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Abstract. Taking the view that infinite plays are draws, we study
Conway non-terminating games and non-losing strategies. These ad-
mit a sharp coalgebraic presentation, where non-terminating games are
seen as a final coalgebra and game contructors, such as disjunctive sum,
as final morphisms. We have shown, in a previous paper, that Con-
way’s theory of terminating games can be rephrased naturally in terms
of game (pre)congruences. Namely, various conceptually independent
notions of equivalence can be defined and shown to coincide on Con-
way’s terminating games. These are the equivalence induced by the
ordering on surreal numbers, the contextual equivalence determined by
observing what player has a winning strategy, Joyal’s categorical equiv-
alence, and, for impartial games, the denotational equivalence induced
by Grundy semantics. In this paper, we discuss generalizations of such
equivalences to non-terminating games and non-losing strategies. The
scenario is even more rich and intriguing in this case. In particular,
we investigate efficient characterizations of the contextual equivalence,
and we introduce a category of fair strategies and a category of fair
pairs of strategies, both generalizing Joyal’s category of Conway games
and winning strategies. Interestingly, the category of fair pairs captures
the equivalence defined by Berlekamp, Conway, Guy on loopy games.
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1. Introduction

The increasing use of games as a convenient metaphor for modeling interactions
has spurred the growth of a broad variety of game definitions in Computer Science.
In the presentation of games many related concepts are used, e.g. move, position,
play, turn, winning condition, payoff function, strategy, etc. None has a unique
definition. Usually, some, but not always the same, are taken as primitive, to which
the others are reduced. Many more properties need to be specified before the kind
of game one is interested in is actually pinned down, e.g.: perfect knowledge, zero-
sum, chance, number of players, finiteness, determinacy, etc. All this together
with the wide gamut of games arising in real life calls for a unifying foundational
approach to games. In [HL09], we started such a programme using very unbiased
foundational tools, namely algebras and coalgebras.

We build upon Conway’s notion of game, [Con01]. It provides an elementary
but sufficiently abstract notion of game amenable to a rich algebraic-coalgebraic
treatment because of the special role that sums of games play in this theory.

Conway games are combinatorial games, namely no chance 2-player games, the
two players being conventionally called Left (L) and Right (R). Such games have
positions, and in any position there are rules which restrict L to move to any of
certain positions, called the Left positions, while R may similarly move only to
certain positions, called the Right positions. L and R move in turn, and the game
is of perfect knowledge, i.e. all positions are public to both players. The game
ends when one of the players has no move, the other player being the winner.
Many games played on boards are combinatorial games, e.g. Nim, Domineer-
ing, Go, Chess. Games, like Nim, where for every position both players have the
same set of moves, are called impartial. More general games, like Domineering,
Go, Chess, where L and R may have different sets of moves are called partisan.
Many notions of games, such as those which arise in Set Theory, in Automata
Theory, or in Semantics of Programming Languages, can be encoded in Con-
way’s format. In [HL09], we develop Conway’s theory of terminating games and
winning strategies under an algebraic perspective, and we introduce and study hy-
pergames, i.e. potentially non-terminating games, and non-losing strategies, using
coalgebraic methods. Especially in view of applications, potentially infinite, non-
terminating interactions are even more important than finite ones. Traditionally,
as in the automata-theoretic literature, see e.g. [Tho02], and denotational game
semantics, [AJ94], infinite plays are taken to be winning for one of the players.
Differently, we take the natural view that all infinite plays are draws: on infinite
plays, apparently, there are no losers, because each player can respond indefinitely.
This naturally extends the winning condition on Conway games. As far as appli-
cations are concerned, this view has received attention in the context of model
checking for the µ-calculus, see e.g. [GLLS07]. Theoretically, draws are inevitable
as soon as one introduces sums of games.

The study of hypergames and non-losing strategies carried out in [HL09] and
in the present paper will be used as a step towards the study of the more general
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framework where infinite plays can be either draws or winning, and general payoff
functions are considered, as in the context of e.g. games for Logics.

Hypergames are defined as forming a final coalgebra, and operations on games
can be naturally extended to hypergames, by defining them as final morphisms.

Having defined hypergames as a final coalgebra, rather than e.g. graphs, this
allows us to abstract superficial features of positions and to reason directly up-
to graph bisimilarity. Our approach is justified by the fact that all important
properties of games in Conway’s setting, e.g. existence of winning/non-losing
strategies, are invariant under bisimilarity.

In the present work, we pursue further the investigation started in [HL09], by
focusing on the notions of partial order/equivalence and (pre)congruence. This ap-
proach, as we mentioned earlier, allows for a unifying and perspicuous rephrasing of
many results in Conway’s theory of terminating games and winning strategies. For
instance, the fact that a game has a winning strategy for the second player amounts
to checking whether it is equivalent to the empty game. In the case of hypergames
and non-losing strategies, (pre)congruences suggest the correct generalizations of
the results for games. Congruences in games arise in many conceptually indepen-
dent ways, and, as often happens in semantics, the gist of many results amounts
to showing the coincidence of two congruences defined independently.

We have various notions of equivalences, and hence potential congruences with
respect to some given game operations:

• The final equivalence induced by the very notion of hypergame, which
abstracts superficial features of positions.

• Contextual equivalences obtained by observing the outcome of a game,
i.e. which player has a winning strategy, when the game is plugged in
particular classes of contexts, in the style of [HL09]. This definition yields
immediately a congruence, which, however, is rather difficult to establish
since one is required to consider all possible contexts. Alternate definitions
which use only restricted classes of basic contexts are therefore rather
valuable.

• Categorical equivalences defined by the existence of suitable strategies,
viewed as morphisms, in the style of Joyal’s traced monoidal closed cate-
gory, [Joy77]. This definition allows us to establish equivalence by looking
only at the behaviour of a single game.

• Order equivalences defined through an inductively defined order relation-
ship, in the style of Conway’s surreal numbers.

• Denotational semantical equivalences, obtained by interpreting games in
a subclass of canonical representatives, in the style of Grundy numbers
for impartial games, [Gru39, Spra35]. As pointed out in [HL09], in se-
mantical terms, one can say that Grundy numbers provide a fully abstract
denotational semantics to impartial games.

All the above equivalences do coincide on Conway games, as shown in [HL09],
but the situation is much more rich and intriguing in the case of hypergames, e.g.
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the natural relation on hypergames extending Conway’s order is not an order on
hypergames.

In the present work, first we introduce and study contextual equivalences on
hypergames, obtained by varying the class of contexts and the players for which
we observe the existence of a winning strategy. The significance of the resulting
equivalence lies in the fact that it captures the extension of Grundy semantics to
impartial hypergames. Then we study categorical partial orders/equivalences on
hypergames. Since the immediate generalization of Joyal’s definition to non-losing
strategies does not yield a category, we introduce somewhat stronger categorical
equivalences based on the new notions of fair (non-losing) strategy and fair pair
of (non-losing) strategies. Both fair strategies and fair pairs give rise to symmet-
ric monoidal categories, and they generalize the category of Conway games, in
the sense that this latter is a full subcategory of the above categories. To our
knowledge, fair strategies and fair pairs provide the first notions of categories gen-
eralizing Joyal’s category in the above sense. Interestingly, the categorical equiv-
alence induced on hypergames by fair pairs captures the equivalence introduced
in [BCG82], Chapter 11, on loopy games. Finally, we compare the various notions
of congruences which we introduce, providing a hierarchy of congruences.

Comparison with Related Work. The notion of “membership game” introduced
in [BM96] corresponds to the notion of impartial hypergame, where all infinite
plays are deemed winning for player II. However, no algebraic operations on games
are considered in this setting and no attempt is made to show that indeed all
infinite combinatorial games can be modeled by suitably generalizing the notion
of membership game.

Equivalences on possibly non-terminating games have been studied in the liter-
ature in the context of Logics, e.g. in [Pau00,Ben02], and more recently in [KV09].
Contrary to our approach, such games are defined as graphs of positions, and struc-
tural equivalences on graphs, such as trace equivalences or various bisimilarities
are considered. Results of soundness of these structural equivalences with respect
to the existence of winning strategies are then proved. Differently, defining games
as the elements of a final coalgebra, we directly work up-to bisimilarity of game
graphs, and we study coarser notions of equivalences on top of bisimilarity. A
notion of equivalence in this spirit, in the context of games for Logics, is the one
induced by the preorder defined in [San02]. Here a class of games is considered,
having a payoff function with values in a partially order set, and a partial order
on games is introduced, whereby two games x, y are such that x ≤ y if there is
a winning strategy for a player, called mediator, in a suitable compound game
〈x, y〉. There are some analogies between the definition of such a partial order
and the categorical orders introduced in the present paper, but the structure of
games being different in particular in the way the two players move on the game,
the construction carried out in [San02], apparently, does not apply to hypergames.
Namely, contrary to games arising in Logics, where each position is labeled by
exactly one player, i.e. the player whose turn is to move, on Conway games and
hypergames, from any position, there can be moves for both players, L and R. This
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generality is necessary for analyzing many combinatorial games. Complex games,
such as multiple-heap Nim and end-games in Go can be conveniently viewed as
the disjoint sum of single-heap Nim games or more elementary games in Go, re-
spectively. In this kind of sum, at each step, the next player selects any of the
component games and makes any legal move in that component, the other com-
ponents remaining unchanged. The other player can either choose to move in the
same component or in a different one. In this way, the alternation of L and R in
each single component fails. The extra generality of having moves for both players
at any position is essential for analyzing complex combinatorial games.

Our categories of hypergames and fair strategies/pairs provide applications of
non-terminating games to the semantics of programming languages, alternative
to e.g. [Mel09, MTT09], where a category of non-wellfounded games and partial
strategies is considered, which subsumes Joyal’s category as a subcategory, but
not as a full subcategory. Moreover, in our setting the existence of a morphism
captures a non-trivial observational equivalence, while in [Mel09, MTT09] this
does not appear to have any direct interpretation in terms of winning/non-losing
conditions. Finally, in [Mel09, MTT09], and also in [HS02], games are viewed as
graphs, and they are not taken up-to bisimilarity.

Summary. In Section 2, we recall the definitions of hypergames and non-losing
strategies together with some fundamental results, and basic operations on hyper-
games. In Section 3, we introduce the notion of contextual equivalence, and we
study its properties and some efficient characterization. In Section 4, we recall the
construction of Joyal’s category, and we extend this construction in two ways, us-
ing non-losing fair strategies or fair pairs. Then we compare the various notions of
categorical and contextual equivalences that we have obtained, and we show that
fair pairs capture the equivalence defined on loopy games in [BCG82]. In Section 5,
a number of open problems and directions for future work are outlined, including
possible applications in Computer Science and alternative notions of sum, all of
which admit coalgebraic characterizations, and corresponding contextual equiva-
lences. In the Appendix we collect some basic categorical definitions.

Acknowledgements. We would like to thank the anonymous referees for various
useful comments, which helped in improving the paper.

2. Hypergames and non-losing Strategies

In this section, we recall the theory of possibly non-terminating games, hy-
pergames, and non-losing strategies developed in [HL09]. Such games are combi-
natorial games, where plays can be possibly unlimited in length. These extend
the class originally considered by Conway [Con01], where only games with finite
plays are considered, together with winning strategies. On hypergames the notion
of winning strategy is replaced by that of non-losing strategy, since we take non
terminating plays to be draws.

Combinatorial games are 2-player games, the two players are called Left (L)
and Right (R). Such games have positions, and since we are interested only in
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the abstract structure of games, we regard any position x as being completely
determined by its Left and Right options. Potentially, both players can move from
any position. We shall use the notation x = (XL, XR), where XL, XR denote
the sets of Left and Right positions, respectively. Games are identified with their
initial positions, and they can be represented as the tree of all positions generating
from the initial one. L and R move in turn, the player who starts the game is called
player first, denoted by I, while the one playing second is denoted by II. At the
beginning of a game, it is decided whether L or R plays I or II, and from that
moment on the players alternate. A game can either terminate when one of the
two players does not have any option (the latter being the loser) or the game goes
on forever (this being a draw), in the case of infinite games.

Possibly non-terminating combinatorial games can be naturally defined as a
final coalgebra on non-wellfounded sets. Non-wellfounded sets (hypersets) are the
sets of a universe satisfying the Antifoundation Axiom, see [FH83,Acz88]. We work
in the category Class∗ of classes of non-wellfounded sets and functional classes,
that is proper classes of ordered pairs satisfying the functional condition, (i.e. the
second projection is uniquely determined by the first projection)1.

Definition 2.1 (Hypergames). The set of hypergames H is the carrier of the
final coalgebra (H, id) of the functor F : Class∗ → Class∗, defined by

F (X) = P(X)× P(X),

where P(X) is the powerset constructor (with usual definition on morphisms).
Games in H will be denoted by small letters, e.g. x, with x = (XL, XR), and
xL, xR will denote generic elements of XL, XR.
We denote by Posx the set of positions hereditarily reachable from x.

Hypergames can be conveniently represented as possibly circular graphs, where
nodes represent positions and edges represent L, R options. E.g. the games a =
({b}, {0}) and b = ({0}, {a}), where 0 = (∅, ∅) denotes the empty game, and
c = ({c}, {c}), are represented by the graphs in Fig. 1. Games like c, where L
and R have the same sets of moves at any position, are represented by unlabeled
graphs.

By defining hypergames as a final coalgebra, from general results on the theory
of coalgebras (see e.g. [JR97]), we immediately get a Coinduction Principle for
reasoning on them:

Coinduction Principle. An F -bisimulation on the coalgebra (H, id) ( hyperbi-
simulation) is a symmetric relation R on games such that, for any x = (XL, XR),
y = (Y L, Y R),

1Alternatively to classes of sets, we could consider an inaccessible cardinal κ, and the category
whose objects are the sets with hereditary cardinal less than κ, and whose morphisms are the

functions with hereditarily cardinal less than κ. We recall that the hereditary cardinal of a set
is the cardinality of its transitive closure, namely the cardinality of the downward membership
tree which has the given set as its root.
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Figure 1.

xRy =⇒ (∀xL ∈ XL.∃yL ∈ Y L.xLRyL) & (∀xR ∈ XR.∃yR ∈ Y R.xRRyR) .
The following coinduction principle holds:

R hyperbisimulation xRy
x = y

All important notions and constructions on games are invariant with respect
to hyperbisimilarity. Moreover, the coalgebraic representation of games naturally
induces a minimal representative for each bisimilarity equivalence class.

2.1. Non-losing strategies.

Let us consider the games a and b of Fig. 1. If L plays as I on b, then he
moves to 0 and he wins since R has no further move. If R plays as I on b, then he
moves to a, then L moves to b and so on, thus an infinite play is generated. This
is a draw. Hence L has a non-losing strategy on b (independently of whether he
plays I or II). Symmetrically, R has a non-losing strategy on a. Moreover, player
I (independently of whether he plays L or R) has a non-losing strategy both on a
and on b.

Now let us consider the game c of Fig. 1. On this game, both players, L,R, have
a non-losing strategy; moreover, also I and II (independently of whether they play
L or R) have non-losing strategies. Namely there is only the non-terminating play
consisting of infinite c’s.

Strategies over a game can be formalized as partial functions from finite plays
to positions. Plays are alternating sequences of positions on the game, starting
from the initial position. Non-losing strategies for a given player tell which is the
next move of this player, for any play ending with a move of the opponent player.

Here we recall the formal definitions.

Definition 2.2 (Plays).
(i) A play on a game x is a (possibly empty) finite or infinite sequence of positions

π = xK1
1 xK2

2 . . . such that

• ∀i. Ki ∈ {L,R};
• x = x0 and ∀i ≥ 0 (xKi

i = (XL
i , X

R
i ) ∧ x

Ki+1

i+1 ∈ XKi
i ), where Ki ={

L if Ki = R

R if Ki = L
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We denote by Playx the set plays on x, by FPlayx the set of finite plays on x, and
by ε the empty play.
(ii) A play π is winning for player L (R) if and only if it is finite and it ends with
a position y = (Y L, Y R) where R (L) is next to move but Y R = ∅ (Y L = ∅). We

denote by WPlayLx (WPlayRx ) the set of plays on x winning for L (R).
(iii) A play π is a draw if and only if it is infinite. We denote by DPlayx the set
of draw plays.
(iv) A play π is non-losing for player L (R) if and only if it is winning for L

(R) or it is a draw, i.e. we define NPlayLx = WPlayLx ∪ DPlayx (NPlayRx =

WPlayRx ∪DPlayx).

In what follows, we denote by

• FPlayLI
x the set of finite plays on which L acts as player I, and ending with

a position where L is next to move, i.e. FPlayLI
x = {ε} ∪ {xK1

1 . . . xKn
n ∈

FPlayx | K1 = L ∧ Kn = R, n > 1}
• FPlayLII

x the set of finite plays on which L acts as player II, and ending

with a position where L is next to move, i.e. FPlayLII
x = {xK1

1 . . . xKn
n ∈

FPlayx | K1 = R ∧ Kn = R, n ≥ 1}.
• Similarly we define FPlayRI

x , FPlayRII
x .

We define:

Definition 2.3 (Strategies). Let x be a game.
(i) A strategy f for LI ( i.e. L acting as player I) is a partial function f :

FPlayLI
x → Posx such that, for any π ∈ FPlayLI

x ,

• f(π) = x′ =⇒ πx′ ∈ FPlayx
• ∃x′. πx′ ∈ FPlayx =⇒ π ∈ dom(f).

Similarly, one can define strategies for players LII, RI, RII.
(ii) Moreover, we define:

• a strategy for player L is a pair of strategies for LI and LII, fLI ] fLII ;
• a strategy for player R is a pair of strategies for RI and RII, fRI ] fRII ;
• a strategy for player I is a pair of strategies for LI and RI, fLI ] fRI ;
• a strategy for player II is a pair of strategies for LII and RII, fLII ] fRII .

Strategies, as defined above, provide answers (if any) of the given player on all
plays ending with a position where the player is next to move. Actually, we are
interested only in the behavior of a strategy on those plays which arise when it
interacts with (counter)strategies for the opponent player. Formally, we define:

Definition 2.4 (Product of Strategies). Let x be a game, and P a player in
{LI,LII,RI,RII}.
(i) Let π be a play on x, and f a strategy for P on x. We say that π is coherent
with f if, for any proper prefix π′ of π ending with a position where player P is
next to move,

f(π′) = x′ =⇒ π′x′ is a prefix of π .
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(ii) Given a strategy f for P on x, and a counterstrategy f ′, i.e. a strategy for
the opponent player, we define the product of f and f ′, f ∗ f ′, as the unique play
coherent with both f and f ′.

As a consequence of the above definitions we have:

Lemma 2.1. The plays coherent with a strategy f are exactly those arising from
the product of f with its counterstrategies.

Now we are ready to define non-losing/winning strategies. Intuitively, a strategy
is non-losing/winning for a player, if it generates non-losing/winning plays against
any possible counterstrategy.

Definition 2.5 (Non-losing/winning Strategies). Let x be a game, and P a player
in {LI,LII,RI,RII}.
(i) A strategy f on x is non-losing for P if, for any strategy f ′ on x for the

opponent player, f ∗ f ′ ∈ NPlayPx .
(ii) A strategy f on x is winning for P if, for any strategy f ′ on x for the opponent

player, f ∗ f ′ ∈WPlayPx .
(iii) A strategy fLI ] fLII for player L is non-losing/winning if fLI and fLII are
non-losing/winning strategies for LI and LII, respectively. Similarly for players
R,I,II.

Notice that on Conway games, where infinite plays do not arise, the notion of
non-losing strategy coincides with that of winning strategy.

Intuitively, non-losing strategies are positional, since both the draw condition
on infinite plays and the winning condition on finite plays, “no more moves for the
next player in the current position”, do not depend on the “history”, i.e. on the
whole sequence of positions, but only on the last position.2 Namely, one can prove
that, for any non-losing/winning strategy on a game x, there exists a positional
non-losing/winning strategy on x (see [HL09] for more details).

The following theorem generalizes Conway’s Determinacy Theorem for finite
games, on which there exists a winning strategy for exactly one player, L,R,I,II.

Theorem 2.1 (Determinacy, [HL09]).
(i) Any game has a non-losing strategy at least for one of the players L,R,I,II.
(ii) Moreover, either there exists a winning strategy for exactly one of the players
L,R,I,II, and there are no non-losing strategies for the other players; or at least
two of L,R,I,II have a non-losing strategy. In this latter case either 1 or 2 holds:

(1) either L or R have a non-losing strategy and either I or II have a non-
losing strategy;

(2) all players L,R,I,II have a non-losing strategy.

2The notion of positional strategy for hypergames is similar to that of positional strategy for
e.g. parity games, on which an analogous result holds, see [GLLS07] for the case of three-valued

parity games. However, this notion of positional strategy is different from that of history-free
strategy used in Game Semantics, where positions are not primitive, and games are defined via
sets of moves.
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Remark. Notice that the Determinacy Theorem does not hold in general for games
with more than 2 players, even in the finite case. A counterexample to determinacy
is given e.g. by the 3-player Nim game with 2 heaps, each one having 3 elements.
One can easily show that no player has a winning strategy on it. Of course we
take the reasonable definition that a player who can move when his turn comes
cannot be a loser.

2.2. Basic Game Operations

We recall the definitions of three basic game operations: grouping, (disjunctive)
sum and negation. In the next sections, we will study equivalences which are
congruences with respect to such operations.

Grouping. This is the game constructor built-in in the definition of games.

Definition 2.6 (Grouping). Let XL and XR be sets of hypergames. Then we can
build the hypergame x = (XL, XR).

Sums. There are various ways in which we can play several different games at once.
Each one induces a particular sum game operation. Many different sums have
been introduced in [Con01]. We shall mainly focus on the one which, according
to Conway, has been his prime motivation for introducing his theory, namely the
disjunctive sum. In this sum, at each step, the next player (L or R) selects any
of the component games and makes any legal move in that component, the other
components remaining unchanged. The other player can either choose to move in
the same component or in a different one. Notice that, in this way, the alternation
of players L and R in each component fails. The importance of this operation is
that it often allows for a natural decomposition of complex games. This is for
instance the way a multiple-heap Nim game can be decomposed into the sum of
single-heap Nim games, or the way end-games are played in Go.

The generalization to hypergames of the disjunctive sum has been given in
[HL09]:

Definition 2.7 (Disjunctive Sum). The disjunctive sum of two hypergames is
given by the the final morphism + : (H×H, α+) −→ (H, id), where the coalgebra
morphism α+ : H×H −→ F (H×H) is defined by (see Fig. 2):
α+(x, y) = ({(xL, y) | xL ∈ XL} ∪ {(x, yL) | yL ∈ Y L}, {(xR, y) | xR ∈ XR}∪

{(x, yR) | yR ∈ Y R}) .
That is: x+ y = ({xL + y | xL ∈ XL} ∪ {x+ yL | yL ∈ Y L},

{xR + y | xR ∈ XR} ∪ {x+ yR | yR ∈ Y R}) .

In the following, we will simply refer to disjunctive sum as sum.

Negation. The negation is a unary game operation, which allows us to build a new
game, where the roles of L and R are exchanged:

Definition 2.8 (Negation). The negation of a hypergame is given by the final
morphism − : (H, α−) −→ (H, id), where the coalgebra morphism α− : H −→
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H×H + //

α+

��

H

id

��

H − //

α−

��

H

id

��
F (H×H)

F (+)
// F (H) F (H)

F (−)
// F (H)

Figure 2. Coalgebraic definitions of sum and negation.

F (H) is defined by (see Fig. 2):
α−(x) = ({xR | xR ∈ XR}, {xL | xL ∈ XL}) .
That is: −x = ({−xR | xR ∈ XR}, {−xL | xL ∈ XL}) .

In particular, if x has a non-losing strategy for LI (LII), then −x has a non-
losing strategy for RI (RII), and symmetrically. Taking seriously players L and R
and not fixing a priori L or R to play first, makes the definition of negation very
natural.

Notation. In the following, x+ (−y) will be simply denoted by x− y.

For the study of properties of sum and negation we refer to [HL09]. In the
following, we study equivalences on games which are congruences with respect to
the above basic game operations.

3. Contextual Equivalence

In this section, we introduce a notion of contextual equivalence on hypergames
arising from checking the existence of non-losing strategies in contexts built from
the basic game operations introduced in Section 2.2. Then we study a broad spec-
trum of alternative characterizations of such contextual equivalence, by varying
the class of contexts and the players for which we observe the existence of a strat-
egy. A more efficient and practical characterization is also provided, based on the
distinction between “well-behaved” games, namely those whose negation is their
categorical dual, and those for which this is not the case. This characterization
generalizes the one introduced in [HL09] for impartial hypergames.

Definition 3.1 (Equideterminacy). Let x, y be hypergames. We say that x and y
are equideterminate (have the same outcome), denoted by x m y, whenever x has a
L (R,I,II) non-losing strategy if and only if y has a L (R,I,II) non-losing strategy.

We consider the contextual equivalence where contexts are induced by the basic
game operations, i.e. grouping, disjunctive sum, and negation:

Definition 3.2 (Contextual Equivalence).
(i) Let us consider the following class of contexts on hypergames:
C[ ] ::= [ ] | ({C[ ]} ∪ {zi}i∈I , {zj}j∈J) | ({zj}j∈J , {C[ ]} ∪ {zi}i∈I) | C[ ] + x |

x+C[ ] | −C[ ]
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for I, J possibly infinite sets of indexes, zi, zj, x hypergames.
(ii) Let ≈ be the contextual equivalence on games defined by:

x ≈ y ⇐⇒ ∀C[ ]. C[x] m C[y] .

Notice that, in the above definition, contexts are taken to be 1-holed (linear).
Multi-holed contexts could be equivalently considered, the induced notion of equiv-
alence being the same. This can be easily proved using transitivity of ≈.

The contextual equivalence of Definition 3.2 can be proved to be the greatest
equivalence refining equideterminacy, which is a congruence with respect to basic
game operations; on impartial hypergames, it coincides with the Grundy semantics
(see [HL09] for more details).

Proposition 3.1. The contextual equivalence ≈ is the greatest congruence with
respect to game operations, which refines equideterminacy.

Proof. By definition, ≈ refines equideterminacy, i.e. x ≈ y ⇒ x m y, and ≈ is a
congruence, i.e. x ≈ y ⇒ ∀C[ ]. C[x] ≈ C[y]. Now assume that ' is a congruence
which refines equideterminacy. If x ' y, then ∀C[ ]. C[x] ' C[y], since ' is a
congruence; moreover, since ' refines equideterminacy, we have ∀C[ ]. C[x] m C[y],
hence x ≈ y. �

In the following, we investigate more efficient characterizations of the contextual
equivalence.

3.1. Simplifying the class of contexts

The class of contexts considered in Definition 3.2 can be substantially simplified,
namely we show that additive contexts of the shape D[ ] = [ ] + z, for z any
hypergame, are sufficient.

First, we introduce the following notations: for any player P ∈ {LI, LII,RI,RII}
and hypergames x, y,

• let x ⇓P denote the fact that P has a non-losing strategy on x;
• let x mP y denote the fact that P has a non-losing strategy on x if and

only if P has a non-losing strategy on y.

Proposition 3.2.
x ≈ y ⇐⇒ ∀D[ ]. D[x] m D[y] ,

where D[ ] ranges over contexts of the shape [ ] + z, for z any hypergame.

Proof. Let ≈− be the contextual equivalence induced by the class of contexts
obtained by eliminating grouping and negation contexts from Definition 3.2(i). We
show that ≈=≈−; then the thesis will follow from commutativity and associativity
of sum. Let x ≈− y. We prove that for all contexts C[ ] of Definition 3.2(i), for
any player P ∈ {LI, LII,RI,RII}, C[x] mP C[y]. Assume by contradiction that
this is not the case, and let C[ ] be a minimal context such that C[x] 6mP C[y].
Assume e.g. C[x] ⇓LI but C[y] 6⇓LI , then we consider various cases, according to
the shape of C[ ].
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If C[ ] = ({C1[ ]} ∪ {zi}i∈I , {zj}j∈J), then, according to the non-losing strategy
for LI on C[x], L will move to zi or zj or C1[x]. If L moves to zi or zj , then trivially
LI has also a non-losing strategy on C[y]. If L moves to C1[x], then C1[x] ⇓LII ,
but C1[y] 6⇓LII , otherwise C[y] ⇓LI . But C1[ ] is a context smaller than C[ ].
Contradiction.
If C[ ] = C1[ ] + z, with C1[ ] not having a + operator at the top level, then,
according to the non-losing strategy for LI on C[x], L will move on z or C1[x]. If
L moves on z, then he can also perform the same move on C[y], and the game
goes on in the same way on C[x] and C[y] until L or R moves on C1[x]. Since
C1[ ] is not additive, by the shape of C1[ ], this move cannot be on x. Thus this
last move brings to C2[x] for some context C2[ ] smaller than C[ ], and C2[x] ⇓LH ,
while C2[y] 6⇓LH , for H ∈ {I, II}. Contradiction.
If C[ ] = −C1[ ], then C1[x] ⇓RI , while C1[x] 6⇓RI , with C1[ ] a context smaller
than C[ ]. Contradiction. �

A further simplification of the class of contexts is obtained by observing that
any z having non-losing strategies for all players (L,R,I,II) behaves as a “black
hole”, that is, for any x, x + z has non-losing strategies for all players. Hence
“black holes” do not discriminate more than other additive contexts, and they can
be avoided.

3.2. Simplifying the class of strategies.

One may wonder whether it is sufficient to check the outcome of the games
only with respect to the existence of strategies for some player. In this respect,
we define:

Definition 3.3. Let P ∈ {LI, LII,RI,RII}.
(i) The equivalence ≈DP is defined by

x ≈ y ⇐⇒ ∀D[ ]. D[x] mP D[y] ,

where D[ ] ranges over contexts of the shape [ ] + z, for any hypergame z.
(ii) The equivalence ≈EP is defined by

x ≈ y ⇐⇒ ∀E[ ]. E[x] mP E[y] ,

where E[ ] ranges over contexts of the shape [ ]+z and −[ ]+z, for any hypergame
z.

One can prove that checking strategies for LII (or RII) is sufficient in E[ ]-
contexts.

Lemma 3.1.
(i) ≈ELI =≈ERI and ≈ELII =≈ERII .
(ii) ≈DLII ⊆≈DLI and ≈DRII ⊆≈DRI .
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Proof.
(i) We show ≈ELI =≈ERI . The other part being similar. Assume x ≈ELI y and
assume by contradiction E[x] ⇓RI and E[y] 6⇓RI for some context E[ ]. Then we
have −E[x] ⇓LI and −E[y] 6⇓LI , contradicting x ≈ELI y.
(ii) We show ≈DLII ⊆≈DLI , the other part being similar. Assume by contradiction
x ≈DLII y, x ⇓LI , but y 6⇓LI . Let us consider the following game:
Then x + z ⇓LII . Namely, if R opens in z, then L plays I in
x and he has a non-losing strategy; if R opens in x, then L
plays indefinitely in z. However, y + z 6⇓LII , since if R opens
in z, then L has no non-losing strategy in y.

z

L

��

R

��
L <<

�

Proposition 3.3.
≈ELII =≈ERII =≈ .

Proof. Let x ≈ELII y. By Lemma 3.1(i), x ≈ERII y. We are left to show that that
also x ≈ELI y and x ≈ERI y. From x ≈ELII y and x ≈ERII y, it follows in particular
that x ≈DLII y and x ≈DRII y. Hence, by Lemma 3.1(ii), x ≈DLI y and x ≈DRI y.
Now assume by contradiction x 6≈ERI y, i.e. there exists a context −[ ] + z such
that e.g. −x + z ⇓RI while −y + z 6⇓RI . But then x − z ⇓LI while y − z 6⇓LI ,
contradicting x ≈DLI y. Similarly if x 6≈ELI y. �

Of course, on impartial hypergames, where L and R have the same moves, and
hence only player I and II can be considered, the negation context is not needed,
and we can restrict ourselves to check strategies for player II just in D[ ]-contexts.
However, on partisan hypergames, we cannot restrict ourselves to consider strate-
gies for LII (or RII) in D[ ]-contexts (see Lemma 3.2 below for some counterex-
amples).

Moreover, notice that the situation is not symmetric between player I and II,
namely if only non-losing strategies for LI (or RI) in the setting of partisan hyper-
games are considered (or for player I in the setting of impartial hypergames), in
order to recover ≈, it is necessary to consider the whole class of original contexts
C[ ] (sum and grouping contexts, in the impartial case). See Lemma 3.2 below for
some counterexamples.

Lemma 3.2.
(i) ≈DLI 6⊆≈DLII , ≈DLI 6⊆≈DRI , ≈DLI 6⊆≈DRII .
(ii) ≈DLII 6⊆≈DRI , ≈DLII 6⊆≈DRII .
(iii) The symmetric of the two items above, obtained by exchanging L with R.

Proof.
(i) ≈DLI 6⊆≈DLII ,≈DRI . Namely, let us consider the games x1 and y1 in Fig. 3. Then,
for all z, x1 + z ⇓LI and y1 + z ⇓LI ; however, x1 ⇓LII , while y1 6⇓LII , and x1 6⇓RI ,
while y1 ⇓RI .
≈DLI 6⊆≈DRII . Namely, let us consider the games x2 and y2 in Fig. 3. Then, for all
z, x2 + z ⇓LI and y2 + z ⇓LI ; however, x2 ⇓RII , while y2 6⇓RII .
(ii) ≈DLII 6⊆≈DRI . Namely, let us consider the games x1 and x3 in Fig. 3. Then, for
all z, x1 + z ⇓LII and x3 + z ⇓LII ; however, x1 6⇓RI , while x3 ⇓RI .
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Figure 3.

≈DLII 6⊆≈DRII . Namely, let us consider the games x2 and y2 in Fig. 3. Then, for all
z, x2 + z ⇓LII and y2 + z ⇓LII ; however, x2 ⇓RII , while y2 6⇓RII . �

3.3. An alternative efficient characterization

The contextual equivalence admits an alternative characterization, based on
the distinction between hypergames whose negation is a categorical dual, namely
those x such that x − x m 0, or equivalently x − x has a winning strategy for
player II, and hypergames such that x − x 6m 0. The first class strictly includes
all Conway games. The hypergames a, b, c of Figure 1 are examples of games in
the second class. But there are many hypergames included in the first class, e.g.
w = ({w1}, {w1}), where w1 = ({w1, 0}, {w1, 0}).

We will show that two hypergames in the first class are contextually equivalent
if and only if x− y m 0. This characterization is quite efficient, since we have only
to check a single game, i.e. x − y. Moreover, it generalizes the characterization
of the contextual equivalence on Conway games as the equivalence induced by the
partial order on surreal numbers, and the categorical one by Joyal. The games for
which x−x 6m 0 are not well-behaved, since in order to check whether two of them
are contextually equivalent, we have to consider, in general, their behavior in all
additive contexts (apart from black holes). However, in Section 4, we will provide
categorical equivalences for efficiently dealing with all hypergames.

Definition 3.4. For any hypergame x, we define x ⇓ if and only if x− x m 0.

Lemma 3.3. If x ≈ y and x ⇓, then y ⇓ and x− y m 0.

Proof. From x ≈ y it follows that x − x ≈ y − x, hence, since x − x m 0, then
y − x m 0. Now, from x ≈ y it follows that x − y ≈ y − y, hence y − x ≈ y − y.
Therefore, since y − x m 0, then also y − y m 0. �

Lemma 3.4. If x m 0 ( i.e. x is a “zero game”), then ∀z. x+ z m z.
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Proof. From x m 0, by definition of m, it follows that x has a winning strategy for
II. We have to prove that x+ z m z for any z. Assume z has a non-losing strategy
for e.g. L. Then one can easily show that L has a non-losing strategy on x + z
as well, whereby L moves in z according to the above non-losing strategy, and
responds in x to any move of R following the winning strategy for II which exists
on x by hypothesis. Vice versa assume by contradiction that L has a non-losing
strategy on x + z but no non-losing strategy on z. Then, using the Determinacy
theorem, one can easily show that RI or RII has a winning strategy on z. But
then RI or RII has a winning strategy on x + z as well, whereby R moves on z
according to the winning strategy and plays as II on x according to the winning
strategy which exists by hypothesis. But this contradicts the fact that L has a
non-losing strategy on x+ z. �

Finally, if we denote by C the class of “black holes” hypergames, we have:

Theorem 3.1. x ≈ y if and only if
(x ⇓ & y ⇓ & x− y m 0) ∨ (x 6⇓ & y 6⇓ & ∀z ∈ H \ C. x+ z m y + z) .

Proof. (⇒) By Lemma 3.3.
(⇐) Assume x ⇓, y ⇓, x − y m 0. Then also y − x m 0. We show that, for any z,
x+z m y+z. Namely, by Lemma 3.4, since y−x m 0, for any z, (y−x)+(x+z) m
x+z. Moreover, since x−x m 0, then again by Lemma 3.4 (x−x)+(y+z) m y+z.
Hence, using transitivity of m, we get x+ z m y+ z. If x 6⇓ and y 6⇓, then the thesis
follows from the observation that black holes do not discriminate more. �

The characterization given by the above theorem generalizes the one for impar-
tial hypergames provided in [HL09]. One may wonder whether the class of contexts
on which to test non well-behaved hypergames can be further reduced, e.g. by
considering only well-founded z’s, as is the case for impartial hypergames, [HL09].
The answer is negative. Namely, let us consider the games uL = ({uL}, 0), uR =
(0, {uR}), and the games unR, for all n ≥ 1, where u1R = (0, {0}), un+1

R = (0, {unR}).
Then let x = ({uL}, {uR}) and y = ({uL}, {0, u1R, u2R, . . .}); one can easily check
that, for any well-behaved z, x+ z m y + z, while x+ u ⇓RI and y + u 6⇓RI .

4. Categorical Characterizations of Equivalences

We study generalizations to hypergames of Joyal’s category of Conway games
and winning strategies. After having observed that the natural extension of Joyal’s
category to hypergames fails to give a category when all non-losing strategies are
considered, we introduce two new symmetric monoidal categories of hypergames:
the category of hypergames and fair strategies and that of hypergames and fair
pairs of strategies. Quite interestingly, the equivalence induced by this latter cate-
gory turns out to capture the equivalence introduced in [BCG82], Chapter 11, on
loopy games, but it is strictly included in the contextual equivalence.
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4.1. Joyal’s Category.

Conway games and winning strategies admit a categorical representation via
Joyal’s category Y, [Joy77]:

objects : Conway games
morphisms : f : x→ y winning strategy for LII on y − x
identity : copy-cat strategy
composition : via the swivel chair strategy (trace operator)
sum : symmetric monoidal functor
negation : dual object

Theorem 4.1. [Joy77] Y is a compact closed category.

Some comments are in order.
Equivalence. The existence of a winning strategy for LII on y − x corresponds
to y & x, where & denotes the partial order on Conway games (see [HL09] for
more details on &). Hence the equivalence ∼ induced by & on Conway games x, y
corresponds to the existence of morphisms f : x→ y and g : y → x.
Identites: copy-cat strategies. For any game x, there is a copy-cat strategy for LII
on x− x, according to which player L “copies” at each step the move of player R
in the other component. This corresponds to reflexivity of &.
Composition: the swivel chair strategy. The closure under composition corresponds
to transitivity of & and it is guaranteed by the swivel chair strategy. Namely, given
strategies for LII, f on y − x and g on z − y, a strategy for LII on z − x always
exists, obtained by using the “swivel chair”, as follows. Assume R opens on z−x,
playing either in z or in −x, e.g. assume R opens in z. Then L plays according
to the strategy g on z − y: if the L move according to g is in z, then we take this
as the L answer in the strategy on z − x; if the L move according to f is in −y
(see Fig. 4), then, using the “swivel chair”, we can view this move as an R move
in y − x. Now L has a next move in y − x, according to g. If this latter move is
in −x, then we take this as the L answer in z − x; otherwise, if the L move is in
y, then we use our swivel chair, viewing this as a move of R in −y on z − y (see
Fig. 4). Hence, according to f , L will have a next move on z−y. If this latter is in
z, then we can take this as the L move in z− x, otherwise we use again the swivel
chair, and so on. Since both f and g are winning strategies, we are guaranteed
that, eventually, the L move according to f or g will be on z or −x. Once we have
the L answer, we go on in the same way, for any possible next R move.

Closure under composition corresponds to transitivity of Conway’s partial order
on games &.
Sum: symmetric monoidal functor. The functoriality of the sum bifunctor follows
from the fact that, from any pair of strategies for LII on x′−x and y′−y, one can
build a strategy for LII on x+ y− (x′+ y′). This corresponds to the fact that & is
a precongruence with respect to sum, i.e. x & x′ and y & y′ imply x+ y & x′+ y′.
Negation: dual object. Each object x has a dual, −x, whose unit {ηx : 0→ −x+x}x
and counit {εx : x− x→ 0}x are induced by the copy-cat strategy on x− x.
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Figure 4. Composition via the swivel chair strategy.

4.1.1. Extending Joyal’s category to infinite games: a first attempt.

The attempt of directly extending Joyal’s construction by building a category
of games and non-losing strategies fails. Namely, closure under composition fails:
applying the swivel chair strategy between the components y and −y, as in Fig. 4,
we are not guaranteed to end up in z − x. A simple counterexample to closure
under composition is the following: let x = 0, y = c, z = d, where d = (∅, {0})
and c is the game in Figure 1. Then LII has a non-losing strategy both on d − c
and on c− 0, however LII has no non-losing strategy on d− 0. Failure of closure
under composition of non-losing strategies is related to the fact that the existence
of a non-losing strategy for LII on y − x corresponds to yDx, where D denotes
the extension to hypergames of Conway’s partial order introduced in [HL09]. As
shown in [HL09], D is not transitive. To overcome this shortcoming we intro-
duce categories whose morphisms are a restricted class of non-losing strategies,
i.e. fair strategies, or suitable pairs of non-losing strategies, i.e. fair pairs of
strategies. Both fair strategies and fair pairs are “well-behaved”, in the sense that
they are closed under composition, since infinite plays cannot arise in the swivel
chair procedure, when such strategies are considered. Both categories are sym-
metric monoidal and they subsume Joyal’s category of Conway games as a full
subcategory.
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4.2. A category of fair strategies

Definition 4.1 (Fair Strategies). Let x, y be hypergames, let P be any player in
{LI, LII,RI,RII}.
(i) A non-losing strategy f for P on y− x is fair if any infinite play coherent with
f induces infinite subplays both on x and y.
(ii) Let &f be the relation defined by: y &f x if and only if there is a fair strategy
for LII on y − x.
(iii) Let ∼f =&f ∩ (&f )−1.

Notice that any winning strategy is fair.

Lemma 4.1.
(i) &f is a partial order.
(ii) &f is a precongruence with respect to sum, i.e., for all hypergames x, y, z,

x &f y =⇒ x+ z &f y + z .

Proof. (i) Reflexivity follows from the fact that copy-cat strategies are fair. Tran-
sitivity follows from the fact that, if there are fair strategies on y − x and z − y,
then the swivel chair strategy cannot contain infinite plays, otherwise the strategy
on y − x or z − y would not be fair.
(ii) Assume that there is a fair strategy on y − x for LII. Then there is also a fair
strategy on y + z − (x+ z) for LII , who plays according to the copy-cat strategy
when R moves on z, and according to the fair strategy on y− x when R moves on
y − x. �

By Lemma 4.1(i) above, ∼f is an equivalence. Moreover:

Proposition 4.1. The equivalence ∼f refines equideterminacy and it is a congru-
ence with respect to basic game operations.

Proof. First, we show that, for any context C[ ], x ∼f y ⇒ C[x] ∼f C[y]. The
proof proceeds by induction on C[ ]: for sum contexts the thesis follows from
Lemma 4.1(ii) above, for other contexts the thesis follows from the analysis of the
shape of contexts and from the definition of ∼f .
Now assume x ∼f y. We prove that x mP y for any P ∈ {LI, LII,RI,RII}.
Namely, assume e.g. x ⇓LI and y 6⇓LI (the other cases are dealt with similarly).
Then RI has a non-losing strategy on −x, and RII has a winning strategy on
y. Then R has a non-losing strategy on y − x, obtained by playing as I on −x,
according to the above non-losing strategy, and as II on y, according to the above
winning strategy. As a consequence, either LII has no non-losing strategy on
y − x because RI wins on −x, or we have an infinite subplay on −x but not on
y, and hence LII has no fair strategy on y − x. This contradicts the assumption
x ∼f y. �

As a consequence of Lemma 4.1, we have:
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Theorem 4.2. The category Yf whose objects are hypergames and whose mor-
phisms f : x → y are fair strategies for LII on y − x is symmetric monoidal with
+ as tensor product and the empty game 0 as unit.

The category Yf provides a generalization of Joyal’s category of games. Namely,
it is immediate to check that:

Theorem 4.3. The symmetric monoidal category Y of Conway games and win-
ning strategies is a full subcategory of the symmetric monoidal category Yf .

Notice that negation provides a natural isomorphism (x ' −(−x), for any x)
on the whole category Yf , but it does not give dual objects. The reason lies in
the fact that, for some non-wellfounded games x, there are no morphisms in Yf
between x − x and 0. E.g. for x = c, where c is the hypergame in Fig. 1, and
for all hypergames for which it is not the case that x− x m 0. When we consider
the subcategory of Conway games, then negation gives us dual objects. Namely,
on Conway games, x − x m 0 and the copy-cat strategy induces natural winning
strategies for LII on (x− x)→ 0 and 0→ (x− x).

4.3. A Category of Fair Pairs of Strategies

The notion of fair pair of strategies is obtained by “splitting” the definition of
fair strategy as follows:

Definition 4.2 (Fair Pairs of Strategies). Let x, y be hypergames, let P ∈ {LI, LII,
RI,RII}.
(i) A pair of non-losing strategies 〈f+, f−〉 for a player P on y − x is fair if the
following two conditions hold:

• for any infinite play π coherent with f+, if the subplay on y is infinite,
then the subplay on x is also infinite,

• for any infinite play π coherent with f−, if the subplay on x is infinite,
then the subplay on y is also infinite.

(ii) Let &p be the relation defined by y &p x if and only if there is a fair pair of
strategies for LII on y − x.
(iii) Let ∼p =&p ∩ (&p)−1.

Notice that any fair strategy f induces a fair pair of strategies 〈f, f〉. Hence
∼f ⊆∼p. The converse does not hold, see Section 4.4 below for a counterexample.

Lemma 4.2.
(i) &p is a partial order.
(ii) &p is a precongruence with respect to sum, i.e., for all hypergames x, y, z,

x &p y =⇒ x+ z &p y + z .

Proof. (i) Reflexivity follows from the fact that copy-cat strategies are fair, and
hence they induce a fair pair. Transitivity follows from the fact that, if there are
fair pairs on y − x and z − y, then the swivel chair strategy produces a fair pair
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on z − x.
(ii) Assume that there is a fair pair on y− x for LII. Then there is also a fair pair
on y + z − (x+ z) for LII, who plays according to the the copy-cat strategy when
R moves on z, and according to the far pair on y−x, when R moves on this latter
game. �

By Lemma 4.2(i) above, ∼p is an equivalence. Moreover:

Proposition 4.2. The equivalence ∼p refines equideterminacy, and it is a con-
gruence with respect to basic game operations.

Proof. First, we show that, for any context C[ ], x ∼p y ⇒ C[x] ∼p C[y]. The
proof proceeds by induction on C[ ]: for sum contexts the thesis follows from
Lemma 4.2(ii) above, for other contexts the thesis follows from the analysis of the
shape of contexts and from the definition of ∼p.
Now assume x ∼p y. We prove that x mP y for any P ∈ {LI, LII,RI,RII}.
Namely, assume e.g. x ⇓LI and y 6⇓LI (the other cases are dealt with similarly).
Then RI has a non-losing strategy on −x, and RII has a winning strategy on
y. Then R has a non-losing strategy on y − x obtained by playing as I on −x,
according to the above non-losing strategy, and as II on y, according to the above
winning strategy. As a consequence, either LII has no non-losing strategy on y−x
because RI wins on −x, or the subplay is infinite on −x, and hence LII has no fair
pair on y − x. This contradicts the assumption x ∼p y. �

As a consequence of Lemma 4.2 above, we have:

Theorem 4.4. The category Yp whose objects are hypergames and whose mor-
phisms f : x→ y are fair pairs for LII on y− x is symmetric monoidal with + as
tensor product and the empty game 0 as unit.

The category Yp generalizes Joyal’s category of games:

Theorem 4.5. The symmetric monoidal category Y of Conway games and win-
ning strategies is a full subcategory of the symmetric monoidal category Yp.

As in the case of Yf , also for Yp negation does not give dual objects. Namely,
for non-wellfounded games x, in general, there are no fair pairs of strategies for
LII between x− x and 0.

4.4. A Hierarchy of Congruences

The congruences which we have introduced so far give rise to a hierarchy of
equivalences. We have already observed that ∼f ⊆∼p, since any fair strategy gives
rise to a fair pair. Moreover, by Propositions 3.1, 4.1, 4.2, ∼f ,∼p⊆≈. However,
all these congruences are different. Summarizing, we have:

Proposition 4.3.

∼f (∼p(≈ .



22 TITLE WILL BE SET BY THE PUBLISHER

In order to prove the above proposition, we are left to show that ∼f 6=∼p and
∼p 6=≈. These inequalities already hold on impartial hypergames.

In order to show ∼f 6=∼p, we consider the impartial hypergames a1 and b1
defined by the following graphs. Edges in the game graphs below are not marked,
since L and R have the same moves.

a1

�� �� ��

b1

�� ��

��

<< a′1

�� ��

<<

��
0 0 bb 0

One can check that there is no fair strategy for (L)II on a1 + b1. Namely, if R
starts moving on a1 to a′1, then, for any subsequent move by L, R can force L to
an infinite unfair play. However, one can check, by case inspection, that there is a
fair pair for LII on a1 + b1.

In order to show ∼p 6=≈, we consider the impartial hypergames a2 and b2
defined by the following graphs.

a288

��

b2

�� ��
0 << 0

One can prove that a2 ≈ b2, e.g. showing that a2 and b2 have the same
Grundy value (the theory of Grundy values extended to hypergames can be found
in [HL09]). However, (L)II has no fair pair on a2 + b2, since (R)I can open in b2,
generating an infinite play on the b2 component, forcing the play on a2 to end.

In the following, we show that the equivalence ∼p coincides with the equivalence
of [BCG82] defined on loopy games.

4.4.1. Yp captures the equivalence on loopy games

Interestingly, the equivalence of fair pairs coincides with the equivalence defined
on loopy games in [BCG82], Chapter 11.

Loopy games are possibly non-terminating games on which each infinite play
can be either winning for L or for R or a draw. In our coalgebraic setting, loopy
games can be formalized as follows:

Definition 4.3 (Loopy Games). A loopy game x = 〈x, ν〉 is an hypergame x ∈ H
together with a payoff function ν such that, for any infinite possibly non-alternating
play π on x, ν(π) ∈ {L,R, d}.

The intended meaning of ν(π) = L (ν(π) = R) is that the play π is winning for
L (R), while ν(π) = d means that π is a draw.

Notice that, in the definition of loopy games, we require the payoff function
to be defined on all possibly non-alternating plays, even if the two players move
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alternatively on the game. This extra information on non-alternating plays is
needed to determine the payoff on the sum of loopy games, since an alternating
play on a sum game can induce non-alternating plays on the components. An
infinite play on a sum game is then defined as winning for a given player when the
infinite plays induced on the components are all winning for that player, otherwise
it is a draw.

Definition 4.4 (Sum of Loopy Games). Let x = 〈x, νx〉, y = 〈y, νy〉 be loopy
games. The loopy game sum of x and y is the game x+ y = 〈x+ y, νx+y〉, where

• x+ y is the sum of the hypergames x and y, and
• νx+y is defined as follows: for any infinite possibly non-alternating play
π on x + y, we denote by πx and πy the plays induced by π on x and y,
respectively, then

νx+y(π) =


L if (πx infinite ⇒ νx(πx) = L) and (πy infinite ⇒ νy(πy) = L)

R if (πx infinite ⇒ νx(πx) = R) and (πy infinite ⇒ νy(πy) = R)

d otherwise .

Notice that the subclass of loopy games whose infinite plays are all winning for
L or R is not closed under the sum. For example, draw plays arise in the sum
game c+ + c−, where c is the game in Figure 1 and c+, c− are the loopy games
obtained by fixing all infinite plays to be winning for L and R, respectively. In this
sense, draws are inevitable, when the sum of non-terminating games is considered.

The negation of a loopy game is naturally defined as follows:

Definition 4.5 (Negation of Loopy Games). Let x = 〈x, νx〉 be a loopy game.
The negation of x is the loopy game −x = 〈−x, ν−x〉, where −x is the negation of
the hypergame x, and ν−x is defined by

ν−x(π) =


L if νx(π) = R

R if νx(π) = L

d otherwise .

Clearly, hypergames are the subclass of loopy games, on which the payoff func-
tion on infinite plays always gives d.

A strategy on a loopy game x = 〈x, νx〉 is a strategy on the underlying hy-
pergame x, as defined in Definition 2.3. Non-losing/winning strategies on loopy
games are then defined on the basis of payoff functions:

Definition 4.6 (Non-losing/winning Strategies on Loopy Games). Let x = 〈x, ν〉
be a loopy game, and let P be a player in {KI,KII}, where K ∈ {L,R}.
(i) A non-losing strategy for P on x is a strategy f on x such that, for any strategy
f ′ on x for the opponent player, ν(f ∗ f ′) ∈ {K, d}.
(ii) A winning strategy for P on x is a strategy f on x such that, for any strategy
f ′ on x for the opponent player, ν(f ∗ f ′) = K.
(iii) A strategy fLI ] fLII for player L is non-losing/winning if fLI and fLII are
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non-losing/winning strategies for LI and LII, respectively. Similarly for players
R,I,II.

In [BCG82] a relation &l on loopy games is defined, in terms of fixed loopy
games, that is games on which each infinite play is “fixed” as winning for L or R,
i.e. ν(π) ∈ {L,R}.

Definition 4.7 ((In)equality on Loopy Games, [BCG82]).
(i) Let x∗ = 〈x, νx〉, y∗ = 〈y, νy〉 be fixed loopy games. We define

x∗ &f y
∗ if and only if LII has a non-losing strategy on x∗ − y∗ .

(ii) Let x = 〈x, νx〉, y = 〈y, νy〉 be loopy games, and let x+ = 〈x, νx+〉, y+ =
〈y, νy+〉, x− = 〈x, νx−〉, y− = 〈y, νy−〉 denote the fixed loopy games obtained from
x and y by considering all infinite plays which are draws to be winning for L or
R, respectively. We define

x &l y if and only if x+ &f y
+ ∧ x− &f y

− .

The interesting result is that the categorical relation &p determined by fair
pairs coincides with the loopy equivalence induced on hypergames, namely:

Lemma 4.3. Let x, y be hypergames, and let x = 〈x, νx〉, y = 〈y, νy〉 be the
corresponding loopy games, where νx(π) = νy(π) = d for all infinite possibly non-
alternating plays. Then

x &p y if and only if x &l y .

Proof. The thesis follows from the observation that having a fair pair for LII
〈f+, f−〉 on the hypergame x − y exactly corresponds to having a pair of non-
losing strategies for LII on the loopy games x+ − y+ and x− − y−. �

Therefore, we have:

Proposition 4.4. The equivalence induced by Yp on hypergames coincides with
the loopy game equivalence.

We leave it as a future work to suitably extend the above categorical construc-
tion to the whole class of loopy games.

5. Final Remarks and Directions for Future Work

Applications to the semantics of programming languages.

Games traditionally used in semantics of logics and programming languages
(see e.g. [AJ94]) differ from hypergames in some aspects. First of all, in the latter
positions are a primitive notion, while in Game Semantics the notion of move is
primitive and positions are defined as alternate sequences of moves. Another key
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difference is in the sum operation. Conway’s disjunctive sum does not necessarily
imply that projections in component games are correct plays, i.e. strictly alter-
nating. On the contrary, the sum on semantic games satisfies this condition. This
is in accordance with the fact that Opponent (R) is fixed as player I and Player
(L) as II, and legal positions are strictly alternating sequences of moves. A more
detailed comparison will appear in a future work.

Categories of Conway-like games, generalizing Joyal’s category (in a weak sense)
have been recently considered in the setting of Game Semantics, see e.g. [Mel09,
MTT09]. However, in these papers categories of non-wellfounded game graphs
together with partial strategies are considered, rather than total, i.e. winning or
non-losing. Such categories, being compact closed, are useful in the context of
semantics. However, from the point of view of the induced congruence, which is
the main focus of the present paper, these categories are meaningless, since all the
games are equated via the empty strategy.

On the other hand, it would be interesting to explore the use of our categories
of fair strategies or fair pairs for modeling programming languages. The challenge
is to define a trace operator, which apparently lacks on the categories Yf and Yp.

Applications to model checking.

This is a promising area of applications of hypergames and non-losing strategies.
In [GLLS07], a three-valued game for the model checking of the µ-calculus has
been introduced, together with a notion of non-losing strategy. Such model can be
transformed into an equivalent three-valued parity game. It would be interesting
to explore the possibility of using hypergames in model checking. This will possibly
utilize an encoding of parity games into a suitable extension of hypergames in a
world with atoms.

Contextual equivalences vs categorical equivalences.

The equivalences induced by the categories of fair strategies and fair pairs in-
troduced in this paper is strictly included in the contextual equivalence. The
question which arises naturally is whether there is a notion of category capturing
the contextual equivalence. On the other hand, we can ask what kind of contex-
tual equivalence is captured by the categories of fair strategies and pairs. In this
direction, one can explore contextual equivalences arising from different notions of
strategies. An interesting notion to investigate is that of non-terminating strategy,
according to which a player wins if he succeeds to force non-termination. Notice
that the hypergames a2 and b2 of Section 4.4 are different with respect to this
notion of strategy, since player I has a non-terminating strategy on b2, but not on
a2.

A different approach is that of enlarging the class of contexts in the contextual
equivalence, in order to tell apart the hypergames a2 and b2. A possible operation
is one of the conjunctive sums mentioned below.
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Other sum operations.

Disjunctive sum is central to the (hyper)game theory. But, as pointed out
in [Con01], there are other ways in which several games can be played at once, e.g.:
the selective sum, where at each step the current player selects some components
(at least one) and makes a move in each of them; the conjunctive sum, where at
each step the current player makes a move in each (non-ended) component.

The above sum operations can be considered in combination with two different
ending conditions. With the short ending condition, the game ends when any of
the components ends; with the long ending condition, the game ends when all the
components are ended.

All the four sums arising above are amenable to coalgebraic definitions. E.g.,
if for simplicity we work in the setting of impartial hypergames, the selective
sum with short ending condition is given by the final morphism ∨ induced by the
coalgebra morphism α∨ : J ×J −→ P(J ×J ), defined by α∨(x, y) = {(x′, y) | 0 6=
x′ ∈ x}∪{(x, y′) | 0 6= y′ ∈ y}∪{(x′, y′) | 0 6= x′ ∈ x & 0 6= y′ ∈ y}∪{(0, 0) | ∃x′ ∈
x.x′ = 0 ∨ ∃y′ ∈ y.y′ = 0}.

Notice that the two contextually equal games a2 and b2 of Section 4.4 can be
separated by the very simple context [ ] ∆({a′}, {a′}), where a′ = ({0}, {0}): the
first player has a non loosing strategy only when one of the two games fills the
context-hole.

It would be interesting to carry out a detailed study of the contextual equiv-
alences induced by classes of contexts involving the various notions of sum. One
can prove that the equivalences arising from selective sums are very coarse, namely
there are only three equivalence classes: win, lose, draw. The same equivalence
should arise from short and long conjunctions. Intuitively, a short conjunction
x1 ∧ . . . ∧ xn is won by the player who has the shortest winning strategy on a
given component, when the opponent tries to go on as far as possible. If neither
of the two players has a winning strategy on any of the components, then this is a
draw. Formally, this could be captured by a notion of remoteness of a hypergame,
which extends the notion of Steinhaus remoteness for games, [Con01]. Dually, long
conjunction could be dealt with using a notion of suspence, generalizing Steinhaus
suspense for games, [Con01]. Finally, one may ask what kind of equivalences arise
by mixing together the various sums. We have only partial results for the mo-
ment, even in the impartial case. The first is that the class of all possible contexts
induces a congruence which is strictly coarser then hyperbisimilarity. The second
result is that the combination of long and short ending conjunctive sum is not the
intersection of the two contextual equivalences induced by each of them separately.

Misère.

It would be interesting to explore the equivalences studied in the paper for the
misère version of games, i.e. when the winner is the player who does not perform
the last move.
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Appendix: categorical definitions

Definition 5.1 (Monoidal Category). A category C is monoidal if

• there is a bifunctor ⊗ : C × C → C (tensor product);
• there is a natural isomorphism α with components αA,B,C : (A⊗B)⊗C ∼=
A⊗ (B ⊗ C);

• there is an object I called the unit or identity;
• there are natural transformations λ and ρ with components λA : I⊗A ∼= A

and ρA : A⊗ I ∼= A, satisfying the following commutative diagrams:
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– unit coherence law

(A⊗ I)⊗B
αA,I,B //

ρA⊗idB $$

A⊗ (I ⊗B)

idA⊗λBzz
A⊗B

– associativity coherence law

((A⊗B)⊗ C)⊗D
αA⊗B,C,C //

αA,B,C⊗idD

��

(A⊗B)⊗ (C ⊗D)

αA,B,C⊗D

��

(A⊗ (B ⊗ C))⊗D
αA,B⊗C,D

��
A⊗ ((B ⊗ C)⊗D)

idA⊗αB,C,D // A⊗ (B ⊗ (C ⊗D))

Definition 5.2 (Symmetric Monoidal Category). A monoidal category C with
tensor product ⊗ is symmetric if there is a natural isomorphism σ with components
σA,B : A⊗B ∼= B ⊗A, satisfying the following commutative diagrams:

• unit coherence for σ

A⊗ I
σA,I //

ρA
$$

I ⊗A

λAzz
A

• associativity coherence for σ

(A⊗B)⊗ C
σA,B⊗idC //

αA,B,C

��

(B ⊗A)⊗ C
αB,A,C

��
A⊗ (B ⊗ C)

σA,B⊗C

��

B ⊗ (A⊗ C)

idB⊗σA,C

��
(B ⊗ C)⊗A

αB,C,A // B ⊗ (C ⊗A)

• inverse law

B ⊗A
σB,A

$$
A⊗B oo

idA⊗B

//

σA,B

::

A⊗B
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Definition 5.3 (Dual Object). Let (C,⊗, I, α, λ, ρ) be a symmetric monoidal cat-
egory. An object A∗ is the dual of A if there are two morphisms ηA : I → A∗ ⊗A
(unit) and εA : A⊗A∗ → I (counit), satisfying the equations:
λA ◦ (εA ⊗ idA) ◦ α−1A,A∗,A∗ ◦ (idA ⊗ ηA) ◦ ρ−1A = idA and

ρA∗ ◦ (idA∗ ⊗ εA) ◦ αA∗,A,A∗ ◦ (ηA ⊗ idA∗) ◦ λ−1A∗ = idA∗ .

Definition 5.4 (Compact Closed Category). A symmetric monoidal category
(C,⊗, I) is compact closed if every object A in C has a dual object.

Definition 5.5 (Full Subcategory). A subcategory D of C is full if, for each pair
of objects A,B of D, HomD(A,B) = HomC(A,B).
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