
Electronic Notes in Theoretical Computer Science 82 No. 1 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 18 pages

Generalized Coiteration Schemata
1

Daniela Cancila, Furio Honsell, Marina Lenisa

Dipartimento di Matematica e Informatica, Università di Udine
Via delle Scienze 206, 33100 Udine, Italy. cancila,honsell,lenisa@dimi.uniud.it

Abstract

Coiterative functions can be explained categorically as final coalgebraic morphisms,
once coinductive types are viewed as final coalgebras. However, the coiteration
schema which arises in this way is too rigid to accommodate directly many inte-
resting classes of circular specifications. In this paper, building on the notion of
T -coiteration introduced by the third author and capitalizing on recent work on
bialgebras by Turi-Plotkin and Bartels, we introduce and illustrate various genera-
lized coiteration patterns. First we show that, by choosing the appropriate monad
T , T -coiteration captures naturally a wide range of coiteration schemata, such as
the duals of primitive recursion and course-of-value iteration, and mutual coitera-
tion. Then we show that, in the more structured categorical setting of bialgebras,
T -coiteration captures guarded coiterations schemata, i.e. specifications where re-
cursive calls appear guarded by predefined algebraic operations.

Keywords: coinductive datatype, categorical semantics, coalgebra, bialgebra, coit-
eration schema, guarded specification.

Introduction

F -coalgebras, for F endofunctor on a category C, offer a uniform categorical
account of the behaviour of dynamical systems and various kinds of circular
and infinite objects [Acz88,JR96,BM96,Rut00]. According to this paradigm,
universal systems and coinductive datatypes are modeled as final coalgebras,
bisimulations are modeled as suitable coalgebras over binary relations on
states, called coalgebraic bisimulations, and coiterative functions into coin-
ductive datatypes are explained as the unique coalgebraic morphisms into the
final coalgebra.

This approach has been very fruitful and it originated a new area of se-
mantics called final semantics, whereby the operational behaviour of a pro-
cess algebra is captured as a coalgebra over the syntax and the interpreta-
tion function, inducing the intended observational equivalence, is construed
as a final mapping into a final coalgebra of suitable denotations, see e.g.
[Acz93,RT94,Len96,JR96].

1 Research supported by the MIUR Project COFIN 2001013518 Cometa.

c©2003 Published by Elsevier Science B. V.

Cancila, Honsell, Lenisa

However, the coiteration schema which arises from coalgebraic morphisms
is very rigid. Natural circular specifications of functions need a lot of pre-
processing before they can be cast into this pattern. To overcome this draw-
back, various authors [Gim94,Pav98,Len99,UV99,Bar01,UVP01] have recently
addressed the problem of generalizing the basic categorical setting to accom-
modate directly more expressive classes of circular specifications, e.g. duals of
primitive recursion and course-of-value iteration, mutual coiteration etc. To
this end, the third author of this paper introduced in [Len99] the schema of
T -coiteration for T pointed endofunctor.

A similar limitation arises in connection with bisimulations. In practice,
many notions of bisimulations up-to are in use, see e.g. [San98,Len99], offer-
ing often the advantage of being finite even when the corresponding stan-
dard bisimulations are not. These cannot be directly expressed in terms
of basic coalgebraic bisimulations, but require appropriate generalizations
[Len99,LPW00,Bar01].

Often dynamical systems come equipped with algebraic operations w.r.t.
which the intended behavioural semantics is a congruence, the standard case in
point being syntactic constructors on terms in process algebras. Plain unstruc-
tured coalgebras are too weak to allow for principled proofs of congruence. An
appropriate setting in which to discuss these issues is that of bialgebras and
structured coalgebras [TP97,CHM01], i.e. suitable objects which have both
an algebra and a coalgebra structure. In this setting, coiterative morphisms
appear also as algebra homomorphisms, and the equivalences induced by coit-
erative morphisms are congruences w.r.t. the operations on the algebra.

In this paper, building on the notion of T -coiteration and capitalizing
on recent work on bialgebras, we introduce and illustrate the expressivity of
various generalized categorical coiteration patterns.

First we show that the T -coiteration schema captures naturally a wide
range of patterns, such as the duals of primitive recursion and course-of-value
iteration, and mutual coiteration. Hence, in particular T -coiteration is exten-
sionally universal, i.e. it captures the graph of any morphism in the underlying
category. Then we show that, in the more structured categorical setting of gen-
eralized λ-bialgebras, the T -coiteration schema captures guarded coiterations,
i.e. specifications where recursive calls appear guarded by predefined algebraic
operations. In this setting, a very interesting and general class of T -coiteration
schemata is the one which arises when T is the free monad generated by the
functor for which the guard is an algebra operation. For ease of presentation,
many concrete examples are provided on the datatype of streams, including
Hamming, Fibonacci, as well as some operations on dynamical systems.

The use of λ-bialgebras and distributive laws in dealing with generalized
coiteration was first developed in [Bar01]. The present work stems from an
alternative categorical account of the results in [Bar01] on guarded schemata.
In our approach, we actually work in an ambient category of possibly gen-
eralized λ-bialgebras. We feel that our approach suggests a new perspective
on the use of bialgebras in the context of generalized coiteration, whereby

2

Cancila, Honsell, Lenisa

guards in coiteration schemata are construed as algebraic constructors and
coiterative morphisms appear also as algebra homomorphisms. Furthermore,
we introduce a notion of generalized distributive law, which generalizes that in
[Bar01].

We conclude the paper by hinting at a general language for mutual coin-
ductive specifications which features all the schemata discussed in the paper.
Its categorical semantics, based on T -coiteration, is compositional, i.e. the
semantics of complex schemata is obtained by composing the monads used for
dealing with the elementary component schemata separately.

This modular semantics suggests naturally effective syntactic procedures
for validating mutual circular specifications. These can be used in interac-
tive proof development environments, based on type theory, such as Coq, for
extending the classes of coiteration schema currently accepted, [Coq94].

Synopsis. In Section 1, we introduce the relevant categorical notions. In Sec-
tion 2, we present a collection of motivating examples of circular definitions of
functions on streams. We discuss coiteration and its limitations in Section 3.
The expressivity of T -coiteration is analyzed in Section 4. In Section 5 we dis-
cuss guarded specifications and illustrate the added value obtained by working
in a suitable ambient category of bialgebras. Final remarks and directions for
future work appear in Section 6.

Acknowledgement. The authors would like to thank F.Bartels for useful com-
ments on a preliminary version of the paper.

1 Coalgebras and Bialgebras

In this section, we introduce various notions and results which are relevant
to the categorical treatment of coinductive types. We work in a category C
which has finite products and coproducts.

Definition 1.1 [G-algebra, F -coalgebra, 〈G,F 〉-bialgebra] An algebra for the
functor G : C → C (G-algebra) is a pair (X, βX), where X is an object of C
(the carrier of the algebra) and βX : GX → X is an arrow in C (the operation
of the algebra). Dually, an F -coalgebra is a pair (X,αX), where α : X → FX.
A 〈G,F 〉-bialgebra is a triple (X, βX , αX), where (X, βX) is a G-algebra and
(X,αX) is an F -coalgebra.

Algebra operations allow to construct elements of the carrier. Coalgebra
operations, called destructors or unfoldings, yield information on the states of
the dynamical system represented by the coalgebra. It is often the case, as we
will see, that states in a dynamical system come equipped with an algebraic
structure. Bialgebras account for this richer structure.

G-algebras, F -coalgebras, and 〈G,F 〉-bialgebras can all be endowed with
a suitable structure of category by definining the notions of G-algebra, F -
coalgebra, 〈G,F 〉-bialgebra morphism, respectively, as follows:

Definition 1.2 An arrow f : X → Y is a G-algebra morphism from the G-
algebra (X, βX) to the G-algebra (Y, βY) if it makes diagram (1) commute.

3

Cancila, Honsell, Lenisa

An arrow f : X → Y is an F -coalgebra morphism from the F -coalgebra
(X,αX) to the F -coalgebra (Y, αY) if it makes diagram (2) commute. An arrow
f : X → Y is a 〈G,F 〉-bialgebra morphism from (X, βX , αX) to (Y, βY , αY),
if f makes both diagrams (1) and (2) commute.

GX

(1)Gf

��

βX // X

(2)f

��

αX // FX

Ff

��
GY βY

// Y αY
// FY

We will denote by AlgG, CoalgF , and BialgG,F the categories of G-algebras,
F -coalgebras, and 〈G,F 〉-bialgebras, respectively.

Bialgebras, as defined above, combine the algebraic and coalgebraic struc-
tures independently. Much more interesting are those bialgebras where there
is a tighter connection between the two structures, e.g. when F (G respec-
tively) lifts to a (co)algebra functor, so that αX (βX respectively) becomes
a (co)algebra morphism. This notion of structured bialgebra has been very
fruitful in the context of final semantics to streamline the proofs that bisimi-
larities are congruences w.r.t. suitable syntactical operators of the language.
A very natural sufficient condition for the above to happen is the pentagonal
law of λ-bialgebras, [TP97]. For a given bialgebra (X, βX , αX), such a law es-
sentially allows to endow with a G-algebra structure FX, in such a way that
αX is a G-algebra morphism between (X, βX), and the G-algebra with carrier
FX thus defined. And dually.

We introduce a generalization of this condition, for F,G functors, called
the generalized pentagonal law, which will be used in Section 5 for capturing
generalized coiteration schemata. First we need the following definition:

Definition 1.3 [Strict Coalgebra Functor] Let F,H : C → C. A strict coalge-
bra functor is a functor F : CoalgF → CoalgH such that, for any F -coalgebra
(X,αX), F(X,αX) = (X, θX), for some θX : X → HX, and for any F -
coalgebra morphism f : (X,αX) → (Y, αY), F(f) = f .

Definition 1.4 [Bialgebra for a (Generalized) Pentagonal Law] Let F,G,H :
C → C, let F : CoalgF → CoalgH be strict. A λ-bialgebra for a F -generalized
pentagonal law is a 〈G,F 〉-bialgebra (X, βX , αX) such that the following pen-
tagonal diagram commutes:

GX

G(θX)
��

βX // X
αX // FX

G(HX)
λX

// FGX

F (βX)

OO

where λ is a F-generalized distributive law of the functor G over the functor
F , i.e. λ : GH

·
→ FG, and F(X,αX) = (X, θX).

The full subcategory of BialgG,F of λ-bialgebras is denoted by Bialgλ.

Turi-Plotkin’s original notion of λ-bialgebra, for the case of F,G functors,
can be recovered by taking H , F and F , IdCoalgF

. For the case of F,G

4

Cancila, Honsell, Lenisa

monad and comonad considered in [TP97], one can probably give a corre-
sponding generalization of the distributive law, but this is out of the scope of
the paper.

Interesting classes of generalized λ-bialgebras are the λI-bialgebras, which
we define as follows:

Definition 1.5 [λI-bialgebra] Let I ⊆fin Nat . A λI-bialgebra is a generalized
λ-bialgebra for H , Πi∈IF

i and F : CoalgF → CoalgH defined by F(X,αX) ,

(X, 〈(αX)i〉), where (αX)i : X → F i(X) is defined by induction on i as follows:
(αX)0 , idX , (αX)i+1 , F i(αX) ◦ (αX)i .

In particular, for I ⊆ {0, 1} we recover the class of generalized λ-bialgebras
introduced in [Bar01].

Notice that the commutativity of the generalized pentagonal diagram of
Definition 1.4 still implies that βX is a coalgebra morphism from the F -
coalgebra (GX, λX ◦ G(θX)) to the F -coalgebra (X,αX). However, the dual
fails, in general.

The important property of λ-bialgebras is that final coalgebras in the un-
derlying category of coalgebras “lift” uniquely to final bialgebras in Bialgλ:

Proposition 1.6 Let λ : GH
·
→ FG be a F-generalized distributive law of

G over F . If (Ω, αΩ) is a final F -coalgebra, then there exists a unique βΩ :
GΩ → Ω such that (Ω, βΩ, αΩ) is a λ-bialgebra. Moreover, (Ω, βΩ, αΩ) is final
in Bialgλ.

Finally we recall the definition of pointed endofunctor and monad, and we
introduce two distinguished monads which will be used in the sequel.

Definition 1.7 [Pointed Endofunctor, Monad]

• A pointed endofunctor over a category C is a pair 〈T, η〉, where T is an

endofunctor on C and η : Id
·
→ T is a natural transformation.

• A monad is a triple 〈T, η, µ〉, where 〈T, η〉 is a pointed endofunctor, η is

called the unit of the monad, µ : T 2 ·
→ T is a natural transformation, called

the multiplication of the monad, such that the diagrams below commute:

T

id @
@@

@@
@@

@

ηT // T 2

µ

��

T
Tηoo

id~~~~
~~

~~
~~

T 2

µ

��

T 3

µT

��

Tµoo

T T T 2µoo

Definition 1.8 [Corecursion Monad] Let F : C → C have final coalgebra
(Ω, αΩ). Let T+

F : C → C be the functor defined by
∀X. T+

F X = X + Ω, ∀f : X → Y. T+
F f = [in1 ◦ f, in2] ,

where in1, in2 are the canonical sum injections.
The functor T +

F can be endowed with a structure of monad 〈T +
F , η, µ〉 by

defining
ηX = in1 : X → X + Ω , µX = [id, in2] : (X + Ω) + Ω → X + Ω.

5

Cancila, Honsell, Lenisa

Definition 1.9 [Variator, Free Monad]
• Let F : C → C be such that the functor F +

X , defined by ∀Z. F +
X Z =

X + FZ, ∀f : Z1 → Z2. F+
X f = idX + Ff , has initial algebra, for all X.

We shall call such a functor variator.
• Let F be a variator. The monad 〈TF , ηTF

µTF
〉 freely generated by F is

defined as follows:
· for all X, TF X is the carrier of the initial F +

X -algebra, i.e. the free F -
algebra on X, µZ.X + FZ.

· Let φTF X = [γTF X , βTF X] : X + F (TF X) → TF X be the isomorphism on
the initial F+

X -algebra. For any f : X → Y , TF (f) is the unique morphism
from (TF X,φTF X) into the F+

X -algebra (TFY, φTF Y ◦ (f + idF (TF Y))).
· (ηTF

)X : X → TF X, (ηTF
)X = γTF X .

· (µTF
)X : T 2

F X → TF X, (µTF
)X = îdTX , where îdTX is the unique F -

algebra morphism extending idTX . Namely, for any morphism f : X →
TF Y , there exists a unique f̂ : TF X → TF Y which extends f , i.e. f̂ ◦
(ηTF

)X = f , where f̂ is defined as the unique F +
X -algebra morphism from

(TFX,φTF X) into the F+
X -algebra (TFY, [idTF Y , βTF Y] ◦ (f + idFTF Y)).

2 A Gallery of Circular Specifications

In this section we present a collection of circular specifications of functions
into a coinductive datatype, which will be used as motivating examples in the
rest of the paper. For simplicity all deal with streams. The reader can easily
extend the list w.r.t. her/his favourite coinductive datatype. In the sequel,
we will show how to capture {co,bi}algebraically the underlying coiterative
schemata.

We recall that streams on a set A form a final coalgebra for the functor
FSA

: Set → Set defined by FSA
X = A × X (with standard behaviour on

morphisms): Streams ≡ (SA, 〈hd, tl〉 : SA → A× SA), where
hd : SA → A gives the first element of the stream (the observation)
tl : SA → SA returns the rest of the stream (the next state).

In particular, we will denote by SN the set of streams on natural numbers,
and simply by FS the corresponding functor FSN

.

Example 2.1 The binary function ⊕ : SN×SN → SN which gives the stream
obtained by adding the input streams elementwise can be specified as follows:

〈hd, tl〉(s⊕ t) = 〈hd(s) + hd(t), tl(s)⊕ tl(t)〉 .

When applied to streams of real numbers corresponding to Taylor coefficients
of two analytical functions f and g, the operation ⊕ yields the Taylor series
of the function f + g, [EP98,Rut00].

Example 2.2 The function ms : SN × SN → SN specified as follows

〈hd , tl〉(ms(s, t)) =

〈hd(s),ms(tl(s), t)〉 if hd(s) < hd(t)

〈hd(s),ms(tl(s), tl(t))〉 if hd(s) = hd(t)

〈hd(t),ms(s, tl(t))〉 if hd(t) < hd(s) ,

6

Cancila, Honsell, Lenisa

yields the familiar function merge, when applied to strictly monotone streams.

Example 2.3 The function mapg : SN → SN, for g : Nat → Nat , which
applies g to all the components of the input stream, can be specified by:

〈hd , tl〉(mapg(s)) = 〈g(hd(s)),mapg(tl(s))〉 .

Example 2.4 The function h0 : SN → SN which, given a stream s, yields the
stream obtained by replacing the first component of s by 0, can be specified
by: 〈hd, tl〉(h0(s)) = 〈0, tl(s)〉 .

Example 2.5 The function acc : SN → SN which gives the stream whose n-
th component is the sum of the first n components of the input can be defined
using a (simple) mutual recursive specification, where acc ′ : Nat × SN → SN:

acc(s) = acc ′(0, s)

〈hd , tl〉 ◦ acc ′(n, s′) = 〈n + hd(s′), acc′(n + hd(s′), tl(s′))〉

Example 2.6 The unary function exch which, given a stream s, exchanges
its components pairwise, can be specified as follows:

(id× 〈hd, tl〉)(〈hd, tl〉(exch(s))) = 〈hd(tl(s)), 〈hd(s), exch(tl(tl(s)))〉〉 .

Example 2.7 The binary function ⊗ : SN × SN → SN is specified by:

〈hd, tl〉(s⊗ t) = 〈hd(s) · hd(t), (s⊗ tl(t))⊕ (tl(s)⊗ t)〉 ,

where the operation ⊕ is defined in Example 2.1. When applied to streams of
real numbers corresponding to the Taylor coefficients of two analytical func-
tions f and g, ⊗ computes the Taylor series for the functional product f · g
(see [Rut00]). The function ⊗ has been extensively discussed in [Bar01].

Example 2.8 A stream of Hamming Numbers contains all natural numbers,
in increasing order, which do not have prime factors other than those from a
given set. For primes 2 and 3, the corresponding stream of Hamming Numbers
can be specified as the image of the function ham:1 → SN (this example has
been extensively discussed in [Bar01]):

〈hd, tl〉(ham(∗)) = 〈1,ms(map×2(ham(∗)),map×3(ham(∗)))〉 ,

ms is as in Example 2.2, and ×2,×3 : N → N are the functions which double
and triple the components of their arguments, and map is as in Example 2.3.

Example 2.9 The function h : 1 → SN defined by

〈hd, tl〉(h(∗)) = 〈1, acc ◦ h(∗)〉 ,

yields the stream s, where the first element s1 = 1, and sn+1 = Σi≤nsi, for all
n ≥ 1.

Example 2.10 The stream of Fibonacci Numbers, fib: 1 → SN, can be de-
fined using a mutual recursive specification as follows (⊕ is defined in Example
2.1.):

7

Cancila, Honsell, Lenisa

〈hd , tl〉(fib(∗)) = 〈1, fib ′(∗)〉

〈hd , tl〉(fib ′(∗)) = 〈1, fib(∗)⊕ fib ′(∗)〉

Example 2.11 An alternative definition for the stream of Fibonacci Numbers
is given by fibo : 1 → SN defined by

〈hd, tl〉(fibo(∗)) = 〈1, p(in1(fibo(∗)))〉 ,

where p : SN + SN → SN pairwise sums the elements of a right input stream,
while, given a left input stream, it yields the stream whose head is the same
as that of the input, and whose tail is the result of the application of p to the
input stream viewed as a righthand argument, i.e.:{

p ◦ in1 = 〈hd , p ◦ in2〉

p ◦ in2 = 〈hd + hd ◦ tl , p ◦ in2 ◦ tl〉 .

3 Coiteration

The origin, and the success, of the coalgebraic account of coinductive functions
lies in the fact that the condition satisfied by a final coalgebra morphism into
a final coalgebra, i.e. the commutativity of the appropriate diagram, expresses
directly a coiterative specification schema.

Definition 3.1 [Coiteration Schema] Let (X,αX) be an F -coalgebra, and let
(Ω, αΩ) be a final F -coalgebra. The coiterative morphism is the unique F -
coalgebra morphism f : (X,αX) → (Ω, αΩ).

Examples 2.1–2.3 illustrate this point immediately.

The function ⊕ is the coiterative morphism induced by the FS-coalgebra
(SN × SN, α⊕), where FS = Nat × is the functor defined at the beginning of
Section 2, and α⊕(s, t) = 〈hd(s) + hd(t), 〈tl(s), tl(t)〉〉:

SN × SN

⊕

��

α⊕ // FS(SN × SN)

FS(⊕)
��

SN 〈hd, tl〉
// FS(SN)

the commutativity of the diagram corresponding exactly to the specification
given in Example 2.1.

Similarly, the function ms is the coiterative morphism induced by the FS-
coalgebra (SN × SN, αms), where

αms(s, t) =

〈hd(s), 〈tl(s), t〉〉 if hd(s) < hd(t)

〈hd(s), 〈tl(s), tl(t)〉〉 if hd(s) = hd(t)

〈hd(t), 〈s, tl(t)〉〉 if hd(t) < hd(s) .

The function mapg is the coiterative morphism induced by the FS-coalgebra
(SN, αmapg

), where αmapg
(s) = 〈g(hd(s)), tl(s)〉. Also the function p used in

Example 2.11 can be easily seen as a coiterative morphism.

8

Cancila, Honsell, Lenisa

However, these are the only examples in Section 2 which can be captured
directly as standard coiteration schemata. Already the trivial specification of
a constant function, or Example 2.4, which are not even circular, escape this
format.

In order to overcome this limitation, the third author introduced T -coite-
ration schemata, [Len99]. In Section 4 we will see that by choosing suitable
monads T , Examples 2.4 and 2.5 can be captured directly using these gener-
alized schemata.

A more structured approach is necessary to deal with Example 2.7. That
specification does not provide a standard coiterative definition because of the
use of ⊕ in the expression for the tail. The recursive call of ⊗ is said to be
guarded by an extra given operation ⊕. This operation naturally induces a
structure of algebra on the final coalgebra of streams, and the equivalence
induced by ⊗ is a congruence w.r.t. ⊕. In Section 5, we will see how to
recover ⊗ as a T -coiterative morphism, by working in a suitable category of λ-
bialgebras, where the algebra structure is induced by ⊕. The same treatment
via λ-bialgebras is necessary to deal with Examples 2.8 and 2.11, albeit in
a category of bialgebras satisfying a generalized pentagonal law. In order to
handle Example 2.10 we need to combine two monads, in a bialgebraic setting,
namely the one for mutual coiteration and the one to deal with guards. In
fact, both the recursive calls of the functions fib and fib’ in the definition of
fib’ appear guarded by the ⊕-operation. Finally, as we will see, the function
h of Example 2.9 escapes a direct treatment in the setting of λ-bialgebras,
because the guard acc is not a standard coiterative morphism. However, we
will provide an “equivalent” guarded specification for h, admitting a treatment
in the setting of λ-bialgebras.

4 T -coiteration

In this section, we introduce the generalized coiteration schema of [Len99]
(see also [LPW00]), called T -coiteration, for T pointed endofunctor. We show
that it is very expressive and it subsumes many classical schemata, such as
corecursion (i.e. the dual of primitive recursion), the schema dual to course-
of-value iteration, and it can handle mutual coiteration. One can easily check
that already the corecursion schema is extensionally universal, in the sense
that it captures the graph of any definable function into a final coalgebra.
However, as we have already pointed out, it is the intensional expressivity of
the schema that we are after. The “rule of the game” is that of showing that
a given coiterative specification does define indeed a (unique) total function,
without any pre-processing of the specification.

Throughout this section we assume that the functor F : C → C has final
coalgebra (Ω, αΩ).

Definition 4.1 [〈T, η〉-coiteration Schema] Let 〈T, η〉 be a pointed endofunc-
tor over C. Then, for any F -coalgebra (TX, α), we can define the 〈T, η〉-
coiterative morphism (or T -coiterative morphism for short) h : X → Ω as

9

Cancila, Honsell, Lenisa

f ◦ηX , where f is the unique F -coalgebra morphism from (TX, α) to the final
F -coalgebra (Ω, αΩ):

X
ηX //

h
!!C

C
C

C TX

f

��

α // FTX

Ff

��
Ω αΩ

// F (Ω)

A T -coiterative morphism is obtained by precomposing a standard coiter-
ative morphism with a suitable morphism. As is often the case in dealing with
inductive issues, also here we have that a more “complex” function, obtained
from the intended one using suitable operations, satisfies a “simpler” schema.

In Definition 4.1, we assumed T to be only a pointed endofunctor. But in
many interesting examples of T -coiteration, the T used is actually a monad.

The function acc of Example 2.5 can be easily recovered by T -coiteration by
taking as pointed endofunctor the functor FS together with ηX : X → Nat×X

to be ηX(x) = 〈0, x〉. Then acc = acc ′ ◦ ηSN
, where acc ′ is the standard

coiterative morphism induced by the FS-coalgebra (Nat × SN, αacc′), where
αacc′(n, s) = 〈n + hd(s), 〈n + hd(s), tl(s)〉〉.

Constant functions Ks into streams SA can be immediately shown to be
captured by T -coiteration, by taking T to be the pointed endofunctor con-
stantly equal to SA together with the natural transformation η defined by
ηX(x) = s. Then Ks = idSA

◦ ηSA
(the identity being a standard coiterative

morphism).

4.1 The Corecursion Schema

The corecursion schema, i.e. the dual of primitive recursion (see e.g. [UV99]),
can be recovered by considering the corecursion monad of Definition 1.8:

Definition 4.2 [Corecursion Schema] The corecursion schema is obtained
by considering the pointed endofunctor 〈T +

F , in1〉 underlying the corecursion
monad, and by taking F -coalgebras of the shape (X + Ω, [α1, F (in2) ◦ αΩ]),
where α1 : X → F (X + Ω):

X
in1 //

h0
##G

G
G

G
G X + Ω

f

��

[α1,F (in2)◦αΩ]// F (X + Ω)

Ff

��
Ω αΩ

// FΩ

Notice in particular that f ◦ in2 = idΩ.

The essence of this schema is that we can choose between the possibilities
offered by the two branches of the disjoint sum in the F -coalgebra, where
the morphism on the second branch essentially acts as the identity. E.g.
the function h0 of Example 2.4 can be viewed immediately as an instance
of corecursion, by taking F to be FS, and α1 : SN → SN to be defined by
α1(s) = 〈0, in2(tl(s))〉.

The corecursion schema is trivially universal in the following sense:

10

Cancila, Honsell, Lenisa

Proposition 4.3 (Universality of Corecursion) Let f : X → Ω be a
morphism in C. Then f can be viewed as the 〈T +

F , in1〉-coiterative morphism
induced by the coalgebra (X + Ω, [α1, α2]), where: α1 = F (in2) ◦ αΩ ◦
f and α2 = F (in2) ◦ αΩ .

Of course the universality of Proposition 4.3 is not particularly useful,
since we are assuming that the morphism is already definable. The following
expressivity results have a much stronger impact.

4.2 The Schema Dual to Course-of-value Iteration

The dual to the course-of-value iteration schema (see e.g. [UV99]) can be
viewed as an instance of T -coiteration by considering the pointed endofunctor
underlying the free monad TF of Definition 1.9, as follows:

Definition 4.4 [Dual to Course-of-value Iteration] The schema dual to course-
of-value iteration is obtained by considering the pointed endofuctor TF under-
lying the free monad, and by taking F -coalgebras of the shape
(TF X, [α1, idF (TF X)] ◦ φ−1

TF X), where α1 : X → F (TF X):

X
γTF X // TF X

f

��

[α1,idF (TF X)]◦φ
−1
TF X // F (TF X)

Ff

��
Ω αΩ

// F (Ω)

The schema above is only apparently complex, the basic idea in the case of
streams being simple. Course-of-value iteration allows to define the value of a
function on a given object using its value on subcomponents of arbitrary depth,
and not only on the immediate ones. In the dual schema, in specifying the
behaviour of the output we are allowed to mention stages arbitrarily further
on in the future of the output, instead of being forced to use only the current
stage.

A simple example of a function on streams which is defined by such a
schema is the function exch of Example 2.6. This is obtained by taking F

to be FS, X to be SN, and α1 : SN → Nat × TFS
(SN) to be defined by

α1(s) = 〈hd(tl(s)), βTFS
SN

(hd(s), γTFS
SN

(tl(tl(s))))〉, where βTFS
SN

, γTFS
SN

are
as in Definition 1.9.

4.3 Definitions by Mutual Recursion

Here we show how to capture by T -coiteration elementary mutual specifica-
tions. Complex ones will be discussed in Section 5.5.

Consider the following specification of the mutually defined functions h1, . . . , hk,
where hi : Xi → Ω, and αi : Xi → F (

∐k

i=1 Xi), for i = 1, . . . , k:

αΩ ◦ h1 = F ([h1, . . . , hk]) ◦ α1

. . .

αΩ ◦ hk = F ([h1, . . . , hk]) ◦ αk

11

Cancila, Honsell, Lenisa

The function [hi]
k
i=1 :

∐k

i=1 Xi → Ω can be captured by standard coitera-

tion by precomposing with the canonical injection of Xi into
∐k

i=1 Xi.

Notice that the above schema subsumes immediately the corecursion schema.
It subsumes also the dual of course-of-value iteration, since one can check that
this can be equivalently expressed by considering the pointed endofunctor 〈 +
FTF (), in1〉 together with coalgebras of the shape (X+F (TF X), [α1, F (φ−1

TF X)]).

5 Working in a Bialgebraic Setting: i.e. Explaining
Guards as Algebraic Operations

In this section, we show how to capture by T -coiteration a relevant class
of circularly defined functions into final coalgebras, where recursive calls are
guarded by extra operations on the final coalgebra. The specifications in
Examples 2.7–2.11 are of this kind. The crucial move is to rework the T -
coiteration paradigm in a more structured ambient category: that of suitable
bialgebras, where the algebra structure is induced by the guard operation.
In particular, we introduce a uniform criterion for a guarded specification to
actually define a function, in terms of conditions on the guard. We discuss
briefly a possible effective implementation of such a criterion for streams.
In this section, we consider only specifications involving a single function.
Mutual guarded specifications will be considered in Section 5.5. Throughout
this section we assume F and G to be endofunctors in the same category C,
and moreover G to be good.

5.1 A Class of Guarded Specifications

The class of guarded specifications that we consider is the following:

Definition 5.1 [Guarded Specification] Let (Ω, αΩ) be a final F -coalgebra.
A guarded specification for a morphism h : X → Ω is of the form:

αΩ ◦ h = F (g ◦G(h)) ◦ δ , (1)

where δ : X → F (GX) and g : G(Ω) → Ω are given, g is the guard.

Notice that we do not know a priori whether a guarded specification defines
a function at all, and in the case it defines a function, whether this is unique.
The following are examples of “invalid” specifications.

Example 5.2 Let g : SN → SN be the function which adds the elements of
a given stream pairwise, i.e. 〈hd , tl〉 ◦ g(s) = 〈hd(s) + hd(tl(s)), g(tl(tl(s)))〉.
This is a standard coiterative morphism. Notice that g “consumes” two obser-
vations in order to produce the first element of the output stream. However,
there is no function h : 1 → SN satisfying the following guarded specification:

〈hd , tl〉(h(∗)) = 〈1, g(h(∗))〉 .

The function h produces immediately the first component a1 of the output
stream, i.e. 1. But, by definition of g, the second component a2 of the output
should satify the specification a2 = 1 + a2, which has no solution in Nat .

12

Cancila, Honsell, Lenisa

X

γTGX

��
G(TGX)

Gf

���
�

�

βTGX //___

(1)

TGX

(2)f

��

αTGX // F (TGX)

Ff

��
G(Ω) g

//_____ Ω αΩ
// FΩ

Fig. 1. Bialgebraic interpretation of a guarded specification.

Example 5.3 The following is a guarded specification admitting infinitely
many distinct solutions: 〈hd , tl〉(h(∗)) = 〈0, g(h(∗))〉 .

E.g. the stream 〈0, n, 0, 0, . . .〉 is a solution for any n.

In view of the above examples, a sufficient condition to guarantee that a
guarded specification actually defines a (unique) function has to be a form of
productivity (or effectiveness) of the guard. I.e. a guard on streams should
consume at most the first n observations in order to produce the n-th output
observation. In what follows, we formalize this by giving conditions on the
guard g for the specified function to be T -coiterative in a bialgebraic setting.

The general pattern that we utilize can be roughly described as follows.

First of all, notice that g determines a structure of G-algebra on Ω. That
is (Ω, g, αΩ) is a 〈G,F 〉-bialgebra. A form of productivity condition on g

can thus be expressed by requiring that the 〈G,F 〉-bialgebra (Ω, g, αΩ) is a
λ-bialgebra for a (special kind of) generalized distributive law λ. If this is
the case, then, by Proposition 1.6, (Ω, g, αΩ) is necessarily a final λ-bialgebra.
Moreover, let us assume that the free G-algebra on X, TGX = µZ.X + G(Z),
can also be endowed with a structure of λ-bialgebra (TGX, βTGX , αTGX), where
the algebra part is given by βTGX : G(TGX) → TGX (see Definition 1.9), while
the coalgebra part is induced by λ and δ in a suitable way. Then one can show
that the TG-coiterative morphism f ◦ γTGX , where f is the unique λ-bialgebra
morphism from (TGX, βTGX , αTGX) to (Ω, g, αΩ) (see Fig. 1), is the unique
solution of the guarded specification induced by g and δ (see Theorem 5.4
below).

Putting formally the above we have:

Theorem 5.4 Let δ : X → F (GX), and let g : GΩ → Ω. If

(i) there exists a generalized distributive law λ : GH
·
→ FG for which (Ω, g, αΩ)

is a λ-bialgebra,
(ii) the free G-algebra TGX can be endowed with a structure of λ-bialgebra
(TGX, βTGX , αTGX), where αTGX : TGX → F (TGX) is such that αTGX ◦γTGX =
F (βTGX ◦G(γTGX)) ◦ δ,
then the morphism f ◦ γTGX , where f is the unique bialgebra morphism from
(TGX, βTGX , αTGX) to (Ω, g, αΩ), is the unique solution of the guarded specifi-
cation induced by g and δ.

Proof. By first exploiting that f is an F -coalgebra homomorphism (i.e. by

13

Cancila, Honsell, Lenisa

commutativity of diagram (2) in Figure 1), and then that f is a G-algebra
homomorphism (i.e. by the commutativity of diagram (1) in Figure 1), using
hypothesis (ii) on αTG

, we have:

αΩ ◦f ◦γTGX

(2)
= F (f)◦αTGX ◦γTGX

(hyp. (ii))
= F (f)◦F (βTGX ◦G(γTGX))◦ δ

(1)
=

F (g ◦ G(f ◦ γTGX)) ◦ δ , i.e. f ◦ γTGX satisfies the guarded specification.
Moreover, this is the unique solution, since, if h : X → Ω satisfies the guarded
specification, then h = f ◦ γTGX

, where f is the unique final morphism above.
Namely, let f : TGX → Ω be the unique X + G()-algebra morphism from
(TGX,φTGX) to (Ω, [h, g]). Then h = f ◦γTGX . Moreover, using hypothesis (ii)
and the injectivity of γTGX , one can show that f is the unique final morphism
of Figure 1. 2

A strong form of productivity of the guard g is obtained when (Ω, g, αΩ)
is a bialgebra for a λI-distributive law with I ⊆ {0, 1}.

Definition 5.5 [Strongly Productive Operation] Let (Ω, αΩ) be a final F -
coalgebra. An operation g : G(Ω) → Ω is strongly productive if (Ω, g, αΩ) is a
λI-bialgebra for a distributive law λI with I ⊆ {0, 1}.

If the distributive law is a λI-distributive law for I ⊆ {0, 1}, then hypoth-
esis (ii) of Theorem 5.4 is automatically verified:

Lemma 5.6 Let δ : X → F (GX), and let λI : G(Πi∈IF
i)

·
→ FG be a

distributive law for I ⊆ {0, 1}. Then the free G-algebra TGX can be endowed
with a structure of λI-bialgebra (TGX, βTGX , αTGX), where αTGX : TGX →
F (TGX) is defined by “induction on terms” of the free algebra by:
• αTGX ◦ γTGX = F (βTGX ◦G(γTGX)) ◦ δ

• αTGX ◦ βTGX = F (βTGX) ◦ (λI)TGX ◦G(〈(αTGX)i〉i∈I).

An immediate consequence of Theorem 5.4 and Lemma 5.6 is:

Theorem 5.7 Let g : GΩ → Ω, and δ : X → F (GX). If g is strongly
productive, then the morphism f ◦ γTGX , where f is the unique bialgebra mor-
phism from (TGX, βTGX , αTGX) to (Ω, g, αΩ), satisfies the guarded specification
induced by g and δ.

Theorem 5.7 gives us a criterion for validating guarded specifications:
“Given a guarded specification, in order to prove that it defines a (T -coiterative)
function, we only need to check that the guard is strongly productive”.

The interest of this criterion is that it can be easily made effective in many
cases. To illustrate this we focus on streams, and give a simple sufficient
syntactic condition on the guard so that it is uniformly productive. This
method could be strengthened and probably generalized to deal uniformly
with final coalgebras of polynomial functors.

Proposition 5.8 Let g : Sn
A → SA. If g is defined by

〈hd , tl〉 ◦ g = 〈ε0 ◦ hdn, g ◦ (ε1 × . . .× εn)〉

where ε0 : An → A, and, for all i = 1, . . . n, εi : SA → SA is either tl or idSA
,

then g is a standard coiterative uniformly productive operation.
14

Cancila, Honsell, Lenisa

5.2 Representing ⊗ by T -coiteration.

Now we apply Theorem 5.7 to Example 2.7. By Theorem 5.7, we only have
to check that ⊕ is strongly productive, i.e. we have to find a distributive law
λ⊕ such that (SN,⊕, 〈hd , tl〉) is a λ⊕-bialgebra:

Lemma 5.9 The 〈G,FS〉-bialgebra (SN,⊕, 〈hd, tl〉), where G = Id × Id, is a

λ⊕-bialgebra for λ⊕ : GFS
·
→ FSG defined by:

(λ⊕)X(〈n, x〉, 〈n′, x′〉) = 〈n + n′, 〈x, x′〉〉 .

By Lemma 5.6, we can endow TG(S2
N

) = µZ.S2
N

+ Z2 with a structure of
λ⊕-bialgebra (TG(S2

N
), βTG(S2

N
), αTG(S2

N
)), where αTG(S2

N
) is defined as follows:

• for s, t ∈ SN,
αTG(S2

N
)(γTG(S2

N
)(s, t)) = 〈hd(s)·hd(t), βTG(S2

N
)(γTG(S2

N
)(s, tl(t)), γTG(S2

N
)(tl(s), t))〉.

• for σ, τ ∈ TG(S2
N

),
αTG(S2

N
)(βTG(S2

N
)(σ, τ)) =

〈π1(αTG(S2
N

)(σ)) + π1(αTG(S2
N

)(τ)), βTG(S2
N

)(π2(αTG(S2
N

)(σ)), π2(αTG(S2
N

)(τ)))〉.

Finally, by Theorem 5.7, we have:

Proposition 5.10 The generalized coiterative morphism f ◦ γTG(S2
N

), where

f is the unique morphism from the λ⊕-bialgebra (TG(S2
N

), βTG(S2
N

), αTG(S2
N

))
into the final λ⊕-bialgebra (SN,⊕, 〈hd , tl〉), satisfies the specification of Exam-
ple 2.7.

5.3 Representing the Stream of Hamming Numbers by T -coiteration.

In the specification of Example 2.8, the recursive calls of the function ham are
guarded by the binary operation on streams m : SN × SN → SN, defined by:

m = ms ◦ (map×2 ×map×3) .

Notice in particular that m, being defined as composition of coiterative func-
tions is itself coiterative. Now, in order to define the function ham as a
TG-coiterative morphism, we apply Theorem 5.7 for G = Id× Id. In this case
we need a truly generalized distributive law λm : G(Id × FS)

·
→ FSG, since

ms (and hence m) does not necessarily consume the first component of both
the input streams.

Lemma 5.11 The 〈G,FS〉-bialgebra (SN,m, 〈hd , tl〉) is a λm-bialgebra for

G = Id × Id and λm : G(Id × FS)
·
→ FSG the generalized distributive law

defined by:

(λm)X(〈x, 〈n, x′〉〉, 〈y, 〈n′, y′〉〉) =

〈2n, 〈x′, y〉〉 if 2n < 3n′

〈2n, 〈x′, y′〉〉 if 2n = 3n′

〈3n′, 〈x, y′〉〉 if 2n > 3n′ .

By Lemma 5.6, (TG1, βTG1, αTG1) is a λm-bialgebra, where the FS-coalgebra
morphism αTG1 : TG(1) → Nat× TG(1) is defined as follows:
• αTG1(γTG1(∗)) = 〈1, βTG1(γTG1(∗), γTG1(∗))〉.
• for σ, τ ∈ TG1, αTG1(βTG1(σ, τ)) =

15

Cancila, Honsell, Lenisa

〈2π1(αTG1(σ)), βTG1(π2(αTG1(σ)), τ)〉 if 2π1(αTG1(σ)) < 3π1(αTG1(τ))

〈2π1(αTG1(σ)), βTG1(π2(αTG1(σ)), π2(αTG1(τ)))〉 if 2π1(αTG1(σ)) = 3π1(αTG1(τ))

〈3π1(αTG1(τ)), βTG1(σ, π2(αTG1(τ)))〉 if 2π1(αTG1(σ)) > 3π1(αTG1(τ)) .

5.4 Beyond Strongly Productive Guards

Theorem 5.7 allows us to deal with many interesting guarded specifications.
However, there are many valid specifications whose guards are not strongly
productive. Some of them do not even induce a generalized distributive law.
Namely, if the guard is not standard coiterative, then it cannot satisfy any
(generalized) distributive law. This is the case of Example 2.9. However, the
guard acc of Example 2.9 is T -coiterative, as we have seen in Section 4. We
can deal with it in our setting, by considering an “equivalent” specification,
obtained by slightly manipulating the original one in such a way that the new
guard is the standard coiterative morphism appearing in the T -coiteration
schema of acc.

The following proposition gives a general technique for transforming a
guarded specification whose guard is a T -coiterative morphism into an equiv-
alent specification with a standard coiterative guard:

Proposition 5.12 Let δ : X → FGX, let g : GΩ → Ω be a 〈T, η〉-coiterative
morphism, i.e. g = g′ ◦ ηGΩ, for some standard coiterative morphism g′ :
TGΩ → Ω. Then the guarded specification induced by δ and g is equivalent
(i.e. it has the same solutions) to that induced by δ′ and g′, where δ′ : X →
FTGX, δ′ , F (ηGX) ◦ δ.

Proof. (Sketch) F (g ◦Gh)◦δ = F (g′ ◦ηGΩ ◦Gh)◦δ = F (g′ ◦TGh◦ηGX)◦δ =
F (g′ ◦ TGh) ◦ δ′, using naturality of η. 2

Hence, by Proposition 5.12, the guarded specification of Example 2.9 is
equivalent to the specification 〈hd , tl〉 ◦ h = 〈idN, acc′ ◦ (idN × h)〉 ◦ δ′, where
δ′ : 1 → N× (N×1) is defined by 〈π1 ◦δ, η1〉, and δ : 1 → N×1, δ(∗) = 〈1, ∗〉.
Now acc’ is a standard coiterative morphism and one can easily check that
there is a distributive law à la Plotkin-Turi accounting for it.

Another significant case, which escapes the criterion of strong productivity,
is that of Example 2.11. There the guard is standard coiterative, but one
can easily check that it is not strongly productive. However, there exists a
distributive law λI , for I = {1, 2}, such that (SN, p, 〈hd , tl〉) is a λI-bialgebra.
One can check that also hypothesis (ii) of Theorem 5.4 holds, and hence the
specification of Example 2.11 has a unique solution. Examples like the above
are precisely those which motivated the full generality in Definition 1.4.

5.5 A More Complex Example
In order to capture the function fib of Example 2.10 by T -coiteration, we
compose the monad corresponding to mutual recursion of Section 4.3 with the
free monad used to deal with guarded specifications of Section 5.1 as follows:

16

Cancila, Honsell, Lenisa

Proposition 5.13 The function fib of Example 2.10 above is the T -coiterative
function f ◦ γTG(1+1) ◦ in1, making the following diagram commute:

1
γTG(1+1)◦in1

��
(TG(1 + 1))2

f×f

���
�

�

βTG(1+1) //______ TG(1 + 1)

f

��

αTG(1+1) // Nat× TG(1 + 1)

idN×f

��
S2

N ⊕
//__________ SN 〈hd, tl〉

// Nat× SN

where G = Id× Id, f is the final λ⊕-bialgebra morphism from the λ⊕-bialgebra
(TG(1+1), βTG(1+1), αTG(1+1)) into the final λ⊕-bialgebra (SN,⊕, 〈hd, tl〉). αTG(1+1) :
TG(1 + 1) → Nat× TG(1 + 1) is defined as follows:
• αTG(1+1)(γTG(1+1)(in1(∗))) = 〈1, γTG(1+1)(in2(∗))〉
• αTG(1+1)(γTG(1+1)(in2(∗))) = 〈1, βTG(1+1)(in1(∗), in2(∗))〉
• for σ, τ ∈ TG(1 + 1), αTG(1+1)(βTG(1+1)(σ, τ)) =
〈π1 ◦αTG(1+1)(σ) + π1 ◦αTG(1+1)(τ), βTG(1+1)(π2 ◦αTG(1+1)(σ), π2 ◦αTG(1+1)(τ))〉

6 Final Remarks and Directions for Future Work

In this paper we have presented a bialgebraic semantics for a general schema
for (mutually) defining recursive functions into coinductive types. Here is a
list of problems which remain to be addressed.

• As we have seen in Subsection 5.4, the strong productivity condition is only
a sufficient condition for a guarded specification to have a unique solution. A
more general effective criterion involving both the parameter δ and the guard
g in the specification is called for.

• The example of Subsection 5.5 can be viewed as an instance of a general
guarded schema obtained by combining the monad for mutual recursion and
the free monad for guarded specifications. This should provide a composi-
tional coalgebraic semantics to a language for processing coinductive datatypes
whose basic building block is standard coiteration. This pattern could be ex-
tended to a fullfledged “total” language in the style of Barbier [Bar02]. For
instance we could discuss the possibility of including the very mutually defined
functions as guards. As we pointed out earlier, this has an important appli-
cation in interactive proof development environments based on Type Theory.
Currently the coiterative patterns accepted there are less expressive than the
one we introduce in Section 5.5, since only definitions where recursive calls
are guarded by constructors are accepted.

• It would be interesting to contrast the present approach to coiteration
schemata to the one underpinning languages such as Charity of [CS95].

• We mentioned in the Introduction that bisimulations up-to cannot be cap-
tured directly in terms of standard coalgebraic bisimulations. But, as shown
in [Len99,Bar01] a suitable categorical generalization can still be provided i.e.
bisimulation up-to T . These exploit an underlying structure of T -algebra,
which was achieved in [Len99] by assuming that T is a monad, and in [Bar01]

17

Cancila, Honsell, Lenisa

by working on bialgebras at the outset. More investigation is necessary here
to achieve a complete picture.

References

[Acz88] P.Aczel. Non-well-founded sets, CSLI Lecture Notes 14, Stanford 1988.
[Acz93] P.Aczel. Final Universes of Processes, MFPS’93, Brookes et al. eds.,

LNCS 802, 1993.
[Bar02] B.Barbier. Solving stream equation systems, JFLA, 2002.
[Bar01] F.Bartels. Generalised coinduction, CMCS’01, A.Corradini, M.Lenisa

and U.Montanari eds., ENTCS 44, 2001.
[BM96] J.Barwise, L.Moss. Vicious circles: On the mathematics of non-

wellfounded phenomena, CSLI Publications, Stanford, 1996.
[CS95] R.Cockett, D.Spencer. Strong categorical datatypes II: A term logic for

categorical programming, TCS 139, 1995, 69–113.
[Coq94] T.Coquand. Infinite Objects in Type Theory, TYPES-93, LNCS 806.

[CHM01] A.Corradini, R.Heckel, U.Montanari. Compositional SOS and beyond:
A coalgebraic view of open systems, to appear in TCS.

[EP98] M.Escardo, D.Pavlovic, Calculus in Coinductive Form, LICS’98, IEEE,
Computer Science Press, 1998.

[Gim94] E.Giménez. Codifying guarded definitions with recursive schemata,
TYPES, P.Dybjer et al. eds., LNCS 996, 1994, 39–59.

[HLMP98] F.Honsell, M.Lenisa, U.Montanari, M.Pistore. Final Semantics for the
π-calculus, PROCOMET’98, D. Gries et al. eds, Chapman & Hall, 1998.

[JR96] B.Jacobs, J.Rutten. A tutorial on (co)algebras and (co)induction,
Bulletin of the EATCS 62, 1996, 222–259.

[Len96] M.Lenisa. Final Semantics for a Higher Order Concurrent Language,
CAAP’96, H.Kirchner et. al. eds., LNCS 1059, 1996, 102–118.

[Len99] M.Lenisa. From Set-theoretic Coinduction to Coalgebraic Coinduction:
some results, some problems, CMCS’99, B.Jacobs and J.Rutten eds.,
ENTCS 19, 1999.

[LPW00] M.Lenisa, J.Power, H.Watanabe. Distributivity for endofunctors,
pointed and co-pointed endofunctors, monads and comonads, CMCS’00,
B. Jacobs and J. Rutten eds., ENTCS 33, 2000.

[Pav98] D.Pavlovic. Guarded induction on final coalgebras, CMCS’98, B.Jacobs
et al eds., ENTCS 11, 1998.

[Rut00] J.J.M.M.Rutten. Behavioural differential equations: a coinductive
calculus of streams, automata, and power series, TR SEN-R0023, CWI.

[RT94] J.J.M.M.Rutten, D.Turi. REX Conference Proceedings, J.de Bakker et
al. eds., LNCS 803, 1994, 530–582.

[San98] D.Sangiorgi. On the bisimulation proof method, Math. Struct. In Comp.
Science 98(8), 1998, 447–478.

[TP97] D.Turi, G.Plotkin. Towards a mathematical operational semantics, 12th

LICS, IEEE, Computer Science Press, 1997, 280–291.
[UV99] T.Uustalu, V.Vene. Primitive (co)recursion and course-of-value

(co)iteration, categorically, Informatica (IMI, Lithuania) 10(1), 1999.

[UVP01] T.Uustalu, V.Vene, A.Pardo. Recursion Schemes from Comonads,
Nordic Journal of Computing 8, 2001, 366–390.

18

	Coalgebras and Bialgebras
	A Gallery of Circular Specifications
	Coiteration
	T-coiteration
	The Corecursion Schema
	The Schema Dual to Course-of-value Iteration
	Definitions by Mutual Recursion

	Working in a Bialgebraic Setting: i.e. Explaining Guards as Algebraic Operations
	A Class of Guarded Specifications
	Representing by T-coiteration.
	Representing the Stream of Hamming Numbers by T-coiteration.
	Beyond Strongly Productive Guards
	A More Complex Example

	Final Remarks and Directions for Future Work
	References

