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Abstract

In this paper, we model fresh names in the π-calculus using abstractions with respect
to a new binding operator θ. Both the theory and the metatheory of the π-calculus
benefit from this simple extension. The operational semantics of this new calculus
is finitely branching. Bisimulation can be given without mentioning any constraint
on names, thus allowing for a straightforward definition of a coalgebraic semantics,
within a category of coalgebras over permutation algebras. Following previous work
by Montanari and Pistore, we present also a finite representation for finitary pro-
cesses and a finite state verification procedure for bisimilarity, based on the new
notion of θ-automaton.

1 Introduction

The π-calculus [13,18] is a process calculus which provides a conceptual frame-
work for understanding mobility via name passing. Processes can communi-
cate in a network whose topology can change dynamically by passing, possibly
local, channel names. As for any other foundational calculus, we need strong
mathematical tools for expressing mobile systems and reasoning about their
behaviours. However, due to the peculiar behaviour of mobile processes and
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names, the well-known tools and techniques which have been successful for
CCS-like languages cannot be straightforwardly extended to the π-calculus.

At the syntactic level, we have the problematic issue of binders and scope
of local names. At the operational semantic level, we have the issue of ensuring
freshness conditions for names. At the model-theoretic level, we have the issue
of providing a coalgebraic (final) semantics. Finally, from the practical point
of view, a finite representation for finitary processes is desirable [9,11,14].

All the above issues have been considered in many previous papers. Of-
ten, reformulations of the same calculus are introduced, in order to cope with
these problematic issues. The question is how to present “best” the calcu-
lus, in order to achieve the mathematical structure we need for reasoning on
its core computational aspects. The answer to this question depends on the
metalogical formalism in which we define the calculus. Recently, for the π-
calculus many reformulations, in different metalogics, have been presented. A
first-order, de Bruijn-like approach is adopted in [14,3], where processes can
be equipped with explicit permutations of names. A second-order approach,
based on Higher-Order Abstract Syntax, is adopted in [9,10,12], where most
issues about freshness of names are simplified, taking advantage of the meta-
logic notion of capture-avoiding substitution. A somehow mid-way approach
is in [6], where the reformulation is given in the logic of Frænkel-Mostowski
models of first-order set theory (i.e., sets with atoms and permutations).

In this paper, we provide yet another formulation of the π-calculus with the
aim of expressing generation of fresh names at every level (syntactic, semantic
and implementative), and still keeping the metalogical overhead as low as
possible. In fact, the calculus that we will present in Section 3, is just a
conservative extension of the ordinary π-calculus with a new unary binding
operator θ; for this reason, it is called the πθ-calculus. This extension is
suggested by the higher order presentations of the π-calculus as in [9,10,12,5].

The operator θ allows to explain “fresh” names as “locally θ-bound” names.
A transition which needs a fresh name is rendered as a transition to a θ-
abstracted process, i.e. where the fresh name is θ-bound. As we will see, many
aspects of the treatment of the theory and metatheory of the π-calculus will
benefit from this simple extension. Differently from the π-calculus, in the πθ-
calculus also actions are taken up-to α-conversion, yielding a finitely branching
semantics w.r.t. fresh names. For example, while the π-process (νy)x̄y.P can

evolve via (νy)x̄y.P
x̄(z)
−→ P{z/y} for any fresh name z (and thus it is infinitely

branching), the πθ-process has just one move (νy)x̄y.P
(θy)x̄y
−→ (θy)P .

Bisimulation on the πθ-calculus can be given without any constraint on
bound names in labels. This allows for a direct re-use of the techniques in
[1,2,16] for defining a coalgebraic semantics. In particular, the semantics of a
process is finitely branching without being parametrized by the set of names
of possible partners, as was the case in [9]. Moreover, our semantics is finitary,
in the sense that any finitary process, i.e. with a bound degree of parallelism,
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gives rise to a finite set of descendant processes, up-to vacuous bound names
(i.e. abstracted names which do not appear in the body of the process) and
ordinary structural congruence.

In Section 4 we define the coalgebraic semantics within a category Algπ

of permutation algebras, following [14]. The algebra structure we consider is
induced by a countable family of unary permutation operators {ρi}i∈ω. The
fact that our coalgebraic semantics is an algebra homomorphism allows us to
derive interesting properties on active names of processes in the final model.

In order to get a truly finite representation for finitary processes, in Sec-
tion 5 we introduce the notion of θ-automaton. This is the counterpart, in our
second-order setting, of the notion of History Dependent Automaton of [14].
We associate to each πθ-process a θ-automaton which is finite in case the orig-
inal process is finitary. States of θ-automata are given by collapsing the orbits
of processes under the action of vacuous θ-operators. We introduce a notion
of bisimulation on the states of θ-automata. Bisimilarity between π-calculus
processes can be (finitely) verified by checking the bisimilarity relation on the
corresponding θ-automata.

Conclusions, related work, and directions for future work are in Section 6.

2 The π-calculus

In this section, we introduce briefly the π-calculus; see [13,15] for more details.
In particular, we introduce the syntax of the language, the early operational
semantics, and the equivalence relation of early bisimilarity.

In the π-calculus there are only two primitive entities: names and processes
(or agents). Let N be an infinite set of names, ranged over by x, y. The set of
processes P, ranged over by P , Q, are closed terms (w.r.t. process variables
Z) defined by the abstract syntax:

P ::= 0 | x̄y.P | x(y).P | τ.P | (νx)P | Z | rec Z.P | P1|P2 | [x = y]P

where the bound process variable Z must be guarded in recZ.P . The operators
are listed in decreasing order of precedence. The input prefix operator x(y) and
the restriction operator (νy) bind the occurrences of y in x(y).P and (νy)P
respectively. Thus, for each process P we can define the sets of its free names
fn(P ), bound names bn(P ) and names n(P ) , fn(P ) ∪ bn(P ). Processes are
taken up-to α-equivalence, which is defined as expected. Capture-avoiding
substitution of a single name y in place of x in P is denoted by P{y/x}.

We denote by PX , where X is a finite set of names, the subset of π-calculus
processes whose free names are in X.

There is a plethora of slightly different labeled transition systems for the
operational semantics of the π-calculus, see e.g. [13,15,18]. Here, we present

the original one for early operational semantics [13]: the relation
µ

−→ is the
smallest relation over processes satisfying the rules in Figure 1. (The right
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−

x(z).P
xy
−→ P{y/z}

(IN)

−

τ.P
τ

−→ P
(TAU)

P
xy
−→ P ′ Q

x(y)
−→ Q′

P |Q
τ

−→ (νy)(P ′|Q′)
y 6∈ fn(P )

(CLOSEl)

P
µ

−→ P ′

(νy)P
µ

−→ (νy)P ′
y 6∈ n(µ) (RES)

P
µ

−→ P ′

P |Q
µ

−→ P ′|Q
bn(µ) ∩ fn(Q) = ∅

(PARl)

−

xy.P
xy
−→ P

(OUT)

P
xy
−→ P ′

(νy)P
x(y)
−→ P ′

y 6= x (OPEN)

P
µ

−→ P ′

[x = x]P
µ

−→ P ′
(MATCH)

P{recZ.P/Z}
µ

−→ P ′

rec Z.P
µ

−→ P ′

(UNFOLD)

P
xy
−→ P ′ Q

xy
−→ Q′

P |Q
τ

−→ P ′|Q′
(COMl)

Fig. 1. Early Operational semantics of the π-calculus.

versions of rules PAR, COM and CLOSE have been omitted.)

The early operational semantics exploits four actions, defined by the syntax
(L 3) µ ::= τ | xy | x̄y | x̄(z). Their intuitive meaning is the following:

silent action: P
τ

−→ Q means that P can reduce itself to Q without inter-
acting with other processes;

free output: P
x̄y
−→ Q means that P can reduce itself to Q emitting the

name y on the channel x;

free input: P
xy
−→ Q means that P can receive from the channel x the name

y and then evolve into Q;

bound output: P
x(z)
−→ Q means that P can evolve into Q emitting on the

channel x a name z, which is bound in P (but not in Q); only upon synchro-
nization, z will be shared with the receiving agents and restricted again.

The functions fn(·) and bn(·) are extended to actions, by putting fn(x̄(z)) =
{x}, fn(xy) = fn(x̄y) = {x, y}, fn(τ) = bn(τ) = bn(xy) = bn(x̄y) = ∅,
bn(x̄(z)) = {z}. As usual, n(µ) , fn(µ) ∪ bn(µ).

The τ and free input and free output actions are called free, the remaining
ones are called bound. Note that actions are not taken up-to α-equivalence.

Definition 2.1 (Early Bisimilarity) A symmetric relation R over π-calculus
processes is an early bisimulation iff, for all processes P, Q, if P R Q then

for each P
µ

−→ P ′ with bn(µ) ∩ fn(P, Q) = ∅ then there exists Q′ such that

Q
µ

−→ Q′ and P ′ R Q′.

The early bisimilarity ∼ is the greatest early bisimulation.
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3 The πθ-calculus

In this section, we introduce the πθ-calculus, an extension of the π-calculus,
where processes can be prefixed possibly by a finite sequence of the new bind-
ing operator θ. This new operator can be used to take care of the allocation of
fresh names; essentially, it allows to model a fresh name using a bound name.

3.1 Syntax

The sets of πθ-processes Pθ and πθ-actions Lθ are defined as follows:

Pθ , {(θx1) . . . (θxn)P | P ∈ P, x1, . . . , xn ∈ N , n ≥ 0}

Lθ , {(θx1) . . . (θxn)µ | µ ∈ Lf ∪ Lb, x1, . . . , xn ∈ N , n ≥ 0}

where P is the set of π-calculus processes, Lf is the set of free actions, i.e.,
τ , free input and free output, and Lb is the set of bound actions, i.e. bound
input, x(y), and bound output, x̄(y), where x( ) and x̄( ) bind y. By abuse of
notation, P, Q and µ will range also over Pθ and Lθ, respectively. We will use
the abbreviations (θx)P and (θx)µ for the process (θx1) . . . (θxn)P , and for
the label (θx1) . . . (θxn)µ, respectively, where P and µ are θ-free. The operator
θ binds the occurrences of x1 . . . xn in (θx)P and in (θx)µ. Both processes
and labels are taken up-to α-equivalence; hence, without loss of generality,
x1, . . . , xn in x can always be assumed to be all distinct (e.g., (θxx)P is the
same as (θxy)P{y/x}).

The process (θx)P can be viewed as the representation of a process ab-
straction obtained by instantiating P with a fresh name; the name which has
to be fresh remains bound in P so that its freshness is guaranteed implicitly.
In a sense, θ-abstractions resemble the λ-abstractions of the alternative pre-
sentations of the π-calculus in, e.g., [15, §5.5]. However, our aims are different;
in fact, we do not have a notion of “application” (i.e., concretion).

For X a finite set of names, we denote by Pθ
X and Lθ

X , the sets of πθ-
processes and πθ-labels whose free names are in X, respectively. The set of
closed πθ-processes is Pθ

∅ . The occurrence (θxi) in the process (θx1 . . . xn)P
is vacuous if xi 6∈ fn(P ).

3.2 Operational Semantics

The operational semantics of the πθ-calculus is given by a family of relations.
For X a finite set of names, the relation

−→→X⊆ Pθ
X ×Lθ

X × Pθ
X

is defined as the smallest relation satisfying the rules in Figure 2. By definition,

for any transition of the form (θx)P
(θy)µ
−→→X (θz)Q, we have fn((θy)µ, (θz)Q) ⊆

fn((θx)P ). Hence, if (θx)P is closed, then X can be set to ∅.
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−

τ.P
τ

−→→X P
(TAU)

−

x(y).P
xz
−→→X P{z/y}

z ∈ X

(IN)
−

x(y).P
x(y)
−→→X (θy)P

(INθ)

−

xy.P
xy
−→→X P

(OUT)

P
µ

−→→X P ′

P |Q
µ

−→→X P ′|Q
µ ∈ Lf

(PARl)

P
µ

−→→X (θx)P ′

P |Q
µ

−→→X (θx)P ′|Q
(PARθ

l )

P
xy
−→→X P ′ Q

xy
−→→X Q′

P |Q
τ

−→→X P ′|Q′

(COMl)

P
xy
−→→X

U

{y} P ′

(νy)P
x(y)
−→→X (θy)P ′

(OPEN)

P{recZ.P/Z}
µ

−→→X P ′

rec Z.P
µ

−→→X P ′
(UNFOLD)

P
µ

−→→X P ′

[x = x]P
µ

−→→X P ′
(MATCH)

P
µ

−→→X
U

{y} P ′

(νy)P
µ

−→→X (νy)P ′
y 6∈ fn(µ), µ ∈ Lf

(RES)

P
µ

−→→X
U

{y} (θz)P ′

(νy)P
µ

−→→X (θz)(νy)P ′
y 6∈ fn(µ) (RESθ)

P
x(y)
−→→X (θy)P ′ Q

x̄(y)
−→→X (θy)Q′

P |Q
τ

−→→X (νy)P ′|Q′
(CLOSEl)

P
µ

−→→X
U

{x} Q

(θx)P
(θx)µ
−→→X (θx)Q

(THETA)

Fig. 2. Early Operational semantics of the πθ-calculus.

Note that there are two input rules, IN and INθ. In rule IN the bound
name is instantiated with a “previously known” name z in X. Rule INθ takes
care of the instantiation with a fresh name, by creating a new θ-bound name
y. In this way, all π-calculus input transitions differing by the choice of the
new name are collapsed (by α-rule) in a single transition, and the πθ-system
becomes finitely branching. As in rule INθ, also in rule OPEN, the allocation
of a fresh name is delegated to the constructor θ. The rules PAR and RES are
duplicated, to take into account the case in which a θ-bound name appears in
the target process. 2

We remark that (νx)P and (θx)P behave differently, in general. Namely,
rules RES and OPEN do not allow for actions whose subject is exactly x,
while the process (θx)P could make any transition under θ.

The following lemma clarifies the rôle of θ, and it is the counterpart of [13,
Lemma 3] for the πθ-calculus.

Lemma 3.1 For all X finite, for all (θx)P ∈ Pθ
X :

i) for all (θx)Q, (θx)µ: (θx)P
(θx)µ
−→→ X (θx)Q iff P

µ
−→→X∪{x} Q;

ii) for all (θxy)Q, (θx)µ: (θx)P
(θx)µ
−→→ X (θxy)Q iff P

µ
−→→X∪{x} (θy)Q.

We can draw a precise correspondence between π- and πθ-derivations:

2 Strictly speaking, the side conditions “z ∈ X” of rule IN and “y 6∈ fn(µ)” of rules RES
and RESθ are redundant, because they are always ensured by the type of −→→X .
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Proposition 3.2 For all X finite, for all z not in X, and P ∈ PX∪{z},
x, y ∈ N :

• P
τ

−→ Q iff (θz)P
(θz)τ
−→→X (θz)Q;

• P
x̄y
−→ Q iff (θz)P

(θz)x̄y
−→→ X (θz)Q;

• P
xy
−→ Q iff

(
if y ∈ X ∪ {z} then (θz)P

(θz)xy
−→→ X (θz)Q else (θz)P

(θz)x(y)
−→→ X (θzy)Q

)
;

• P
x̄(y)
−→ Q iff (θz)P

(θz)x̄(y)
−→→ X (θzy)Q.

The proof of Proposition 3.2 is straightforward by mutual induction on the
structure of derivations. In particular, when z is empty:

Corollary 3.3 For all X finite, for all P ∈ PX , for all x, y ∈ N :

• P
τ

−→ Q iff P
τ

−→→X Q;

• P
x̄y
−→ Q iff P

x̄y
−→→X Q;

• P
xy
−→ Q iff

(
if y ∈ X then P

xy
−→→X Q else P

x(y)
−→→X (θy)Q

)
;

• P
x̄(y)
−→ Q iff P

x̄(y)
−→→X (θy)Q.

The relations −→→X can be seen as a family of coherent “approximations” of
the usual early operational semantics. We can recover this semantics by taking
the union of all approximations: for µ action of the πθ-calculus, we define

µ
−→→

,
⋃

X

µ
−→→X . Of course, we could drop safely the X parameter and consider all

the transition systems simultaneously, without any other consequence but that
the operational semantics would then be finitely branching only w.r.t. fresh
names. At the moment, each −→→X is truly finitely branching, because the
names which can be chosen in the rule IN must belong to X, which is finite.
We prefer to keep the X parameter, in order to provide a sharper analysis of
the system.

3.3 Bisimulation

We can now introduce a notion of bisimulation on πθ-processes, which provides
an alternative characterization of early bisimilar processes.

Definition 3.4 (Early θ-bisimilarity) Let X be a finite set of names. A
symmetric relation RX ⊆ Pθ

X ×Pθ
X is an early θ-bisimulation at stage X iff,

for all P, Q ∈ Pθ
X processes, P RX Q implies:

• if P
µ
−→→X P ′, then there exists Q′ such that Q

µ
−→→X Q′ and P ′ RX Q′.

The early θ-bisimilarity at stage X, ≈X, is the greatest early θ-bisimulation
at stage X. The early θ-bisimilarity ≈ is defined as ≈,

⋃
X ≈X .

Notice that the notion of early θ-bisimilarity depends, for generic processes,
on their free names. Again we could disregard X completely. Anyway, for θ-
closed processes, any reference to names disappears altogether. What is more
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significant, however, is that for all (possibly open) processes, the side condi-
tion on the freshness of names necessary for bound output in Definition 2.1
disappears, being implicit in the fact that the new name is bound by θ in
P ′, Q′. The price to pay is that each time a fresh name is needed, an extra
(possibly vacuous) θ is generated, and the set of processes reached during the
evolution of a finitary process is finite, only up-to vacuous θ’s.

Example 3.5 Let us consider the recursive process P = rec Z.(νy).x̄y.Z ∈
PX, where X = {x}. In the π-calculus, the process P can evolve into itself,

i.e. P
x̄(y)
−→ P

x̄(y)
−→ . . . while, in the πθ-calculus, P can evolve as follows:

P
x̄(y0)
−→→X (θy0)P

(θy0)x̄(y1)
−→→ X (θy0y1)P

(θy0y1)x̄(y2)
−→→ X (θy0y1y2)P −→→X . . .

Notice that the states reached by P after a finite number of transition steps
differ by a finite number of vacuous θ’s.

The following lemma can be viewed as the “higher order” version of Lemma 6
of [13], and it is instrumental to prove Theorem 3.7 below.

Lemma 3.6 Let (θx)P, (θx)Q ∈ Pθ
X. Then (θx)P≈X(θx)Q iff P≈X∪{x}Q.

As a main correspondence result, θ-bisimilarity is a conservative extension
of usual bisimilarity:

Theorem 3.7 Let P, Q ∈ P. Then P ∼ Q iff P ≈ Q.

Proof. Both directions are proved by coinduction, using Proposition 3.2.
(⇒) We prove that the relation

R = {((θx1 . . . xn)P, (θx1 . . . xn)Q | n ≥ 0, x1, . . . , xn ∈ N ∧ P ∼ Q}
is an early θ-bisimulation at stage X, for X ⊇ fn(P, Q).
(⇐) Using Lemma 3.6, we prove that the relation R = {(P, Q) | P ≈ Q} is
an early bisimulation. 2

Remark 3.8 In the light of Lemma 3.6, one could wonder whether it is pos-
sible to simplify our notion of early θ-bisimulation, by getting rid of redundant
vacuous θ’s. This would allows us to overcome the problem highlighted by Ex-
ample 3.5. But even if we restrict ourselves to processes whose occurrences of
names are all active 3 , independent elimination of vacuous θ’s is not safe, as
we can see from the counterexample below.

Example 3.9 Let P = (νx)w̄x.(νy)x̄y.ūx.0, Q = (νx)w̄x.(νy)x̄y.ūy.0. Then
P and Q are not early bisimilar, because the last action of P consists in com-
municating the first extruded name, while Q communicates the second extruded
name. But P and Q turn out to be erroneously equated if we eliminate vacuous
θ’s. Namely, after two transition steps P reduces to (θxy)ūx.0, and Q reduces
to (θxy)ūy.0, but, since θy is vacuous in the first process, while θx is vacuous
in the latter, we reduce ourselves to considering the pair of processes (θx)ūx
and (θy)ūy, which turn out to be α-equivalent and thus bisimilar.

3 An occurence of a name is active in P if it appears in an action in the evolution of P .
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4 Finitary Coalgebraic Semantics

In this section, we capitalize on the results of the previous sections, in or-
der to give a coalgebraic description of early bisimilarity which is both not
parametrized on sets of names as well as finitary (up-to structural congruence
and vacuous bound names) for finitary processes. We focus on closed πθ-
processes, since, by Lemma 3.6, bisimilarity of (possibly open) πθ-processes
can always be reduced to bisimilarity of θ-closed processes.

Recall that a T -coalgebra on a category C (e.g. Set), where T is an end-
ofunctor, is a pair (A, α), where A is an object of C and α : A → T (A) is
an arrow of C. A T -coalgebra morphism h : (A, α) → (B, β) is an arrow
h : A → B of C (e.g., a function when C = Set), such that β ◦ h = T (h) ◦ α.

According to the final semantics approach [1,2,16], the operational seman-
tics of a calculus is represented as a T -coalgebra for a suitable endofunctor T . If
the functor is “well-behaved,” there exists a final T -coalgebra, say Ω = (Ω, αΩ).
Moreover, for any T -coalgebra (A, α), the unique arrow M : (A, α) → (Ω, αΩ)
induces an equivalence on A which is the categorical counterpart of the ordi-
nary notion of bisimulation: a T -bisimulation on (A, α) is a relation R ⊆ A×A
for which there exists an arrow γ : R → T (R), such that the projections π1, π2

can be lifted to T -coalgebra morphisms from (R, γ) to (A, α).

In order to take advantage of the algebraic structure of θ-operators and
be able to capture the number of active names in processes, we work in a
category of structured coalgebras. We consider coalgebras over the category
Algπ of permutation algebras [14], which we recall next.

Let us consider the permutations of the set of natural numbers {1, 2, 3 . . .}.
The kernel of a permutation π is the set ker(π) , {i | π(i) 6= i}. We denote by
permfk , {π | ker(π) finite} the countable group of finite-kernel permutations.

Definition 4.1 (permutation signature and algebras) The signature
Σπ is given by the set of finite-kernel permutations, together with the axioms
schemata id(x) = x and π1(π2(x)) = (π1π2)(x).

A permutation algebra A = (A, {π̂A}) is an algebra for Σπ. A permutation
morphism σ : A → B is an algebra morphism, i.e., a function σ : A → B such
that σ(π̂A(x)) = π̂B(σ(x)). Finally, Alg(Σπ) (shortened as Algπ) denotes the
category of permutation algebras and their morphisms.

The set Pθ
∅ of closed πθ-calculus processes can be endowed with a structure

of a permutation algebra. For π ∈ perm fk , and n ∈ ω, let us define maxn π ,

max{π(i) | i = 1, . . . , n} (thus maxn π ≥ n). We define the name reindexing
operator ρπ : Pθ

∅ → Pθ
∅ as ρπ((θx)P ) , (θx1 . . . xmaxn π)P [π], where P [π] de-

notes the process obtained by the application of π to the free names occurring
in P . Let ρ be the countable set of unary operators ρ , {ρπ | π ∈ perm fk}.

Proposition 4.2 The pair (Pθ
∅ , ρ) is a permutation algebra.

The operational semantics induces a structure of coalgebra on the permu-
tation algebra of closed πθ-processes for a functor similar to that of CCS:

9
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Definition 4.3 Let T : Algπ → Algπ be the functor defined by the canonical
extension to arrows of the function:

T (A, ρA) ,

(
℘f(L

θ × A), ρ℘f(L
θ×A) = {ρ℘f(L

θ×A)
π | π ∈ permfk}

)

where, for any u ∈ ℘f(Lθ × A), π ∈ perm fk ,

ρ℘f(L
θ×A)

π (u) = {((θx1 . . . xmaxn π)µ[π], ρπa) | ((θx1 . . . xn)µ, a) ∈ u}

Proposition 4.4 Let α : (Pθ
∅ , ρ) → T (Pθ

∅ , ρ) be defined as α(P ) , {(µ, Q) |

P
µ
−→→∅ Q}. Then, Cπθ , (Pθ

∅ , ρ, α) is a T -coalgebra.

Since T is the lifting of the corresponding polynomial functor Ts : Set →
Set, by [4, Proposition 28] we can lift the adjuction F a V (where F : Set →
Algπ is the free construction and V : Algπ → Set is the forgetful functor) to
the categories of Ts-coalgebras and T -coalgebras, thus obtaining an adjunction

Ts-Coalg
FT

⊥
--

T -Coalg
VT

mm
. We have therefore the following:

Proposition 4.5 The functor T : Algπ → Algπ has a final coalgebra Ω =
(Ω, ρΩ, αΩ), and moreover VT (Ω) is the final Ts-coalgebra.

Proof. The final coalgebra is given by RT (1), where RT : Algπ → T -Coalg is
the right adjoint of the forgetful functor. 2

Remark 4.6 One may wonder whether Proposition 4.4 still holds if we con-
sider other constructors in the algebraic structure beside ρ’s. The point is that
α has to be a morphism between permutation algebras, i.e. it has to respect
the algebraic structures. This holds for ν, | (providing an alternative proof
that bisimilarity is a congruence w.r.t. ν, |) but it does not hold in the case of
input prefix. For example, let us consider the operator ιzx(·) = z(x).· acting
on processes as follows: ιzx((θy)P ) , (θyz)z(x).P . If P = (θyw)ȳw, then
α(ιzx(P )) 6= T (ιzx)(α(P )), whatever is the action of ιzx on labels.

Using Lemma 3.6 and Theorem 3.7, we can easily prove that:

Theorem 4.7 Let P, Q ∈ P be such that (θx)P, (θx)Q ∈ Pθ
∅ . Then P ∼ Q iff

there exists a T -bisimulation, R, on the coalgebra Cπθ such that (θx)P R (θx)Q.

The following proposition characterizes T -bisimilarity by finality, and hence,
by Theorem 4.7, also bisimilarity on π-calculus processes.

Proposition 4.8 The equivalence induced by the unique morphism M : Cπθ −→
Ω coincides with the union of all T -bisimulations on the T -coalgebra Cπθ.

Finally, we can put to use the permutation algebraic structure of coalge-
bras. In [14], the structure of coalgebras given by permutation algebras was
used to show that the support of the interpretation of a π-calculus process in
the final model amounts exactly to the active names of the process. In our
setting we can obtain a similar result:

10
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Proposition 4.9 For (θx)P ∈ Pθ
∅ and n = |x|, the family {ρΩ

π (M((θx)P )) |
π ∈ perm fk , π({1 . . . n}) ⊆ {1 . . . n}} has at most n!/k! distinct elements,
where k is the number of active names of P .

Proof. (Outline) The action of ρΩ
π commutes with the final semantics. By

definition of active names, swapping non-active names in the process does not
change its bisimilarity class. Therefore, the number of distinct elements in the
family {ρΩ

π (M((θx)P )) | π ∈ perm fk , π({1 . . . n}) ⊆ {1 . . . n}} is bounded by
the number of different permutations of n objects, k of which are equal. 2

5 θ-automata

In this section, drawing inspiration from [14], we introduce a notion of au-
tomaton, called θ-automaton, for representing in a finite way the evolution of
finitary πθ-processes. These are processes whose descendants have a bounded
number of possible parallel actions (degree of parallelism):

Definition 5.1 (Finitary processes) The degree of parallelism deg(P ) of
a πθ-process P is defined as follows (for π a generic action prefix):

deg(0) = deg(Z) , 0 deg(π.P ) , 1 deg(P | Q) , deg(P ) + deg(Q)

deg((νx)P ) = deg((θx)P ) = deg([x = y]P ) = deg(rec Z.P ) , deg(P )

Let P ∈ Pθ
X; the set of descendants of P is des(P ) , {Q | P −→→∗

X Q}, where
−→→∗

X is the reflexive and transitive closure of −→→X . A process P ∈ Pθ
X is

finitary if deg(P ) , sup{deg(Q) | Q ∈ des(P )} < ∞.

Structurally congruent πθ-processes will be represented by the same state:

Definition 5.2 (Structural Congruence) The structural congruence ≡ on
π-calculus processes is the smallest congruence that satisfies the following:

(par) P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

(res) (νx)0 ≡ 0 (νx)(P | Q) ≡ P | (νx)Q, if x 6∈ fn(P )

(νx)(νy)P ≡ (νy)(νx)P (νx)π.P ≡ π.(νx)P, if x 6∈ fn(π)

(match) [x = x]P ≡ P [x = y]0 ≡ 0 (unfold) recZ.P ≡ P{recZ.P/Z}

where π stands for a generic action/matching prefix.

The πθ-processes (θx)P , (θx)Q are structurally congruent (also denoted
by ≡) if and only if P ≡ Q.

For each class S ⊆ Pθ of congruent processes, let us fix a representative
process P such that |fn(P )| = min{|fn(Q)| | Q ∈ S}.

Moreover, since processes differing by vacuous θ’s will be collapsed in the
same state of the θ-automaton, we need to introduce a canonical represen-
tative for classes of congruent processes together with all processes differing
by vacuous θ’s. For the sake of simplicity, but without loss of generality by
Lemma 3.6, we introduce θ-automata only for closed πθ-processes.

11
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Definition 5.3 (canonical terms, orbit) A πθ-process (θx1 . . . xn)P ∈ Pθ
∅

is canonical if it is the representative of a ≡-class and xi ∈ fn(P ), for all
1 ≤ i ≤ n. Let can(Pθ

∅ ) denote the set of canonical πθ-processes.

For a canonical process (θx)P , we define its orbit as the set orbit((θx)P ) ,

{(θz0x1 . . .zn−1xnzn)P ′ ∈ Pθ
∅ | P ′ ≡ P ∧ |z0|, . . . , |zn| ≥ 0 ∧ ∀i, j.xj 6∈ zi}.

We denote the normalization function by ‖ · ‖ : Pθ
∅ → can(Pθ

∅ ), defined by

‖(θx1 . . . xn)P‖ , (θy1 . . . ym)P ′, where P ′ is the representative of the equiv-
alence class of P , {y1, . . . , ym} = fn(P ′), and x1 . . . xn = z0y1z1 . . . ymzm

(where |zi| ≥ 0). The reindexing of (θx1 . . . xn)P is the partial strictly mono-
tone function ξ((θx1 . . . xn)P ) defined by ξ((θx1 . . . xn)P )(i) = j ⇐⇒ xi = yj.

In the following, we denote by M(n, m) the set of partial strictly monotone
functions from {1, . . . , n} to {1, . . . , m}.

Definition 5.4 (θ-automaton) Let P ∈ Pθ
∅ . The θ-automaton AP induced

by P is the triple (S, ‖P‖, 7→), where:

• S is the set of states. Each state is the orbit of the canonical process
corresponding to a descendant of P , and it is denoted by the canonical rep-
resentative itself.

• ‖P‖ is the initial state.

• 7→⊆ S × Lθ × S is the transition relation defined by:

P1
µ
7→ P2 iff there exists P ′

2 such that P1
µ
−→→∅ P ′

2 and ‖P ′
2‖ = P2 .

In order to prove the fundamental Theorem 5.7 below, which motivates
the notion of θ-automaton, we first need the following technical definition.

Definition 5.5 Let P be a πθ-process (possibly with free process variables).
The set of subprocesses of P is defined as sub(P ) , {P} ∪ sub ′(P ), where:

sub ′(0) = sub ′(Z) , ∅ sub ′(P |Q) , sub(P ) ∪ sub(Q)

sub ′(π.P ) = sub ′([x = y]P ) = sub ′((νx)P ) = sub ′((θx)P ) , sub(P )

sub ′(rec Z.P ) , {Q{recZ.P/Z} | Q ∈ sub(P )}

Lemma 5.6 If P ∈ Pθ, then the set sub(P ) is finite, and for all Q ∈ sub(P ):
sub(Q) ⊆ sub(P ).

Theorem 5.7 Let (θx)P ∈ Pθ
∅ be a finitary process. Then A(θx)P is finite.

Proof. Let n0 = deg(P ), and Q be any descendant of (θx)P . Then, by
definition of ≡, either Q admits a canonical form Q ≡ (θz)(νy)(Q1| . . . |Qn),
where n ≤ n0, and Qi are sequential processes (i.e., non-null processes whose
top operator is either an action prefix or a non-trivial matching) or Q ≡ (θz)0.
Moreover, by the definition of the transition system, each component Qi is a
subprocess of P , up-to-≡ and (possibly non injective) name substitution, i.e.
Qi ≡ Piσ, for a name substitution σ, and Pi is a subprocess of P . Since the

12
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subprocesses of P are finite, then there are only finitely many possible Qi,
up-to bijective name substitutions. Moreover, the number of free names in Qi

is bounded by the number of (either free or bound) names in P , n(P ), and
hence the number of non vacuous ν’s and θ’s in (θz)(νy)(Q1 | . . . | Qn) is
bounded by n0 × |n(P )|. Hence, the number of descendants Q of a finitary
process is finite, up-to-≡ and vacuous θ’s. 2

One can easily check that the θ-automaton corresponding to (the θ-closure
of) the recursive process of Example 3.5 is finite (actually it consists of exactly
one state and one transition edge).

One could develop a complete theory of θ-automata, and recover classi-
cal results, such as minimalization. But here we shall only investigate how
to use θ-automata in order to devise an effective procedure for establishing
bisimilarity of πθ-processes. Given two processes, in order to use the induced
θ-automata to check bisimilarity, we need to keep track, at each step, of the
correspondence between θ-bound names in the canonical processes (Exam-
ple 3.9 shows that elimination of vacuous θ’s could otherwise compromise
bisimilarity). To this aim, we use a finitary reindexing function, mapping the
positions of variables which have to be identified in the two processes. Let us
denote by M the set

⋃
n,m∈ω M(n, m):

Definition 5.8 (Indexed Bisimilarity) Let A = (S, P0, 7→), A′ = (S ′, Q0, 7→′)
be θ-automata. An indexed bisimulation R ⊆ S × M × S ′ is a relation such
that, for (θx)P ∈ S, (θy)Q ∈ S ′, for f ∈ M(|x|, |y|), if ((θx)P, f, (θy)Q) ∈ R
then: let dom(f) = {i1, . . . , ik}, x = u0xi1u1 . . . xikuk, y = v0yf(i1)v1 . . . yf(ik)vk,
x ∩ y = ∅, z = u0v0xi1u1v1 . . . xikukvk,

• if (θz)P
(θz)µ
−→→ ∅ (θz)P ′, then there exists (θz)Q′ such that

· (θz)Q{xi1/yf(i1), . . . , xik/yf(ik)}
(θz)µ
−→→ ∅ (θz)Q′

· (‖(θz)P ′‖, f ′, ‖(θz)Q′)‖ ∈R, where f ′ = ξ((θz)Q′) ◦ (ξ((θz)P ′))−1.

• if (θz)P
(θz)µ
−→→ ∅ (θzz′)P ′, then there exists (θzz′)Q′ such that

· (θz)Q{xi1/yf(i1), . . . , xik/yf(ik)}
(θz)µ
−→→ ∅ (θzz′)Q′

· (‖(θzz′)P ′‖, f ′, ‖(θzz′)Q′)‖ ∈R), where f ′ = f1 ∪ f2,
f1 = ξ((θzz′)Q′) ◦ (ξ((θzz′)P ′))−1 and

f2 =

{
{(max(dom(f1)) + 1, max(cod(f1)) + 1)} if z′ ∈ fn(P ′) ∩ fn(Q′)

∅ otherwise

• ((θy)Q, f−1, (θx)P ) ∈R .

The indexed bisimilarity, ', is the greatest indexed bisimulation. We say
that the automata A and A′ are f -bisimilar if (P0, f, Q0) ∈', for some f ∈
M(|x|, |y|).

Using Lemma 3.6, one can prove that:

Theorem 5.9 Let P, Q ∈ P{x1,...,xn}. Then, P ∼ Q iff A(θx)P and A(θx)Q are
f -bisimilar, for f = ξ((θx)Q) ◦ (ξ((θx)P ))−1.
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If the sets of states S and S ′ of the automata are finite, then indexed
bisimulations are finite objects.

Theorem 5.10 Let A(θx)P = (S, ‖(θx)P‖, 7→) and A(θx)Q = (S ′, ‖(θx)Q‖, 7→′),
for P, Q ∈ P{x1,...,xn} finitary. Then P ∼ Q iff there exists an indexed bisimu-

lation R ⊆ S×M(k, k)×S ′, with k = max(deg(P )×|n(P )|, deg(Q)×|n(Q)|),
such that (‖(θx)P‖, f, ‖(θx)Q‖) ∈ R, where f = ξ((θx)Q) ◦ (ξ((θx)P ))−1.

Notice that k is an upper bound of the domain of the reindexing functions
between all descendents of P and Q. Thus, since M(k, k) is finite, there are
only finitely many candidate relations to be indexed bisimulations. Hence, we
have an algorithm for deciding bisimilarity of finitary processes.

6 Final Remarks and Directions for Future Work

In this paper, we have introduced the πθ-calculus, a conservative extension of
the π-calculus, which allows to explain away the mechanism of name creation
by means of a new unary binding operator. We have used the πθ-calculus to
give a coalgebraic description of early bisimilarity. This semantics is finitary,
in the sense that it is finitely branching and moreover, for any finitary process,
the set of descendants is finite, up-to vacuous θ’s and structural congruence.

Furthermore, we have also introduced θ-automata which we use to get a
truly finite representation for finitary processes, by equating in a single state
a process together with all the processes differing from it by sequences of
vacuous θ’s and structural congruence. We could push further the study of θ-
automata, by introducing a general notion of θ-automaton, independent from
the π-calculus. Standard results on automata such as minimalization could
then be naturally recovered. Moreover, there should be a corresponding notion
of transition system, generalizing the transition system of the πθ-calculus.

In [14], an alternative finitary coalgebraic semantics for the π-calculus is
proposed for early bisimilarity, and a corresponding notion of automaton, the
History Dependent Automaton, is discussed. The problem of generating a fresh
name in bound output transitions is solved by applying a suitable permutation
on the names of the process, so as to guarantee that a special concrete name
is always fresh in the permuted process. This latter name is the new name
used in the bound output transition. In a loose sense, this can be viewed
as a first-order approach, whereas the one using θ-closure operators of this
paper is second-order. However, it is an interesting future work to investigate
which is the precise connection between HD-automata and θ-automata, and
to understand which class of automata provides a more convenient (i.e. more
compact, easier to manipulate) representation of the behavior of a given pro-
cess. Furthermore, in [7] both HD-automata and θ-automata are claimed to
be instances of the more general concept of graph with binding, although the
details still remain to be spelled out. Either reconciling all the three differ-
ent approaches above or understanding and formalising their differences is a
necessary task that we intend to investigate.
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As in the case of [14], the final coalgebra we have considered has the
structure of a permutation algebra. In [14], this allows to prove that e.g.,
the support of the interpretation of a π-calculus process in the final model
consists exactly of the active names of the given process. In our development,
the counterpart of this result is Proposition 4.9: in the permutation algebra
of the final model, there are only finitely many different ρπ-closures of the
interpretation of a closed process P , corresponding to the number of different
permutations of the active names of P .

In this paper we have considered early bisimilarity, but similar techniques
can be used to account for late and weak bisimilarities. Moreover, it would
be interesting to explore also denotational (i.e. compositional) models for
early/late congruences based on the πθ-calculus. We expect to get simpler
models than the ones based on functor categories.

Finally, due to the “symbolic” nature of our operational semantics, it would
be interesting to compare it to other symbolic approaches that are at the basis
of different π-calculus implementations and tools, e.g. [8,17].
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