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Aus dem Paradies, das Cantor uns geschaffen hat,
soll uns niemand vertreiben können.

David Hilbert

Abstract. Set-theoretic paradoxes have made all-inclusive self-referen-
tial Foundational Theories almost a taboo. The few daring attempts
in the literature to break this taboo avoid paradoxes by restricting the
class of formulæ allowed in Cantor’s näıve Comprehension Principle. A
different, more intensional approach was taken by Fitch, reformulated by
Prawitz, by restricting, instead, the shape of deductions, namely allowing
only normal(izable) deductions. The resulting theory is quite powerful,
and consistent by design. However, modus ponens and Scotus ex contra-
dictione quodlibet principles fail. We discuss Fitch-Prawitz Set Theory
(FP) and implement it in a Logical Framework with so-called locked
types, thereby providing a “Computer-assisted Cantor’s Paradise”: an
interactive framework that, unlike the familiar Coq and Agda, is closer
to the familiar informal way of doing mathematics by delaying and con-
solidating the required normality tests. We prove a Fixed Point Theorem,
whereby all partial recursive functions are definable in FP. We establish
an intriguing connection between an extension of FP and the Theory of
Hyperuniverses: the bisimilarity quotient of the coalgebra of closed terms
of FP satisfies the Comprehension Principle for Hyperuniverses.
Keywords: Fitch-Prawitz set theory, logical frameworks, paradoxes,
coalgebras, hyperuniverses

1 Introduction

The discovery of set-theoretic paradoxes at the turn of last century, such as Rus-
sell’s, Burali-Forti’s and Curry’s, inhibited mainstream foundational research
from exploring self-referential, all-inclusive Foundational Theories. There are a
very few exceptions in the literature. Quine’s NF and the Theory of Hyper-
universes by Forti and Honsell [FH96] avoid paradoxes while preserving exten-
sionality, by restricting the class of formulæ allowed in Cantor’s Comprehension
Principle to stratified or to generalized positive formulæ, respectively.
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able Large-Scale Software Systems” and by the COST Action CA15123 EUTYPES
“The European research network on types for programming and verification”.



In 1952, Frederic Brenton Fitch [Fit52] introduced a Foundational Set-Theory,
consistent by design, which has a more intensional flavour. It compensates the
potentially paradoxical effects of an un-constrained näıve Comprehension Prin-
ciple by restricting the class of deductions. Fitch introduced two possible con-
ditions which are rather idiosyncratic and unnecessarily restrictive, see [Fit52].
It was not until Prawitz in 1966 [Pra06], who gave a natural deduction presen-
tation of Fitch’s Theory, that a more principled restriction on deductions was
introduced, namely that the deduction be normal.

Apart from the restriction on the shape of deductions, Fitch-Prawitz Set
Theory, FP, is otherwise a standard first order theory with classical negation.
Sets, i.e. abstractions, are introduced and eliminated in the natural way, and
equality is expressed by Leibniz equality. FP subsumes higher-order logic for
all orders. Fitch himself showed how a considerable part of the theory of Real
Numbers can be developed in FP. The theory however is only paraconsistent,
in that Scotus principle ex contradictione quodlibet fails. Moreover the standard
rules, such as modus ponens or extensionality are not admissible.

In this paper, we discuss FP and give a Fixed Point Theorem, whereby all
partial recursive functions are definable in FP as one would in functional pro-
gramming languages.

Furthermore we show how to encode the highly unorthodox side condition of
FP in a Logical Framework based on Constructive Set Theory featuring locked
types, [HLMS16]. This allows to build an extremely flexible, all-inclusive interac-
tive foundational environment for developing Mathematics and its foundations.
This is indeed an interactive, computer-assisted Cantor’s Paradise, where one
can optimistically use the unrestricted Comprehension Principle, in the style of
[CSW14,DHJG06] and of optimistic concurrency control in distributed systems.
I.e., the nuisance of checking consistency is done automatically at the end!

Finally, we provide an intriguing set-theoretic connection between an exten-
sion of FP and the Theory of Hyperuniverses, [FHL94]. Namely we show that
the strongly extensional quotient, i.e. the bisimilarity quotient, of the coalgebra
of closed terms of Fitch-Prawitz Theory satisfies the restricted Comprehension
Principle of Hyperuniverses. The relevance of this result is twofold. It provides a
purely proof-theoretic consistency proof for the Theory of Hyperuniverses. More-
over, it shows that, if we insist on extensionality, a consistent Comprehension
Principle cannot be broadened much beyond positive formulæ.

Synopsis. In Section 2, we present the theory FP, and in Section 3 we discuss it.
In Section 4, we show how Mathematics can be developed in FP, in particular
we prove the Fixed Point Theorem. In Section 5, we show how to encode FP in a
Logical Framework featuring locked types. In Section 6, we study the connection
between FP and the extensional Theory of Hyperuniverses. In Section 7 we dis-
cuss FP as a logical framework and compare it to other “optimistic” frameworks.
Final remarks appear in Section 8.

Acknowledgments. The authors are grateful to the anonymous referees, and to
Oleg Kiselyov, for many useful remarks and intriguing questions.
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2 The Theory of Fitch-Prawitz, FP

We present a classical version of the logical theory of Fitch-Prawitz, which we
call FP. We follow essentially [Pra06]. The theory FP includes the usual logical
connectives ∧,∨,→, and the ∀,∃ quantifiers, the logical constant ⊥, together
with an unrestricted set constructor. Negation is not a primitive connective, ¬A
being expressed as A → ⊥. The crucial non-standard restriction is that only
normal deductions are allowed in Fitch-Prawitz theory.

2.1 The Language of FP

Definition 1 (Symbols). The symbols consist of the binary constant ∈, the
constant λ for set abstraction, the logical constant ⊥, the logical connectives
¬, ∧, ∨, →, the universal and existential quantifiers ∀ and ∃. We assume a
denumerable set of variables, denoted by lower-case letters x, y, z, . . .

Definition 2 (Terms and Formulæ). Terms and formulæ are defined by mu-
tual induction:
(T 3) t, u ::= x | λx.A
(F 3) A,B, . . . , P, . . . ::= ⊥ | ¬A | A∧A | A∨A | A→ A | ∀x.A | ∃x.A | t ∈ u ,
where ¬A is an abbreviation for A→⊥.

We use standard conventions concerning free and bound occurrences of variables,
and, of course, Barendregt’s hygiene condition. Open and closed terms and for-
mulæ are defined as usual. The set of free variables of a term t or a formula
A will be denoted by Fv(t)/Fv(A). The set of closed terms/formulæ is denoted
by T 0/F0. Formula contexts A[ ], where A[ ] is an incomplete formula with a
hole, are defined as usual. We denote by t[u/x], A[u/x] the (capture-avoiding)
substitution of the term u for the variable x in the term t or in the formula A.

2.2 Inference Rules and Deductions

We present inference rules in natural deduction style (see Fig. 1). The infer-
ence rules consist of an introduction and an elimination rule for each logical
connective, for ∀,∃ quantifiers, and for λ, and of a rule for ⊥.

The rules of FP appear in Fig. 1. In the rules ∀I) and ∃E), the variable y
does not belong to free variables of A \ {x} and it must not occur free in any
hypothesis or undischarged assumptions.

Notice that in FP the rule of negation introduction is absorbed by →I)
We call quasi-deduction the standard notion of deduction in Natural Deduc-

tion. In FP, not all quasi-deductions are allowed, but only those which essentially
correspond to normal deductions in Natural Deduction.

Definition 3. The premisses A in the rule →E), C in the rule ∨E), B in the
rule ∃E) are called minor premisses. A premiss that is not minor is called a
major premiss.
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(¬A)
...
⊥
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Fig. 1. FP rules in natural deduction style

Definition 4 (Deductions).

– We call quasi-deduction in FP a standard deduction in the system FP, i.e. a
formula tree obtained by applying the inference rules.

– A formula occurrence in a deduction that is both the consequence of an ap-
plication of a I-rule or of the ⊥-rule, and major premiss of an application of
a (correspondent) E-rule is said to be a maximum formula in the deduction.

– A deduction in FP is a quasi-deduction with no maximum formulæ, i.e. a
normal deduction.

– We write Γ `FP A, for Γ set of formulæ, when there is a deduction of the
formula A from the set of formulæ in Γ .

– A deduction from no assumptions is called a proof.

The shape of normal deductions manifestly accounts for the fact that no
information can be logically extracted from a formula which had not been already
available at the outset. Normal Deductions apparently satisfy a sort of nihil fit
ex nihilo. Namely in a main branch β of a deduction Π, the formula occurrences
in β that are major premisses of E-rules precede all formula occurrences in β
which are premisses of I-rules or the ⊥-rule. In the proposition-as-types analogy,
normal proofs correspond to normal forms of λ-calculus. In most popular logics,
all deductions can be normalized, although non normal proofs are usually more
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concise and more natural. The use of lemmata, or cuts, produces non-normal
proofs. Normalization then amounts to proving all lemmata from first principles
within each proof. But cuts, as in FP can lead to circularities. In Section 3.1 we
give examples of deductions which cannot be normalized. These arise from the
unrestricted use of elimination rules, and therefore might yield deductions of ⊥.

If we consider the fragment of the system FP where we omit the λ-rules,
we obtain a system for classical logic with the property that each derivation is
normalizable, i.e. for each derivation there exists a corresponding derivation in
normal form (see [Pra06], Ch. III, Theorems 1,2). In the full system FP this
property fails. In derivations, it is still possible to remove any given maximum
formula, but in general it is impossible to remove all maximum formulæ.

Nevertheless, FP is consistent, namely, there is at least a formula which is not
derivable, i.e. ⊥. If this were the case, the ⊥-rule would make the system trivial.
This is essentially Thm. 3 of [Pra06], but since consistency does not require a
tight control on the shape of subformulæ, we shortcircuit some of the arguments.

Proposition 1. The system FP is consistent.

Proof. We proceed by contradiction. Assume that there is a proof Π (i.e., a
deduction in normal form depending on the empty set) of ⊥. Consider a main
branch β of Π. One can easily see that the formula occurrences in β that are ma-
jor premisses of E-rules precede all formula occurrences in β which are premisses
of I-rules or the ⊥-rule. Otherwise there would be a first formula occurrence in
β which is a major premiss of an E-rule but succeeds a premiss of an I-rule or
the ⊥-rule, and such a formula would be a maximum formula contrary to the
hypothesis that β is normal. But there are no I-rules for ⊥ hence there are no
premisses of I-rules in β. Hence the first formula in β must be an undischarged
assumption, and this contradicts the initial hypothesis that Π is a proof. ut

3 The Theory FP: Pros and Cons

Why Normal Deductions? Restricting the class of legitimate deductions in
FP to normal deductions yields consistency by design, see Proposition 1. Alter-
nately, one could have brutally accepted only deductions which do not derive
⊥, but then huge complications would arise because we do need subdeductions
which yield ⊥, in dealing with negation.

Moreover, since Classical Logic is normalizing, FP is a conservative exten-
sion with respect to classical theorems which do not mention simultaneously
both λ and ∈. This allows to develop in FP a considerable portion of standard
Mathematics, see [Fit52].

In [Fit52], Fitch did not introduce the normal deduction proviso to qualify
proper deductions. He discussed instead two alternate conditions which appear
rather idiosyncratic and unnecessarily restrictive, which he called the simple
and the special restrictions. The simple restriction does not allow to derive e.g.
A → (B → ((A ∧ B) → C) → C)), while the special restriction does not allow
to derive (P ↔ (P → Q))→ Q or ((A→ (A→ B)→ B)→ A)→ A.
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Negation. We have already pointed out that negation is not a primitive logical

operator, but it is encoded using ⊥, namely ¬A ∆
=A→ ⊥. The ⊥)-rule enforces

classical negation. It clearly subsumes the intuitionistic rule ex falso sequitur

quodlibet, namely ⊥
A .

Moreover, applying the→E)-rule and provided the overall deduction normal-

izes, it encompasses also the double negation rule, namely ¬¬A
A , and hence

it proves also tertium non datur, i.e. ((A→ ⊥)→ ⊥)→ A.

Full Elimination Rules are not Admissible. The choice of allowing only
normal deductions makes standard elimination rules “unsafe”, i.e. not admissi-
ble. E.g. Modus Ponens, i.e. the →E)-rule, cannot be applied näıvely, in that if
we have normal deductions of A→ B and of A, it is not true in general that the
extended deduction obtained by an application of the →E)-rule is still normal.

Normalizable Quasi-Deductions: FP#. The constraint of considering quasi-
deductions to be legal only if already in normal form can be weakened to allow
for normalizable quasi-derivations. In order to define normalizable deductions
we need to introduce a calculus of deductions, a sort of λ-calculus as in the
propositions-as-types paradigm, and define an appropriate notion of reduction
which reflects the inversion principle underpinning the normalization procedure.
One can easily see that this can be done and that the deduction calculus is
strongly normalizing. Then, consistency of FP# follows from that of FP. This
extension of FP, called FP# has been recently discussed in [HLMS16], where
a type system for characterizing the strongly normalizable λ-terms has been
introduced, see Subsection 4.1 below.

Paraconsistency. In FP Duns Scotus rule ex absurdis sequitur quodlibet, namely:
A ¬A
⊥ is not admissible, let alone derivable. Since ¬A is encoded as A→⊥, the

derivability of Scotus rule would require an application of the→E)-rule, which is
subject to restrictions on the subdeductions, and hence is not safe in general. In
Subsection 3.1 we will see that also Aristotle’s non-contradiction principle fails,
namely we have that for suitable A’s `FP A ∧ ¬A. Thus FP is paraconsistent.
This is inevitable since, in FP a strong fixed point theorem (Theorem 4.1) holds.

In the original system of Fitch [Fit52], negation is a primitive unary connec-
tive which behaves differently from our encoding of ¬ and satisfies Scotus rule.
In [Pra06], Prawitz calls it constructive negation. To allow for this notion of
negation, Fitch has to give up excluded middle and negation introduction (which
he calls reductio ad absurdum). Both restrictions, introduced by Fitch in [Fit52]
on quasi-deductions to qualify them as deductions, ensure that the system is
consistent but not paraconsistent.

3.1 The Taming of Russell’s and Curry’s Paradoxes

The interest in the theory of Fitch-Prawitz FP lies in its power of taming the
näıve Comprehension Principle, namely permitting to reason on the set of ele-
ments satisfying any formula P .
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Thus, in particular, Russell’s and Curry’s classes are definable in FP, but the
deductions, involving these classes, which would allow to derive ⊥ in classical
logic are not normalizable.

Russell’s Paradox. Let us define t
∆
=λx.(x 6∈ x), where t 6∈ t denotes the

formula ¬(t ∈ t), i.e. t ∈ t→⊥. Then we have the following quasi-deduction:

t ∈ t(1)
t 6∈ t t ∈ t(1)

⊥
t 6∈ t(1)

t ∈ t

t ∈ t(1)
t 6∈ t t ∈ t(1)

⊥
t 6∈ t(1)

⊥

the index (1) above indicates where hypotheses are discharged. Notice that we
have both `FP t ∈ t and `FP t 6∈ t, since the two subderivations are legal in
FP. However ⊥ is not derivable, since the overall quasi-deduction cannot be
transformed into a normal deduction. If we perform a step of →-reduction we
end up introducing a new λ-reduction, indefinitely. We can derive legally instead
`FP (t ∈ t) ∧ (t 6∈ t). This amounts to the failure of Aristotle’s Principle of non-
contradiction. However, Scotus rule does not apply, and hence this contradiction
does not trivialize the theory, but just makes it paraconsistent.

Curry’s Paradox. Let P be any formula, and let Y
∆
=λx.(x ∈ x→ P ). Then

we have the following quasi-deduction:

Y ∈ Y (1)

Y ∈ Y → P Y ∈ Y (1)

P

Y ∈ Y → P (1)

Y ∈ Y (1)

Y ∈ Y → P Y ∈ Y (1)

P

Y ∈ Y → P (1)

Y ∈ Y
P

Clearly, the above quasi-deduction cannot be transformed into a normal deduc-
tion, because the same infinite reduction-chain that occurs in Russell’s paradox
above would be generated here. Notice that the two quasi-derivations obtained
by just dropping the last application of the →E)-rule are in normal form.

Moreover, from the very definition of Y , by applying the λI)-rule, we obtain
(Y ∈ Y → P )→ (Y ∈ Y ), and by applying the λE)-rule, we obtain (Y ∈ Y )→
(Y ∈ Y → P ). Hence we have `FP (Y ∈ Y )↔ (Y ∈ Y → P ). This is related to
the Fixed Point Theorem of Section 4.1, which takes us very close to a paradox
but not quite. Russell’s class is a special case of Curry’s Paradox, if the formula
P is taken to be ⊥.

The Role of Structural Rules in the Paradoxes. In deriving both Russell’s
and Curry’s Paradoxes, we have used the structural rule of contraction. In each
branch we have discharged two instances of the same assumption. Grishin [Gri82]
was the first to show that Näıve Set Theory without contraction is consistent,
albeit very weak. To see this it is enough to realize that it amounts to a Set
Theory whose logic is Girard’s Linear Logic without exponentials, and therefore
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all deductions are normalizable even in the presence of λ and ∈. Hence the
“murderer” who chases us away from Cantor’s Paradise, namely the “root cause”
of the set-theoretic paradoxes, is not extensionality or tertium non datur, it is
not even related to negation. It is the structural rule of contraction which, via
Curry’s Paradox, yields inconsistency even in minimal logic.

Incidentally, we point out that the expressive power of J.Y.Girard’s Light
Linear Logic with abstractions, LLLs (see [Gir98], Appendix A.1) lies in between
Grishin’s Näıve Set Theory without contraction, and the theory of Fitch-Prawitz.

3.2 Equality and Extensionality

Equality in FP is expressed as Leibniz Equality, namely

t1 = t2
∆
= ∀x. t1 ∈ x↔ t2 ∈ x.

In Set Theory, it is natural to consider a much stronger version of equality,
namely Extensional Equality

t1 ' t2
∆
= ∀x. x ∈ t1 ↔ x ∈ t2.

In FP we can derive t1 ' t2 → t1 = t2. The converse implication amounts to the
Extensionality Axiom t1 = t2 → t1 ' t2.

Grishin [Gri82] showed in 1982 that, adding Extensionality, the contraction
rule becomes derivable. Hence it allows to derive Russell’s Paradox already in a
Näıve Set Theory based on Linear Logic without exponentials.

Extensionality has a similar impact also on FP. First we need to extend the
notion of normal deduction to deductions which make use of axioms. This is
done simply by stipulating that axioms behave as undischarged assumptions.
Hence, the analogue of Grishin’s result for FP is that one can derive a normal
deduction of ⊥ whose only assumptions are instances of Extensionality. Thus,
the Extensionality Axiom makes FP inconsistent. We give a direct proof of this:

Proposition 2. Ext `FP ⊥.

Proof. Let Y
∆
= {x | x ∈ x}, ∅ ∆= {x | ⊥}, R ∆

= {x | x ∈ x → ⊥}, X ∆
= {x | R ∈

R}. Then R ∈ R `FP ∀x.x ∈ ∅ ↔ x ∈ X. Namely,

R ∈ R

x ∈ X(1)

R ∈ R
R ∈ R→ ⊥
⊥

x ∈ ∅
x ∈ X → x ∈ ∅

x ∈ ∅(1) R ∈ R(2)

⊥
R ∈ R→ ⊥
R ∈ R
x ∈ X

x ∈ ∅ → x ∈ X
Using Ext, we have R ∈ R `FP ∀x.∅ ∈ x ↔ X ∈ x. By instantiating x to Y we
get R ∈ R `FP ∅ ∈ Y ↔ X ∈ Y , hence using λE), we obtain R ∈ R `FP ∅ ∈ ∅ ↔
X ∈ X. Since, by λI) R ∈ R `FP X ∈ X, by →E) we get R ∈ R `FP ∅ ∈ ∅ and
by λE) R ∈ R `FP ⊥. Finally, since `FP R ∈ R (see Russell’s Paradox at the
beginning of Section 3.1), we get a contradiction. One can easily check that all
the above arguments are indeed normal deductions. ut

Section 6 is devoted to show how Extensionality can be recovered in a weak FP.
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4 Developing Mathematics in FP

In this Section we show that even if Extensionality is inconsistent with FP, nev-
ertheless Leibniz Equality allows us to derive a considerable part of Mathematics
and Logic in FP. Similar developments can be carried out also in Fitch original
Theory [Fit52] and in Girard’s LLLs [Gir98], Appendix A.1.

First we need to introduce the following fundamental abbreviations:

∅ ∆=λx.⊥ V
∆
=λx.(x = x) {x | A} ∆=λx.A {t} ∆=λx.(x = t)

{t1, . . . , tn}
∆
=λx.(x = t1 ∨ . . . x = tn) 〈t1, t2〉

∆
= {t1, {t2}}

〈t1, . . . , tn〉
∆
= t

∆
= 〈. . . 〈t1, t2〉, . . . , tn〉 λx1 . . . xn.A

∆
=λz.(z = 〈x1, . . . , xn〉 ∧ A).

One can easily see that when any such abbreviation is taken as the definition
in FP of the intended notion, it satisfies in FP the standard properties of this
notion. E.g. two t-ple’s are equal if and only if all their components are equal.

4.1 The Fixed Point Theorem

The outstanding expressive power of FP derives from the following logical Fixed
Point Theorem, which allows us to define entities in FP following a sort of func-
tional programming paradigm.

Theorem 1 (Fixed Point (FPT)). Let A be a formula with free variables
x, z1, . . . , zn, n > 0. Then there exists a term u such that `FP z ∈ u←→ A[u/x],
where z is a shorthand for 〈z1, . . . , zn〉.
Proof. Let u

∆
= {z | 〈z, t〉 ∈ t}, where t

∆
= {〈z, y〉 | A[{w | 〈w, y〉 ∈ y}/x]}.

Then the implication z ∈ u −→ A[u/x] and its converse can be derived via two
applications, respectively, of the λE-rule, and of the λI-rule. ut

Paraconsistency follows immediately from Theorem 1, just take the formula A to
be z /∈ x. Notice that the contradiction, ⊥, arises from z ∈ u←→ z /∈ u, only if
we can either use freely the structural rule of contraction or a non-normalizable
proof. The former is precisely what is not allowed in Girard’s LLLs, while non-
normalizable proofs are precisely what are ruled out by FP.

Curry’s paradoxical Y as defined in Section 3 is closely related to the fixed
point construction but it is not an instance of it. In fact, an alternative Y
can be obtained using the Fixed Point Theorem. Namely, consider the formula

A
∆
= z ∈ x → P . Then, by the Fixed Point Theorem, there exists a term u

such that `FP z ∈ u ←→ (z ∈ u → P ). Now, by substituting u for z, we get
u ∈ u ←→ (u ∈ u → P ). By the proof of the Fixed Point Theorem, u can be
taken to be {z | 〈z, t〉 ∈ t}. Of course, the Fixed Point Theorem above admits a
straightforward generalization to the n-ary case, i.e. the case of n formulæ. We
will illustrate the power of the Fixed Point Theorem in the following examples.

Selfsingleton Construction. Using the Fixed Point Theorem, one can build
the selfsingleton set in FP. Namely, let A be the formula z = x. Then, by the
Fixed Point Theorem, there exists a term u such that `FP z ∈ u←→ z = u. By

the proof of the Fixed Point Theorem, u can be defined by u
∆
= {z | 〈z, t〉 ∈ t},

where t
∆
= {〈z, y〉 | z = {w | 〈w, y〉 ∈ y}}.
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The natural question arises as to whether there exist more than one selfsin-
gleton. The answer is positive, since any fixed point operator induces a differ-
ent one. For instance, in the proof of the Fixed Point Theorem, one can take

u
∆
= {z | 〈z, a, t〉 ∈ t} and t

∆
= {〈z, a, y〉 | A[{w | 〈w, a, y〉 ∈ y}/x]}, for any a, thus

getting a different fixed point operator, which thus yields a different selfsingleton.

Recursive Definitions of Functions and Sets. The Fixed Point Theorem,
FPT , allows us to define recursive sets and functions in FP as in functional
programming using general recursion, see also [Gir98], Appendix A.1.

Numerals. To define numerals, consider two fixed conventional sets/terms, which
we denote by 0 and S, to represent zero and successor. E.g. take ∅ and V . Then
apply FPT to the formula ANat:

ANat[z, x]
∆
= (∀A. (0 ∈ A ∧ ∀y ∈ A. < S, y >∈ A)) −→ z ∈ A) −→ z ∈ x.

By FPT there exists a term Nat such that
`FP z ∈ Nat ←→ ANat[z,Nat].

We have enforced Induction on Nat by means of minimality. In what follows, we
use the standard notation 0, 1, . . . to denote numerals.

Subtraction. To define the subtraction function, consider the following formula:

ASubt[z, x]
∆
= (∀A.

∀y1, y2, y3 ∈ Nat.

 〈〈0, y2〉, 0〉 ∈ A ∧
〈〈y1, 0〉, y1〉 ∈ A ∧

〈〈y1, y2〉, y3〉 ∈ A→ 〈〈y1 + 1, y2 + 1〉, y3〉 ∈ A

→ z ∈ A)

−→ z ∈ x.

Then, by the FPT , there exists a term Subt such that
`FP 〈〈z1, z2〉, z3〉 ∈ Subt ←→ ASubt[z,Subt].

Lambda terms. The set of closed λ-terms Λ0 is definable starting from three
conventional sets, var the variable marker, app, the application marker, and lam
the λ-abstraction marker. For simplicity we omit the “minimality” conditions.
Consider the following formula AΛ0 :

AΛ0
∆
= (∃n ∈ Nat. z = 〈var, n〉) ∨ (∃y1, y2 ∈ x. z = 〈app, y1, y2〉) ∨

(∃y ∈ x. ∃n ∈ Nat. z = 〈lam, n, y〉) .
Then, by the FPT , there exists a term Λ0 such that
`FP z ∈ AΛ0 ←→ (∃n ∈ Nat. z = 〈var, n〉) ∨ (∃y1, y2 ∈ Λ0. z = 〈app, y1, y2〉) ∨

(∃y ∈ Λ0. ∃n ∈ Nat. z = 〈lam, n, y〉) .
Given a term N of λ-calculus we denote by Ñ its FP representation.

Normal λ-terms. Using Theorem 4.1 and the set Λ0 defined above, we can define
the relation Rβ consisting of the pairs of terms in Λ0 such that 〈M̃, Ñ〉 ∈ Rβ
iff the λ-terms M and N are β-convertible. Again applying Theorem 4.1 we
can now define a predicate Λ+ such that x ∈ Λ+ is equivalent in FP to x ∈
Λ0 ∧ ∀y.y ∈ Λ+ → ∃u.〈u, 〈app, x, y〉〉 ∈ Rβ ∧ u ∈ Λ+. Then, there is a normal

proof in FP of M̃ ∈ Λ+ only if M is a closed strongly normalizing term.

10



In Section 3, we introduced FP#, the extension of FP where normalizable de-
ductions are legal. In [HLMS16], a type system was suggested for characterizing
the strongly normalizable λ-terms. That construction amounts to carrying out
the above argument in FP# instead of FP. A legal deduction in FP# of M̃ ∈ Λ+

would then amount to typing M with the type Λ+. There is indeed a natural re-
flection of the metatheoretic normalizability of the FP# deduction of the typing
judgement M̃ ∈ Λ+, and the fact that M is indeed strongly normalizable!

Partial Recursive Functions. The above examples can be generalized. Relying
on the FPT , we can define objects as in Functional Programming provided
we enforce the “minimality” condition, thereby showing that FP is a Universal
Model of Computation:

Theorem 2. For any partial recursive function h on natural numbers of arity
k, there exists a formula Ph with free variables x1, . . . , xk, y such that

h(n1, . . . , nk) ' m ⇐⇒ `FP Ph[ñ1/x1, . . . , ñk/xk, m̃/y],
where n1, . . . nk,m are natural numbers and ñ1, . . . , ñk, m̃ denote the correspond-
ing numerals in FP.

Notice that if we do not enforce the “minimality” condition in the formulæ
used in FPT , then we might end up with a lot of “junk”. This might be a
feature, whereby one can include also infinite and circular objects, i.e. introduce
co-inductive datatypes.

5 Encoding FP in a Type Theoretic Logical Framework

An implementation of FP in a computer-assisted proof development environ-
ment, such as LF, see [HHP93,PS99,WCPW03,COQ], would take us as close as
consistently possible to Cantor’s Paradise. However, FP is a formal system whose
encoding in standard Logical Frameworks is not straightforward. It is indeed very
awkward to capture the side-condition which allows only normal deductions.

In this section, we assume the reader familiar with Logical Frameworks and
we present the encoding of FP in LLFP [HLMS16], a recent extension of the
Edinburgh LF which features lock types. This encoding provides, in effect, a
paramount example of the power of locks.

In LLFP , a new type constructor is introduced and, as costumary in Con-
structive Type Theory, it is explained through appropriate Introduction, Elim-
ination, and Equality rules. More precisely, in LLFP we define objects using a
new constructor of the form LPN,σ[M ], whose type LPN,σ[ρ] is assigned via the

type-checking introduction rule (O·Lock). Correspondingly, also an unlock de-
structor, UPN,σ[M ], is introduced whose type is given by the elimination rule

(O · Top · Unlock). This latter rule allows for the elimination of the lock-type
constructor, under the condition that a specific predicate P is verified, possibly
externally, on a judgement. The rules mentioned above are:

Γ `Σ M : ρ Γ `Σ N : σ

Γ `Σ LPN,σ[M ] : LPN,σ[ρ]
(O·Lock)

Γ `Σ M : LPN,σ[ρ]

P(Γ `Σ N : σ)

Γ `Σ UPN,σ[M ] : ρ
(O·Top·Unlock)

11



The equality rule for lock types amounts to a new form of reduction called lock
reduction (L-reduction), UPN,σ[LPN,σ[M ]] →L M , which allows for the removing
of a lock, in the presence of an unlock with the same superscripts and subscripts.
The L-reduction combines with standard β-reduction into βL-reduction.

Capitalizing on the monadic nature of the lock constructor ([HLMS16]), one
can use locked terms without necessarily establishing the predicate, provided
an outermost lock is present. This increases the expressivity of the system, and
allows for reasoning under the assumption that the verification is successful, as
well as for postponing and reducing the number of verifications. The rules which
make all this work are:

Γ, x:τ `Σ LPS,σ[ρ] : type Γ `Σ N : LPS′,σ′ [τ ] σ=βLσ
′ S=βLS

′

Γ `Σ LPS,σ[ρ[UPS′,σ′ [N ]/x]] : type
(F ·Guarded·Unlock)

Γ, x:τ `Σ LPS,σ[M ] : LPS,σ[ρ] Γ `Σ N : LPS′,σ′ [τ ] σ=βLσ
′ S=βLS

′

Γ `Σ LPS,σ[M [UPS′,σ′ [N ]/x]] : LPS,σ[ρ[UPS′,σ′ [N ]/x]]
(O·Guarded·Unlock)

The second rule is the counterpart of the elimination rule for monads, once we
realize that the standard destructor of monads letTP(Γ`S:σ)

x = A in N can be

replaced in this setting by N [UPS,σ[A]/x]. This is the case since the LPS,σ[·]-monad
satisfies the property letTP x = M in N → N if x /∈ Fv(N), provided x occurs
guarded in N , i.e. within subterms of the appropriate lock-type. The first rule
takes care of elimination at the level of types.

The system LLFP can smoothly enforce the global normalization constraint
of FP locally by enforcing a suitable lock on the proof-object. The crucial step
is the definition of the predicate involved in the lock, because it needs to be
well-behaved, see [HLMS16], Definition 2.1. Namely it must be closed under sub-
stitution as well as signature and context extension, and this is problematic when
dealing with open terms. To overcome these difficulties we need to introduce the
notion of skeleton of a term in a given signature Σ:

Definition 5. Given a signature Σ, let ΛΣ (respectively ΛoΣ) be the set of LLFP
terms (respectively closed LLFP terms) definable using constants from Σ. A term
M has a skeleton in ΛΣ if there exists a context N [ , . . . , ] ∈ ΛΣ with n holes
such that M ≡ N [M1, . . . ,Mn] for suitable terms M1, . . . ,Mn.

Furthermore we need to introduce two basic judgements to deal with vari-
ables. Namely we make the distinction between generic judgements, which can-
not be directly utilized in arguments, but which can be assumed, and apodictic
judgements, which are directly involved in proof rules. In order to make use of
generic judgements, one has to downgrade them to an apodictic one, and this is
achieved by a suitable coercion function.

The encoding in LLFP of the system of Fitch as presented in Section 2.1 is
given in the following definition, where (due to lack of space) we focus on the
crucial connectives and rules of FP:

Definition 6 (LLFP signature ΣFP for Fitch Prawitz Set Theory FP).
The following constants are introduced:
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o : Type ι : Type

T : o -> Type δ : ΠA:o.(V(A) -> T(A))

V : o -> Type ⊃ : o -> o -> o false : o

lam : (ι -> o)-> ι ε : ι -> ι -> o not: o -> o

⊃ intro: ΠA,B:o.(V(A) -> T(B)) -> (T(A ⊃B))
⊃ elim : ΠA,B:o.Πx:T(A).Πy:T(A⊃B) -> LFitch

〈x,y〉,T(A)×T(A⊃B)[T(B)]
λ intro : ΠA:ι ->o.Πt:ι.T(A t) -> T(ε t (lam A))

λ elim : ΠA:ι ->o.Πt:ι.T(ε t (lam A))->T(A t)

bot : ΠA:o.(V(not A) -> T(false)) -> T(A)

where o is the type of propositions, ⊃ is the implication connective, ε is the
“membership” predicate, not is the negation, lam is the “abstraction” operator
for building “sets”, T is the apodictic judgement, V is the generic judgement, δ
is the coercion function, and 〈x, y〉 denotes the encoding of pairs, whose type is
denoted by σ×τ , e.g. λu:σ → τ → ρ. u x y : (σ → τ → ρ)→ ρ. The predicate in
the lock is defined as follows: Fitch(Γ `ΣFP

〈x, y〉 : T(A)×T(A ⊃ B)) holds iff
x and y have skeletons in ΛΣFP

, all the holes of which have either type o or are
guarded by a δ, and hence have type V(A), and, moreover, the proof derived by
combining the skeletons of x and y is normal in the natural sense.

The notion of normal deduction is the standard notion of Definition 4. The
predicate Fitch is well-behaved because it considers terms only up-to holes in
the skeleton, which can have type o or are generic judgements. Adequacy for
this signature can be achieved in the format of [HLLMS13]:

Theorem 3 (Adequacy for FP). If A1, . . . , An are the atomic formulæ oc-
curring in B1, . . . , Bm, A, then B1 . . . Bm `FP A iff there exists a normalizable
M such that A1:o, . . . , An:o, x1:V(B1), . . . , xm:V(Bm) `ΣFP

M:T(A) (where A, and Bi
represent the encodings of, respectively, A and Bi in LLFP , for 1 ≤ i ≤ m).

If in the definition of the well-behaved predicate Fitch we enforce that the
deduction is normalizable, we obtain a signature for FP#. The predicate would
then be only semi-decidable.

In the spirit of LLFP , we do not specify how to enforce the verification of
the constraint in the locks. This is left for optimization. The idea underpinning
LLFP is to specify neatly the interface that this, possibly external, module needs
to satisfy in order to be safely plugged in the Logical Framework.

6 The Extensional Quotient of FP

In this section, we relate Fitch-Prawitz Set Theory, FP, to the Theory of Hyper-
universes, TH. Namely, we show that the extensional quotient of the closed term
model of a suitable extension of FP, called FP+, is a hyperuniverse.

6.1 The Theory of Hyperuniverses TH

The näıve Comprehension Principle can be consistently approximated, by re-
stricting the class of admissible formulæ. In [FH89,FH89a], the Generalized Pos-
itive Comprehension Scheme has been introduced, namely:
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Axiom 1 (Generalized Positive Comprehension Scheme (GPC))
{x | A} is a set, if A is a Generalized Positive Formula, where Generalized Pos-
itive Formulæ (GPF) are the smallest class of formulæ
– including u ∈ t, u = t;
– closed under the logical connectives ∧,∨;
– closed under the quantifiers ∀x,∃x, ∀x ∈ y,∃x ∈ y, where ∀x ∈ y.A (∃x ∈
y.A) is an abbreviation for ∀x.(x ∈ y → A) (∃x.(x ∈ y → A));

– closed under the formula ∀x.(B → A), where A is a generalized positive
formula and B is any formula such that Fv(B) ⊆ {x}.

In [FH89,FH89a], the Theory of Hyperuniverses TH, namely GPC + Exten-
sionality, was introduced and proved consistent, together with many extensions
which include arbitrary models of Zermelo-Frænkel Set Theory.

The theory TH is a rather expressive Set Theory, in which one can show the
existence of many large sets, e.g.:
– the universe V , the empty set ∅;
– 〈x, y〉, {t}, {t, u}, t∪u, t∩u, t×u, t◦u,

⋃
t,
⋂
t, dom(t), cod(t), t−1,P(t), �(t) =

{x | t ∩ x 6= ∅}, t̂(u) = {z | ∃w ∈ u. 〈w, z〉 ∈ t},F(t) = {y | t ∈ y}, t1 ? t2 =
{〈u, v, w〉 | 〈u, v〉 ∈ t1 ∧ 〈u,w〉 ∈ t2};

– the equality ∆
∆
= {〈x, y〉|x = y}, the membership relation ∈ ∆

= {〈x, y〉|x ∈
y}, the graph of the projection functions π1, π2, π1

∆
= {z | ∃x, y. z = 〈〈x, y〉, x〉},

the inclusion relation ⊆ ∆
= {z | ∃x, y. (z = 〈x, y〉 ∧ ∀w. y ∈ w −→ x ∈ w)},

the graph of the singleton function λx.{x} ∆= {z | z = 〈x, {x}〉}.

We call hyperuniverses the set-theoretic structures which are models of TH,
following the terminology of [FH89,FH89a], where many such structures were
defined using topological and categorical tools.

6.2 The Extensional Quotient of the Fitch-Prawitz Coalgebra

In this section we study the extensional quotient, or extensional collapse, of the
Fitch-Prawitz coalgebra of closed terms. In particular, we show that a suitable
extension of FP, called FP+, yields an extensional collapse which is (strongly)
extensional, and satisfies the GPC scheme, i.e. it is a hyperuniverse. This result
establishes a connection between FP and TH. For basic definitions and results
on coalgebras, we refer to [JR11]. The theory FP+ is the extension of FP with
the following ω-rule:

(Bounded-ω)
A[w/x] for all closed w s.t. B[w/x], Fv(B) ⊆ {x}

∀x.(B[w/x]→ A)

Even if the (Bounded-ω)-rule has infinitely many premisses, once it is taken
as an introduction rule, the notions of quasi-deduction and deduction for FP can
be naturally extended to FP+. Consistency of FP+ is proved then as for FP.

Notice that in our setting the conclusion of the (Bounded-ω)-rule really
amounts to a restricted quantification w.r.t. a closed term. Given that Fv(B) ⊆
{x}, the formula ∀x.(B[w/x] → A) amounts to ∀x ∈ {z | B[z]}.A, where
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{z | B[z]} is a closed term. Notice that the Induction Rule is subsumed by
the (Bounded-ω)-rule. Before defining the coalgebra of closed FP+-terms, we
recall the notion of set-theoretic structure:

Definition 7 (Set-theoretic Structure). A set-theoretic structure (X,∈) is
a first-order structure X together with a binary predicate ∈ on X ×X, denoting
the membership relation.

Notice that set-theoretic structures are coalgebras for the powerset functor
P( ) on the category Set. The following definition will be useful in the sequel.

Definition 8 ((Strongly) Extensional Coalgebra).

– A P( )-coalgebra (X, fX) is extensional if f is injective.
– A P( )-coalgebra (X, fX) is strongly extensional if the unique coalgebra mor-

phism from (X, fX) into the final coalgebra is injective.

Clearly, strong extensionality implies extensionality.
The provable instances of the ∈-relation on the set of closed FP+-terms, T 0,

naturally induce a coalgebra structure for the powerset functor.

Definition 9 (Fitch-Prawitz Coalgebra). Let fT 0 : T 0 −→ P(T 0) be the
P( )-coalgebra defined by fT 0(t) = {s | `FP+ s ∈ t}, where P( ) denotes the
standard powerset functor on the category Set.

Given a P( )-coalgebra (X, fX), there is a unique mapping into the final
coalgebra, g : (X, fX) → (Ω, fΩ), where (Ω, fΩ) denotes the final coalgebra.
This latter is clearly extensional, actually it is strongly extensional. The image
via g of (X, fX) into the final coalgebra (Ω, fΩ) is called the extensional quotient
of (X, fX). The extensional quotient is given by the equivalence classes under
bisimilarity. In FP+ (actually already in FP), the notion of bisimilarity can be
defined in the theory itself.

Definition 10 (Bisimilarity).

– Let ABis be the FP+formula with free variable x defined by

ABis
∆
= ∀t, t′ (〈t, t′〉 ∈ x −→ ∀s(s ∈ t −→ ∃s′(s′ ∈ t′ ∧ 〈s, s′〉 ∈ x)) ∧

∀s′(s′ ∈ t′ −→ ∃s.(s ∈ t ∧ 〈s, s′〉 ∈ x))) .

A bisimulation is a binary relation R such that `FP+ ABis[R/x].
– The bisimilarity relation ∼ is defined by the following FP+-term:

∼ ∆
= {〈t, t′〉 | ∃R. (〈t, t′〉 ∈ R ∧ ABis[R/x])} .

In the following lemma we show that bisimilarity is a maximal bisimulation
equivalence:

Lemma 1. a) Bisimilarity is an equivalence on FP+.
b) `FP+ t ∼ t′ ←→ ∀s(s ∈ t −→ ∃s′(s′ ∈ t′ ∧ s ∼ s′)) ∧

∀s′(s′ ∈ t′ −→ ∃s.(s ∈ t ∧ s ∼ s′)) .
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Proof. a) Straightforward.
b) (⇒) This amounts to `FP+ ABis[∼ /x], which can be easily proved.

(⇐) This follows by defining R
∆
= {(t, t′) | ∀s(s ∈ t −→ ∃s′(s′ ∈ t′ ∧ s ∼

s′)) ∧ ∀s′(s′ ∈ t′ −→ ∃s.(s ∈ t ∧ s ∼ s′))} and R′
∆
=R∪ ∼, and proving

`FP+ ABis[R
′/x]. ut

We can now quotient the FP+-coalgebra by the bisimilarity ∼.

Definition 11 (∼-quotient of the FP+-coalgebra). Let M = T 0/ ∼ be the
quotient of T 0 by the bisimilarity ∼ on FP+, i.e., for any t ∈ T 0, we define

t ∈M by t
∆
= {t′ | `FP+ t ∼ t′}.

M can be endowed with a structure of P( )-coalgebra as follows. Let fM :M→
P(M) be defined by fM(t) = {s | `FP+ s ∈ t}. Then the projection π : T 0 →M,
defined by π(t) = t, is a coalgebra-morphism from (T 0, fT 0) to (M, fM), i.e.

T 0

π

��

fT 0 // P(T 0)

P(π)
��

M
fM

// P(M)

Finally we prove strong extensionality of M w.r.t. FP+, notice the role of
the (Bounded-ω)-rule.

Proposition 3. The quotient M is extensional, i.e. for all t, t′ ∈M,

t = t′ ⇐⇒ fM(t) = fM(t′) .

Proof. If fM(t) = fM(t′), i.e. {s | `FP+ s ∈ t} = {s′ | `FP+ s′ ∈ t′}, then for
all s, (`FP+ s ∈ t =⇒ ∃s′ (`FP+ s′ ∈ t′ ∧ `FP+ s ∼ s′)), and vice versa, hence,
for all s, (`FP+ s ∈ t =⇒ `FP+ ∃s′ (s′ ∈ t′ ∧ `FP+ s ∼ s′)), and vice versa.
Therefore, by applying the bounded-ω-rule, we get
`FP+ ∀s(s ∈ t −→ ∃s′(s′ ∈ t′ ∧ s ∼ s′))∧ ∀s′(s′ ∈ t′ −→ ∃s.(s ∈ t ∧ s ∼ s′)),
hence by Lemma 1, `FP+ t ∼ t′, i.e. t = t′. ut

Corollary 1. The quotient M is strongly extensional.

We prove now that M satisfies the Generalized Positive Comprehension
Scheme, namely it is a hyperuniverse. We start with the following definition,
which actually defines an inner model of TH in FP#:

Definition 12. Let A be a formula with constants in M. We define a corre-
sponding formula Â by induction on A as follows:

A
∆
= ⊥ =⇒ Â

∆
= ⊥

A
∆
=u ∈ t =⇒ Â

∆
=∃u′.u′ ∼ u ∧ u′ ∈ t

A
∆
=u = t =⇒ Â

∆
=u ∼ t

A
∆
=¬A1 =⇒ Â

∆
=¬Â1

A
∆
=A1 ∧A2 =⇒ Â

∆
= Â1 ∧ Â2

A
∆
=A1 ∨A2 =⇒ Â

∆
= Â1 ∨ Â2

A
∆
=A1 → A2 =⇒ Â

∆
= Â1 → Â2

A
∆
=∀x.A1 =⇒ Â

∆
=∀x.Â1

A
∆
=∃x.A1 =⇒ Â

∆
= ∃x.Â1
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Lemma 2. For all A, u, t, x, Â[t/x] ≡ Â[t/x] and u[t/x] ≡ u[t/x].

The following lemma, whose proof which uses (Bounded-ω-rule), is crucial.

Lemma 3. For all GPF A with free variables x1, . . . , xn, for all t1, . . . , tm ∈ T 0,
m ≤ n, we have: M |= A[t1/x1, . . . , tm/xm] ⇐⇒ `FP+ Â[t1/x1, . . . , tm/xm].

Proof. By induction on A, using Lemma 2, and the (Bounded-ω)-rule for dealing
with the restricted ∀-case.
Base cases. A

∆
=u = v. Let M |= (u = v)[t/x], i.e., using Lemma 2, this holds

if and only if M |= (u[t/x] = v[t/x], and this amounts to `FP+ u[t/x] ∼ v[t/x].

A
∆
=u ∈ v. Let M |= (u ∈ v)[t/x], i.e., using Lemma 2, this amounts to `FP+

∃u′ (u′ ∼ u[t/x] ∧ u′ ∈ v[t/x]).
Induction step. We only deal with two cases: the remaining are similar.

A
∆
=A1 ∧ A2. Let M |= (A1 ∧ A2)[t/x], then M |= A1[t/x] and M |= A2[t/x].

By induction hypothesis, `FP+ Â1[t/x] and `FP+ Â2[t/x], hence `FP+ (Â1 ∧
Â2)[t/x]. The converse implication follows from the standard definition of the
interpretation of ∧ in a first-order structure.

A
∆
=∀y ∈ z.A1. Unrestricted quantification is clearly a special case of this one,

and by our earlier remark the case where A
∆
=∀y.(B → A1), with Fv(B) ⊆ {y},

amounts to restricted quantification. So if M |= ∀y ∈ z. A1[t/x, u/z] then for
all t′ such that M |= t′ ∈ u, we have that M |= A1[t/x, u/z, t′/y]. Then by
induction hypothesis we have that for all t and for all t′, such that `FP+ ∃y′.y′ ∼
t′ ∧ y′ ∈ u we have that `FP+ Â[t/x, u/z, t′/y], hence applying the (Bounded-

ω)-rule, we have that `FP+ ∀y.∃y′.y′ ∼ u ∧ y′ ∈ z → Â[t/x, u/z]. The reverse
implication follows from the interpretation of first-order formulæ in a structure.

ut

Now we are in the position to establish the main theorem of this section:

Theorem 4 (M satisfies GPC). For any formula A in GPF with free vari-

able x, M |= t ∈ v ⇐⇒ M |= A[t/x], where v
∆
= {x | Â}. Hence M is a

hyperuniverse.

Proof. (⇒) From M |= t ∈ {x | Â} we have `FP+ ∃t′.t′ ∼ t ∧ t′ ∈ {x | Â}.
Hence `FP+ ∃t′.t′ ∼ t ∧ Â[t′/x], which, by Lemma 3, implies M |= A[t′/x],
for t′ ∼ t. Hence M |= A[t/x] . (⇐) By Lemma 3, from M |= A[t/x] it follows

`FP+ Â[t/x]. Hence `FP+ t ∈ {x | Â}, which implies M |= t ∈ {x | Â}. ut

7 FP as a Logical Framework
FP is essentially Näıve Set-Theory, probably the most natural and straightfor-
ward of all Logical Frameworks, which we are familiar with since our schooldays.
The reason for considering FP is twofold. The first reason is pragmatic, i.e., to
explore how to use it for fast and loose formal reasoning on general recursion
and datatypes, i.e., as a proper Logical Framework (we borrow from [DHJG06]
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this felicitous expression). The second reason is foundational. FP allows for a
fine-tuned analysis of paradoxes arising from diagonal arguments.

Recently, in the formal methods community, there has been growing interest
in logical systems which support convenient and fast, but logically unsound
or even invalid features and heuristics [Cap05,CSW14,DHJG06]. Those arise
especially in program transformation and program synthesis in non-terminating
functional languages when dealing with general recursion. Albeit invalid, these
methods are nonetheless extremely useful pragmatically. Furthermore, they can
be justified. But this can be done only at the end once there is a good reason
for going through the often daunting overhead of checking all the totality and
predicativity preconditions [DHJG06,CSW14]. Oleg Kiselyov has remarked that
the principled but cautious approach of Coq and Agda is akin to pessimistic
concurrency: assuming that shared resources are likely to be contended and hence
have to be proactively protected with (often numerous) locks. An alternative is
optimistic concurrency, proceeding as if there were no contention – checking for
consistency only at the end of a transaction. Optimistic concurrency is akin to
loose and fast programming and the approach to termination checking, which
can be carried out in Twelf and LF [Twelf,WN13].

Using FP as a Logical Framework goes precisely in the direction of optimistic
reasoning, actually at two different levels. The first is that of using Lock types
in the implementation to check the normalizability of deductions. Locks do not
amount merely to the postponement of the checks. They rather allow for aggre-
gating and simplifying the checks, so that the final check can be done possibly at
some other level, rather than delegated to the metalanguage as in Coq or Agda.

Somewhat more ambitious, and not completely explored yet, is the pragmatic
value of using a paraconsistent system. It was De Bruijn the founding author of
AUTOMATH, himself, who first raised the challenging and provocative question:
do we really need a terminating metalanguage? Of course if we use Scotus rule,
then our reasoning is empty. But otherwise we still have plenty of useful argu-
ments to carry out which can make visible truly false or missing requirements. So,
even paraconsistent systems can increase our confidence in the outcome. After
all, absolute certainty cannot be achieved, even with terminating systems.

A sharper understanding of which statements have a paraconsistent cognate
is still missing. These arise usually in connection with diagonal arguments. Rea-
soning with small sets or, as we have shown, generalized positive formulæ does
not lead to paraconsistencies. But there are probably many more classes of sen-
tences, for instance in connection with the foundations of Category Theory.

8 Conclusions and Final Remarks

We have discussed the Näıve Set Theory of Fitch-Prawitz [Fit52,Pra06], FP,
which is consistent by design, but nevertheless is expressive enough to define
all partial recursive functions. Furthermore we have related it to the Theory of
Hyperuniverses [FH89a,FHL94]. Foundationally, FP allows for a deeper under-
standing of the limitations implied by set theoretic paradoxes. In particular, we
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have that even if `FP+ u 6∈ v, then not necessarilyM |= u 6∈ v. This hints to the
fact that, while retaining Extensionality, we cannot hope to go significantly be-
yond GPC in approximating the näıve Comprehension Principle, e.g. to include
some negative formulæ. Pragmatically, FP offers a natural mathematical frame-
work where to develop “optimistically” [CSW14,DHJG06] important branches of
Mathematics from Real Numbers [Fit50] to Category Theory. We have encoded
FP in the type-theoretic Logical Framework LLFP , [HLMS16], which is currently
under implementation, thereby providing what we called a “Computer Assisted
Cantor’s Paradise”. Further lines of research on FP are the following.

Alternate inner models. In Section 6.2 we have proved that in FP+ we can define
an Inner Model for TH, namely, the model M. But there are also inner models
which have more than one selfsingleton and hence satisfy only Extensionality.
E.g., the extensional quotient w.r.t. a bisimulation, which is an equivalence but
does not equate the two selfsingletons defined in Subsection 4.1, would be an
example of a hyperuniverse which is not strongly extensional.

Propositions as types for FP. So far we have based FP on classical logic. But we
can replace the ⊥)-rule by its intuitionistic version, namely ex falso quodlibet, to
get an intuitionistic version of FP. One can then extend the λ-calculus language
of proofs with new constructs to account for the rules concerning ∈ and λ in FP.
A simple solution is to extend a typed λ-calculus for intuitionistic proofs with a
1-ple constructor < M > to account for λI), and correspondingly introduce a π
elimination constructor to account for λE):

Γ `FP M : P (t)

Γ `FP< M >: t ∈ λx.P (x)
λIntro

Γ `FP N : t ∈ λx.P (x)

Γ `FP π(N) : P (t)
λElim

The two constructors are related by the obvious reduction π(〈N〉) −→ N . We can
then prove that all proof terms corresponding to a contraction-free intuitionistic
deduction are normalizing, thereby recovering Grishin’s result. Notice that in
normal deductions, where introduction constructs appear outermost w.r.t. elim-
ination constructs, one can apply π only to variables, i.e. generic proof terms.

Escaping Gödel’s Second Incompleteness Theorem. Since FP is a cut free Set The-
ory, i.e. it is consistent by design, within FP one can prove that there is a model
of FP. This does not contradict Gödel’s second Incompleteness Theorem, since
FP is not closed under modus ponens which is the, so-called, Hilbert-Bernays
third condition necessary for Gödel’s result to go through.

FP and Higher-Order Logics. The Theory FP, being a theory of sets, subsumes
higher order logics for any order. For instance ∀P.Q[P ] can be expressed as
∀x. Pred(x)→ Q[x], for a suitable definition of Pred.

The Ubiquitous Hyperuniverse Nω(∅). In [FH89a,FHL94], many hyperuniverses
have been introduced. One of these, Nω(∅), arises in many conceptually inde-
pendent contexts, nicely described by Abramsky in [Abr11]. Namely, Nω(∅) is
Cantor-1 space, the union of Cantor’s space (obtained removing the middle
thirds of the unit interval) with the centres of the removed intervals. Nω(∅) is
the unique solution of the metric domain equation X ∼= Pcl(X 1

2
) in the category
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of complete metric spaces. Nω(∅) is the space of maximal points of the solution in
Plotkin’s category of SFP domains of the domain equation X ∼= PP (X⊥)⊕⊥ 1,
see [ABH03]. Nω(∅) is the free Stone modal Algebra over 0 generators. By The-
orem 4 we can add a new item to the list, namely: Nω(∅) is the extensional
quotient of Fitch-Prawitz coalgebra.
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