
CoMeta Project Workshop Preliminary Version

Coalgebraic Semantics and Observational
Equivalences of an Imperative Class-based

OO-Language ?

Furio Honsell 1 Marina Lenisa 2,3

Dipartimento di Matematica e Informatica, Università di Udine,
Via delle Scienze 206, 33100 Udine, ITALY.

Rekha Redamalla 4

Dipartimento di Matematica e Informatica, Università di Udine,
Via delle Scienze 206, 33100 Udine, ITALY,

and B.M. Birla Science Center,
Adarsh Nagar, Hyderabad, 500 063 A.P., INDIA.

Abstract

Fickle is a class-based object oriented imperative language, which extends Java with
object re-classification. In this paper, we introduce a natural observational equiva-
lence on Fickle programs. This is a contextual equivalence on main methods with
respect to a given sequence of class definitions, i.e. a program. To study it, we use
the formal computational model for OO-programming based on coalgebras, which
has recently emerged, whereby objects are taken to be equal when the actions of
methods on them yield the same observations and equivalent next states. However,
in order to deal with imperative features, we need to extend the original approach of
H.Reichel and B.Jacobs in various ways. In particular, we introduce a coalgebraic
description of objects (states of a class), which induces a coinductive behavioural
equivalence on programs. For simplicity, we focus on Fickle objects whose methods
do not take more than one object parameter as argument. Completeness results as
well as problematic issues arising from binary methods are also discussed.

Key words: Imperative class-based OO-programming,
observational equivalences, coalgebraic semantics, coinductive
behavioural equivalences.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Honsell, Lenisa, Redamalla

Introduction

In the global computing community, there has been growing interest in class-
based object oriented languages. Despite this, however, relatively little work
has been done on program equivalence for such languages. This is due prob-
ably also to the fact that no formal model for OO-programming has been
generally accepted. In recent years, Reichel and Jacobs [13,9] have introduced
such a model based on coalgebras. The idea underpinning this approach is
that coalgebras, duals of algebras, allow to focus on the behaviour of objects,
while abstracting from the concrete representation of Self. This approach has
been used mainly for extending logical specification, and program and data
refinement techinques to OO-languages (see [10,5]).

This paper intends to initiate an investigation programme into the possi-
bility of utilizing the coalgebraic computational model also for program equiv-
alence and program transformation. This is a somewhat dual goal w.r.t. the
program refinement of Reichel and Jacobs. To this end, we need to address
directly critical issues pertaining to imperative features, as well as binary meth-
ods, i.e. methods taking more than one object argument as parameter.

We focus on a fragment of the imperative typed class-based language
Fickle, [4], which extends Java with re-classification. Re-classification allows
objects to change class membership dynamically, while retaining their iden-
tity. We consider Fickle as a representative of this class of typed imperative
class-based object oriented languages, and the results in this paper apply also
to Java and similar languages.

We study the (family of) contextual equivalances ≈P (indexed by program
P) on Fickle expressions (i.e, bodies of main methods). To this aim, we utilize
a coalgebraic behavioural equivalence on Fickle objects. Our main result is an
adequate coalgebraic semantics of Fickle expressions w.r.t. equivalences ≈P .

Coalgebraic semantics originated with Aczel-Mendler, Rutten-Turi, for
CCS-like languages, [1,2,15], and it was further generalized to λ-calculus, [6],
higher-order imperative languages, [12], object-oriented languages in a func-
tional setting, [13,9], π-calculus, [7].

The gist of the coalgebraic semantics paradigm (final semantics) is to view
the interpretation function from syntax to semantics as a final mapping in a
suitable category. To this end, the semantics has to be construed as a final
coalgebra for a suitable functor F and the syntax has to be cast in form of
an F -coalgebra. This approach is driven by the operational semantics of the
language, because it is the semantics which determines the structure of the

? Research supported by the UE project IST-2001-33477 DART, and the MIUR Project
COFIN 2001013518 Cometa.
1 Email:honsell@dimi.uniud.it.
2 Email:lenisa@dimi.uniud.it.
3 corresponding author.
4 Email:rrekhareddy@yahoo.com.

2

Honsell, Lenisa, Redamalla

functor F . This is dual to the syntax-driven approach of algebraic semantics
(initial, denotational semantics), where syntax is construed as an initial F -
algebra and the semantics is defined as an F -algebra. The main advantage
of the coalgebraic semantics is that it induces a behavioural equivalence on
programs, which can be characterized as a coalgebraic bisimilarity, i.e. as
greatest coalgebraic bisimulation. For preliminaries on coalgebraic semantics,
we refer to [11].

However, in the original coalgebraic approach only a single class in isolation
is considered and the setting is purely functional.

In dealing with Fickle, the approach of [13,9] needs to be refined to ac-
comodate imperative features as well as general programs, i.e. sequences of
classes possibly related by inheritance, mutual definitions, etc. Special care
needs to be devoted to representing the store, and in defining the evolution of
objects, we have to take into account all possible pointers involving them.

For the sake of simplicity, we deal first only with non-binary methods, i.e.
methods which take no more than one class argument. Binary methods cannot
be treated simplistically, since they produce contravariant occurrences of the
variable in the corresponding functor. Extensions of the coalgebraic paradigm
to mixed functors have been considered in [14], but such extensions are rather
complex and cover only a restricted range of cases. We briefly sketch an
alternative approach to dealing with binary methods, based on representing
functions as graphs. This approach is completely satisfactory in a purely
functional setting. However, in an imperative setting, binary methods bring
about further problematic issues which we briefly touch upon.

Interestingly, the coalgebraic equivalence on Fickle objects induces a be-
havioural equivalence on Fickle expressions, which can be used to study no-
tions of observational equivalences. In this paper we use the coalgebraic equiv-
alence to study the contextual equivalence ≈P , that we introduce. This is an
equivalence on Fickle expressions, viewed as the bodies of the main method,
with respect to a given program P , i.e. a collection of class definitions. Two
main methods are equated if and only if they have the same behaviour in any
context, w.r.t. the given program P.

Synopsis. In Section 1, we recall the syntax and the operational semantics
of Fickle and we introduce the observational equivalence on expressions (pro-
grams). In Section 2, we give the coalgebraic description of Fickle programs,
together with the induced behavioural equivalence. In Subsection 2.1, we dis-
cuss binary methods. In Section 3, we compare the coalgebraic equivalence
with the observational equivalence on expressions introduced before. Final
remarks and directions for future work appear in Section 4.

Acknowledgements.

The authors would like to thank M.Dezani for helpful discussions.

3

Honsell, Lenisa, Redamalla

1 The Language Fickle

In this section, first we recall the syntax and the operational semantics of the
language Fickle (see [4] for more details). Then we introduce the observational
equivalences on programs which we will study.

1.1 Syntax

Fickle syntax is summarized in Table 1. A Fickle program is a collection of
(possibly abstract) class definitions. A class definition may be preceded by
the keyword state or root. State classes describe the properties of an object
while it satisfies some conditions; when it no longer satisfies these conditions,
it can be explicitly re-classified to another state class. Root classes abstract
over state classes. While (state) classes consist of a sequence of fields and
methods, in abstract (root) classes, some methods can only be declared. Any
subclass of a state or a root class must be a state class. Objects of a state
class c may be re-classified to a class c′, where c′ must be a subclass of the
uniquely defined root superclass of c. Objects of a non-state, non-root class
c behave like Java objects, i.e. they are never re-classified. The type of fields
may be either boolean or integer or a non-state class. Hence, fields cannot be
reclassified. In contrast, the type of this and parameters may be a state or
root class, i.e. these variables may be reclassified. However, although these
restrictions are important in order to define a sound type system (see [4]),
they are not strictly necessary to our purposes.

Objects are created with the expression newc, where c is any class. Re-
classification expressions, id ⇓ c, set the class of id to c, where c must be a
state class.

Methods declarations have the shape:

t m (t1x1, . . . , tqxq){c1, . . . , cn}{ e }

where t is the result type, t1, . . . , tq are the types of the formal parameters
x1, . . . , xq and e is the body. The list of root classes c1, . . . , cn are the effect,
i.e. the root classes of all objects that may be re-classified by invocation of
that method.

For simplicitly, we assume all fields in the classes to be private, i.e. to
be accessible from outside the class only through the class methods. On the
contrary, we take all methods in a class to be public. Moreover, we assume no
local variables in method bodies.

In Table 1, summarizing Fickle syntax, we have omitted the syntax of
boolean and integer expressions, which involves the standard operators.

Finally, we assume the inheritance hierarchy to be a tree, root classes to
extend only non-root and non-state classes, and state classes to extend either
root classes or state classes. For examples of Fickle programs, we refer to [3,4].

4

Honsell, Lenisa, Redamalla

progr := class∗
class := [state] class c extends c { field∗ meth∗ }
absclass := [root] class c extends c { field∗ meth∗ mdecl∗ }
field := type f
meth := type m (par∗) eff { e }
mdecl := type m (par∗) eff
type := bool | int | c
par := type x
eff := { c∗ }
expr (3) e := if e then e else e | var:=e | e;e | sVal | this | var |

new c | e.m(e∗) | id⇓c
var := x | e.f
sVal := true | false | null | 0 | 1 . . .
id := this | x

with the following conventions
c ::= c | c’ | ci | d | . . . for class names
f ::= f | fi | . . . for field names
m ::= m | mi | mij | . . . for method names
x ::= x | y | z | . . . for parameter names

Table 1
Syntax of Fickle

1.2 Operational Semantics

The operational semantics is given in terms of a SOS “big-step” relation −→,
which rewrites pairs of expressions and stores w.r.t. to a program P into pairs
of values, exceptions, or errors, and stores. The expression which is evaluated
is meant to represent the special method main (external to P) from which the
execution of the program starts. The type of the rewriting relation is:

−→ : progr → expr × store → (val ∪ dev)× store

where:

addr , Nat

val , sVal ∪ addr

dev , { nullPntrExc, stuckErr }

object c , {[f1 : v1, . . . , fr : vr]
c | f1, . . . , fr ∈ fid c are

the field identifiers of c, v1, . . . , vr ∈ val }

object ,
⋃

cobject c

store , ({this} → addr)× (varid →pfin val)× (addr →pfin object) ,

where sVal is defined in Table 1, varid is the set of variable identifiers, fid c is
the set of field identifiers of c, and →pfin denotes the space of partial functions
with finite domain. Notice that an element of object c is in fact a partial
function in (fid c →pfin val).

In particular, stores are partial functions with finite domain, mapping
this to an address, variables of base type to values, variables of class type to

5

Honsell, Lenisa, Redamalla

addresses, and addresses to objects. Notice in particular that, in the store,
addresses point to objects, but not to other addresses. Thus in Fickle, as in
Java, pointers are implicit, and there are no pointers to pointers. We denote
addresses with ι, stores with σ, values with v, objects with o, exceptions and
errors with dv.

Before introducing the rewriting rules, we need to define some operations
on objects and stores. For object o , [f1 : v1, . . . , fl : vl, . . . fr : vr]

c, store σ,
value v, address ι, identifier or address z, field identifier f , we define:

• field access : o(f) ,

{
vl if f = fl for some l ∈ 1, . . . , r,

Udf otherwise

• object update: o[v/f] , [f1 : v1, . . . , fl : v, . . . fr : vr]
c, where fl = f for

some l ∈ 1, . . . , r,

• store update: σ[v/z](z) = v, σ[v/z](z′) = σ(z′) if z′ 6= z.

We use the convention that σ(ι)(f) = Udf , whenever σ(ι) = Udf , i.e.
ι 6∈ dom(σ).

Tables 2 and 3 list the rewriting rules of the operational semantics.

For lack of space, in Table 3 some rules are compressed in a single one
(see e.g. the first rule). Notice that the rules as presented in Table 3 are
non-deterministic, but common sense suggests how to resolve ambiguities.

The evaluation of the expression new c in a store σ extends σ with a
new canonical address. Moreover, all fields of the new object are initialized
with canonical values, which we assume, by convention, to be false and 0 for
boolean and integer fields, respectively, and null for fields of class type. The
function FS used in the rule for new (and for re-classification) is such that
FS(P, c) returns the set of fields defined in the class c, while FS(P, c, f), used
in the rule for reclassification, gives the type of the field f in class c.

In the rule for method call, e0.m(e1, . . . , en) in Table 2, we use the function
M: M(P, c, m) returns the definition of method m in class c going through the
class hierarchy (see [4] for more details). Moreover, the premise σn(ι) = [...]c

means that, in the store σ′
n, the address ι refers to an object of the class c.

For re-classification expressions, id ⇓ d, we find the address of id, which
points to an object of class c. We replace the original object by a new object
of class d. We preserve the fields belonging to the root superclass of c and
initialize the other fields of d according to their types (as in the case of new
expressions). The term R(P, t), defined by

R(P, t) ,

c if t is a state class and c is the root

superclass of t

t otherwise ,

denotes the least superclass of t which is not a state class, if t is a class, and
denotes t itself if t is not a class.

6

Honsell, Lenisa, Redamalla

(e, σ) −→P (true, σ′′) (e, σ) −→P (false, σ′′)
(e1, σ

′′) −→P (v, σ′) (e2, σ
′′) −→P (v, σ′)

(if e then e1 else e2, σ) −→P (v, σ′) (if e then e1 else e2, σ) −→P (v, σ′)

(e, σ) −→P (ι, σ′′)
(e′, σ′′) −→P (v, σ′′′)

σ(x) 6= Udf σ′′′(ι)(f) 6= Udf
(e, σ) −→P (v, σ′) σ′ , σ′′′[σ′′′(ι)[v/f]/ι]
(x := e, σ) −→P (v, σ′[v/x]) (e.f := e′, σ) −→P (v, σ′)

(e1, σ) −→P (v′, σ′′) (e, σ) −→P (ι, σ′)
(e2, σ

′′) −→P (v, σ′) σ′(ι)(f) 6= Udf
(e1; e2, σ) −→P (v, σ′) (e.f, σ) −→P (σ′(ι)(f), σ′)

σ(id) 6= Udf
(id, σ) −→P (σ(id), σ) (v, σ) −→P (v, σ)

FS(P, c) = {f1, . . . , fr}
vl initial for F(P, c, fl) (∀l ∈ {1, . . . , r})
ι is new in σ
(new c, σ) −→P (ι, σ[[f1 : v1, . . . , fr : vr]c/ι])

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , n})
σn(ι) = [. . .]c
M(P, c,m) = t m(t1x1, . . . , tnxn) φ { e }
σ′ = σn[ι/this, v1/x1, . . . , vn/xn]
(e, σ′) −→P (v, σ′′)
(e0.m(e1, . . . , en), σ) −→P (v, σ′′[this 7→ σn(this), x1 7→ σn(x1), . . . , xn 7→ σn(xn)])

σ(id) = ι
σ(ι) = [. . .]c
FS(P,R(P, c)) = {f1, . . . , fr}
vl = σ(ι)(fl) (∀l ∈ {1, . . . r})
FS(P, d) \ {f1, . . . , fr} = {fr+1, . . . , fr+q}
vl initial for FS(P, d, fl) (∀l ∈ {r + 1, . . . r + q}) (id, σ) −→P (null, σ′)
(id ⇓ d, σ) −→P (ι, σ[[f1 : v1, . . . , fr+q : vr+q]d/ι]) (id ⇓ d, σ) −→P (null, σ′)

Table 2
Operational Semantics: execution without exceptions and errors

1.3 Observational Equivalences

Various notions of observational equivalences on Fickle programs are naturally
induced by the operational semantics. First of all, one can define a contextual
equivalence on main methods w.r.t. a given program P , by evaluating the
expressions corresponding to the bodies of the main methods in any expression
context C[], and by observing the output value. A context is simply an
expression with finitely many holes. As observable values, we take values of
base types and errors/exceptions, i.e. obsval , sVal ∪ dev . With (e, σ) ⇓P u

7

Honsell, Lenisa, Redamalla

(e, σ) −→P (null, σ′)

(e.f := e′, σ) −→P (nullPntrExc, σ′)
(e.f, σ) −→P (nullPntrExc, σ′)
(e.m(e1, . . . , en), σ) −→P (nullPntrExc, σ′)

(e, σ) −→P (v, σ′)
v 6= true and v 6= false σ(x) = true or σ(x) = false
(if e then e1 else e2, σ) −→P (stuckErr, σ′) (x ⇓ c, σ) −→P (stuckErr, σ)

(e, σ) −→P (v, σ′)
v 6= null

σ(x) = Udf v 6∈ addr
(x, σ) −→P (stuckErr, σ) (e.f, σ) −→P (stuckErr, σ′)
(x := e, σ) −→P (stuckErr, σ) (e.f := e′, σ) −→P (stuckErr, σ′)
(x ⇓ c, σ) −→P (stuckErr, σ)

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , n})

(e, σ) −→P (ι, σ′) σn(ι) = [. . .]c
σ′(ι)(f) = Udf M(P, c,m) = Udf
(e.f, σ) −→P (stuckErr, σ′) (e0.m(e1, . . . , en), σ) −→P (stuckErr, σn)

(e0, σ) −→P (v, σ0) (e, σ) −→P (ι, σ′′)
v 6= null (e′, σ′′) −→P (v, σ′)
v 6∈ addr or σ0(v) = Udf σ′(ι)(f) = Udf
(e0.m(e1, . . . , en), σ) −→P (stuckErr, σ0) (e.f := e′, σ) −→P (stuckErr, σ′)

(e, σ) −→P (dv, σ′) or
((e, σ) −→P (true, σ′′) and (e1, σ

′′) −→P (dv, σ′)) or
((e, σ) −→P (false, σ′′) and (e2, σ

′′) −→P (dv, σ′))
(if e then e1 else e2, σ) −→P (dv, σ′)

(e1, σ) −→P (dv, σ′) or ((e1, σ) −→P (v, σ′′) and (e2, σ
′′) −→P (dv, σ′))

(e1; e2, σ) −→P (dv, σ′)

(e, σ) −→P (ι, σ′′)
(e, σ) −→P (dv, σ′) (e′, σ′′) −→P (dv, σ′)
(x := e, σ) −→P (dv, σ′) (e.f := e′, σ) −→P (dv, σ′)
(e.f, σ) −→P (dv, σ′)
(e.m(e1, . . . , en), σ) −→P (dv, σ′)
(e.f := e′, σ) −→P (dv, σ′)

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , q}, q < n)
(eq+1, σq) −→P (dv, σq+1)
(e0.m(e1, . . . , en), σ) −→P (dv, σq+1)

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , n})
σn(ι) = [. . .]c

M(P, c, m) = t m(t1x1, . . . , tn : xn) φ { e }
σ′ = σn[ι/this, v1/x1, . . . , vn/xn]
(e, σ′) −→P (dv, σ′′)
(e0.m(e1, . . . , en), σ) −→P (dv, σ′′[σn(this)/this, σn(x1)/x1, . . . , σn(xn)/xn])

Table 3
Operational semantics: generation and propagation of exceptions and errors

8

Honsell, Lenisa, Redamalla

we abbreviate the fact that there exists σ′ such that (e, σ) →P (u, σ′), for
u ∈ sVal ∪ dev .

Definition 1.1 (Contextual Equivalence):

Let ≈P⊆ expr × expr be defined by: e ≈P e′
∆⇐⇒

∀C[] ∀σ ∀u ∈ obsval . (C[e], σ) ⇓P u ⇔ (C[e′], σ) ⇓P u .

The contextual equivalence ≈P on expressions e, e′ induces an equivalence
between a program P together with a main method whose body is the expres-
sion e, and the same program P together with a main method whose body
is the expression e′. Notice that, by the assumption that all fields in a class
are private (see Section 1.1), main methods can only access objects through
class methods. In particular, in Definition 1.1 above, field access expressions
appear neither in the expressions e, e′ nor in the context C[].

In the definition of the observational equivalence ≈P above, the program P
is fixed. However, in many cases, e.g. in program refinement, we are interested
in establishing equivalences between different programs P1, P2, which imple-
ment the same program specification. A simple notion of program specification
can be taken to be a list of abstract classes with no fields and only a sequence
of method declarations. Then a program P1 implements a program specifica-
tion P , when the method declarations in each class of P1 correspond exactly to
the method declarations in P . One could consider a more sophisticated notion
of program specification, involving a first-order logic for expressing conditions
on the fields. This would be useful for studying program refinement. By way
of example, we introduce the following simple equivalence.

Two programs P1, P2, implementing the same program specification P , can
be taken to be equivalent, when for any possible main method, they evaluate
to the same value:

Definition 1.2 Let P1, P2 implement the same program specification P . We
define the equivalence ' by:

P1 ' P2
∆⇐⇒ ∀e ∀u ∈ obsval . (e, ∅) ⇓P1 u ⇔ (e, ∅) ⇓P2 u .

For lack of space, in this paper we will focus only on the contextual equiva-
lence ≈P and we will not study the program equivalence of Definition 1.2. We
just point out that our coalgebraic description of Fickle objects given in the
next section induces also a notion of coalgebraic program equivalence, which
would be interesting to compare with the program equivalence '.

2 Coalgebraic Description of Fickle Objects and Pro-
grams

In this section, we give a coalgebraic account of Fickle objects (and programs)
for the fragment of Fickle consisting of unary methods, i.e. methods which

9

Honsell, Lenisa, Redamalla

do not take more than one object parameter. Following [13,9], we model
classes as coalgebras, where the carrier represents the objects of the classes,
and the coalgebra structure is determined by the operational semantics of the
methods. The coalgebra structure captures the evolution of the objects under
the action of methods.

In order to model the evolution of objects in an imperative setting, we need
to account also for sharing of addresses in the store and aliasing of variables.

Our coalgebraic model naturally induces a coinductive equivalence on ob-
jects of a program P , which we will use in Section 3 to study the contextual
equivalence introduced in Definition 1.1.

Finally, we briefly discuss the general case of binary methods. These are
problematic to deal with, since they produce contravariant occurrences of the
parameter in the functor modeling the program. We propose two possible
approaches, in order to turn contravariant occurrences into covariant ones.
The first consists in “freezing” the contravariant occurrence of X to the carrier
of the coalgebra. The second consists in representing binary methods as graphs
instead of functions. Under suitable conditions the two approaches coincide.

Moreover, in order to account for the behaviour of objects under binary
methods, we need to extend the original approach, by describing not only the
behaviour of the objects under application of methods of their class, but also
under application of any other binary method in the program which uses such
objects as parameters.

Finally, in dealing with binary methods in an imperative setting we need to
take care of possible inconsistencies of referenced values by object parameters.
We start by defining our representation of imperative objects of a class c.

Definition 2.1 Let refobject c be the set of pairs (ι, O), where ι ∈ addr ,
and O ∈ (addr →pfin object) is the least closed function, — i.e. ∀o ∈
range(O). ∀ι ∈ range(o). ι ∈ dom(O) —, such that ι ∈ dom(O) and O(ι) ∈
object c.

Essentially, a refobject can be viewed as a minimal store induced by an
address, when we do not consider the environment part.

In what follows, we simply denote by O an element (ι, O) of
⋃

c refobject c.

Before introducing our coalgebraic semantics, we need to define the notion
of consistency between refobjects and stores, the notion of store update with
a refobject, and the notion of refobject induced by an address in a store:

Definition 2.2 Let σ ∈ store, O ∈ refobject c, ι ∈ addr .
i) O and σ are consistent, written con(O, σ), if for all addresses ι ∈ dom(O),
if ι ∈ dom(σ), then O(ι) = σ(ι).
ii) For O and σ consistent, and x ∈ id , we define σ[O/x] the store σ in which
the object corresponding to the refobject O has been associated to x, and the
rest of the store, if necessary, has been updated according to O.
iii) Let ι ∈ dom(σ). We denote by σ(ι) the unique refobject (ι, O) included in

10

Honsell, Lenisa, Redamalla

σ. Let x ∈ varid ∪ {this}. We denote by σ(x), σ(x) itself, if x has base type,
the unique refobject (σ(x), O) included in σ, otherwise.

Now we introduce the coalgebraic description of the fragment of Fickle con-
sisting of unary methods. To this aim, we endow the set of refobjects of a given
program P with a coalgebra structure for the functor induced by the methods
in P . A method t0 m(t1x1, . . . , tqxq) in P , when called on an object together
with a list of actual parameters, can either terminate (successfully or with an
exception/error) producing a possibly modified object, or not terminate. The
behaviour of methods on objects determines the coalgebraic structure:

Definition 2.3 Let P , c1, . . . , cn, where ci , {fi1; . . . fihi
; mi1; . . . ; miki

}.
i) Let F : Set → Set be defined by

F ,
∐

i

∏
j

Fij ,

where Fij : Set → Set is determined by the method declaration

t0 mij (t1x1, . . . , tqxq) {c′1, . . . , c′p}

of the class ci as follows:

FijX , [[t1]]× . . .× [[tq]] → (([[t0]] + dev)×X + 1) ,

where, for all i = 0, . . . , q,

[[ti]] =

bool if ti = bool

int if ti = int

addr otherwise .

The definition of Fij on arrows is canonical.
ii) Let us denote

∐
ci

refobject ci
simply by refobjectP . Let αP : refobjectP →

F (refobjectP) be defined by

αP , [〈αij〉j]i ,

where αij : refobject ci
→ Fij(

∐
c′
k∈Cij

refobject c′
k
), for Cij the set of classes to

which the method mij can reclassify the object, is defined by:

αij(O) , a 7→

(u, σ1(this)) if e is the body of mij and

(e, ∅[O/this , a/x])−→P (u, σ1)

∗ otherwise ,

where ∗ denotes the only element of 1. Notice that the store ∅[O/this , a/x]
is always defined (i.e. there are no consistency problems), since all actual
parameters are of base type.

11

Honsell, Lenisa, Redamalla

iii) Let [[]]FP : (refobjectP , αP) → (ΩF , αΩF
) be the coalgebraic semantics, i.e.

the unique F -coalgebra morphism into the final F -coalgebra.

By applying the general theory of coalgebraic semantics, we get the fol-
lowing coinductive characterization of the equivalence induced by [[]]FP :

Proposition 2.4 The coalgebraic semantics [[]]FP induces the following be-
havioural equivalence on objects of P : for all O,O′ ∈ refobject c, where c is a
class of P ,

O∼F
P O′ ⇐⇒

∀ method m(x) in c with body e, ∀ list of arguments a for x,
(e, ∅[O/this , a/x]) −→P (u, σ1) ⇒ (e, ∅[O′/this , a/x]) −→P (u, σ′

1) ∧
σ1(this)∼F

P σ′
1(this), and conversely.

Corollary 2.5 ∼F
P is the greatest fixed point of the following monotone (w.r.t.

subset inclusion) operator on relations on refobjects:

Φ(R) , {(O, O′) | ∀m(x) : e in c, ∀ list of arguments a for x,
(e, ∅[O/this , a/x]) −→P (u, σ1) ⇒ (e, ∅[O′/this , a/x]) −→P (u, σ′

1) ∧
σ1(this) R σ′

1(this), and conversely } .

In other words, the following coinduction principle for establishing ∼F
P is sound

and complete:

ORO′ ∧ R is a Φ-bisimulation
O ∼F

P O′ ,

where a Φ-bisimulation R is a relation s.t. R ⊆ Φ(R).

Example 2.6 i) Let Register be a class with just one field containing the
integer value of a register, and two methods, getval and setval. The first
method returns the contents of the register, the latter sets the contents to a
new value passed as parameter, and returns the new value. One can easily
check that the coalgebraic equivalence on objects class Register equates two
registers if and only if they have the same contents.
ii) Let IntList be a class representing possibly circular lists of integers. The
class IntList has two fields, representing the head and the tail of a list, i.e.
containing an integer value and a list, respectively, and two methods, returning
the head and the tail of a list. Then the coalgebraic equivalence on IntList
equates two lists if and only if they have the same value in the head and the
same address in the tail.
iii) In order to recover the extensional equivalence on lists, one can define the
class IntList by considering just one method, taking an integer n as parameter
and returning the value of the n-th element of a list.

The coalgebraic equivalence ∼F
P equates objects which behave in the same

way under method application, for all lists of parameters, in the minimal
store. Actually, store minimality is not relevant. Namely, one can easily show
that the behaviour of an object only depends on method parameters, and
not on the rest of the store, if we assume that the expression new c does

12

Honsell, Lenisa, Redamalla

not appear in the bodies of class methods. However, we conjecture that the
above assumption can be eliminated. Anyway, we feel that this is not a strong
assumption, since usually class methods are used to access or modify objects,
while creation of new objects is performed in the main method.

Moreover, in what follows, we tacitly assume also that, if two objects
of a root class d are ∼F

P -equivalent, then their canonical extensions (via re-
classification) to objects of a state subclass c are still ∼F

P -equivalent. This
means that in the subclass c there are no extra methods which discriminate
solely on the basis of the fields in the superclass d. This is quite a natural
hypothesis, which is necessary to deal with re-classification.

Thus we have:

Lemma 2.7
O∼F

P O′ ⇐⇒
∀ method m(x) in c with body e, ∀σ. con(O, σ) ∧ con(O′, σ),
(e, σ[O/this]) −→P (u, σ1) ⇒ (e, σ[O′/this]) −→P (u, σ′

1) ∧ σ1(this)∼F
P σ′

1(this),
and conversely.

The equivalence ∼F
P on refobjects naturally induces an equivalence on

stores, if we take stores to be equivalent on all variables:

Definition 2.8 We define

σ ∼F
P σ′ ∆⇐⇒ ∀x ∈ id . σ(x) ∼F

P σ′(x) .

Another immediate consequence of the fact that object behaviour only
depends on method parameters, is that, if two objects are ∼F

P -equivalent, then
they behave in the same way under application of methods on ∼F

P -equivalent
parameters:

Lemma 2.9
O∼F

P O′ ⇐⇒
∀ m(x) : e in c, ∀σ, σ′. σ ∼F

P σ′ ∧ con(O, σ) ∧ con(O′, σ′), (e, σ[O/this]) −→P

(u, σ1) ⇒ (e, σ′[O′/this]) −→P (u, σ′
1) ∧ σ1(this)∼F

P σ′
1(this), and conversely.

2.1 Binary Methods

If a method mij in Definition 2.3 is binary, then clearly the functor Fij (and
hence F) is not covariant. An example of a binary method is the method
equal : c × c → bool , which takes another instance of the class as argument.
The second occurrence of c produces a contravariant occurrence of X in FX ,
. . .× (X → ((bool + dev)×X)+ 1)× Therefore, the coalgebraic approach
does not apply directly in this case.

A first solution for turning contravariant occurrences in the functor F in
covariant ones consists in “freezing” the contravariant occurrence of X to the
carrier refobjectP of the coalgebra. For example, in the case of the method
equal, we could take GX , . . .× (refobjectP → ((bool + dev)×X) + 1)×

13

Honsell, Lenisa, Redamalla

An alternative approach consists in modeling binary methods as graphs
instead of functions, by substituting the powerset functor in place of the func-
tion space. In the case of the method equal this would correspond to take
HX , . . .× P(X × ((bool + dev)×X) + 1)×

Moreover, in both cases, in order to describe correctly the behaviour of
objects under application of binary methods, we need to extend the original
coalgebraic approach and consider in the definition of the functor also (binary)
methods, of possibly different classes, to which the object is supplied as a
parameter. Otherwise we loose the analogue of Lemma 2.9. Namely, let us
consider the following trivial counterexample. Let A be a class with only one
field of type bool, and just one (binary) method m taking as argument another
object of the class A, and returning the value of the field of this argument.
Then all objects of A are coalgebraic equivalent, if we do not consider the
behaviour of objects as (ordinary) arguments of m. However, the method m
applied to the same object together with arguments with different values in
the field gives non-equivalent results.

In general, the equivalence induced by G is included in the equivalence
induced by H, but not vice versa. In order to make the two approaches
coincide with the “intended contravariant” equivalence, one has to compensate
the “observability deficit” of unary methods. Roughly, one has to add in the
class a sufficient number of unary methods allowing to observe all the fields
used by binary methods. As a consequence, the coalgebraic equivalence is
determined solely by unary methods.

This programme works out smoothly in a functional setting, [8]. However,
in our imperative setting, binary methods give rise to the extra issue of possible
inconsistencies between the object O and the other object parameters, even
in the empty store. In particular, if we consider the natural extension of the
coalgebraic semantics of unary methods to binary methods, we get an object
equivalence which discriminates on the basis of addresses, both in the case
of the freezing functor G and in the case of the graph functor H. Namely,
let us focus on freezing, and let us consider the class Register of Example
2.6, extended with the binary method add, which adds the contents of two
registers. Then the method add tells apart registers with different addresses
but equal contents, when we apply it to a register parameter consistent with
e.g. the first register but not with the second one. To overcome this problem,
one could modify the notion of object equivalence, by testing the behaviour
of objects under method application only on parameters consistent with both
objects. However, somewhat surprisingly, this is not a transitive relation, in
general. A possible solution to the transitivity problem above consists again
in compensating the observability deficit of unary methods. However, this
deserves further study, and we leave it as an open problem how to give a
coalgebraic description of Fickle objects in the general case.

14

Honsell, Lenisa, Redamalla

3 Coalgebraic and Observational Equivalences on Pro-
grams

In this section, we introduce a notion of equivalence on expressions w.r.t. a

program P ,
�
≈P , which is induced by the coalgebraic equivalence on objects

∼F
P of Section 2, and we briefly discuss the relationships between

�
≈P and the

contextual equivalence ≈P of Section 1.3.

From now on we denote the equivalence ∼F
P simply by ∼P . The coalgebraic

equivalence on objects introduced in the previous section naturally induces a
notion of equivalence on expressions representing bodies of main methods
w.r.t. a given program P . Two main methods are equivalent w.r.t. P when,
for any store, they produce equivalent values and equivalent stores:

Definition 3.1 Let
�
≈P⊆ expr × expr be defined by:

e
�
≈P e′ ⇐⇒

∀σ. ((e, σ) →P (u, σ1) =⇒ (e′, σ) →P (u′, σ′
1) ∧ u ∼P u′ ∧ σ1 ∼P σ′

1),
and conversely,

where u is u, if u ∈ sVal ∪ dev , and it is σ1(u), if u ∈ addr .

We conjecture that
�
≈P is adequate w.r.t. the contextual equivalence ≈P ,

i.e:

Conjecture 3.2 (Adequacy of
�
≈P):

�
≈P⊆≈P .

Completeness of
�
≈P trivially fails, because in the contextual equivalence

there is no way of observing different addresses generated by new expressions.
For instance, if the class c in the program P is s.t. only objects with the
same address are ∼P -equivalent, then the expressions e , x := new c and

e′ , x := new c; x := new c are not
�∼P -equivalent. However, there is no

context separating them, since in the observational equivalence ≈P we only
observe values of base types. Nevertheless, we can still get a completeness
result for the restricted set of expressions not containing new expressions,
under the assumption that in each class of the program there is an observable
and modifiable field of base type:

Theorem 3.3 (Completeness of ≈P): Let P be a program, and let e, e′ be
main methods for P . If e, e′ do not contain new expressions, and in each class
c of P there is a field f of base type, a method m1, which returns the value
of f , and a method m2, which sets the field f to a value given as parameter,

then e ≈P e′ =⇒ e
�
≈P e′ .

Proof. Assume by contradiction e ≈P e′, but e 6
�
≈P e′. The difficult case is

when e 6
�
≈P e′ because ∃σ. (e, σ) →P (ι, σ1) ∧ (e′, σ) →P (ι′, σ′

1), but ι 6∼P ι′ (if
returned values are equivalent, but ∃x. σ1(x) 6∼P σ′

1(x), then we proceed as in

15

Honsell, Lenisa, Redamalla

the previous case by considering C[] , []; x). Let us assume that the objects
to which ι, ι′ point in the stores σ1, σ

′
1 are of class c. If σ1(ι).f 6= σ′

1(ι
′).f ,

then the context C[] , [].m2(. . .) tells apart e and e′, getting a contradiction.
Otherwise, if σ1(ι).f = σ′

1(ι
′).f , then let z be fresh, and let us consider the

store σ[ι/z]. Then the context C[] , z.m2(. . . a . . .); ([].m1(. . .) = z.m1(. . .)),
where a is a new value for the field f , tells apart e and e′ in the store σ[ι/z].2

Notice that the assumption of no occurrence of new expressions in e, e′ is
fundamental in the proof above, since the technique of extending the store with
a fresh variable would not work in the case the addresses ι, ι′ are generated by
new expressions.

4 Final Remarks and Directions for Future Work

In this paper we have introduced a contextual equivalence on Fickle pro-
grams, and we have defined a coalgebraic behavioural equivalence, which we
conjecture to be adequate w.r.t. the contextual equivalence, and which is com-
plete under suitable restrictions on syntax. To achieve this we had to extend
the coalgebraic framework of [13,9] for OO-languages to the imperative case.
Object re-classification is captured in a very natural way in the coalgebraic
semantics.

In the future, we plan to:

• accomodate coalgebraically binary methods in the imperative setting;

• introduce coalgebraic equivalences between program implementations of the
same specification, which approximate the program equivalence of Defini-
tion 1.2;

• explore the semantics of types in the coalgebraic setting;

• extend the coalgebraic description of Fickle programs of Section 2 to bial-
gebras, modeling method constructors as algebra operations;

• explore program logics, capitalizing on the coinduction principles supported
by the coalgebraic semantics.

References

[1] P.Aczel. Non-well-founded sets, CSLI Lecture Notes 14, Stanford 1988.

[2] P.Aczel. Final Universes of Processes, MFPS’93, Brookes et al. eds., LNCS 802,
1993.

[3] S.Drossopoulou, Three Case studies in FickleII , Tech. rep., Imperial College.
Available from http://www.di.unito.it/∼damiani/papers/dor.html.

[4] S.Drossopoulou, F.Damiani, M.Dezani-Ciancaglini, P.Giannini. More dynamic
object re-classification: FickleII , ACM Transactions On Programming
Languages and Systems 24(2), 2002, 153–191.

16

Honsell, Lenisa, Redamalla

[5] U.Hensel, M.Huisman, B.Jacobs, H.Tews. Reasoning about Classes in Object-
Oriented Languages: Logical Models and Tools, European Symposium on
Programming, C.Hankin ed., Springer LNCS 1381, 1998, 105–121.

[6] F.Honsell, M.Lenisa. Final Semantics for Untyped Lambda Calculus, TLCA’95
Conf. Proc., M.Dezani et al.eds., Springer LNCS 902, Berlin 1995, 249–265.

[7] F.Honsell, M.Lenisa, U.Montanari, M.Pistore. Final Semantics for the π-
calculus, PROCOMET’98, D. Gries et al. eds, Chapman & Hall, 1998.

[8] F.Honsell, M.Lenisa, R.Redamalla. Coalgebraic Semantics of Binary Methods
for a Functional OO-Language, in preparation.

[9] B.Jacobs. Objects and Classes, co-algebraically, Object-Orientation with
Parallelism and Book Persistence, B.Freitag et al. eds., Kluwer Academic
Publishers, 1996, 83–103.

[10] B.Jacobs. Behaviour-refinement of object-oriented
specifications with coinductive correctness proofs, TAPSOFT’97, M.Bidoit, et.
al. eds., Springer LNCS 1214, 1997, 787–802.

[11] B.Jacobs, J.Rutten. A tutorial on (co)algebras and (co)induction, Bulletin of
the EATCS 62, 1996, 222–259.

[12] M.Lenisa. Final Semantics for a Higher Order Concurrent Language, CAAP’96,
H.Kirchner et. al. eds., LNCS 1059, 1996, 102–118.

[13] H.Reichel. An approach to object semantics based on terminal co-algebras,
MSCS 5, 1995, 129-152.

[14] H.Tews. Coalgebras for Binary Methods, CMCS’2000, ENTCS 33, 2000.

[15] J.J.M.M.Rutten, D.Turi. REX Conference Proceedings, J.de Bakker et al. eds.,
LNCS 803, 1994, 530–582.

17

	The Language Fickle
	Syntax
	Operational Semantics
	Observational Equivalences

	Coalgebraic Description of Fickle Objects and Programs
	Binary Methods

	Coalgebraic and Observational Equivalences on Programs
	Final Remarks and Directions for Future Work
	References

