 ].
We have that: Fn1

1 (s′1,1, . . . , s
′
1,n1

) : 〈n1〉 → 〈m′〉 and Fn2
2 (s′2,1, . . . , s

′
2,n2

) : 〈n2〉 → 〈m′〉
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form a commuting square that is also an RPO, in fact any other pair of arrows, forming a
commuting square factorizing the original one, needs to be in the form Fn1

1 (s′′1,1, . . . , s
′′
1,n1

) :
〈n1〉 → 〈m′′〉 and Fn2

2 (s′′2,1, . . . , s
′′
2,n2

) : 〈n1〉 → 〈m′′〉, with the two sequences 〈s′′1,i〉 and 〈s′′2,i〉
defining a unifier for t1, t2. The unique arrow factorizing the two commuting squares is
Fm

′
(s′′′1 , . . . s

′′′
m′), with 〈s′′′i 〉 given by the mgu property.

〈m′′〉

〈n1〉
F
n1
1 (s′1,1,...,s

′
1,n1

)
//

F
n1
1 (s′′1,1,...,s

′′
1,n1

)

=={{{{{{{{{{{{{{{{{
〈m′〉

Fm
′
(s′′′1 ,...s

′′′
m′ )

OO

〈n2〉
F
n2
2 (s′2,1,...,s

′
2,n2

)
oo

F
n2
2 (s′′2,1,...,s

′′
2,n2

)

aaCCCCCCCCCCCCCCCCC

ε
t1

hhPPPPPPPPPPPPPPP
t2

66nnnnnnnnnnnnnnn

(iii) In this point we consider all the remaining cases, that is where: s1 = c1(s1,1, . . . , s1,k1),
s2 = c2(s2,1, . . . , s2,k2) and either Fn1

1 and Fn2
2 do not appear in corresponding subterms,

or c1 = Fn1
1 or c2 = Fn2

2 . Let us consider the term s′1 obtained from s1 by substituting any
maximal subterm so not containing Fn1

1 by a ground variable Xso .
For example, if s1 = c1(s1,1, c2(s1,2,1, Fn1

1 (s1,2,2,1, s1,2,2,2), s1,2,3)) then s′1 is the term
c1(Xs1,1 , c2(Xs1,2,1 , F

n1
1 (Xs1,2,2,1 , Xs1,2,2,2), Xs1,2,3)), and analogously for the term s2. Let

s′′1 = s′1 ◦ t1, and s′′1 = s′2 ◦ t2. Now we have that: s′′1[s
1,~l1
/Xs

1,~l1
, . . . , s

1, ~lm1
/Xs

1, ~lm1

] =

s′′2[s2, ~j1/Xs1, ~j1
, . . . , s1, ~jm2

/Xs1, ~jm2
] that is, there exists a unifier for s′′1 and s′′2, we can consider

the most general unifier, given by a pair tuples of terms s′
1,~l1
, . . . , s

1, ~lm1
and s2, ~j1 , . . . , s1, ~jm2

.
By repeating the arguments used at point (ii), we have that s′1[s′

1,~l1
/Xs

1,~l1
, . . . , s′

1, ~lm1

/Xs
1, ~lm1

]

and s′2[s′
2, ~j1

/Xs1, ~j1
, . . . , s′

1, ~jm2

/Xs1, ~jm2
] form an RPO.

The proof for the general case is now almost immediate. The RPO, for a square formed
by the arrows: 〈t1,1, . . . , t1,j1〉 : ε → 〈n1,1, . . . n1,j1〉, 〈t2,1, . . . , t2,j2〉 : ε → 〈n2,1, . . . n2,j2〉,
〈s1,1, . . . , s1,k〉 : 〈n1,1, . . . n1,j1〉 → 〈m1, . . .mk〉, 〈s2,1, . . . , s2,k〉 : 〈n2,1, . . . n2,j2〉 → 〈m1, . . .mk〉,
can be obtain by putting in a sequence the RPO’s for the k diagrams: 〈t1,1, . . . , t1,j1〉 :
ε → 〈n1,1, . . . n1,j1〉, 〈t2,1, . . . , t2,j2〉 : ε → 〈n2,1, . . . n2,j2〉, s1,i : 〈n1,1, . . . n1,j1〉 → mi,
s2,i : 〈n2,1, . . . n2,j2〉 → mi, 1 ≤ i ≤ k. In turn, the RPO for these diagrams can be
obtained by essentially repeating the construction presented for the unary case. Finally,
it is immediate to prove that the presented construction preserve linearity and function-
linearity of arrows.

The above proposition holds also for the case of linear second-order contexts and the
prove remains almost the same.

6.1. CL∗ as Second-order Rewriting System. In this section, we consider the second-
order context category for the combinatory calculus CL∗ and we show that the weak
IPO lazy bisimilarity thus obtained coincides with the lazy observational equivalence on
λ-calculus, while for the cbv case we get a finer equivalence. Interestingly, the second-order
open bisimilarity gives a uniform characterization also on open terms.
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Note that the terms of CL are defined by the signature ΣCL = {K,S, app}, where app
is the binary operation of application that is usually omitted. So the term SKK actually
stands for app(app(S,K),K).

First we deal with the lazy case, then we will sketch also the cbv case.

6.1.1. The Lazy Second-order Reactive System.

Definition 6.4 (Lazy Second-order Reactive System on CL∗). The lazy second-order reac-
tive system C2∗

l consists of:
• the function-linear category whose objects are the lists with at most one element,

and whose arrows ε → 〈n〉 are the terms of CL∗ with, at most, n (first order)
metavariables,

Mn ::= X1 | . . . |Xn | K | S | K′Mn | S′Mn | S′′MnMn | MnMn

and whose arrows 〈m〉 → 〈n〉 are the second-order contexts defined by:

Cm,n ::= F (Mn
1 , . . . ,M

n
m) | MnCm,n | Cm,nMn

• the reactive contexts are all the second-order applicative contexts of the shape
F (Mn

1 , . . . ,M
n
m)Nn

1 . . . N
n
k ;

• the reaction rules are
KX1 → K′X1 K′X1X2 → X1

SX1 → S′X1 S′X1X2 → S′′X1X2 S′′X1X2X3 → (X1X3)(X2X3)
where KX1,SX1 : ε→ 〈1〉, K′X1X2,S′X1X2 : ε→ 〈2〉 and S′′X1X2X3 : ε→ 〈3〉.

Second-order contexts as defined above can be represented by C[F (M1, . . . ,Mm)], where C[ ]
is a unary first-order context on CL∗ (with metavariables). To maintain the notation for con-
texts used in Sections 4, 5, in the sequel a second-order context C[F (M1, . . . ,Mm)] : 〈m〉 →
〈n〉 will be more conveniently written as C[ ]θ, where θ is a substitution s.t. θ(Xi) = Mi

for all i = 1, . . . ,m, moreover we write M
C[ ]θ→ M ′ iff C[Mθ]→M ′. Given Proposition 6.3,

and the underlined RPOs construction, we have:

Corollary 6.5. The reactive system C2∗
l has redex RPOs.

Example: Let M = XM1. Some of the IPO reductions of M are the following:

XM1

[ ]
{K/X}−→ K′M1; XM1

[ ]
{K′Y/X}−→ Y ; XM1

[ ]
{K′/X}Y−→ M1; XM1

[ ]
{S/X}−→ S′M1;

XM1

[ ]
{S′Y/X}−→ S′′YM1; XM1

[ ]
{S′/X}Y−→ S′′M1Y ; XM1

[ ]
{S′′Y Z/X}−→ (YM1)(ZM1);

XM1

[ ]
{S′′Y/X}Z−→ (Y Z)(M1Z); XM1

[ ]
{S′′/X}Y Z−→ (M1Z)(Y Z); XM1

[ ]
{KY/X}−→ K′YM1;

XM1

[ ]
{KY1Y2/X}−→ K′Y1Y2M1.

Notice that [ ]{KY1...Yn/X} is an IPO context for any n.

In general, the IPO contexts are summarized in Figure 5.
Using Proposition 3.5, we can prove that the weak IPO bisimilarity '2∗

lI is a congruence,
and it has a simpler characterization in terms of applicative contexts. Namely, we can
consider as list extension category the category of all function-linear term contexts. In the
alternative notation, a second-order linear term contexts can be written as C[ θ1 , . . . , θn ],
where C[ 1, . . . , n] is a first-order multi-holed context and θ1, . . . , θn are n substitutions,
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term M IPO contexts reactive IPO contexts

X [ ]{AY/X}, [ ]{A/X}Y , A~Y C1[ ]∅ [ ]{AY/X}, [ ]{A/X}Y

XP0
~P [ ]{A~Y /X}, A~Y C1[ ]∅ [ ]{A~Y /X}

C~P , M value [ ]∅X, A~Y C1[ ]∅ [ ]∅X
C~P , M not value [ ]∅, A~Y C1[ ]∅ [ ]∅

where
A ∈ {K,S,K′Z1,S′Z1,S′′Z1Z2 | Z1, Z2 fresh}

C ∈ {K,S,K′,S′,S′′}
C1[ ] ranges over C[ ] ::= [ ] | C[ ]Z | ZC[ ]

Figure 5: Second-order IPO contexts for the lazy CL∗.

each one acting on the term put in the corresponding hole. By repeating the arguments for
the first-order case, one can show that any second-order linear term context either is IPO
uniform or it has a reactive index. Then, by Proposition 3.5, we have:

Proposition 6.6.
(i) For all terms of CL∗ M,N , for any substitution θ and for any (possibly open) first-

order context C[ ],

M '2∗
lI N =⇒ C[Mθ] '2∗

lI C[Nθ] .

(ii) '2∗
lI ='2∗

lR, where '2∗
lR denotes the weak IPO bisimilarity, where only reactive IPO

contexts are considered (see Figure 5).

By Proposition 6.6(ii) above, the notion of IPO bisimilarity turns out to be much simpler,
but it is still infinitely branching (when the term is of the shape XP0

~P we have infinitely
many IPO contexts [ ]{A~Y /X}). However, one can prove that also the contexts [ ]{A~Y /X},

for any |~Y | ≥ 1 can be eliminated. This requires an “ad-hoc” reasoning:

Proposition 6.7. The lazy weak IPO bisimilarity '2∗
lI has a finitely branching characteri-

zation in terms of the second-order IPO contexts of Figure 6.

Proof. (sketch) Let '2∗
lF be the reduced bisimilarity obtained from '2∗

lR by not considering
the contexts [ ]{A~Y /X}, for any |~Y | ≥ 1. Then '2∗

lR⊆'2∗
lF . In order to show the converse, one

can first prove that the following is a weak IPO bisimulation: R = {(M ′, N ′) | ∃θ. (M ′ _
Mθ ∧ N ′ _ Nθ ∧ M '2∗

lF N}, where M _ N means that M and N are KS-convertible.

Finally, we are left to prove that the second-order weak IPO bisimilarity exactly recover
the lazy observational equivalence. More in general, we will prove that the two equivalences
coincide on open terms. Namely, we can view open terms with n free variables as arrows
from ε to 〈n〉 (by identifying variables with metavariables). Thus we have directly a notion
of equivalence on open terms. We will show that this equivalence coincides with the usual
extension to open terms of the observational equivalence by substitution. This gives a
uniform finitely branching characterization of the observational equivalence on all (closed
and open) terms.

Proposition 6.8. For all M,N ∈ Λ, M≈̂lN ⇐⇒ T (M) '2∗
lI T (N).
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term M IPO contexts
X [ ]{A/X}Y

XP0
~P [ ]{A/X}

C~P , M value [ ]∅X
C~P , M not value [ ]∅

where
A ∈ {K,S,K′Z1,S′Z1,S′′Z1Z2 | Z1, Z2 fresh}

C ∈ {K,S,K′,S′,S′′}

Figure 6: Finitely branching second-order IPO contexts for the lazy CL∗.

Proof of Proposition 6.8. We will show that '2∗
lI coincides with the natural extension

to open terms of the first-order IPO bisimilarity '∗lI of Section 5.2.

Definition 6.9. Let '̂∗lI be the extension of '∗lI to open terms of CL∗ defined by, for all
M,N CL∗-terms such that FV (M), FV (N) ⊆ {X1, . . . , Xn},

M'̂∗lIN iff ∀θ : {X1, . . . , Xn} → (CL∗)0. Mθ '∗lI Nθ .

Lemma 6.10. '2∗
lR⊆ '̂

∗
lR.

Proof. We show that R = {(Mθ,Nθ) | M '2∗
lR N ∧ Mθ,Nθ ∈ (CL∗)0} is a first-order

bisimulation. From M '2∗
lR N , by Proposition 6.6, we have Mθ '2∗

lR Nθ. Assume Mθ
[ ]→I

M ′, since Mθ '2∗
lI Nθ, then Nθ

[ ]⇒I N
′, M ′ '2∗

RI N
′ and (M ′, N ′) ∈ R. Now assume

Mθ
[ ]P→I M

′, then Mθ
[ ]X→I M

′′ with M ′′[P/X] = M ′, since Mθ '2∗
lI Nθ then also Nθ

[ ]X⇒I

N ′′with M ′′ '2∗
lI N

′′. Thus Nθ
[ ]P⇒I N

′ and N ′′[P/X] = N ′ is closed. Thus (M ′, N ′) ∈ R.

Lemma 6.11. Let M ∈ CL∗, M →l M
′. Then M'̂∗lIM ′.

Proof. The proof follows from the fact that ∀θ. Mθ →∗l M ′θ and '∗lI is closed under →l.

Lemma 6.12. '̂∗lR ⊆'2∗
lR.

Proof. We show thatR = {(M,N) |M'̂∗lRN} is a second-order bisimulation. IfM
[ ]θ ~X→I M

′,
then there are two cases.
(i) M = C ~M , for a combinator C on CL∗. Then θ = ∅, and for any closing θ and closed ~P

such that | ~X| = |~P |, Mθ
~P→I M

′′ and M ′′ = M ′θ[~P/X]. Since Mθ '∗lR Nθ, then Nθ
~P⇒I N

′′

and M ′′ '∗lR N ′′. There are two subcases: either ~X = [ ] or ~X = X. In the first subcase, we
have M →I M

′ (second-order) and N ⇒ N (second-order), thus by Lemma 6.11 M ′'̂∗lRN ,
and hence (M ′, N) ∈ R. In the second subcase, i.e. ~X = X, M is a value different from a
variable, then one can check that also N must reduce to a value different from a variable,

thus N
[ ]∅X⇒ N ′ and N ′′ = N ′θ[P/X]. Thus M ′'̂∗lRN ′, and hence (M ′, N ′) ∈ R.

(ii) M = X ~M . Since for any closing θ, Mθ '∗lR Nθ, then also N
[ ]θ ~X⇒I N ′. Moreover, for

any θ closing Mθ,Nθ, for any ~P such that |~P | = | ~X|, we have Mθθ
~P→I M

′′, Nθθ
~P→I N

′′,
M ′′ = M ′θ[~P/ ~X], N ′′ = N ′θ[~P/ ~X]. Thus for all θ′. M ′θ′ '∗lR Nθ

′, hence (M ′, N ′) ∈R.
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6.1.2. The Cbv Second-order Reactive System. The main difference between the cbv and the
lazy case is that the variables in the cbv case are meant to represent values, consequently
cbv substitutions have to map variables into values.

First of all, the values on CL∗ are defined by:

V ::= X | K | K′V | S | S′V | S′′V V .

Definition 6.13 (Cbv Second-order Reactive System on CL∗). The cbv second-order reac-
tive system C2∗

v consists of:
• the function-linear category whose objects are the lists with at most one element,

and whose arrows ε → 〈n〉 are the terms of CL∗ with, at most, n (first order)
metavariables, and whose arrows 〈m〉 → 〈n〉 are the second-order contexts defined,
briefly, by:

C ::= F (V1, . . . , Vm) | MC | CM
where the values V1, . . . , Vm and the term N are built using n variables.
• the reactive contexts are defined by

D ::= F (V1, . . . , Vm) | DM | V D ;

• the reaction rules are
KX1 → K′X1 K′X1X2 → X1

SX1 → S′X1 S′X1X2 → S′′X1X2 S′′X1X2X3 → (X1X2)(X1X3).

By Proposition 6.3, we have:

Corollary 6.14. The reactive system C2∗
v has redex RPOs.

As in the lazy case, a second-order context C : 〈m〉 → 〈n〉 will be more conveniently
denoted by C[ ]θ, where C[ ] is a unary first-order context and θ is a cbv substitution, i.e.
s.t. θ(Xi) is a value, for all i = 1, . . . ,m.

According to our definition, there are terms that are neither values nor they are re-
ducible (they do not contain any redex), the term XY is an example. A term M of this
kind can be transformed in a reducible one by substituting a single specific variable with a
value. We call critical variable a variable of this kind.

Definition 6.15. The critical variable of a second-order term M , Cr(M), if it exists, is
recursively defined by:
Cr(V ) = ∅,
Cr(XV ) = X,
Cr(VM) = Cr(M), if M is not a value,
Cr(MN) = Cr(M), if M is not a value.

The second-order IPO contexts for cbv are summarized in Figure 7. In that figure, the
symbol R ranges over most general reducible terms. That is, any reducible term can be
obtained by instantiating the variables of a term contained in that grammar. The symbol
T is used to represent general terms; remember that variables represent general values.

As for the previous case, by Proposition 3.5 and by considering as list extension category
the category of all by-value function-linear term contexts, we have:
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term M IPO contexts reactive IPO contexts
X [ ]{A/X}Y , A[ ]∅, RC1[ ]∅, [ ]{A/X}Y , A[ ]∅
M a value but not a variable [ ]∅X, A[ ]∅, RC1[ ]∅ [ ]∅X, A[ ]∅
M reducible [ ]∅, RC1[ ]∅ [ ]∅
M contains a critical variable [ ]{A/Cr(M)}, RC1[ ]∅ [ ]{A/Cr(M)}

where
A ∈ {K,S,K′X1,S′X1,S′′X1X2 | X1, X2 fresh}

R ranges over R ::= AZ | XR | RT
C1[ ] ranges over C[ ] ::= [ ] | C[ ]T | TC[ ]

with T ranging over T ::= X | (TT )

Figure 7: Second-order IPO contexts for cbv CL∗.

Proposition 6.16.
(i) For all terms of CL∗ M,N , for any substitution θ and for any (possibly open) first-

order context C[ ],

M '2∗
vI N =⇒ C[Mθ] '2∗

vI C[Nθ] .

(ii) '2∗
vI='2∗

vR, where '2∗
vR denotes the weak IPO bisimilarity, where only reactive IPO

contexts are considered.

It is important to notice that the reactive IPO contexts provide directly a finitely branching
lts for the cbv combinatory logic (notice that, contrary to the lazy case, for the cbv case
IPO contexts of the shape [ ]{A~Y /X}, for |~Y | ≥ 1, do not exist, since substitutions have to
map variables into values).

The cbv weak IPO bisimilarity turns out to be strictly included in the cbv contextual
equivalence. Namely, if we consider

T (λx.x) = SKK and T (λxy.xy) = S[S(KS)(S(KK)(SKK))][S(S(KS)(KK))(KK)]

then T (λx.x) ≈v T (λxy.xy), however T (λx.x) 6'2∗
vI T (λxy.xy), because

T (λxy.xy)
[ ]∅X⇒ S′′(K′X)(S′′KK)

[ ]∅Y−→ , while T (λx.x)
[ ]∅X⇒ X

[ ]∅Y

6⇒ .

The problem arises from the fact that in the second-order cbv bisimilarity we observe the
existence of a critical variable, while in the contextual equivalence we do not.

7. Final Remarks and Directions for Future Work

There are several other attempts to deal with parametric rules in the literature. In his
seminal paper [Sew02], Sewell presents two different constructions, one based on ground
reaction rules and the other based on parametric rules. The RPO construction can be seen
as a categorical account of the ground rules construction. Parametric rules, in the form they
are defined in [Sew02], do not have an obvious categorical presentation. In [KSS05], the
authors introduce the notion of luxes to generalize the RPO approach to cases where the
rewriting rules are given by pairs of arrows having a domain different from 0. Luxes can be
seen as a categorical account of the parametric rules approach of Sewell. When instantiated

31



to the category of contexts, the luxes approach allows to express rewriting rules not formed
by pairs of ground terms but, instead formed by pairs of contexts (open terms), and so
allowing parametricity. Compared to our approach, based on the notion of second-order
context, the approach of luxes is more abstract and it can be applied to a wider range of
cases (categories). However, if we compare the two approaches in the particular case of
context categories, we find that the luxes approach has a more restricted way to instantiate
a given parametric rule. This restriction results in a not completely satisfactory treatment
of the λ-calculus. It remains the open question of substituting the notion of second-order
context with a more abstract and general one. This will allow to recover the extra generality
of luxes.
A possible alternative approach for dealing with the λ-calculus in Leifer-Milner’s RPO
setting, it that of using suitable encodings in the (bi)graph framework [Mil06]. However,
we feel that our term solution based on second-order context categories and CL is simpler
and more direct. Alternatively, in place of CL, one could also consider a λ-calculus with
explicit substitutions, in order to obtain a convenient encoding of the β-rule, allowing for a
representation as a second-order reactive system. This is an experiment to be done. Here
we have chosen CL, since it is simpler; moreover, the correspondence between the standard
λ-calculus and the one with explicit substitutions deserves further study.
We have considered lazy and cbv strategies, however also other strategies, e.g. head and
normalizing could be dealt with, possibly at the price of some complications due to the
fact that such strategies are usually defined on open terms. It would be also interesting to
explore non-deterministic strategies on λ-calculus.
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