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Abstract. Using coalgebraic methods, we extend Conway’s original the-
ory of games to include infinite games (hypergames). We take the view
that a play which goes on forever is a draw, and hence rather than fo-
cussing on winning strategies, we focus on non-losing strategies. Infinite
games are a fruitful metaphor for non-terminating processes, Conway’s
sum of games being similar to shuffling. Hypergames have a rather in-
teresting theory, already in the case of generalized Nim. The theory of
hypergames generalizes Conway’s theory rather smoothly, but signifi-
cantly. We indicate a number of intriguing directions for future work.
We briefly compare infinite games with other notions of games used in
computer science.
Keywords: Conway games, coalgebraic games, non-losing strategies.

1 Introduction

We focus on combinatorial games, that is no chance 2-player games, the two
players being conventionally called Left (L) and Right (R). Such games have
positions, and in any position there are rules which restrict L to move to any of
certain positions, called the Left positions, while R may similarly move only to
certain positions, called the Right positions. L and R move in turn, and the game
is of perfect knowledge, i.e. all positions are public to both players. The game
ends when one of the players has no move, the other player being the winner.
Many games played on boards are combinatorial games, e.g. Nim, Domineering,
Go, Chess. Games, like Nim, where for every position both players have the same
set of moves, are called impartial. More general games, like Domineering, Go,
Chess, where L and R may have different sets of moves are called partizan.

Combinatorial Game Theory started at the beginning of 1900 with the study
of the famous impartial game Nim. In the 1930s, Sprague and Grundy gen-
eralized the results on Nim to all impartial finite (i.e. terminating) games,
[Gru39,Spra35]. In the 1960s, Berlekamp, Conway, Guy introduced the theory
of partizan games, which first appeared in the book “On Numbers and Games”
[Con01]. In [Con01], the theory of games is connected to the theory of surreal
numbers.
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However, in [Con01], the author focusses only on finite, i.e. terminating
games. Infinite games are neglected as ill-formed or trivial games, not interesting
for “busy men”, and their discussion is essentially confined to a single chapter.
Infinity (or loopy) games have been later considered in [BCG82], Chapters 11-12.
However, in Chapter 12 the authors focus on well-behaved classes of impartial
games, which can be dealt with a generalization of the Grundy-Sprague theory,
due to Smith [Smi66]. In Chapter 11, a theory for the special class of partizan
fixed loopy games is developed; a game is fixed if infinite plays are winning either
for L or R player. On the contrary, in the present paper we develop a general
coalgebraic account of infinite games, taking the different (but sometimes more
natural) view that an infinite play is a draw. We call such games hypergames.

Infinite games are extremely useful in various fields, such as Mathematical
Logic and Computer Science. The importance of games for Computer Science
comes from the fact that they capture in a natural way the notion of interaction.
Infinite games model in a faithful way reactive processes (operating systems,
controllers, communication protocols, etc.), that are characterised by their non-
terminating behaviour and perpetual interaction with their environment.

The coalgebraic account of games developed in this paper is very natural
and it paves the way to a smooth and insightful treatment of infinite games. It
allows us to consider games up-to bisimilarity, and to generalize operations and
relations on them as congruences up-to bisimilarities. Moreover, the coalgebraic
setting makes explicit the common nature between processes and games. For
hypergames the notion of winning strategy has to be replaced by that of non-
losing strategy, since we take non terminating plays to be draws. Hypergames
can be naturally defined as a final coalgebra of non-wellfounded sets (hypersets),
which are the sets of a universe of Zermelo-Fraenkel satisfying an Antifoundation
Axiom, see [FH83,Acz88]. Our theory of hypergames generalizes the original
theory on finite games of [Con01] rather smoothly, but significantly. Our main
results amount to a Determinacy and a Characterization Theorem of non-losing
strategies on hypergames. The latter requires (a non-trivial) generalization of
Conway’s partial order relation on games to hypergames. Once hypergames are
defined as a final coalgebra, operations on games, such as disjunctive sum, can be
naturally extended to hypergames, by defining them as final morphisms into the
coalgebra of hypergames. We will also discuss the class of impartial hypergames.
In particular, we will extend the theory of Grundy-Sprague and Smith, based
on the canonical Nim games, by introducing suitable canonical ∞-hypergames.

Finally, we will briefly compare our hypergames with other games arising in
Combinatorial Game Theory and in Computer Science.

Summary. In Section 2, we recall Conway’s theory of finite games and win-
ning strategies. In Secton 3, we introduce hypergames as a final coalgebra, and
we develop the theory of hypergames and non-losing strategies, which extends
Conway’s theory. In Section 4, we study in particular the theory of impartial hy-
pergames. Comparison with related games and directions for future work appear
in Section 5.
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2 The Theory of Conway Games

We recall that Conway games are 2-player games, the two players are called
Left (L) and Right (R). Such games have positions, and in any position p there
are rules which restrict Left to move to any of certain positions, called the Left
positions of p, while Right may similarly move only to certain positions, called
the Right positions of p. Since we are interested only in the abstract structure of
games, we can regard any position p as being completely determined by its Left
and Right options, and we shall use the notation p = (PL, PR), where PL, PR

denote sets of positions. Games are identified with their initial positions. Left
and Right move in turn, and the game ends when one of the two players does
not have any option. Conway considers only terminating (inductively defined)
games. These can be viewed as an initial algebra of a suitable functor, which we
define e.g. on the category Class∗ of classes of (possibly non-wellfounded) sets
and functional classes.

Definition 1 (Conway Games). The set of Conway Games G is inductively
defined by

– the empty game ({}, {}) ∈ G;
– if P, P ′ ⊆ G, then (P, P ′) ∈ G.

Equivalently, G is the carrier of the initial algebra (G, id) of the functor F :
Class∗ → Class∗, defined by F (X) = P(X) × P(X) (with usual definition on
morphisms).
Games will be denoted by small letters, e.g. p, with p = (PL, PR) and pL, pR

generic elements of PL, PR. We denote by Posp the set of positions hereditarily
reachable from p.

Some simple games. The simplest game is the empty one, i.e. ({}, {}), which
will be denoted by 0. Then we define the games 1 = ({0}, {}), −1 = ({}, {0}),
∗ = ({0}, {0}).

Winning strategies. In the game 0, the player who starts will lose (independently
whether he plays L or R), since there are no options. Thus the second player (II)
has a winning strategy. In the game 1 there is a winning strategy for L, since,
if L plays first, then L has a move to 0, and R has no further move; otherwise,
if R plays first, then he loses, since he has no moves. Symmetrically, −1 has a
winning strategy for R. Finally, the game ∗ has a winning strategy for the first
player (I), since he has a move to 0, which is losing for the next player.

Formally, we first define (finite) plays over a game p as alternating sequences
of moves on the game, starting from the initial position. One might think that
the following definitions are a little involved, but this is necessarily so if we want
to “dot all our i’s and cross all our t’s”.

Definition 2 (Finite Plays). Let p = (PL, PR) be a game. The set of finite
plays over p, FPlayp, is defined by:

π = pK1
1 . . . pKn

n ∈ FPlayp, for n ≥ 0, iff
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– K1, . . . ,Kn ∈ {L,R};
– (K1 = L ∧ pK1

1 ∈ PL) ∨ (K1 = R ∧ pK1
1 ∈ PR)

– ∀i. 1 ≤ i < n. (pKi
i = (PL

i , P
R
i ) ∧ pKi+1

i+1 ∈ P
Ki
i ), where K =

{
L if K = R

R if K = L.

We denote by FPlayLI
p the set of plays starting with a Left move and ending with

a Right move, i.e. {pK1
1 . . . pKn

n ∈ FPlayp | K1 = L ∧ Kn = R, n ≥ 0}, and
by FPlayLII

p the set of plays starting with a Right move and ending with a Right
move, i.e. {pK1

1 . . . pKn
n ∈ FPlayp | K1 = R ∧ Kn = R, n ≥ 1}. Similarly, we

define FPlayRI
p and FPlayRII

p .

Only finite plays can arise on a Conway game.
Winning strategies for a given player can be formalized as functions on plays

ending with a move of the opponent player, telling which is the next move of the
given player:

Definition 3 (Winning Strategies). Let p = (PL, PR) be a game.
– A winning strategy on p for LI, i.e. for Left as I player, is a partial function
f : FPlayLI

p → Posp, such that:

• ∀π ∈ FPlayLI
p . f(π) = pL

n+1 =⇒ πpL
n+1 ∈ FPlayp;

• f is defined on the empty play ε, denoted by f(ε) ↓;
• ∀π ∈ FPlayLI

p . (f(π) = pL
n+1 ∧ pL

n+1 = (PL
n+1, P

R
n+1) =⇒

∀pR
n+2 ∈ PR

n+1. f(πpL
n+1p

R
n+2) ↓).

– A winning strategy on p for LII, i.e. for Left as II player, is a partial function
f : FPlayLII

p → Posp, such that:

• ∀π ∈ FPlayLII
p . f(π) = pL

n+1 =⇒ πpL
n+1 ∈ FPlayp;

• for all pR ∈ PR, f(pR) ↓;
• ∀π ∈ FPlayLII

p . (f(π) = pL
n+1 ∧ pL

n+1 = (PL
n+1, P

R
n+1) =⇒

∀pR
n+2 ∈ PR

n+1. f(πpL
n+1p

R
n+2) ↓).

– Winning strategies on p for RI and RII are defined similarly, as partial func-
tions f : FPlayRI

p → Posp and f : FPlayRII
p → Posp, respectively.

– A winning strategy on p for L is a partial function fL : FPlayLI
p ∪FPlayLII

p →
Posp such that fL = fLI ∪ fLII , for fLI , fLII winning strategies for LI and LII.
– A winning strategy on p for R is a partial function fR : FPlayRI

p ∪FPlayRII
p →

Posp such that fR = fRI ∪ fRII , for fRI , fRII winning strategies for RI and
RII.
– A winning strategy on p for I is a partial function fI : FPlayLI

p ∪ FPlayRI
p →

Posp such that fI = fLI ∪ fRI , for fLI , fRI winning strategies for LI and RI.
– A winning strategy on p for II is a partial function fII : FPlayLII

p ∪FPlayRII
p →

Posp such that fII = fLII ∪ fRII , for fLII , fRII winning strategies for LII and
RII.

By induction on games, one can prove that any game has exactly one winner
(see [Con01] for more details):
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Theorem 1 (Determinacy, [Con01]). Any game has a winning strategy ei-
ther for L or for R or for I or for II.

In [Con01], a relation & on games is introduced, inducing a partial order
(which is a total order on the subclass of games corresponding to numbers).
Such relation allows to characterize games with a winning strategy for L, R, I
or II (see Theorem 2 below).

Definition 4. Let x = (XL, XR), y = (Y L, Y R) be games. We define, by in-
duction on games:

x & y iff ∀xR ∈ XR. (y 6& xR) ∧ ∀yL ∈ Y L. (yL 6& x) .

Furthermore, we define:
– x > y iff x & y ∧ y 6& x
– x ∼ y iff x & y ∧ y & x
– x||y (x fuzzy y) iff x 6& y ∧ y 6& x

Notice that 6& does not coincide with <, e.g. ∗ = ({0}, {0}) is such that ∗ 6&0
holds, but ∗ &0 does not hold.

As one may expect, 1 > 0 > −1, while for the game ∗ (which is not a
number), we have ∗||0.

The following important theorem gives the connection between games and
numbers, and it allows to characterize games according to winning strategies:

Theorem 2 (Characterization, [Con01]). Let x be a game. Then
x > 0 (x is positive) iff x has a winning strategy for L.
x < 0 (x is negative) iff x has a winning strategy for R.
x ∼ 0 (x is zero) iff x has a winning strategy for II.
x||0 (x is fuzzy) iff x has a winning strategy for I.

Generalizations of Theorems 1 and 2 to infinite games will be discussed in
Section 3.

3 The Theory of Hypergames

Here we extend the class of games originally considered by Conway, by intro-
ducing hypergames, where plays can be unlimited. For such games the notion
of winning strategy has to be replaced by that of non-losing strategy, since we
take non terminating plays to be draws. In this section, we develop the theory
of hypergames, which generalizes the one for finite games. Special care requires
the generalization of the Characterization Theorem 2.

Hypergames can be naturally defined as a final coalgebra on non-wellfounded
sets:

Definition 5 (Hypergames). The set of Hypergames H is the carrier of the
final coalgebra (H, id) of the functor F : Class∗ → Class∗, defined by F (X) =
P(X)× P(X) (with usual definition on morphisms).
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Defining hypergames as a final coalgebra, we immediately get a Coinduction
Principle for reasoning on infinite games:

Lemma 1. A F -bisimulation on the coalgebra (H, id) is a symmetric relation
R on hypergames such that, for any x = (XL, XR), y = (Y L, Y R),

xRy =⇒ (∀xL ∈ XL.∃yL ∈ Y L.xLRyL) ∧ (∀xR ∈ XR.∃yR ∈ Y R.xRRyR) .

Coinduction Principle. Let us call a F -bisimulation on (H, id) a hyperbisim-
ulation. The following principle holds:

R hyperbisimulation xRy
x = y

All important notions and constructions on games turn out to be invariant
w.r.t. hyperbisimilarity, in particular hyperbisimilar games will have the same
outcome. Moreover, the coalgebraic representation of games naturally induces a
minimal representative for each bisimilarity equivalence class.

Some simple hypergames. Let us consider the following pair of simple hyper-
games: a = ({b}, {}) and b = ({}, {a}). If L plays as II on a, then she imme-
diately wins since R has no move. If L plays as I, then she moves to b, then R
moves to a and so on, an infinite play is generated. This is a draw. Hence L has
a non-losing strategy on a. Simmetrically, b has a non-losing strategy for R.

Now let us consider the hypergame c = ({c}, {c}). On this game, any player
(L, R, I, II) has a non-losing strategy; namely there is only the non-terminating
play consisting of infinite c’s.

It is remarkable that the formal definition of non-losing strategy is precisely
the same as that of winning strategy, i.e. a function on finite plays (see Def-
inition 3). This shows that the definition of non-losing strategy is the natural
generalization to hypergames of the notion of winning strategy.

The main difference in the theory of hypergames with respect to the theory
of games is that on a hypergame we can have non-losing strategies for various
players at the same time, as in the case of the game c above.

To prove Theorem 3 below, which is the counterpart of Theorem 1 of Sec-
tion 2, we use the following lemma, that follows from the definition of non-losing
strategy:

Lemma 2. Let p be a hypergame.

– If L as I player does not have a non-losing strategy on p, then R as II player
has a non-losing strategy on p.

– If L as II player does not have a non-losing strategy on p, then R as I player
has a non-losing strategy on p.

– Symmetrically for R.

Theorem 3 (Determinacy). Any hypergame has a non-losing strategy at least
for one of the players L, R, I, II.
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Proof. Assume by contradiction that p has no non-losing strategies for L, R, I,
II. Then in particular p has no non-losing strategy for LI or for LII. Assume the
first case holds (the latter can be dealt with similarly). Then, by Lemma 2, p
has a non-losing strategy for RII. Hence, by hypothesis there is no non-losing
strategy for RI. But then, by Lemma 2, there is a non-losing strategy for LII.
Therefore, by definition, there is a non-losing strategy for II. Contradiction. ut

Theorem 3 above can be sharpened, by considering when the non-losing strat-
egy f is in particular a winning strategy, i.e. it only generates terminating plays.
First, we state the following lemma:

Lemma 3. Let p be a hypergame.
– If L as I player has a winning strategy on p, then R as II player does not have

a non-losing strategy on p.
– If L as II player has a winning strategy on p, then R as I player does not have

a non-losing strategy on p.
– Symmetrically for R.
– If L as I player has a non-losing strategy on p, but no winning strategies, then

R as II player has a non-losing strategy on p.
– If L as II player has a non-losing strategy on p, but no winning strategies,

then R as I player has a non-losing strategy on p.
– Symmetrically for R.

Theorem 4. Let p be a hypergame. Then either case 1 or case 2 arises:
1. There exists a winning strategy for exactly one of the players L, R, I, II, and

there are no non-losing strategies for the other players.
2. There are no winning strategies, but there is a non-losing strategy for L or

R or I or II. Furthermore:
(a) if there is a non-losing strategy for L or R, then there is a non-losing

strategy for at least one of the players I or II;
(b) if there is a non-losing strategy for I or II, then there is a non-losing

strategy for at least one of the players L or R;
(c) if there are non-losing strategies for both L and R, then there are non-

losing strategies also for both I and II;
(d) if there are non-losing strategies for both I and II, then there are non-

losing strategies also for both L and R.

Proof. 1) If L has a winning strategy, then by Lemma 3 both RI and RII have
no non-losing strategies. Hence neither R nor I nor II have non-losing strategies.
2a) Assume that there is a non-losing strategy for L, but no winning strategies.
Then there is a non-losing strategy but no winning strategies for LI or for LII.
Then, assume w.l.o.g. that there is a non-losing strategy but no winning strate-
gies for LI, by Lemma 3 there is a non-losing strategy also for RII. Therefore,
since there are non-losing strategies for LII and RII, then there is a non-losing
strategy for II.
2c) If there are non-losing strategies both for L and R, then we there are non-
losing strategies for LI, LII, RI, RII, thus there are non-losing strategies also for
I and II.
The remaining items are proved similarly. ut

7



According to Theorem 4 above, the space of hypergames can be decomposed
as in Figure 1. For example, the game c = ({c}, {c}) belongs to the center of
the space, while the games a = ({b}, {}) and b = ({}, {a}) belong to the sectors
marked with L, II and R, II, respectively.

L,R, I, IIL,R, I, II. .

.

.

. .

. .

R, I

L, II

L, I

R, II

I

?????????
L

���������

R

��
��

��
��

� II

??
??

??
??

?

Fig. 1. The space of hypergames.

3.1 Characterization Theorem for non-losing Strategies

The generalization to hypergames of Theorem 2 of Section 2 is quite subtle,
because it requires to extend the relation & to hypergames, and this needs par-
ticular care. We would like to define such relation by coinduction, as the greatest
fixpoint of a monotone operator on relations, however the operator which is natu-
rally induced by the definition of & on games (see Definition 4) is not monotone.
This problem can be overcome as follows.

Observe that the relation & on games is defined in terms of the relation 6&.
Vice versa 6& is defined in terms of &. Therefore, on hypergames the idea is to
define both relations at the same time, as the greatest fixpoint of the following
operator on pairs of relations:

Definition 6. Let Φ : P(H×H)×P(H×H) −→ P(H×H)×P(H×H) be the
operator defined by:

Φ(R1,R2) = ({(x, y) | ∀xR.yR2x
R ∧ ∀yL.yLR2x},

{(x, y) | ∃xR.yR1x
R ∨ ∃yL.yLR1x})

The above operator turns out to be monotone componentwise. Thus we can
define:

Definition 7. Let the pair ( &, 6&) be the greatest fixpoint of Φ.
Furthermore, we define:
– x >y iff x &y ∧ y 6&x
– x ∼ y iff x &y ∧ y &x
– x||y iff x 6&y ∧ y 6&x
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As an immediate consequence of Tarski’s Theorem, the above definition of
the pair of relations ( &, 6&) as the greatest fixpoint of Φ gives us Coinduction
Principles, which will be extremely useful:

Coinduction Principles. We call Φ-bisimulation a pair of relations (R1,R2)
such that (R1,R2) ⊆ Φ(R1,R2). The following principles hold:

(R1,R2) Φ-bisimulation xR1y
x &y

(R1,R2) Φ-bisimulation xR2y
x 6&y

Notice that the pair of relations ( &, 6&) on hypergames extends the corre-
sponding pair on games, the latter being the least fixpoint of Φ.

Moreover, somewhat surprisingly at a first sight, notice that the relations &
and 6& are not disjoint. E.g. the game c = ({c}, {c}) is such that both c &0 and
c 6&0 (and also 0 &c and 0 6&c) hold. However, this is perfectly consistent in the
hypergame scenario, since it is in accordance with the fact that some hypergames
have non-losing strategies for more than one player. Namely, we have:

Theorem 5 (Characterization). Let x be a hypergame. Then
x >0 (x is positive) iff x has a non-losing strategy for L.
x <0 (x is negative) iff x has a non-losing strategy for R.
x ∼ 0 (x is zero) iff x has a non-losing strategy for II.
x||0 (x is fuzzy) iff x has a non-losing strategy for I.

Proof. (⇒) Assume x >0, i.e. x &0 and 0 6&x. We show how to build a non-
losing strategy for L. We have to build non-losing strategies both for LI and
LII. For LII: since x &0, then, by definition, ∀xR.0 6&xR, i.e., for any R move
xR, 0 6&xR. Let xR = (XRL, XRR), then ∃xRL ∈ XRL.xRL &0, that is there
exists a L move xRL such that xRL &0. Thus we can apply again the two steps
above, going on forever or stopping when R cannot move. For LI: since 0 6&x,
then ∃xL.xL &0. Thus by the previous case there is a non-losing strategy for LII
on xL.
The other cases are dealt with similarly.
(⇐) We proceed by coinduction, by showing all the four cases at the same time.
Let
R1 = {(x, 0) | x has a non-losing strategy for LII} ∪

{(0, x) | x has a non-losing strategy for RII},
R2 = {(x, 0) | x has a non-losing strategy for RI} ∪

{(0, x) | x has a non-losing strategy for LI}.
We prove that (R1,R2) is a Φ-bisimulation. There are various cases to discuss.
We only show one case, the others being similar. We prove that, if xR10 and
x has a non-losing strategy for LII, then ∀xR.0R2x

R. If LII has a non-losing
strategy on x, then, by definition, for all xR there is a non-losing strategy for
LI, hence ∀xR.0R2x

R. ut

The following table summarizes the Characterization Theorem:
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Non-losing strategies Relations w.r.t. 0
L x >0 x &0 ∧ 0 6&x
R x <0 x 6&0 ∧ 0 &x
II x ∼ 0 x &0 ∧ 0 &x
I x||0 x 6&0 ∧ 0 6&x

Properties of &. The following proposition, which can be proved by coinduc-
tion, generalizes to hypergames the corresponding results of [Con01]:

Proposition 1. For all hypergames x, we have

x 6&xR ∧ xL 6&x ∧ x &x ∧ x ∼ x .

However, contrary to what happens on games, the relation & is not a partial
order on hypergames (and ∼ is not an equivalence), since & fails to be transitive.

Counterexample. Let b = ({b}, {b}) and a = ({a}, {0}). Then b &0, since b
has non-losing strategies for all the players. Moreover, one can show that a &b,
by coinduction, by considering the relations R1 = {(a, b)} ∪ {(0, b)} and R2 =
{(b, a)} ∪ {(b, 0)}. Thus we have a &b ∧ b &0. However, one can easily check
that a &0 does not hold.

The problem is that the “pivot” b in the above counterexample allows un-
limited plays. Namely, if we restrict ourselves to “well-behaved” pivots, then we
recover transitivity, i.e.:

Lemma 4. Let x, y, z be hypergames such that y is “well-behaved”, i.e. y has no
unlimited plays. If x &y ∧ y &z, then x &z.

Proof. (Sketch) One can proceed by coinduction, by showing that the relations
R1 = {(x, z)|∃y well-behaved. x &y ∧ y &z} and R2 = {(z, x)|∃y well-behaved.
x &y ∧ z 6&y} ∪ {(z, x)|∃y well-behaved. y 6&x ∧ y &z} form a Φ-bisimulation.
The difficult part is to prove that R2 is included in the second component of
Φ(R1,R2). Here is where we need the hypothesis that b is well-behaved. ut

3.2 Sum and Negation of Hypergames

There are various ways in which we can play several different (hyper)games at
once. One way consists, at each step, in allowing the next player to select any
of the component games and making any legal move on that game, the other
games remaining unchanged. The following player can either choose to move in
the same component or in a different one. This kind of compound games can
be formalized through the (disjunctive) sum, [Con01]. The following coinductive
definition extends to hypergames the definition of Conway sum:

Definition 8 (Hypergame Sum). The sum on hypergames is given by the
the final morphism + : (H ×H, α+) −→ (H, id), where the coalgebra morphism
α+ : H×H −→ F (H×H) is defined by
α+(x, y) = ({(xL, y) | xL ∈ XL} ∪ {(x, yL) | yL ∈ Y L},

{(xR, y) | xR ∈ XR}∪{(x, yR) | yR ∈ Y R}) .
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That is + is such that:
x+ y = ({xL + y | xL ∈ XL} ∪ {x+ yL | yL ∈ Y L},

{xR + y | xR ∈ XR} ∪ {x+ yR | yR ∈ Y R}) .
The definition of hypergame sum resembles that of shuffling on processes. In

fact it coincides with interleaving, when impartial games are considered.
For concrete examples of sum games see Section 4, where generalized Nim

and Traffic Jam games are discussed.
Another operation on games, which admits an immediate coinductive exten-

sion to hypergames, is negation, where the roles of L and R are exchanged:

Definition 9 (Hypergame Negation). The negation of a hypergame is given
by the final morphism − : (H, α−) −→ (H, id), where the coalgebra morphism
α− : H −→ F (H) is defined by
α−(x) = ({−xR | xR ∈ XR}, {−xL | xL ∈ XL}) .

That is − is such that: −x = ({−xR | xR ∈ XR}, {−xL | xL ∈ XL}) .
In particular, if x has a non-losing strategy for LI (LII), then −x has a non-

losing strategy for RI (RII), and symmetrically. Taking seriously L and R players
and not fixing a priori L or R to play first, makes the definition of − very natural.

In the following propositions, we summarize some interesting results on sum
and negation, that can be extended to hypergames:

Proposition 2.
i) x− x ∼ 0.
ii) x &0 ∧ y &0 =⇒ x+ y &0.
iii) If y ∼ 0, then x+ y has the same outcome as x.
iv) If y − z ∼ 0, then the games x+ y and x+ z have the same outcome.

The proofs of the items in the above proposition are similar to the ones
provided in [Con01], pag.76, based on the construction of winning/non-losing
strategies.

Proposition 3.
i) x >y iff x− y has a non-losing strategy for L.
ii) x <y iff x− y has a non-losing strategy for R.
iii) x ∼ y iff y − x has a non-losing strategy for II.
iv) x||y iff y − x has a non-losing strategy for I.

The implications (⇒) in the above proposition are proved by building non-
losing strategies, using the definitions of & and ., while the converse implications
are proved using the Φ-coinduction principle.

4 The Theory of Impartial Hypergames

In this section, we focus on impartial hypergames, where, at each position, L
and R have the same moves. Such hypergames can be simply represented by
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x = X, where X is the set of moves (for L or R). Coalgebraically, this amounts
to say that impartial hypergames are a final coalgebra of the powerset functor.
In this section, we first recall the Grundy-Sprague theory for dealing with finite
impartial games, then we discuss the theory of impartial hypergames, using
Smith generalization of Grundy-Sprague results. In particular, we show how to
provide a more complete account of such a theory, by introducing a class of
canonical hypergames, extending the Nim numbers. This can only be given in
the hypergame setting. We illustrate our results on an example.

4.1 The Grundy-Sprague Theory

Central to the theory of Grundy-Sprague, [Gru39,Spra35], is Nim, a classical
impartial game, which is played with a number of heaps of matchsticks. The
legal move is to strictly decrease the number of matchsticks in any heap (and
throw away the removed sticks). A player unable to move because no sticks
remain is the loser.

The Nim game with one heap of size n can be represented as the Conway
game ∗n, defined (inductively) by

∗n = {∗0, ∗1, . . . , ∗(n− 1)} .

Namely, with a heap of size n, the options of the next player consist in moving
to a heap of size 0, 1, . . . , n − 1. The number n is called the Grundy number of
the game. Clearly, if n = 0, the II player wins, otherwise player I has a winning
strategy, moving to ∗0.

Nim games ∗n are called nimbers, to distinguish them from the games n
representing numbers, which have a different definition, see [Con01] for more
details. Nimbers correspond to von Neumann finite numerals in Set Theory.

Nim games are central in game theory, since there is a classical result (by
Grundy and Sprague, independently, [Gru39,Spra35]) showing that any impartial
game “behaves” as a Nim game, or, using Conway terminology, is ∼-equivalent
to a single-heap Nim game (see [Con01], Chapter 11). The algorithm for discov-
ering the Nim game (or the Grundy number) corresponding to a given impartial
game x proceeds inductively as follows. Assume that the Grundy numbers of
the options of x are n0, n1, . . ., then the Grundy number of x is the minimal
excludent (mex ) of n0, n1, . . . The mex of a list of numbers n0, n1, . . . is the
least natural number which does not appear among n0, n1, . . . Then, having the
Grundy number of (the positions of) a game, we know the winning strategy for
that game.

Sums of impartial games. Here we explain how, using the above theory and the
sum on Nim numbers, one can easily deal with compound impartial hypergames.

An example of a compound impartial game is the Nim game with more heaps.
Using sum, the Nim game with two heaps of sizes n1, n2 can be represented as the
Conway game ∗n1 + ∗n2. By the general result by Grundy-Sprague on impartial
games, such game is also equivalent to a Nim game with a single heap, and thus
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there is a Grundy number n such that ∗n ∼ ∗n1 +∗n2. The sum of Nim numbers
is particularly easy to compute and, as we will see, it is useful for analyzing the
sum of generic impartial games. Thus, it deserves a special definition; following
[Con01], we define the Nim sum +2 by: n1 +2 n2 = n, where n is the Nim
number corresponding to the sum game ∗n1 + ∗n2. The Nim sum is quite easy
to calculate, since one can show that it amounts to binary sum without carries.
E.g. 1 +2 3 = 2, since 01⊕ 11 = 10, where ⊕ is binary sum.

In general, in order to analyze the sum of impartial games, one can proceed as
follows. Using the Grundy-Sprague algorithm, one can compute the Nim numbers
corresponding to the compound games. Then, Nim-summing such numbers one
gets the Nim number corresponding to the starting game. If the result is 0, there
is a winning strategy for the II player, otherwise there is a winning strategy for
the I player, who can move to a position of Nim sum 0.

4.2 The Smith Theory in the Hypergame Setting

In [Con01], Chapter 11, the author briefly analyzes infinite impartial games,
even if they escape his inductive definition. These games are represented as
finite or infinite, cyclic graphs, having a node for each position of the game, and
a direct edge from p to q when it is legal to move from p to q. Thus they exactly
correspond to non-wellfounded sets, or impartial hypergames, in our setting.
Theorem 3 specializes to impartial hypergames as follows:

Theorem 6.
Any impartial hypergame has non-losing strategies either for I player or for II
player or for both.

Smith [Smi66] extended the Grundy-Sprague theory on impartial games to
cover infinite games (see [Con01], pag. 133-135). In particular, Smith provides
an algorithm (which works for a large class of cyclic graphs) for marking the
nodes of the game graph with naturals (ordinals if the graph is infinite) plus
some infinity symbols. This generalizes the Grundy-Sprague inductive algorithm,
based on the mex, for computing the Grundy number of an impartial game. From
Smith’s marking one can then immediately discover whether a given position is
winning for I, for II or it is a draw.

Smith’s Marking of the Game Graph, [Smi66]. A position p in the graph will be
marked with the number n if the following conditions hold. Firstly, n must be
the mex (minimal excludent) of all numbers that already appear as marks of any
of the options of p. Secondly, each of the positions immediately following p which
has not been marked with some number less than n must already have an option
marked by n. We continue in this way until it is impossible to mark any further
node with any ordinal number, and then attach the symbol ∞ to any remaining
node (which we call unmarked). Finally, the label of a position marked as n is n,
while the label of an unmarked position is the symbol ∞ followed by the labels
of all marked options as subscripts, see for example the graph of Fig. 2.

Now, the following result holds:
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Fig. 2. The graph of an impartial hypergame, and Smith’s marking.

Theorem 7 (see [Con01], pag. 134). A position marked as n is a II player
win if and only if n is 0, otherwise it is a I player win. A position marked by∞K ,
where K is a set of naturals, is a I player win if and only if 0 ∈ K, otherwise it
is a draw.

The above theorem can be proved by induction on n. The idea underlying
such technique is that a node marked by n behaves as the Nim game ∗n. This can
be viewed as a “canonical game” ∼-corresponding to the given node. However,
the theory, as it is presented in the literature, is not completely satisfactory for
∞ nodes, since ∞ symbols do not correspond to “canonical infinite games”. In
the sequel, we show how to do this in our setting of hypergames.

Let us consider a position p marked with ∞K . We claim that such node
behaves as the (canonical) hypergame

∗∞K = {∗∞} ∪ {∗k | k ∈ K} ,

where ∗∞ = {∗∞}.
Namely, one can show that:

Theorem 8. If x is the canonical hypergame associated to a position p in a
graph, then
x||0 iff x has a non-losing strategy for I.
x ∼ 0 iff x has a non-losing strategy for II.

Proof. For positions marked by n, the thesis follows immediately from Theo-
rem 7. Then let p be a position marked by ∞K . Using Theorem 7, we only need
to prove that:
(a) the hypergame ∗∞K has subscript 0 iff ∗∞K ||0 but not ∗∞K ∼ 0;
(b) the hypergame ∗∞K has no subscript 0 iff ∗∞K ||0 and ∗∞K ∼ 0.
(a ⇒) First of all, notice that ∗∞ is such that ∗∞ &0 and 0 & ∗ ∞. Assume
0 ∈ K. Then ∗∞K 6&0, since 0 & ∗∞. Similarly 0 6& ∗∞K , since ∗∞ &0. Hence
∗∞K ||0. Moreover, neither ∗∞K &0 nor 0 & ∗ ∞K hold, since 0 6&0 does not
hold.
(a ⇐) Assume ∗∞K ||0, but not ∗∞K ∼ 0. Assume by contradiction that 0 is
not subscript of ∞K . Then, since for all k ∈ K. ∗ k 6&0 ∧ 0 6& ∗ k, we have
∗∞K ∼ 0. Contradiction.
(b ⇒) Assume 0 6∈ K. Then ∗∞K ||0, since ∗∞ &0 and 0 & ∗ ∞. Moreover
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∗∞K ∼ 0, since, for all elements x ∈ ∗∞K , x 6&0 and 0 6&x.
(b⇒) Assume ∗∞K ||0 and ∗∞K ∼ 0. If by contradiction 0 ∈ K, then ∗∞K ∼ 0
does not hold, since 0 6&0 does not hold. ut

Thus, generalizing to impartial hypergames, Grundy-Sprague result on im-
partial games, we have:

Theorem 9. Any impartial hypergame behaves either like a Nim game or like
a hypergame of the shape ∗∞K .

In the following, we show that our canonical hypergames are well-behaved
also w.r.t. sum.

Traffic Jams and Generalized Sums. Following [Con01], we consider a concrete
hypergame to illustrate how compound impartial hypergames are handled using
Smith’s generalized marking algorithm and the extension to∞-nodes of the Nim
sum. Let us consider the following concrete game, corresponding to the game
graph in Fig. 2. We can think of the graph as the map of a fictitious coun-
try, where nodes correspond to towns, and edges represent motorways between
them. The initial position of the game corresponds to the town where a vehicle
is initially placed. Each player has to move such vehicle to a next town along
the motorway. If this is not possible, then the player loses. Theorem 7 tells us
which player has a non-losing strategy in any position. Now there is a natural
generalization of the above traffic game, where more than one vehicle is consid-
ered. We assume that each town is big enough to accommodate all vehicles at
once, if needed. At each step, the current player chooses a vehicle to move. Such
game corresponds to the sum of the hypergames with single vehicles. In order
to compute non-losing strategies for the sum game, one can use the generalized
Nim sum, which amounts to the Nim sum extended to ∞-nodes as follows:

n+2∞K =∞K +2 n =∞{k+2n | k∈K} ∞K +2∞H =∞ .

Thus for example, if we have vehicles at positions H and I in Fig. 2, then the
game is winning for I player, since 2 +2 ∞1,2 = ∞2+21,2+22 = ∞3,0. While a
game with vehicles in I and J is a draw, since ∞1,2 +2∞2 =∞.

On the other hand, having assigned canonical hypergames to the nodes of the
graph, one could use hypergame sum (as defined in Definition 8) for summing
them. Hence the question naturally arises whether canonical hypergames are
well-behaved w.r.t. sum. The answer is positive, since one can prove that the
hypergame sum behaves as the canonical hypergame corresponding to the result
of the extended Nim sum, i.e.:

Proposition 4. Let ∗∞K , ∗∞H be hypergames. Then
i) the hypergame ∗∞K + ∗n behaves as the hypergame ∗∞{k+2n | k∈K};
ii) the hypergame ∗∞K + ∗∞H behaves as the hypergame ∗∞.

Proof. (Sketch) Both items i) and ii) are proved using Theorem 5, by showing
that the sum game has a non-losing strategy for L, R, I, II iff the corresponding
game has one. ut
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5 Comparison with Related Work and Directions for
Future Work

Loopy games. The theory of general loopy games, where infinite plays can be
either winning for L,R or draws is very difficult. For instance, already for the case
of fixed games (where no draws are admitted), determinacy fails if the Axiom
of Choice is assumed. In [BCG82], Chapter 11, fixed loopy games are studied.
A ≥ relation is introduced, which is proved to be transitive and it allows to
approximate the behavior of a loopy game, possibly with finite games. But this
technique works only if certain fixpoints exist. Such theory has been later further
developed and revisited in other works, see e.g. [San02,San02a].

On the contrary, our theory allows to deal with the class of games where
infinite plays are draws in a quite general and comprehensive way. We plan to
investigate more general classes of (possibly mixed) loopy games, where infinite
plays can be considered as winning or draws.
Games and automata. The notion of hypergame that we have investigated in this
paper is related to the notion of infinite game considered in the automata the-
oretic approach, originating in work of Church, Büchi, McNaughton and Rabin
(see e.g. [Tho02]). In this approach, games are defined by the graphs of positions.
L and R have different options, in general, but L is always taken as first player.
Only games with infinite plays are considered. These games are fixed, accord-
ing to the above definition. Winning strategies are connected with automata,
and also the problem of a (efficient) computation of such strategies is consid-
ered. However, recently, non-losing strategies have been considered also in this
setting, e.g. in the context of model checking for the µ-calculus, see [GLLS07].
Games for semantics of logics and programming languages. Game Semantics
was introduced in the early 90’s in the construction of the first fully complete
model of Classical Multiplicative Linear Logic [AJ94], and of the first syntax-
independent fully abstract model of PCF, by Abramsky-Jagadeesan-Malacaria,
Hyland-Ong, and Nickau, independently. Game Semantics has been used for
modeling a variety of programming languages and logical systems, and more
recently for applications in computer-assisted verification and program analysis,
[AGMO03]. In Game Semantics, 2-players games are considered, which are in
some way related to Conway games, despite the rather different presentation.
For more details see [AJ94]. The main difference between the Game Semantics
approach and our approach lies in the fact that, in Game Semantics, infinite
plays are always considered as winning for one of the two players, as in the case
of Conway’s fixed games.
Traced categories of games. In [Joy77], Joyal showed how Conway (finite) games
and winning strategies can be endowed with a structure of a traced category.
This work admits an extension to loopy games, when these are fixed. However,
when draws are considered, Joyal’s categorical construction apparently does not
work, since we lose closure under composition (this is related to the fact that our
relation & is not transitive). As future work, we plan to study traced categories
for general infinite games, and to investigate the trace operation in a coalgebraic
setting.
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Games and coalgebras. In [BM96], a simple coalgebraic notion of game is intro-
duced and utilized. It is folklore that bisimilarity can be defined as a 2-player
game, where one player tries to prove bisimilarity, while the other tries to dis-
prove it. This game turns out to be a fixed game in the sense of [BCG82], where
infinite plays are winning for the player who tries to prove bisimilarity.
Conumbers. Conway’s numbers [Con01] amount to Conway’s games x such that
no member of XL is & any member of XR, and all positions of a number are
numbers. Thus, once we have defined hypergames and the relations &, 6&, we
can define the subclass of conumbers, together with suitable operations extending
those on numbers. It would be interesting to investigate the properties of such
a class of hypergames. An intriguing point is whether it is possible to define a
partial order, since, as seen in this paper, the relation & is not transitive on
hypergames.
Compound games. In this paper, we have considered the (disjunctive) sum for
building compound games. However, there are several different ways of com-
bining games, which are analyzed in [Con01], Chapter 14, for the case of finite
games. It would be interesting to extend to hypergames such theory on com-
pound games.
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