
Coalgebraic Description of

Generalized Binary Methods 1

Furio Honsell2

DIMI, Università di Udine, ITALY

Marina Lenisa3

DIMI, Università di Udine, ITALY

Rekha Redamalla4

DIMI, Università di Udine, ITALY, and
B.M. Birla Science Centre, Hyderabad, INDIA.

Abstract

We extend the Reichel-Jacobs coalgebraic account of specification and refinement of objects and
classes in Object Oriented Programming to (generalized) binary methods. These are methods that
take more than one parameter of a class type. Class types include sums and (possibly infinite)
products type constructors. We study and compare two solutions for modeling generalized binary
methods, which use purely covariant functors. In the first solution, which applies when we already
have a class implementation, we reduce the behaviour of a generalized binary method to that of a
bunch of unary methods. These are obtained by freezing the types of the extra class parameters to
constant types. The bisimulation behavioural equivalence induced on objects by this model amounts
to the greatest congruence w.r.t method application. Alternatively, we treat binary methods as
graphs instead of functions, thus turning contravariant occurrences in the functor into covariant
ones.

Keywords: OO-programming, Binary methods, Coalgebraic semantics.

1 Work partially supported by the UE Project IST-510996 TYPES.
2 Email: honsell@dimi.uniud.it
3 Email: lenisa@dimi.uniud.it
4 Email: redamall@dimi.uniud.it

Electronic Notes in Theoretical Computer Science 135 (2006) 73–84

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.09.022

mailto:honsell@dimi.uniud.it
mailto:lenisa@dimi.uniud.it
mailto:redamall@dimi.uniud.it
http://www.elsevier.com/locate/entcs

Introduction

In [10,7,8], a categorical semantics for objects and classes based on coalgebras

is given. The idea underpinning this approach is that coalgebras, duals of
algebras, allow to focus on the behaviour of objects while abstracting from
the concrete representation of the state of the objects.

In the coalgebraic approach of [10,7,8], a class is modelled as an F -coalgebra
(A, f : A → F (A)) for a suitable functor F . The carrier A represents the space
of attributes, or fields, and the coalgebra operation f represents the public

methods of the class, i.e. the methods which are accessible from outside the
class. Thus the objects of a class are modelled as the elements of the carrier.
Their behaviour under application of public methods, viewed as functions act-
ing on objects, is then captured by the coalgebra map f . Thus the coalgebraic
model induces exactly the behavioural equivalence on objects, whereby two
objects are equated if, for each public method, the application of the method
to the two objects, for any list of parameters, produces equivalent results. A
benefit of the coalgebraic model is a coinduction principle for establishing the
behavioural equivalence.

Following [7], we distinguish between class specifications and class imple-

mentations (or simply classes). A class specification is like an abstract class,
in which only the signatures of constructors and (public) methods are given,
without their actual code. Assertions enforce behavioural constraints on con-
structors and methods. Implementation of constructors and methods is given
in a class implementation. In the bialgebraic approach, a class specification
induces a pair of functors, determined by the signature of constructors and
methods, respectively. A class implementation is any bialgebra satisfying the
assertions. Here we will focus only on the coalgebraic part, which is the prob-
lematic one. For a complete bialgebraic treatment, see [6].

Binary methods, i.e. methods with more than one class argument, appar-
ently escape the coalgebraic approach. The extra class parameters produce
contravariant occurrences in the functor modelling methods, and hence cannot
be dealt with a straightforward application of the coalgebraic methodology.

We extend the Reichel-Jacobs coalgebraic description to generalized binary
methods, i.e. methods whose type parameters include sums and possibly
infinite products type constructors. Our focus of interest are equivalences on
objects which are “well-behaved”, in the sense that they induce a canonical
non-redundant model on the quotient of the given class. Therefore, such
equivalences must be congruences w.r.t. method application. In this paper we
show that canonical models can be built also for generalized binary methods
using purely covariant tools. We propose two solutions. Our first solution

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–8474

applies to the case where we have already a class implementation. It is based
on the observation that the behaviour of a generalized binary method can
be captured by a bunch of unary methods obtained by “freezing”, in turn,
the types of the class parameters to the states of the class implementation
given at the outset, i.e. by viewing them as constant types. Our second
solution is based on a set-theoretic understanding of functions, whereby binary
methods in a class specification are viewed as graphs instead of functions. Thus
contravariant function spaces in the functor are rendered as covariant sets of
relations.

We prove that the behavioural equivalence induced by the “freezing ap-

proach” amounts to the greatest congruence w.r.t method application on the
given class. As a by-product, we gain a (coalgebraic) coinduction principle for
reasoning about such greatest congruence.

As far as the graph model is concern, the behavioural equivalence is not a
congruence, in general. Remarkably, we show that a necessary and sufficient
condition for this to hold is that the graph and freezing equivalence coincide.
As a consequence, when this is the case, we obtain a spectrum of coinduction
principles for reasoning on the greatest congruence.

The interest of the graph approach goes beyond coalgebraic semantics,
since it suggests a new way for solving the well-known problem of typing
binary methods when subclasses are viewed as subtypes, e.g see [3].

In this paper, we work on a set-theoretic category, denoted by C. For basic
definitions and results on coalgebras we refer to [9].

In the literature, various authors have been considered the problem of
the coalgebraic description of binary methods, e.g see [12]. For an extensive
comparison with the literature, see [6].

1 Generalized Binary Methods and Behavioural Equiv-
alences

We call a method m : X × T1 × . . . × Tq → T0 generalized binary if Ti ranges
over the following grammar of types:

(T �) T ::= X | K | T × T | T + T | ΠKT,

where X ∈ TVar , is a variable for class types, and K is any constant type.
Notice that the product type ΠKT corresponds to the function space K → T .
That is, in a generalized binary method, we allow functional parameters, where
variable types can appear only in strictly positive positions. For simplicity,
in this paper we will consider only one class. There would be no additional

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–84 75

conceptual difficulty in dealing with the general case.

A preliminary step in discussing equivalences induced on objects by gen-
eralized binary methods consists in extending the behavioural equivalence on
objects of a class X to the whole structure of types in T over X. This is
achieved through the relational lifting of [5]. In the definition below, by abuse
of notation, we denote by X and T also their set-theoretic semantic counter-
parts.

Definition 1.1 [Relational Lifting] Let RX be a relation on X, let T ∈ T be
such that V ar(T) ⊆ {X}. We define the extension RT ⊆ T × T by induction
on T as follows:

• if T = K, then RT = IdK×K,

• if T = T1 × T2, then RT = {((a1, a2), (a
′

1, a
′

2)) | a1R
T1a′

1 ∧ a2R
T2a′

2},

• if T = T1+T2, then RT = {((1, a), (1, a′)) | aRT1a′} ∪ {((2, a), (2, a′)) | aRT2a′},

• if T = ΠKT1, then RT = {(f, f ′) ∈ ΠKT1 | ∀a ∈ K =⇒ faRT1f
′

a}.

Definition 1.2 [Congruence] Let ≈X be an equivalence on objects of a class
X and let m : X × T1 × . . . × Tq → T0 be a method in X, then ≈X is a
congruence w.r.t. m if x ≈X x′ and a1 ≈T1 a′

1 . . . aq ≈Tq a′

q ⇒ x.m(a) ≈T0

x′.m(a′), where ≈Ti denotes the extension of ≈X to the type Ti, according to
the definition above. (Notice the use of the “dot-notation” for method calls.)

2 Class Specifications and Class Implementations

Definition 2.1 A class specification S is a structure consisting of

• A finite set of method declarations

m : X × T1 × . . . × Tq → T0 ,

• A finite set of assertions, regulating the behaviour of the objects belonging
to the class.

The language for assertions is any first order language with constant sym-
bols and function symbols for denoting constructors, methods and (extensions
of) behavioural equivalences with all types. Typical assertions are equations,
e.g see [11] for more details.

In Table 1, on the lefthand part, we present an example of a class specifi-
cation, Register, which features binary method eq for comparing the content
of two registers.

A class (implementation) consists of attributes (fields), constructors and
methods. Attributes and methods of a class can be either private or public.

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–8476

class spec : Register class R
methods : attributes :

set : X × N → X val : int
get : X → N methods :
eq : X × X → B r.get = r.val

assertions : r.set(n) = r′

r.set(n).get = n where r′.val = n
r1.get = r2.get ⇔ r1.eq(r2) = if (r1.get = r2.get)

r1.eq(r2) = true then true
end class spec else false

end class

Table 1
Example of Class Specification and Class.

For simplicity, we assume all attributes to be private, and all methods to be
public. We do not use a specific programming language to define classes, since
we are working at a semantic level. Any programming language would do.
In this perspective, the code corresponding to a method declaration m : X ×∏q

j=1
Tj → T0 is given by set-theoretic function α : X×

∏q

j Tj → T0+Excp+1,
since method can possibly terminate with an exception or not terminate.

Definition 2.2 A class C implements a specification S if method declarations
correspond, and their implementations satisfy the assertions in S.

In Table 1, on the righthand part, we present the class R implementing
the class specification, Register.

3 Coalgebraic Description of Objects and Classes: unary
case

In this section, we illustrate the coalgebraic description of class specifications
and class implementations in the case of unary methods. Following [10,7], we
associate a functor to a class specification as follows:

Definition 3.1 Let S be a class specification with method declarations mi :
X ×

∏qi

j=1
Tij → Ti0, i = 1, . . . , k, where all methods are unary (i.e. X �∈

Tij ∀j = 1, . . . , qi). Then using currification the method declarations in S
induce the functor H : C → C defined by

H �

k∏

i=1

qi∏

j=1

Tij → (Ti0 + Excp + 1),

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–84 77

where Excp denotes a set of exceptions/errors.

Notice that the functor H is covariant only if the method m is unary.
Generalized binary methods, such as the method eq in the class specifica-
tion Register, produce contravariant occurrences of X in the corresponding
functor. In Section 4, we discuss how to overcome this problem.

The class implementations can be viewed as coalgebras as follows:

Definition 3.2 Let S be a class specification inducing a functor H . A class

implementing S is an H-coalgebra satisfying the assertions in S.

On the other hand, given a concrete class, this induces a coalgebra for the
functor determined by its method declarations, as follows:

Definition 3.3 i) A class C = 〈{fi : Ti}
n
i=1, {mi : X ×

∏qi

j=1
Tij → Ti0}

k
i=1〉

induces a coalgebra (X, α) for the functor H determined by the declarations
of methods mi, defined as follows:

• The carrier X is the set of states determined by the fields fi.

• The coalgebra map α : X → HX is defined by α � 〈αi〉
k
i=1, where αi : X →

HiX is the function implementing the method mi.

ii) An object of a class C is an element of the set of states X of C.

In the following lemma we characterize the behavioural equivalence on ob-
jects induced by the coalgebraic description of a class implementation. Such
behavioural equivalence equates objects with the same behaviour under ap-
plication of methods:

Lemma 3.4 Let S be a class specification with method declarations mi :
X ×

∏qi

j=1
Tij → Ti0 , i = 1, . . . , k, inducing the functor H =

∏k

i=1
Hi, let

(X, 〈αi〉
k
i=1) be an H-coalgebra implementing S. Then the greatest H-bisimulation

on (X, 〈αi〉i), ≈H , can be characterized as follows:

x ≈H x′ ⇐⇒ ∀i. ∀a. αi(x)(a) ≈H αi(x
′)(a) ,

where, by abuse of notation, αi(x)(a) ≈H αi(x
′)(a) denotes the extension of

≈H to the type Ti0, i.e. ≈Ti0

H , according to Definition 1.1 of relational lifting.

4 Coalgebraic Description of Generalized Binary Meth-
ods

In this section, we show how to extend the coalgebraic model to generalized
binary methods. Our first proposal (Section 4.1) applies when a concrete

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–8478

coalgebra (i.e. class implementation) is given. It is based on the observation
that the behaviour of a generalized binary method can be simulated by a bunch
of unary methods, each one determined by “freezing” all the occurrences of X
in the parameter types and object type, but one. “Freezing” an occurrence of
X means that X is replaced by the carrier, i.e. the set of states, of the given
class. The behavioural equivalence thus obtained turns out to be the greatest
congruence w.r.t. the original generalized binary method.

In Section 4.2, we present an alternative solution to the freezing functor.
Here we turn contravariant occurrences in the type of parameters of a gen-
eralized binary method m into covariant ones simply by interpreting m as a
graph instead of a function. To this aim, we introduce a new functor G (graph
functor), where the function space is substituted by the corresponding space
of graph relations.

The advantage of this latter solution w.r.t. the previous one is that this
approach directly applies to specifications. Moreover, we do not have to use
the intermediate step of the unary methods. The drawback is that the graph
behavioural equivalence is not a congruence w.r.t. method application in
general. However, there are many interesting situations where it is. In these
cases a rich spectrum of conceptually independent coinduction principles is
available. We discuss this issue in Section 4.3.

4.1 The Freezing Functor

We proceed in two passes. First, we reduce a generalized binary method to
a bunch of purely binary methods with the same observable behaviour. Let
m be a generalized binary method. In particular, for each parameter of type
T1 + T2, we can duplicate the method. In the first version, we will have a
parameter of type T1. In the second version the parameter will be of type
T2. Moreover, each parameter of type ΠKT can be viewed as the product of
|K| parameters of type T . Thus, by applying the above transformations to
a generalized binary method, we get a (possibly infinite) set of purely binary
methods m : X ×

∏
j∈J Tj → T0, where J is a possibly infinite set of indexes.

In the second pass, we reduce each purely binary method to a bunch of
unary methods. Let C be a class implementation with set of states X̄, in-
cluding a purely binary method m : X ×

∏
j∈J Tj → T0, implemented by

the function α. In order to recover the observable behaviour of the original
method m, we need to consider a bunch of unary methods ml, one for each
class parameter, where ml describes the behaviour of an object when it is
used as lth class parameter. Let I be the set of indexes corresponding to class

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–84 79

parameters, including the object, for all l ∈ I, we define :

ml : X × (
∏

j∈J

Tj[X̄/X]) → T0, αl : X × (
∏

j∈J

Tj[X̄/X] → T0)

αl(x)(a1, . . . , aq) � α(al)(a1, . . . , al−1, x, al+1, . . . , aq) .

Now we can define a coalgebraic model of the class implementation using
purely covariant tools, as in Section 3, using the freezing functor F defined
by:

Definition 4.1 [Freezing Functor] Let C be a class implementation with
purely binary methods and set of states X̄. The freezing functor determined
by C is defined by

F �

k∏

i=1

Fi ,

where, for each unary method mi, Fi � Hi, and for each binary method mi :
X ×

∏
j∈Ji

Tij → Ti0 with class parameters in Ii, Fi �
∏

l∈Ii
Fil, where FilX �

(
∏

j∈J Tij)[X̄/X] → (Ti0 + Excp + 1), for all li ∈ Ii.

The following definition of 1-ary method context will be useful to charac-
terize the behavioural equivalence induced by the freezing model:

Definition 4.2 [1-ary Method Context] Let C be a class. A 1-ary method

context, D[], is a context with exactly one hole, whose top operator is a
method in C, where the hole either corresponds to the object or to a parameter

The behavioural equivalence on objects induced by the freezing functor
can then be characterized as follows:

Lemma 4.3 (Freezing Bisimulation and Coinduction Principle) Let C
be a class implementation with set of states X̄, and let F be the freezing func-

tor induced by C. Then the greatest F -bisimulation ≈F , on the coalgebra

determined by the methods in C, can be characterized as follows:

x ≈F x′ ⇐⇒ ∀D[] 1-ary context. D[x] ≈F D[x′]

We can now establish the result which motivates our treatment:

Theorem 4.4 Let C be a class. Then for all methods mi : X×
∏

j∈J Tij → Ti0

in C, ∀xa, x′
a

′ ∈ X ×
∏

j∈J Tij, xa ≈F xa
′ =⇒ αi(x)(a) ≈F αi(x

′)(a′).

Moreover, since any congruence is an F-bisimulation, by coinduction, one
can then show that ≈F is the greatest congruence.

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–8480

Theorem 4.5 Let C be a class. Then the freezing behavioural equivalence ≈F

induced on C is the greatest congruence w.r.t method application.

4.2 The Graph Functor

Definition 4.6 [Graph Functor] The method declarations in S induce the
graph functor G : C → C defined by

G �

k∏

i=1

Gi ,

where, for each unary method mi, Gi � Hi (see Definition 3.1), and for each
generalized binary method mi : X×

∏
j∈J Tij → Ti0, Gi � P(

∏
j∈J Tij × (Ti0 +

Excp + 1)).

Definition 3.3, which gives the coalgebra induced by a given class, extends
immediately to the case of the graph functor. On the contrary, the exten-
sion to the graph functor of the definition of class implementation (Definition
3.2) requires more care. Namely class implementations shall be taken to be
functional G-coalgebras.

The graph behavioural equivalence can be characterized in terms of n-ary

method contexts, which are method contexts with holes for any class parame-
ter.

Definition 4.7 [n-ary Method Context] Let C be a class, and let m be a
method of C with n (generalized) class parameters including the object, im-
plemented by α. The method m induces an n-ary context

D[] = [].α(b1, . . . , bk) ,

where bi = [], if Ti is a (generalized) class type, otherwise, if Ti is a constant
type, bi is any argument of type Ti.

Lemma 4.8 (Graph Bisimulation and Coinduction Principle) Let G =∏k

i=1
Gi be the functor induced by the method declarations in S, and let (X, 〈αi〉

k
i=1)

be a G-coalgebra implementing S. Then the greatest G-bisimulation on (X, 〈αi〉
k
i=1),

≈G, can be characterized as follows:

x ≈G x′ ⇐⇒ ∀D[]n-ary context. ∀a∃a
′.(a ≈G a

′ & D[x,a] ≈G D[x,a
′])

& ∀a
′∃a.(a ≈G a

′ & D[x,a] ≈G D[x,a
′]) .

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–84 81

Notice the alternation of quantifiers ∀∃ in the definition of graph be-
havioural equivalence, due to the presence of the powerset in the graph functor.

The functor G has always a final coalgebra, e.g. see [1]. In general, it
is not functional, and moreover the functionality property of a coalgebra is
not preserved by the unique morphism into the final coalgebra. Therefore, the
image of a class implementation under the final morphism is not guaranteed to
be a class implementation. Thus we can lack minimal class implementations.
In Section 4.3, we study conditions for the final morphism to preserve the
functionality property, thus recovering minimal implementations.

4.3 Comparing Graph and Freezing Behavioural Equivalences

One can easily check that ≈F is a graph bisimulation, using reflexivity of ≈F .
Thus ≈F⊆≈G. The converse inclusion does not hold in general. For example,
this is the case for the class R′ obtained from the class R of registers when we
drop methods get and set, and we consider only method eq. Namely, for R′,
≈G equates all pairs of registers, while ≈F is the identity relation on registers.
Moreover, notice that in this case ≈G is not a congruence w.r.t. eq.

The following result is a fundamental tool for recovering ≈F = ≈G:

Theorem 4.9 ≈G = ≈F iff ≈G is a congruence w.r.t. the methods in the

class.

The equality ≈G = ≈F on a functional G-coalgebra is equivalent to the
fact that its image into the final coalgebra is still a functional coalgebra.
Thus Theorem 4.9 above gives an answer to the problem of minimal class
implementations for the graph functor, raised at the end of Section 4.2.

Another relevant consequence of the fact that ≈G = ≈F is a simplified
coinductive characterization of ≈F , in terms of “head” contexts, where the
hole is in head position, i.e. it corresponds to the target object:

Proposition 4.10 If ≈G = ≈F , then

x ≈F x′ ⇐⇒ ∀D[] head context. D[x] ≈F D[x′].

Theorem 4.9 above is all that we might want. However, in practice, it is
useful to have also alternative sufficient conditions. The interested reader can
see [6].

5 Relational types

The idea of treating binary methods as graphs, rather than as functions, can
be fruitfully pursued to overcome the well-known problem arising when in-

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–8482

x : α M : β α ≤ α′ β ≤ β ′

λxα.M : α ⊗ β α ⊗ β ≤ α′ ⊗ β ′ α → β ≤ α ⊗ β

Table 2
Typing rules for Relational Types ⊗

heritance is combined with subtyping, e.g. see [3]. Namely, if we type bi-
nary methods with the usual arrow type, which is contravariant, we lose the
property that subclasses are subtypes. We propose to introduce a new type
constructor, i.e. the relation type, and use this to type binary methods in
class declarations. Since relation types are purely covariant, the subtyping
property is maintained by subclasses. Binary methods can still be typed also
with the standard arrow type, which is a subtype of the corresponding rela-
tion type, see Table 2. To preserve safety, contrary to arrow types, we assume
relation types not to be “applicable” i.e. there is no relational counterpart to
the rule : M :α→β N :α

MN :β
. This solution to the problem of typing binary methods

is quite simple, and it allows for single dispatching in method calls. Moreover,
contrary to other proposals, our proposal allows for “future code extensions”
without losing the subtyping property of classes. We will study this proposal
in a future paper.

References

[1] P.Aczel. Non-wellfounded sets, CSLI Lecture Notes 14, Stanford 1988.

[2] Aczel P., N.Mendler. A Final Coalgebra Theorem, CTCS, D.H.Pitt et al. eds., Springer LNCS
389, 1989, 357–365.

[3] Bruce K.B., Luca Cardelli, Giuseppe Castagna, Jonathan Eifrig, Scott F. Smith, Valery
Trifonov, Gary T. Leavens, Benjamin C. Pierce On Binary Methods, TAPOS 1(3), 1995,
221-242.

[4] Forti M., F.Honsell. Set-theory with free construction principles, Ann. Scuola Norm. Sup. Pisa,
Cl. Sci. (4)10, 1983, 493–522.

[5] Hermida C., B.Jacobs. Structural induction and coinduction in a fibrational setting,
Information and Computation, 1998, 145(2):107-152.

[6] Honsell F., M.Lenisa, R.Redamalla. Coalgebraic Description of Generalized Binary Methods,
TR 8/2005, University of Udine(Italy), 2005.

[7] Jacobs B.. Objects and Classes, co-algebraically, Object-Orientation with Parallelism and Book
Persistence, B.Freitag et al. eds., Kluwer Academic Publishers, 1996, 83–103.

[8] Jacobs B. Behaviour-refinement of object-oriented specifications with coinductive correctness
proofs, TAPSOFT’97, M.Bidoit et. al. eds., Springer LNCS 1214, 1997, 787–802.

[9] Jacobs B., J.Rutten. A tutorial on (co)algebras and (co)induction, Bulletin of the EATCS 62,
1996, 222–259.

[10] Reichel H. An approach to object semantics based on terminal co-algebras, MSCS 5, 1995,
129-152.

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–84 83

[11] Rothe J., H. Tews and B. Jacobs. The Coalgebraic Class Specification Language CCSL, Journal
of Universal Computer Science,7(2001), pp.175-193.

[12] Tews H. Coalgebraic Methods for Object-Oriented Specifications, Ph.D. thesis, Dresden Univ.
of technology, 2002.

F. Honsell et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 73–8484

	Generalized Binary Methods and Behavioural Equivalences
	Class Specifications and Class Implementations
	Coalgebraic Description of Objects and Classes: unary case
	Coalgebraic Description of Generalized Binary Methods
	The Freezing Functor
	The Graph Functor
	Comparing Graph and Freezing Behavioural Equivalences

	Relational types
	References

