
Linear Realizability and Full Completeness for

Typed Lambda-calculi

Samson Abramsky

Oxford University Computing Laboratory, Wolfson Building,
Parks Road, OX1 3QD, England,

tel. +44 (0)1865 283558, fax: +44 (0)1865 273839

Marina Lenisa ∗,1

Dipartimento di Matematica e Informatica, Università di Udine,
Via delle Scienze 206, 33100 Udine, ITALY,
tel. +39 0432 558417, fax: +39 0432 558499

Abstract

We present the model construction technique called Linear Realizability. It consists
in building a category of Partial Equivalence Relations over a Linear Combina-
tory Algebra. We illustrate how it can be used to provide models, which are fully
complete for various typed λ-calculi. In particular, we focus on special Linear Com-
binatory Algebras of partial involutions, and we present PER models over them
which are fully complete, inter alia, w.r.t. the following languages and theories: the
fragment of System F consisting of ML-types, the maximal theory on the simply
typed λ-calculus with finitely many ground constants, and the maximal theory on
an infinitary version of this latter calculus.

Key words: Typed lambda-calculi, ML-polymorphic types, linear logic,
hyperdoctrines, PER models, Geometry of Interaction, (axiomatic) full
completeness

∗ Corresponding author.
Email addresses: Samson.Abramsky@comlab.ox.ac.uk (Samson Abramsky),

lenisa@dimi.uniud.it (Marina Lenisa).
1 Work partially supported by UE Project IST-2000-29001 Types, and by Italian
MIUR Projects COFIN 2001013518 Cometa and 20022018192 002 Protocollo.

Preprint submitted to Elsevier Science 6 October 2004

Introduction

The aim of this paper is to illustrate the technique of Linear Realizability for
building fully complete models for various typed λ-calculi. This paper combines
and expands previous works by the authors, [9,11–13].

A categorical model of a type theory (or logic) is said to be fully-complete
[7] if, for all types (formulae) A,B, all morphisms f : [[A]] → [[B]], from the
interpretation of A into the interpretation of B, are denotations of a proof-term
of the entailment A ` B, i.e. if the interpretation function from the category
of syntactical objects to the category of denotations is full. The notion of full-
completeness is a counterpart to the notion of full abstraction for programming
languages. Besides full completeness, one can ask the question whether the
theory induced by a model M coincides precisely with the syntactical theory
or whether more equations are satisfied in M. A model M is called faithful if
it realizes exactly the syntactical theory.

A fully complete model indicates that there is a very tight connection between
syntax and semantics. Equivalently, one can say that the term model has been
made into a mathematically respectable structure.

Over the past decade, Game Semantics has been used successfully by various
authors to define fully-complete models for various fragments of Linear Logic,
and to give fully-abstract models for many programming languages, including
PCF [8,23], and other functional and non-functional languages. In this paper,
we propose the technique of linear realizability as a valid and less complex
alternative to Game Semantics in providing fully complete and fully abstract
models for typed λ-calculi.

The linear (linear affine) realizability technique amounts to constructing a
category of Partial Equivalence Relations (PERs) over a Linear Combinatory
Algebra, LCA, (Affine Combinatory Algebra, ACA). This category turns out
to be linear (affine), and to form an adjoint model with its co-Kleisli category.
The notion of Linear (Affine) Combinatory Algebra introduced by the first
author [2] refines the standard notion of Combinatory Algebra, in the same
way in which intuitionistic linear (affine) logic refines intuitionistic logic. The
construction of PER models from LCA’s (ACA’s) described in this paper is
quite simple and clear, and it yields models with extensionality properties,
thus avoiding extra quotienting operations, which are often needed in defining
game categories and models. Many examples of linear combinatory algebras
arise in the context of Abramsky’s categorical version of Girard’s Geometry of
Interaction, [6,2,1,5].

In order to illustrate the technique of linear realizability, we present a number
of case studies of fully complete models for various typed λ-calculi. These

2

models arise from special ACAs of partial involutions, and they are defined in
the co-Kleisli category of the category of PERs on them. The models which
we study are the following:

(1) A fully complete (and necessarily faithful) model for the fragment of Sys-
tem F (with the βη-theory) consisting of ML-polymorphic types. ML-types
are universal closures of simple types, i.e. types of the form ∀X1. . . . Xn.T ,
where T is ∀-free.

(2) A fully complete model for the maximal theory ≈ on the simply typed
λ-calculus with two ground constans ⊥,>. This model turns out to be
fully complete also for an infinitary version of this calculus.

(3) A fully complete model for the maximal theory on the simply typed λ-
calculus with finitely many ground constants and ground permutations.

(4) A fully complete model for the maximal theory on the simply typed λ-
calculus with finitely many ground constants.

Some remarks are in order. The full completeness result on ML-types ex-
tends the result of full completeness on algebraic types of [25] (see Section
on Related Work). The maximal theory ≈ [36] on the typed languages above
can be characterized as follows: ≈ equates two closed λ-terms M,N of type
T1 → . . . → Tn → o if and only if, for all P1, Q1 closed λ-terms of type T1 such
that P1 ≈ Q1, . . . , Pn, Qn closed λ-terms of type Tn such that Pn ≈ Qn,

MP1 . . . Pn =β NQ1 . . . Qn.

To our knowledge, our fully complete minimal models are the first models of
≈ different from the corresponding term models.

The proofs of full completeness make essential use of the linear affine categories
which underly the models, and they follow a common (by now standard) pat-
tern based on a Decomposition Theorem. This allows to recover, for all types
T, T ′, the top-level form of the typed Böhm tree corresponding to any morphism
f : [[T]] → [[T ′]]. Once we have the Decomposition Theorem, we can apply it
iteratively to any f : [[T]] → [[T ′]], getting a possibly infinite typed Böhm tree.
Thus, to finish the full completeness proofs, we need to rule out infinite Böhm
trees from our models. This part of the proof can be rather difficult.

An interesting parallel line of research is that of abstracting the key lemmata
in the proofs of full completeness, and giving axioms on categorical models,
which ensure full completeness. These axiomatizations provide a useful guide
in concrete proofs of full completeness. The first axiomatization of this kind
has been given in [3], where axioms on models of PCF are given in order
to guarantee full abstraction, and axioms on models of the simply typed λ-
calculus are given, in order to guarantee full and faithful completeness w.r.t.
the βη-theory. The axioms for PCF are abstracted from the key lemmas in the

3

proof of full abstraction of the game model of [8]. This proof makes essential
use of the underlying linear structure of the game category. Correspondingly,
the axiomatization in [3] applies to models of PCF which arise as co-Kleisli
categories of some linear category. These kind of models, where we have a linear
category and a cartesian closed category, together with a monoidal adjunction
between the two categories, are called adjoint models, following [18,17].

Our proof of full completeness for ML-types is based, in fact, on an axioma-
tization of fully-complete models for ML-types. This axiomatization is given
on the models of system F, originated by Lawvere, which are called hyper-
doctrines (see also [33]). As in [3], our axiomatization works in the context of
adjoint models, and, although the full completeness result applies to intuition-
istic types, it makes essential use of the linear decomposition of these types.
Our axiomatization consists of two crucial steps. First, we axiomatize the fact
that every morphism inhabiting an ML-type generates, under decomposition,
a possibly infinite typed Böhm tree. Then, we introduce an axiom which
rules out infinite trees from the model. Our concrete PER model of partial
involutions satisfies the axioms in our axiomatization. In particular, proving
that the model does not contain infinite typed Böhm trees is quite difficult,
and it requires the study of an intermediate model, which offers our second
case study. This is the model of the simply typed λ-calculus generated by a
suitable Sierpinski PER. We prove that this model is fully complete and min-
imal, i.e. it realizes the maximal theory for the case of two ground constants
⊥,>. Actually, it is fully complete and minimal for an infinitary version of
this calculus, including possibly infinite typed Böhm trees (i.e. supremums of
coherent chains of infinite typed trees). Immediate generalizations of the Sier-
pinski PER to k equivalence classes fail to give fully complete models for the
case of k ground constants. However, a quite interesting and crucial fact is
that an appropriate generalization of the Sierpinski PER gives rise to a fully
complete minimal model for the calculus extended with ground permutations
(our third case study). Finally, in order to get fully complete minimal models
exactly for the simply typed λ-calculus with finitely many ground constants,
we show how we can cut down the algebra of involutions by putting an extra
constraint, which rules out permutations from the model.

The authors are thankful to F. Honsell, R. Jagadeesan, J. Laird, J. Longley,
S. Martini and A. Simpson for useful discussions on some of the issues of the
paper. We are grateful for the anonymous journal referee’s detailed comments,
which led to a number of clarifications and minor corrections.

4

Related Work

The problem of full completeness for second order (polymorphic) λ-calculus,
i.e. Girard’s System F ([21]), is a very important problem, which has been
extensively studied.

Here are some results in the literature.

In [25], the category of Partial Equivalence Relations (PER) over the open term
model of the untyped λ-calculus has been proved to be fully (and faithfully)
complete for algebraic types. These are ML-types of rank less or equal than 2,
like for instance the type ∀X.(X → X) → X → X of Church’s numerals. The

rank of an ML-type ∀ ~X.T is the nesting level of negative occurrences of → in
the simple type T . A fully-complete model for the whole System F has been
provided in [16], but this model is built by means of a quotient on terms, and
therefore it is not compositional and not sufficiently abstract. More recently, in
[24], a fully and faithfully complete game model for System F has been given.
But, although this is a game model, it still has a somewhat syntactical flavour,
and the construction of the model is extremely complex.

Notation. Vectors are written in bold. For f : N ⇀ N a partial function
from N to N, and n ∈ N, we denote by f(n)↑ the fact that f is not defined
(diverges) on input n. Let X,Y be sets, then (l, x) and (r, y), where x ∈ X and
y ∈ Y , denote elements of X + Y . Let X1, . . . , Xn be sets, often we will omit
the parentheses in writing ((X1 + · · ·)+Xn−1)+Xn. Moreover, we will use the
abbreviated notation (i, x) for denoting the element of X1 + . . . + Xn coming
from an element x ∈ Xi. Finally, an isomorphism φ : A → B in a category C,
whose inverse is φ′, is denoted by φ : A ' B : φ′.

1 Simply Typed λ-calculus, Maximal Theory, ML Polymorphism,
System F

We start by recalling some definitions, and by introducing some notations
concerning the simply typed λ-calculus, the maximal theory over it, System
F, and the class of ML-types of System F. Then, we present two important
results on ML-terms of System F and on the simply typed λ-calculus. The
first result that we present is an immediate consequence of Statman’s Typical
Ambiguity Theorem, asserting that the only consistent theory on the fragment
of System F consisting of ML-types is precisely the βη-theory. The second
result concerns the definability of “convergence tests” in the simply typed λ-
calculus with ⊥-constant. In particular, we prove that, for every normal form,
there are convergence test terms, which detect the presence of the ⊥-constant

5

in the normal form. This result is used in the proof of full completeness of the
model for ML-types of Section 3.

Finally, we discuss models of System F based on hyperdoctrines. In particular,
we introduce the notion of adjoint hyperdoctrine, which consists of a co-Kleisli
indexed category of a linear indexed category.

Definition 1.1 (Simply Typed λ-calculus) The class SimType of simple
types over a (possible infinite) set of type variables TVar is defined by:

(SimType 3) T ::= X | T → T ,

where X ∈ TVar.

Raw Terms are defined as follows:

Λ 3 M ::= c | x | λx : T.M | MM ,

where c ∈ C is a set of constants.
We denote by Λ0 the set of closed λ-terms.
We take λ-terms up-to α-conversion, i.e. up-to renaming of bound variables
(see [15] for more details).

Well-typed terms. We introduce a proof system for deriving typing judge-
ments of the form ∆ ` M : T , where ∆ is a type assignment, i.e. a finite list
x1 : T1, . . . , xn : Tn, where x1, . . . , xn are all distinct. The rules of the proof
system are the following:

∆ ` c : Tc ∆, x : T, ∆′ ` x : T

∆, x : T, ∆′ ` M : S
∆, ∆′ ` λx : T.M : T → S

∆ ` M : T → S ∆ ` N : T
∆ ` MN : S

βη-conversion. βη-conversion between well-typed terms is the least relation
generated by the following rules and the rules for congruence closure (which
we omit):

β) ∆ ` (λx : T.M)N = M [N/x] : S, where ∆, x : T ` M : S, and ∆ ` N : T .

η) ∆ ` λx : T.Mx = M : T → S, where ∆ ` M : T → S, and x 6∈ dom(∆).

Definition 1.2 (Typed λ-theory) We define a typed λ-theory ≈ as a sub-
set of Λ0 × Λ0, respecting types and closed under βη-conversion.

6

Notation.

• We call λTV ar
C the simply typed λ-calculus with type variables in TVar,

|TVar| ≥ 1, and constants in C of type o, for all o ∈ TVar. In particular, we
will simply denote by λTV ar

⊥ the calculus λTV ar
{⊥} , and by λTV ar

⊥,> the calculus

λTV ar
{⊥,>}.

• The simply typed λ-calculus λ
{o}
C with one type variable o will be simply

denoted by λC . Special cases which we will consider are: λ∅, which will be
simply denoted by λ; λ{⊥}, which will be denoted by λ⊥; λ{⊥,>}, which will
be denoted by λ⊥,>; λ{c1,...,ck}, for k ≥ 0, which will be denoted by λk.

It is well-known that the maximal theory over λk can be characterized as fol-
lows:

Definition 1.3 (Maximal Theory on λk, [36]) Let M, N ∈ Λ. We define
the equivalence ≈ ⊆ Λ0 × Λ0 by induction on types as follows:
M ≈T1→...Tn→o N iff ` M : T1 → . . . Tn → o, ` N : T1 → . . . Tn → o,
and ∀P1 ≈T1 Q1, . . . , Pn ≈Tn Qn. MP1 . . . Pn =β NQ1 . . . Qn .

Notice that, actually λ⊥ and λ⊥,> are special cases of λk, since ground constants
are indistinguishable in the maximal theory. But in the semantics the constant
⊥ is interpreted as the undefined constant, while the other constants remain
indistinguishable.

In this paper, we will focus on categorical models for the simply typed λ-
calculus λk. As usual, categorical models of λk are cartesian closed categories,
in which types are interpreted by objects and terms in contexts are interpreted
by morphisms.

Definition 1.4 (Fully Complete Model for λk) A categorical model (C, [[]])
of λk is fully complete if, for all simple types T and for all h : 1 → [[T]] in C,
there exists M ∈ Λ0 such that h = [[` M : T]], where [[]] is the interpretation
function in the model.

Definition 1.5 (System F) The class Type of System F types over an infi-
nite set of type variables TVar is defined by:

(Type 3) T ::= X | T → T | ∀X.T ,

where X ∈ TVar.

System F raw terms are defined as follows:

M ::= x | λx : T.M | MM | ΛX.M | MT ,

where x ∈ Var.

7

We take both types and terms up-to α-conversion.

Well-typed terms. The proof system for deriving typing judgements is de-
fined as follows. A typing judgement has the form Γ; ∆ ` M : T , where Γ is
a context, i.e. a finite list of type variables, and ∆ is a type assignment, i.e.
a finite list x1 : T1, . . . , xn : Tn, such that each Ti is legal in Γ. The rules for
deriving the judgement Γ ` T , read as “T is legal in Γ”, are the following:

Γ, X, Γ′ ` X
Γ ` T Γ ` S
Γ ` T → S

Γ, X ` T
Γ ` ∀X.T

The rules for deriving the typing judgement Γ; ∆ ` M : T are the following:

Γ; ∆, x : T, ∆′ ` x : T
Γ; ∆, x : T ` M : S

Γ; ∆ ` λx : T.M : T → S

Γ; ∆ ` M : T → S Γ; ∆ ` N : T
Γ; ∆ ` MN : S

Γ, X; ∆ ` M : T
Γ; ∆ ` ΛX.M : ∀X.T X 6∈ FV (ran(∆)) Γ; ∆ ` M : ∀X.T S is legal in Γ

Γ; ∆ ` MS : T [S/X]

where ran(∆) denotes the range (codomain) of ∆.

βη-conversion. The βη-conversion between well-typed terms is the least re-
lation generated by the following rules and the rules for congruence closure
(which we omit):

β) Γ; ∆ ` (λx : T.M)N = M [N/x] : S, where Γ; ∆, x : T ` M : S, and
Γ; ∆ ` N : T .

η) Γ; ∆ ` λx : T.Mx = M : T → S, where Γ; ∆ ` M : T → S, and
x 6∈ dom(∆).

β2) Γ; ∆ ` (ΛX.M)T = M [T/X] : S, where Γ, X; ∆ ` M : S, and X 6∈
FV (ran(∆)).

η2) Γ; ∆ ` ΛX.MX = M : ∀X.S, where Γ; ∆ ` M : ∀X.S, and X 6∈
FV (ran(∆)).

Now we introduce the class of ML-polymorphic types, which correspond to the
limited kind of polymorphism allowed in the language ML.

Definition 1.6 (ML-types) The class ML-Type of ML-types is defined by:

ML-Type = {∀ ~X.T | T ∈ SimType , n ≥ 0} .

8

Definition 1.7 (ML-terms) The class ML-term of ML-terms is defined by:

ML-Term = {M | ∃Γ, ∆. Γ; ∆ ` M : T and T ∈ ML-Type} .

Notice that the class of ML-terms of System F as defined above includes terms
whose subterms have possibly a non-ML-type. However, if we restrict ourselves
to normal forms, then one can easily check that all subterms of a normal form of
ML-type have ML-types. This, together with the fact that System F is strongly
normalizing, allow us to restrict ourselves to normal forms, when discussing
full completeness of System F at ML-types (see Definition 1.11 below and the
comment after it).

1.1 Statman’s Typical Ambiguity Theorem

The following is a result about simply typed λ-terms from [37], rephrased for
ML-terms:

Theorem 1.1 (Statman’s Typical Ambiguity) Let T be a closed ML-type.
If 6` M =βη N : T , then there exists a closed term L such that ` L : T → Bool,
where Bool = ∀Y.Y → Y → Y and Y is fresh, s.t.

` LM =βη true : Bool ∧ ` LN =βη false : Bool ,

where true = ΛY.λx : Y.λy : Y.x and false = ΛY.λx : Y.λy : Y.y.

Corollary 1.1 The maximal consistent theory on the fragment of System F
consisting of ML-types is the βη-theory.

As will be clear from the definition of full completeness (see Definition 1.11
below), by Corollary 1.1, any non-trivial fully-complete model for ML-types of
System F is necessarily faithful, i.e. it realizes exactly the βη-theory at ML-
types.

1.2 λ-definability of Convergence Tests in the Simply Typed λ-calculus

We show that “convergence tests” are λ-definable in λTV ar
⊥ for a suitable class

of types.

Definition 1.8 (Typed Convergence Tests) i) Let o be a distinguished type
variable, and let αT ∈SimTypeo→o be a type such that αT is obtained from some
T ∈SimType by substituting every occurrence of every variable X in T by

9

o → o, i.e. αT = T [o → o/ ~X]. We define, by induction on T , the convergence
test term ` SαT

: αT as follows:

• if T = X, then So→o = Io→o ,
• otherwise, let T = T1 → . . . → Tn → Xk, where Ti = Ui1 → . . . → Uiqi

→
Xi, then

SαT
= λx1 : αT1 . . . xn : αTn .λz : o.(x1SαU11

. . . SαU1q1
)(. . . (xnSαUn1

. . . SαUnqn
z)) .

ii) Let σ be a substitution on λ-terms such that, for every term M of type T ,
σ gives the term of type αT obtained from M by replacing each occurrence of
the constant ⊥ by the term λx : o. ⊥. Formally, σ is defined by induction on
terms in context as follows:

σ(∆ ` x : T) = ∆ ` x : αT , where ∆ is defined by xi : αTi
∈ ∆ iff xi : Ti ∈ ∆

σ(∆ `⊥: X) = ∆ ` λx : o. ⊥: o → o, where x 6∈ ∆

σ(∆ ` MN : S) = ∆ ` M ′N ′ : αS, where ∆ ` M ′ : αT→S = σ(∆ ` M :
T → S) and ∆ ` N ′ : αT = σ(∆ ` N : T)

σ(∆, ∆′ ` λx : T.M : T → S) = ∆, ∆′ ` λx : αT .M ′ : αT→S, where
∆, x : αT , ∆

′ ` M ′ : αS = σ(∆, x : T, ∆′ ` M : S).

Notice that the substitution σ above preserves normal forms.

The “convergence test” terms defined above give us a procedure for deciding
whether a normal form M of type T = T1 → . . . → Tn → Xk contains a
divergent subterm, i.e. ⊥. Namely, let us consider the corresponding normal
form M ′ of type αT obtained from σ(∆ ` M : T). We apply M ′ to the
sequence of convergence tests SαT1

, . . . , SαTn
. The effect of this is that, in the

head reduction of M ′SαT1
. . . SαTn

, each subterm of M ′ definitely appears in
head position, and it reduces to the identity, until a ⊥ is detected.

Theorem 1.2 (Typed Separability) Let ~y : ~U ` M ′ : T , where T = T1 →
. . . → Tn → Xk, let ~y : ~αU ` M : αT = σ(~y : ~U ` M ′ : T), and let

M̃ = M [~SαU
/~y] be the closed term obtained by saturating all the free variables

in M by convergence tests of the appropriate types. Then

M̃SαT1
. . . SαTn

=

Io→o if the normal form of M is ⊥-free

λx : o. ⊥: o → o otherwise .

Proof. We proceed by induction on the normal form of M .
Base case: there are two cases: a) ~y : ~αU ` x : αT . We have to prove that
SαT

SαT1
. . . SαTn

= Io→o. But this latter fact can be immediately shown by

induction on T . b) ~y : ~αU ` λz : o. ⊥: o → o. Then M̃ = λz : o. ⊥: o → o.

10

Induction Step: ~y : ~αU ` λ~z.xiM1 . . . Mqi
: αT . Then either M̃ = λ~z.xiM̃1 . . . M̃qi

or M̃ = λ~z.SαTi
M̃1 . . . M̃qi

. In any case M̃SαT1
. . . SαTn

= SαTi
M̃1 . . . M̃qi

= λz :

o.(M̃1
~S)(. . . (M̃qi

~S)z). The theorem follows by applying the induction hypoth-
esis to each Mj, for all j = 1, . . . , qi. 2

Theorem 1.2 above can be regarded as a typed version of Böhm Separability
Theorem, in the sense that, if we think of ⊥ as a generic unsolvable term, then
Theorem 1.2 allows us to tell normal forms apart from solvable terms which
do not reduce to a normal form.

1.3 Models of System F

We focus on hyperdoctrine models of System F. First, we recall the notion of
2λ×-hyperdoctrine (see [33]). This essentially corresponds to the notion of ex-
ternal model (see [14]). Then, we give the formal definition of full (and faithful)
complete hyperdoctrine model. Finally, we carry out a linear analysis of the
notion of 2λ×-hyperdoctrine. This will allow us to express conditions which
guarantee full completeness of the model w.r.t. ML-types. In particular, we in-
troduce a categorical notion of adjoint hyperdoctrine. Adjoint hyperdoctrines
arise as co-Kleisli indexed categories of linear indexed categories.

In what follows, we assume that all indexed categories which we consider are
strict (see e.g. [14,19] for more details on indexed categories).

Definition 1.9 (2λ×-hyperdoctrine, [30,33]) A 2λ×-hyperdoctrine is a tri-
ple (C,G, ∀), where:

• C is the base category, it has finite products, and it consists of a distinguished
object U which generates all other objects using the product operation ×. We
will denote by Um, for m ≥ 0, the objects of C.

• G : Cop → CCCat is a C-indexed cartesian closed category such that: for all
Um, the underlying collection of objects of the cartesian closed fibre category
G(Um) is indexed by the collection of morphisms from Um to U in C, i.e.
the objects of G(Um) are the morphisms in HomC(Um,U), and, for any
morphism f : Um → Un in Cop, the cartesian closed functor G(f) : G(Un) →
G(Um), called reindexing functor and denoted by f ∗, is such that, for any
object h : Un → U , f ∗(h) = f ; h;

• For each object Um of C, we are given a functor ∀m : G(Um×U) → G(Um)
such that
· ∀m is right adjoint to the functor π∗m : G(Um) → G(Um × U), where

πm : Um × U → Um is the projection in C;
· ∀m satisfies the Beck-Chevalley condition, i.e.:

for any morphism f : Um → Un in C, the following diagram of func-

11

tors commutes

G(Un × U)
∀Un //

(f×idU)∗

²²

G(Un)

f∗

²²
G(Um × U) ∀Um

// G(Um)

for any f : Um → Un, the canonical natural transformation f ∗◦∀Un →
∀Um ◦ (f × idU)∗ is an identity.

Any 2λ×-hyperdoctrine can be endowed with a notion of interpretation [[]]
for the language of System F. Types with free variables in X1, . . . , Xm are
interpreted by morphisms from Um to U in the category C, i.e. by objects of
G(Um):

[[X1, . . . , Xm ` T]] : Um → U .

Well-typed terms, i.e. X1, . . . , Xm; x1 : T1, . . . , xn : Tn ` M : T , are interpreted
by morphisms in the category G(Um):

[[X1, . . . , Xm; x1 : T1, . . . , xn : Tn ` M : T]] : [[~X ` T1]]×. . .×[[~X ` Tn]] → [[~X ` T]] .

More precisely:

Definition 1.10 We can endow any 2λ×-hyperdoctrine (C,G,∀) with an in-
terpretation function [[]] for the language of System F as follows.

[[]] is defined on types by induction on derivations of the judgement Γ ` T :

• [[Γ, X, Γ′ ` X]] = πi : [[Γ]]× U × [[Γ′]] → U
• [[Γ ` T → S]] = [[[Γ ` T]] → [[Γ ` S]]];
• [[Γ ` ∀X.T]] = ∀([[Γ, X ` T]]) .

[[]] is defined on terms by induction on derivations of the typing judgement
Γ; ∆ ` M : T :

• [[Γ; x1 : T1, . . . , xi : Ti, . . . , xn : Tn ` xi : Ti]] =
πi : [[Γ ` T1]]× . . .× [[Γ ` Ti]]× . . .× [[Γ ` Tn]] → [[Γ ` Ti]]

• [[Γ; ∆ ` λx.M : T → S]] = Λ([[Γ; ∆, x : T ` M : S]])
• [[Γ; ∆ ` MN : S]] = [[Γ; ∆ ` M : T → S]] • [[Γ; ∆ ` N : T]] =
〈[[Γ; ∆ ` M : T → S]], [[Γ; ∆ ` N : T]]〉; Ap

• [[Γ; ∆ ` ΛX.M : ∀X.T]] = [[Γ, X; ∆ ` M : T]] ,
where − is the bijection given by the adjiunction between ∀ and π∗ in Defi-
nition 1.9;

• [[Γ; ∆ ` MS : T [S/X]]] =

[[Γ; ∆ ` M : ∀X.T]]; 〈id[[Γ]], [[Γ ` S]]〉∗(îd∀([[Γ, Y ` T [Y/X]]])),

where ̂ is the inverse of −.

12

Proposition 1.1 (see [33]) Any 2λ×-hyperdoctrine with the interpretation
function [[]] of Definition 1.10 is a model of System F.

Definition 1.11 (Full and Faithful Completeness) LetM = (C,G,∀, [[]])
be a 2λ×-hyperdoctrine.
i) M is fully complete w.r.t. the class of closed types T if, for all T ∈ T ,

∀f ∈ HomG(1)
(1, [[` T]]). ∃M. ` M : T ∧ f = [[` M : T]] .

ii) M is fully and faithfully complete w.r.t. the class of closed types T if, for
all T ∈ T ,

∀f ∈ HomG(1)
(1, [[` T]]). ∃ !βη-normal form M. ` M : T ∧ f = [[` M : T]] .

Notice that, since System F is strongly normalizing, in discussing full com-
pleteness we can restrict ourselves to normal forms. Thus in Definition 1.11(i)
above, full completeness is equivalent to saying that all morphisms of appro-
priate type are λ-definable by normal forms.

1.4 Adjoint Hyperdoctrines

We start by recalling some definitions:

Definition 1.12 (Linear Category, [18,17]) A linear category is a sym-
metric monoidal closed category (L, I,⊗,−−◦) with

• a symmetric monoidal comonad (!, der, δ, φ, φ′) on L, where der : !() →
Id(), δ : !() → ! !(), φ : !()⊗ !() → !(()⊗ ()), φ′ : I → !I;

• monoidal natural transformations with components weakA : !A → I and
conA : !A → !A⊗ !A such that
· each (!A,weakA, conA) is a commutative comonoid,
· weakA and conA are !-coalgebra maps from (!A, δA) to (I, φ′I), and from

(!A, δA) to (!A⊗ !A, δA ⊗ δA; φ !A, !A), respectively.
· all coalgebra maps between free !-coalgebras preserve the canonical struc-

ture.

Definition 1.13 (Adjoint Model, [17]) An adjoint model is specified by

(1) a symmetric monoidal closed category (L, I,⊗,−−◦);
(2) a cartesian closed category (C, 1,×,→);
(3) a symmetric monoidal adjunction from C to L.

13

Now we give the indexed version of the notion of adjoint model:

Definition 1.14 (Indexed Adjoint Model) An indexed adjoint model is
specified by

(1) a symmetric monoidal closed indexed category L : Cop → SMCCat, where
SMCCat is the category of symmetric monoidal closed categories and
strict monoidal closed functors;

(2) a cartesian closed indexed category G : Cop → CCCat, where CCCat is the
category of cartesian closed categories and strict cartesian closed functors;

(3) a symmetric monoidal indexed adjunction from G to L.

In the following definition, which is inspired by [35], we capture those 2λ×-
hyperdoctrines which arise from a co-Kleisli construction over an indexed linear
category.

Definition 1.15 (Adjoint Hyperdoctrine) An adjoint hyperdoctrine is a
quadruple (C,L,G,∀), where:

• C is the base category, it has finite products, and it consists of a distinguished
object U which generates all other objects using the product operation ×. We
will denote by Um, for m ≥ 0, the objects of C.

• L : Cop → LCat is a C-indexed linear category, where LCat is the category
of linear categories and strict monoidal closed functors, such that: for all
Um, the underlying collection of objects of the linear fibre category L(Um) is
indexed by the collection of morphisms from Um to U in C.

• G : Cop → CCCat is the C-indexed cartesian closed co-Kleisli category of L.
• For each object Um of C, we are given a functor ∀m : G(Um×U) → G(Um)

such that
· ∀m : G(Um × U) → G(Um) is right adjoint to the functor G(πm) :
G(Um) → G(Um × U), where πm : Um × U → Um is the projection in
C;

· ∀m : G(Um × U) → G(Um) satisfies the Beck-Chevalley condition.

An adjoint hyperdoctrine is, in particular, an indexed adjoint model, and it
gives rise to a 2λ×-hyperdoctrine:

Theorem 1.3 Let (C,L,G,∀) be an adjoint hyperdoctrine. Then
i) the categories L and G form an indexed adjoint model;
ii) (C,G, ∀) is an hyperdoctrine.

Remark. In the definition of adjoint hyperdoctrine, we require the indexed
categories L and G to form an adjoint model, but we assume the existence of
a family of functors ∀m only on the fibre categories of G. Therefore, we have a
model of linear first order types, but not of linear higher order types, and our
definition does not capture models of L/NL System F, i.e. System F with both

14

linear and intuitionistic types. But our notion of model is sufficient for dealing
with ML-types, and for expressing axioms for full completeness at ML-types
(see Section 3.1).

2 Models of PERs over a Linear Combinatory Algebra

Canonical examples of 2λ×-hyperdoctrines, and in particular of CCC, arise
by considering the Partial Equivalence Relation (PER) category over a com-
binatory algebra (see [19], Chapter 5, Section 5.5 for more details). In this
section, we show how to build a PER category from a linear combinatory alge-
bra (LCA). Furthermore, we prove that this category forms an adjoint model
with its co-kleisli category, and we show how adjoint hyperdoctrines arise from
PER categories over a linear combinatory algebra. Finally, we present the spe-
cial LCA of partial involutions which we will show to provide a fully-complete
model at ML-types (see Section 3.2).

We start by recalling the definition of linear combinatory algebra, [2,5]:

Definition 2.1 (Linear Combinatory Algebra) A linear combinatory al-
gebra A = (A, •, !) is an applicative structure (A, •) with a unary (injective)
operation !, and distinguished elements (combinators) B,C, I, K, W,D, δ, F
satisfying the following equations:

Equation Principal type Logical rule

Ix = x α−−◦α Identity

Bxyz = x(yz) (α−−◦β)−−◦(γ−−◦α)−−◦γ−−◦β Cut

Cxyz = (xz)y (α−−◦β−−◦γ)−−◦β−−◦α−−◦γ Exchange

Kx !y = x α−−◦ !β−−◦α Weakening

Wx !y = x !y !y (!α−−◦ !α−−◦β)−−◦ !α−−◦β Contraction

D !x = x !α−−◦α Dereliction

δ !x = ! !x !α−−◦ ! !α Comultiplication

F !x !y = !(xy) !(α−−◦β)−−◦ !α−−◦ !β Closed Functoriality

where, by abuse of notation, combinators K and W are the linear refinements
of the omonymous standard combinators.

LCA’s correspond to a Hilbert style axiomatization of the −−◦, ! fragment of
Linear Logic. Given an LCA A = (A, •, !), we can form a standard CA As =
(A, •s) by the “combinatory version” of Girard’s translation of Intuitionistic

15

Logic into Linear Logic. We define: α •s β = α• !β (standard combinators can
be defined in terms of the linear ones, see [5] for details).

2.1 Linear Realizability

We start by considering a BCI-algebra, i.e. an applicative structure (A, •) with
B, C, I combinators. We define a PER category over a BCI-algebra, and we
show that this category is symmetric monoidal closed.

Notice that, as standard combinatory algebras satisfy combinatory complete-
ness w.r.t. λ-calculus, BCI-algebras satisfy combinatory completeness for purely
linear λ-terms. In virtue of this, in what follows we will often use λ-notation
in place of combinatory notation.

Definition 2.2 Let A = (A, •) be a BCI-algebra. We define the category
PERA as follows.
Objects: partial equivalence relations R⊆ A×A, i.e. symmetric and transitive
relations.
Morphisms: a morphism f from R to S is an equivalence class of the PER
R −−◦ S, where the PER R −−◦ S is defined by

α(R −−◦ S)β iff ∀γ R γ′. α • γ S β • γ′ .

On BCI-algebras, standard pairing gives rise to a tensor product, but the defi-
nition of tensor product requires some care:

Lemma 2.1 Let A = (A, •) be a BCI-algebra. Let P be the pairing combina-
tor, i.e. (using λ-notation) P = λxyz.zxy. Then, for all PERs R,S, let R ⊗ S
be the PER defined as the transitive closure of the following relation:

R ⊗′ S= {(Pαβ, Pα′β′) | α R α′ ∧ β S β′} .

Notice in particular that, if the BCI-algebra is affine, i.e. it is a BCK-algebra,
then the relation R ⊗′ S is already transitive, since, using projections, we get:
Pαβ = Pα′β′ =⇒ α = α′ ∧ β = β′ .

Proposition 2.1 Let A = (A, •) be a BCI-algebra. Then PERA is a symmet-
ric monoidal closed category.

Proof. Let ⊗ : PERA×PERA → PERA be defined on objects as in Lemma 2.1.
For all arrows f :R→S, f ′ :R′→S ′, we define f ⊗ f ′ :R ⊗ R′→S ⊗ S ′ by
[λz.zA], where A = λxy.P (fx)(f ′y). The PER I = {(I, I)} plays the role of
tensor identity.

16

The following are natural isomorphisms:
ρR :R ⊗I →R, ρR = [λz.z(λxy.yx)],
αR1,R2,R3 : (R1 ⊗R2)⊗R3 →R1 ⊗ (R2 ⊗R3), αR1,R2,R3 = [λz.zU],
where U = λx.xZ, and Z = λxyz.Px(Pyz);
σR1,R2 :R1 ⊗ R2→R2 ⊗ R1, σR1,R2 = [λz.z(λzz′.Pz′z)];
Λ : (R1 ⊗ R2 −−◦ R3) → (R1 −−◦ R2 −−◦ R3), Λ = [λfxy.f(Pxy)]. 2

Now we show how an LCA gives rise to a linear category.

Proposition 2.2 Let A = (A, •, !) be an LCA. Let ! : PERA → PERA be
the functor defined by:

• ∀ R, ! R= {(!α, !β) | α R β}
• ∀f :R1→R2, !f = [F !f].

Then (!, D, δ, φ, φ′) is a symmetric monoidal comonad, where

• φR1,R2 : ! R1 ⊗ ! R2 → !(R1 ⊗ R2) is defined by φR1,R2 = [λz.zA],
where A = λxy.F (F !Px)y;

• φ′ : I ' !I is [δ]
I→ !I

.

Notice that the following isomorphisms hold immediately in PER categories
over LCA’s:

Lemma 2.2 Let A = (A, •, !) be an LCA satisfying extensionality of pairs.
Then, for all PERs R,S,

(1) (Idempotency of !) [D] : ! ! R ' ! R : [δ];
(2) (Uniformity of Threads) ψ : ! R −−◦ ! S ' ! R −−◦ S : (·)† , where

ψ = [λx.x; D];
Equivalently: ∀α ∈ ! R −−◦ ! S, (α; [D])† = α;

(3) (Commutativity of
⋂

w.r.t. !)
⋂

X ! R ' !(
⋂

X R).

The second isomorphism in Lemma 2.2 above is relevant for full completeness.
In fact, as we will see in Section 2, this isomorphism amounts exactly to the
Uniformity of Threads Axiom in our axiomatization of full completeness. The
isomorphisms of Lemma 2.2 above highlight the fact that the PER category is
a “degenerate” model of linear logic.

Theorem 2.1 Let A = (A, •, !) be an LCA. Then

• The category PERA is linear.
• The co-Kleisli category (PERA) !, induced by the comonad ! on the category

PERA, is cartesian closed.
• The categories PERA and (PERA) ! form an adjoint model.
• The category (PERA) ! is isomorphic to the category PERAs

, where PERAs
is

17

the category obtained by standard realizability from the standard combinatory
algebra As.

Finally, we show how to build an adjoint hyperdoctrine from an LCA:

Theorem 2.2 (PER Adjoint Hyperdoctrine) Let A = (A, •, !) be an LCA
satisfying extensionality of pairs. Then A gives rise to an adjoint hyperdoctrine
(C,L,G,∀), by defining:

C : Let U be the set {R | R is a PER on A}. The objects of C, Un, for n ≥ 0,
are the finite products in Set of n copies of the set U , in particular U0 is the
terminal object in Set. A morphism in C, f : Un → Um, is a set-theoretic
function from Um to Un.

L : The morphisms in the fibre category L(Um) from h1 : Um → U to h2 :

Um → U are the equivalence classes of the PER
⋂

~X∈Um(h1
~X−−◦h2

~X). For

any object f : Um → U in L(Um), we define !f to be λ ~X. !(f ~X). For any
morphism f : Um → Un in C, we define the behaviour of the functor L(f) :
L(Un) → L(Um) on morphisms by: for any morphism H : h1 → h2 in L(Un),

H = Λ ~X.H ′ ∈ ⋂
~X(h1

~X−−◦h2
~X), let L(f)(H) : L(f)(h1) → L(f)(h2) be

Λ ~X.H ′ ◦ f(~X) ∈ ⋂
~X(L(f)(h1) ~X−−◦L(f)(h2) ~X).

∀ : The functor ∀m : L(Um × U) → L(Um) is defined as follows. For any

h : Um × U → U , ∀m(h) = λ ~X.
⋂

Y h(~X, Y). For any morphism H : h1 → h2

in L(Um × U), ∀m(H) = H.

2.2 The Affine Combinatory Algebra of Partial Involutions

Many examples of LCAs arise from Abramsky’s categorical version of Gi-
rard’s Geometry of Interaction (GoI) construction, based on traced symmetric
monoidal categories, [2,1,5]. A basic example of GoI LCA, introduced in [2],
can be defined on the space [N ⇀ N] of partial functions from natural num-
bers into natural numbers, applying the GoI construction to the the traced
category Pfn of sets and partial functions. Here we briefly recall the definition
of this LCA, without discussing the categorical framework (see [2,1,5] for more
details). The LCA of partial involutions, which will be shown to provide a
fully-complete model for ML-types (see Section 3.2), arises as subalgebra of
this.

Let us consider the space [N ⇀ N] of partial functions from natural numbers
to natural numbers. For any injective α ∈ [N ⇀ N], we denote by α−1 the
inverse of α. Now we show how we can endow the space [N ⇀ N] with a
structure of LCA. Actually, the algebra which we will obtain is affine, i.e. it
has a full K-combinator. We start by fixing the following two injective coding

18

? ?

(ii)

α11

α12
α22

α21

? ?

?
α

?
(i)

? ?

n

t; α; t−1

? ?α • β(n)
β

(iii)

Fig. 1. Geometrical description of linear application.

functions t and p:

t : N + N → N p : N×N → N .

By abuse of notation, we denote by t−1 and p−1 the inverses of t and p respec-
tively. The coding t is used in order to define application, it allows to transform
an one-input/one-output function into a two-input/two-output function. The
coding p is used for creating infinitely many copies of an one-input/one-output
function α, i.e. for defining !α.

We now explain how application is computed geometrically, using the language
of “boxes and wires” which arises in the general setting of traced symmetric
monoidal categories (see [27] for the general categorical treatment).

Let us represent an one-input/one-output function α ∈ [N ⇀ N] by a one-
input-port/one-output-port box as in Fig. 1(i).

In order to define the application α • β, for α, β ∈ [N ⇀ N], we regard α
as a two-input/two-output function via the coding t. In particular, t; α; t−1 :
N + N ⇀ N + N can be described as a matrix of 4 one-input/one-output
functions:

α11 α12

α21 α22

where αij = ini; t; α; t−1; in−1
j : N ⇀ N account for the contribution from the

i-th input wire into the j-th output wire (see Fig. 1(ii)).

The result of the application α •β is the following one-input/one-output func-
tion (see Fig. 1(iii)).

α • β = α22 ∪ α21; (β; α11)
?; β; α12 , (1)

where ∪ denotes union of graph relations, and (β; α11)
? denotes

⋃
n≥0(β; α11)

n.

19

The formula (1) above for computing the application is essentially the Execu-
tion Formula from Girard’s Geometry of Interaction, [22].

The definition of the !-operation on our applicative structure is quite simple.
The operation ! is intended to produce, from a single copy of α, infinitely many
copies of α. These are obtained by simply tagging each of these copies with a
natural number, i.e. we define:

!α = p−1; (idN × α); p .

Finally, we are left to show that (affine) combinators can be defined on the
structure ([N ⇀ N], •, !). The formal (algebraic) definition of the combinators
is the following:

Definition 2.3 (Combinators) For X ∈ {I,B,C,K,W,D, δ,F}, let

X = s−1

X ; fX; sX ,

where:

I :

• sI = t
• fI : N + N ⇀ N + N is defined by:
· ∀n. fI(r, n) = (l, n)
· ∀n. fI(l, n) = (r, n).

B :

• sB : (((N + N) + (N + N)) + N) + N ⇀ N is defined by

sB = ((t + t) + idN) + idN; (t + idN) + idN; t + idN; t

• fB : (((N+N)+ (N+N))+N)+N ⇀ (((N+N)+ (N+N))+N)+N is
the function defined by the following equations together with their symmetric
closure:
· ∀n. fB(r, n) = (l, (l, (l, (r, n))))
· ∀n. fB(l, (l, (l, (l, n)))) = (l, (l, (r, (r, n))))
· ∀n. fB(l, (l, (r, (l, n)))) = (l, (r, n)).

C :

• sC : ((((N + N) + N) + N) + N) + N ⇀ N is defined by

sC = (((t+idN)+idN)+idN)+idN; ((t+idN)+idN)+idN; (t+idN)+idN; t+idN; t

20

• fC : ((((N+N)+N)+N)+N)+N ⇀ ((((N+N)+N)+N)+N)+N is
the function defined by the following equations together with their symmetric
closure:
· ∀n. fC(r, n) = (l, (l, (l, (r, n))))
· ∀n. fC(l, (r, n)) = (l, (l, (l, (l, n))))
· ∀n. fC(l, (l, (r, n))) = (l, (l, (l, (r, n)))).

K :

• sK : (N + N) + N ⇀ N is defined by

sK = t + idN; t

• fK : (N + N) + N ⇀ (N + N) + N is the function defined by the following
equations:
· ∀n. fK(r, n) = (l, (l, n))
· ∀n. fK(l, (l, n)) = (r, n).

W :

• sW : ((((N×N) + (N×N)) + N) + (N×N)) + N ⇀ N is defined by

sW = ((q + idN) + p) + idN; (((t× idN) + idN) + idN) + idN;

((p + idN) + idN) + idN; (t + idN) + idN; t + idN; t

where q : (N×N) + (N×N) → (N + N)×N is the isomorphism mapping
(l, (i, n)) 7→ ((l, i), n) and (r, (i, n)) 7→ ((r, i), n).

• fW : ((((N×N) + (N×N)) + N) + (N×N)) + N ⇀ ((((N×N) + (N×
N)) +N) + (N×N)) +N is the function defined by the following equations
together with their symmetric closure:
· ∀n. fW(r, n) = (l, (l, (r, n)))
· ∀n, i. fW(l, (r, (t(r, i), n))) = (l, (l, (l, (r, (i, n)))))
· ∀n, i. fW(l, (r, (t(l, i), n))) = (l, (l, (l, (l, (i, n))))).

D :

In order to define D, we need to fix i ∈ N. Then

• sD : (N×N) + N ⇀ N is defined by

sD = p + idN; t

• fD : (N×N) + N ⇀ (N×N) + N is the function defined by the following
equations:
· ∀n. fD(r, n) = (l, (i, n))

21

· ∀n. fD(l, (i, n)) = (r, n).

δ :

In order to define δ, we need to fix i, j ∈ N. Then

• sδ : (N×N) + (N× (N×N)) ⇀ N is defined by

sδ = p + (idN × p); idN + p; t

• fδ : (N×N) + (N× (N×N)) ⇀ (N×N) + (N× (N×N)) is the function
defined by the following equations:
· ∀n. fδ(r, (i, (j, n))) = (l, (p(i, j), n))
· ∀n. fδ(l, (p(i, j), n)) = (r, (i, (j, n))).

F :

In order to define F, we need to fix i ∈ N. Then

• sF : ((N× (N + N)) + (N×N)) + (N×N) ⇀ N is defined by

sF = ((idN × t) + p) + p; (p + idN) + idN; t + idN; t

• fF : ((N × (N + N)) + (N ×N)) + (N ×N) ⇀ ((N × (N + N)) + (N ×
N)) + (N ×N) is the function defined by the following equations together
with their symmetric closure:
· ∀n. fF(r, (i, n)) = (l, (l, (i, (r, n))))
· ∀n. fF(l, (r, (i, n))) = (l, (l, (i, (l, n)))).

There is a simple, intutitive, geometrical explanation of these combinators,
which makes use of the language of boxes and wires. For example, let us con-
sider the identity combinator I. Since I has to satisfy the equation Ix = x,
in order to define I, it is convenient to regard I as a two-input/two-output
function, up-to-coding (see Fig. 2). The Identity combinator just copies infor-
mation from the lefthand input-wire to the righthand output-wire, and vice
versa from the righthand input-wire to the lefthand output-wire.

The fact that I satsfies the identity equation has a simple geometrical expla-

22

I

x

? ?

? ?

B

? ? ? ? ? ?

zy︷ ︸︸ ︷x︷ ︸︸ ︷

? ? ? ? ? ?

C

? ? ? ? ? ?

zyx︷ ︸︸ ︷

? ? ? ? ? ?

K

? ? ?

? ? ?

x !y

Fig. 2. IBCK-combinators.

nation. Let us apply I to a partial function x:

? ?

? ?
x

23

W

? ? ? ? ?

? ? ? ? ?

x︷ ︸︸ ︷ !y

D

? ?

? ?
p(i, n)

p(i, n) n

n

!x

δ

? ?

? ?
p(p(i, j), n)

p(p(i, j), n) p(i, p(j, n))

p(i, p(j, n))

!x

F

? ? ? ?

!y!x︷ ︸︸ ︷

? ? ? ?
p(i, t(l, n))

p(i, t(l, n))

p(i, t(r, n))

p(i, t(r, n))

p(i, n)

p(i, n)

p(i, n)

p(i, n)

Fig. 3. WDδF-combinators.

Now yank the string connecting the input and the output wires of the result
of the application, forgetting about the box corresponding to I. This gives us

24

immediately the expected result:

?
x

?

Our argument is based on the Yanking Property of the trace on the symme-
tric monoidal category Pfn underlying our combinatory algebra. In particular,
Yanking is one of the axioms characterizing the trace operation in the general
setting of traced symmetric monoidal categories.

Let us now consider the combinator B which satisfies the equation Bxyz =
x(yz). In order to define the box for B (and that of any other purely linear
combinator), we only need to determine how many input wires (and corre-
spondingly output wires) this box should have, and how these wires have to be
connected inside the box. The number of input/output wires depends on the
number of arguments which the combinator takes, and on the role played by
these arguments, i.e. whether they just appear as arguments in the righthand
side of the equation satisfied by the combinator or they are used as functions
of one or more arguments. Concretely, the box for B (see Fig. 2) has two in-
put (and two output) wires for x and two input (and two output) wires for y,
since both x and y are applied to an argument, one input (and one output)
wire for z, which appears only as argument, plus one extra input (and one
output) wire, along which the input-token (output-token) is intended to enter
(exit). The connections of the wires inside the box for B are determined by
the control flow between x, y, z in the righthand part of the equation. First of
all, the control flow passes from the input port of B to the input port of x.
The second port of x is then connected to the input port of y, while the second
port of y is connected to the unique port of z. The remaining connections are
then obtained by symmetry. Now let us compute the result of the application

25

of B to x, y, z:

x y z
? ? ? ? ? ?

? ? ? ? ? ?

Pulling the global input/output string, and forgetting about the box corre-
sponding to B, we get the expected result, i.e.:

z

y

x
? ?

? ??

?

Now we briefly discuss the remaining combinators. The combinator C (see Fig.
2) can be explained in a similar way as B. The affine combinator K simply
forgets about its second argument y. In order to define W (see Fig. 3), we use
the isomorphism q : (N×N) + (N×N) → (N + N)×N to map an element
of the form !y to the pair (!y, !y). The behaviour of D, δ,F can be explained
similarly.

Essentially, all the combinators of Fig. 2 and 3 are functions that mediate the
required interactions between the arguments simply by copying information

26

between the various ports.

There are many possible conditions that can be imposed on partial functions
in order to cut down the space [N ⇀ N], still maintaining closure under
application, !, and all the affine combinators. The subalgebra which gives rise
to the fully-complete model of Section 3.2 is obtained by considering partial
involutions:

Definition 2.4 Let f : N ⇀ N. f is a partial involution if and only if its
graph is a symmetric relation. Let us denote by [N ⇀Inv N] the space of partial
involutions from N to N.

One can check that partial involutions are closed under the application, the
!-operation, and all the combinators of Definition 2.3, i.e.:

Proposition 2.3 APInv = ([N ⇀Inv N], •, !) is an affine combinatory algebra.

APInv is a highly constrained algebra, in which all computations are reversible,
[4]. Partial involutions are reminescent of copy-cat strategies of game cate-
gories, in that the only computational effect that they have is that of copying
information from input to output wires. Partial involutions f on a set S cor-
respond biuniquely to pair-wise disjoint families of subsets {x, y} of S, where
{x, y} is in the family if and only if f(x) = y (and hence also f(y) = x). We
can think of these as abstract families of “axiom links” as in the proof-nets of
Linear Logic.

In [10], in order to provide a fully-abstract model for PCF, constraints of a
different nature are put on the space [N ⇀ N], so as to capture only functions
representing strategies in the style of [8].

3 System F

This section divides in two parts. In the first part, we provide an axiomatization
of adjoint hyperdoctrines which are fully complete for ML-types. In the second
part, we use this axiomatization for proving that the PER model induced by
the LCA of partial involutions APInv is fully complete for ML-types.

3.1 Axiomatizing Models Fully Complete for ML Types

We isolate sufficient conditions on adjoint hyperdoctrine models for System F,
in order to guarantee full completeness at ML-polymorphic types. These con-
ditions amount to the six axioms of Subsection 3.1.1. Our axiomatization of

27

full completeness for ML polymorphism is in the line of the work in [3], where
an axiomatic approach to full abstraction/full completeness for PCF/simply
typed λ-calculus is presented. These axiomatizations are inspired by the proof
of full abstraction of the Game Semantics model for PCF of [8]. Our axioma-
tization of full completeness for ML-types consists of two parts:

(1) Axioms for ensuring the Decomposition Theorem. This theorem allows
to recover the top-level structure of the (possibly infinite) Böhm tree
denoted by morphisms from the terminal object into the interpretation of
an ML-type in the fibre category G(1). The axioms for the Decomposition
Theorem (Axioms 1–5 of Section 3.1.1) make essential use of the linear
category underlying an adjoint hyperdoctrine. These axioms (apart from
the axioms 1 and 3), are expressed by requiring some canonical maps

between suitable spaces of morphisms in the fibre categories L(~U) to be
isomorphisms.

(2) A Finiteness Axiom, which allows to rule out infinite Böhm trees from
the model.

Notice that, by definition of interpretation function on a hyperdoctrine (Defini-
tion 1.10), morphisms f in G(1) from the terminal object of G(1) into [[` T]],

where T = ∀ ~X.T1 → . . . → Tn → Xk is a closed ML-type, are λ-definable
if and only if morphisms of G(~U) from ×n

i=1[[~X ` Ti]] into [[~X ` Xk]] are λ-

definable. Namely, f = [[` Λ ~X.~x : ~T .xiM1 . . . Mqi
: ∀ ~X.~T → Xk]] if and only

if ~Λ−1(f̂) = [[~X; ~x : ~T ` xiM1 . . . Mqi
: Xk]]. Therefore, from now on we focus

on the space of morphisms of G(~U) from ×n
i=1[[~X ` Ti]] into [[~X ` Xk]], where

T1, . . . , Tn are simple types.

We start by presenting the main result of this section, i.e. the Decomposition
Theorem. The proof of this theorem follows from the Strong Decomposition
Theorem 3.2, which is proved in Section 3.1.2.

If a morphism f of G(~U) from ×n
i=1[[~X ` Ti]] into [[~X ` Xk]] is λ-definable,

then f = [[~X; ~x : ~T ` xiM1 . . . Mqi
: Xk]], for some ~X; ~x : ~T ` M1 : Ui1, . . . ,

~X; ~x : ~T ` Mqi
: Uiqi

. I.e., making evident the top-level structure of the Böhm
tree:

f = [[~X; ~x : ~T ` xi : Ti]] • [[~X; ~x : ~T ` M1 : Ui1]] • . . . • [[~X; ~x : ~T ` Mqi
: Uiqi

]] .

The Decomposition Theorem allows recovering the top-level structure of the
Böhm tree corresponding to f in the following sense:

Theorem 3.1 (Decomposition) Let (C,L,G, ∀) be an adjoint hyperdoctrine
satisfying Axioms 1–5 of Section 3.1.1. Let T = T1 → . . . → Tn → Xk be a
simple type with FV (T) ⊆ {X1, . . . , Xn}, where, for all i = 1, . . . , n, Ti =

Ui1 → . . . → Uiqi
→ Xi. Then, for all f ∈ HomG(~U)

(×n
i=1[[~X ` Ti]], [[~X ` Xk]]),

28

there exist i ∈ {1, . . . , n} and gj ∈ HomG(~U)
(×n

i=1[[~X ` Ti]], [[~X ` Uij]]), for all
j = 1, . . . , qi, such that

f = [[~X; ~x : ~T ` xi : Ti]] • g1 . . . • gqi
.

Since the g’s appearing in the Decomposition Thereom still live (up-to-uncurry-
ing) in a space of morphisms denoting a simple type, we could keep on iterating
the decomposition, expanding in turn these g’s, thus getting a possible infinite
tree from f :

f = [[~X; ~x : ~T ` xi : Ti]]

ttjjjjjjjjjjjjjjjjjj

**UUUUUUUUUUUUUUUUUU

g1

@
@

@
@

~
~

~
~

. . . gqi

}
}

}
}

A
A

A
A

_______ _ _ _ _ _ _ _

If the Decomposition Theorem holds, in order to get the full completeness
result, we are only left to rule out morphisms generating trees whose height is
infinite, which would correspond to infinite typed Böhm trees. This is expressed
in the Finiteness Axiom 6 below.

3.1.1 The Axioms

The first axiom is a base axiom, which expresses the fact that the type ∀ ~X.Xk

is empty, i.e. there are no closed terms typable with ∀ ~X.Xk.

Axiom 1 (Base)

HomL(~U)
(!1, πk) = ∅ ,

where 1 is the terminal object in G(~U), and πk : ~U → U denotes the k-th

projection in G(~U), i.e. πk = weak1⊗. . .⊗weakk−1⊗derk⊗weakk+1⊗. . .⊗weakn.

The following axiom allows the extraction of one copy of the type of the head
variable, corresponding to the first use of this variable. The property expressed
by this axiom is truly linear. In fact, in order to state it, we are implicitly
using the canonical morphism !A → A⊗ !A to capture the idea of a “first
occurrence”.

Axiom 2 (Linearization of Head Occurrence)

casei{σi}i=1,...,n :
n∐

i=1

Homt
L(~U)

(hi, (~h−−◦πk)) ' HomL(~U)
(~h, πk) ,

29

where

• ∐
denotes coproduct in Set;

• ~h = ⊗n
i=1 !hi and ∀i ∈ {1, . . . , n}. hi = ⊗qi

j=1 !lij−−◦πpi
;

• Homt
L(~U)

(hi, (~h−−◦πk)) is a suitable subset of HomL(~U)
(hi, (~h−−◦πk)), in-

tended to contain only total elements (i.e. strict and not divergent);

• σi : HomL(~U)
(hi, (~h−−◦πk)) → HomL(~U)

(~h, πk) is the following canonical
morphism:

HomL(~U)
(hi, (~h−−◦πk))

Λ−1

²²

HomL(~U)
(hi ⊗ ~h, πk)

HomL(~U)
(πi;τ,idπk

)

²²

HomL(~U)
(~h⊗ ~h, πk)

HomL(~U)
(con~h

,idπk
)

²²

HomL(~U)
(~h, πk)

where τ : I ⊗ . . .⊗ I ⊗ hi ⊗ I . . .⊗ I ' hi.

The following axiom reflects a form of coherence of the type of the head variable
w.r.t. the global type of the term. I.e., if ~T → Xk is the type of a term, then
the type of the head variable must be of the shape ~U → Xi, with k = i.

Axiom 3 (Type Coherence)

Homt
L(~U)

(l−−◦πi, h−−◦πk) = ∅ ,

if i 6= k.

The following axiom expresses the fact that the only thing that we can do
with a linear functional parameter is applying it to an argument which does
not itself depend on the parameter. Note that, again, linearity is essential here.
For example, if copying were allowed, then the argument could itself contain
further occurrences of the parameter.

Axiom 4 (Linear Function Extensionality)

HomL(~U)
((·), idπk

) : HomL(~U)
(h, l) ' Homt

L(~U)
(l−−◦πk, h−−◦πk) .

The following axiom expresses the fact that morphisms from !f to !g in the
fibre category L(~U) have uniform behaviour in all threads.

30

Axiom 5 (Uniformity of Threads)

HomL(~U)
(id !h, derl) : HomL(~U)

(!h, !l) ' HomL(~U)
(!h, l) : λf ∈ Hom(!h, l).(f)† ,

where ()†h,l : HomL(~U)
(!h, l) → HomL(~U)

(!h, !l) is the canonical morphism
given by the comonad !.

Axioms 1–5 guarantee the validity of a strong Decomposition Theorem (see
Section 3.2 below), which allows to decompose in a unique way all morphisms
in HomL(~U)

(⊗n
i=1 !hi, πk), where hi = ⊗qi

j=1 !lj−−◦πpi
, for any l1, . . . , lqi

, even if

HomL(~U)
(⊗n

i=1 !hi, πk) is not the space of morphisms from ⊗n
i=1 ![[~X ` Ti]] into

[[~X ` Xk]], for some simple types T1, . . . , Tn.

The final axiom in our axiomatization guarantees that the tree generated
via repeated applications of the Decomposition Theorem 3.2 to morphisms
in HomL(~U)

(⊗n
i=1 !hi, πk), where hi = ⊗qi

j=1 !lij−−◦πpi
, is finite.

Axiom 6 (Finiteness) There exists a size function

H :
⋃{HomL(~U)

(⊗n
i=1 !hi, πk) | k ∈ N, hi = ⊗qi

j=1 !lij−−◦πpi
} −→ N ,

such that

∀j ∈ {1, . . . , qi}. H(~Λ−1(gj)) < H(f) ,

where the gj’s are defined in the Decomposition Theorem 3.2.

3.1.2 Axiomatic Full Completeness

By Axioms 1–5, all morphisms in HomL(~U)
(~h, πk), where ~h = ⊗n

i=1 !hi and, for

all i = 1, . . . , n, hi = ⊗qi
j=1 !lij−−◦πpi

, have a unique decomposition:

Theorem 3.2 (Strong Decomposition) Let (C,G,L, ∀) be an adjoint hy-

perdoctrine satisfying Axioms 1–5 of Section 3.1.1. Let f ∈ HomL(~U)
(~h, πk),

where ~h = ⊗n
i=1 !hi and, for all i = 1, . . . , n, hi = ⊗qi

j=1 !lij−−◦πpi
. Then

there exist a unique i and unique g1, . . . , gqi
such that, for all j = 1, . . . , qi,

gj ∈ HomL(~U)
(~h, lij), and

f = con~h; (πk ⊗ 〈g1, . . . , gqi
〉†); Ap .

Proof. If ~h = 1, then, by Axiom 1, we have immediately the thesis. Other-
wise, by Axiom 2, there exists a unique i ∈ {1, . . . , n} and a unique f ′ ∈
Homt

L(~U)
(hi,~h−−◦πk) such that f = con~h; πi ⊗ id~h; Λ

−1(f ′). By Axiom 3, πi =

πk. By Axiom 4, there exists a unique g ∈ Hom(~h,~li), where ~li = ⊗qi
j=1 !lij,

31

such that f ′ = g−−◦πk = Λ((id ⊗ g); Ap). Then f = con~h; πk ⊗ g; Ap. Fi-
nally, by Axiom 5, and by the universal property of the product, we obtain
g = 〈g1, . . . , gqi

〉†. 2

Finally, we can show the main result of this section:

Theorem 3.3 (Axiomatic Full Completeness) Let M be an adjoint hy-
perdoctrine. If M satisfies Axioms 1–6, then M is fully and faithfully complete
at ML-types.

Proof. Let ∀ ~X.T = ∀ ~X.T1 → . . . → Tn → Xk be a closed ML-type, and
let f ∈ HomL(1)

(!I, [[` ∀ ~X.T]]). Using the Decomposition Theorem, one can
easily prove, by induction on the measure provided by Axiom 6 that there exists
~X; ~x : ~T ` xiM1 . . . Mqi

: Xk such that ~Λ(f) = [[~X; ~x : ~T ` xiM1 . . . Mqi
: Xk]],

where − is the bijection given by the adjiunction between ∀ and π∗ in Definition
1.9. Then f = [[` Λ ~X.λ~x : ~T .xiM1 . . .Mqi

: ∀ ~X.~T → Xk]]. 2

As we remarked earlier, the Strong Decomposition Theorem 3.2 is stronger
than the Decomposition Theorem 3.1 in two respects. First of all, it provides
a decomposition for all morphisms of a certain shape, and not just for those
whose domains and codomains are denotations of types. Secondly, it guarantees
the uniqueness of the decomposition. Correspondingly, the axioms could be
weakened either by considering only spaces of morphisms whose domains and
codomains are denotations of types, instead of generic objects of appropriate
“top-level” shape, or by substituting the isomorphisms requirements by weaker
conditions, which only ensure the existence of a decomposition. More precisely,
the first kind of restriction is obtained by taking, e.g. in the Linearization of
Head Occurrence, ~h to be ⊗n

i=1 ![[Ti]], where each Ti is a simple type with free

variables in ~X. In order to guarantee the existence of a decomposition, it
is sufficient to ask that the canonical morphisms in Axioms 2 and 4 and the
morphism λf ∈ Hom(!h, l).(f)† in Axiom 5 are surjective maps. By weakening
the axioms in either or both of these ways, we still get a set of sufficient
conditions for full completeness. Notice that, if we take the weaker form of
the axioms which imply only the existence of a decomposition, we do indeed
need Statman’s result (Theorem 1.1) to conclude faithfulness. The use of the
Typical Ambiguity Theorem, on the other hand, is not necessary, when strong
decomposition is available.

As we will see in Section 3.2, in the concrete model of PERs over the LCA
of partial involutions, we prove weak variants of Linearization of Head Occur-
rence and Linear Function Extensionality Axioms, and strong forms for the
remaining axioms for Decomposition.

32

Moreover, notice that the Finiteness Axiom also has a weak form, obtained
by requiring the existence of a size function only for morphisms whose do-
mains and codomains are denotations of appropriate types. This is actually
the version of the axiom which we prove for our PER model in Section 3.2.

Finally, notice that all the Axioms 1–6 in the strong form are consistent, since
they are satisfied in the underlying category of the adjoint hyperdoctrine in-
duced by the linear term model. Moreover, Axiom 1 is trivially necessary.
The question of the necessity of the Axioms 2–6 in their weak or strong form
remains open.

3.2 A Fully Complete PER Model

In this section, we prove that the PER category over the LCA APInv of Section
2.2 satisfies the Axioms 1–5 of Section 3.1 (some of them in a weak form), and
hence it gives rise to a model which satsfies the Decomposition Theorem. The
proof of the Finiteness Axiom 6, which is the most difficult part of the proof of
full completeness for the model PERAPInv , makes use of the Typed Separability
result presented in Section 1.2, and it requires the study of an intermediate
model for λ⊥,>, which amounts to our second case study. This proof appears
in Section 4.3.4.

By definition of PER adjoint models (see Theorem 2.2 of Section 2.1), for all

morphisms h, l in the fibre category L(~U),

HomL(~U)
(h, l) = F (

⋂
~X
h(~X)−−◦l(~X)) ,

where F : PERA → Set is the forgetful functor. Therefore, in order to verify
the main axioms for the Decomposition Theorem, we are left to establish some
isomorphisms between the images in Set of suitable closed polymorphic PERs.
First of all, notice that Axiom 1 and the Uniformity of Threads Axiom hold
immediately on PER models. In fact, for the first axiom to hold, we need only
to verify that the PER

⋂
~XXk is the empty PER. This follows immediately,

by instantiating Xk with the empty per. Uniformity of Threads Axiom follows
from the isomorphism

⋂
~X ! R −−◦ !S ' ⋂

~X ! R −−◦S, which is an immediate
consequence of Lemma 2.2 of Section 2.1.

The rest of this section is devoted to the proof of the validity of the Axioms
2–4. The proof of the validity of Axioms 2–4 is based essentially on the nature
of partial involutions, and it requires a careful analysis of their applicative
behaviour.

With the following three technical lemmata, we carry out the analysis of the
structure of the partial involutions which inhabit the PERs involved in Ax-

33

ioms 2–4. In particular, in Lemma 3.1, we show that the partial involutions
in dom(

⋂
~X⊗n

i=1 ! Ri −−◦Xk), where ∀i. Ri=Si −−◦Xi, are “total”, in the sense
that, for any possible sequence of input values, they always “look” at them,
before producing an output, and they are different from the empty partial in-
volution. In Lemma 3.2, we show that any of these partial involutions always
“asks” first for the same argument, say the i-th argument, for any possible
sequence of input values. This allows us to isolate the first use of a copy in
! Ri. Finally, Lemma 3.3 will be used in order to define the space of total
morphisms appearing in Axioms 2–4. This space amounts to a PER of total
partial involutions (see Definition 3.2 below).

Lemma 3.1 Let
⋂

~X
~R−−◦Xk be a closed PER, where ~R = ⊗n

i=1 !Ri, and, for

all i = 1, . . . , n, Ri= Si−−◦Xi. Let f ∈ dom(
⋂

~X
~R−−◦Xk). Then f is total, i.e.

∀m∃m′. f ∗(r,m) = (l,m′) ,

where f ∗ = t; f ; t−1 : N + N ⇀ N + N.

Proof. By contradiction. Assume that ∃m. f ∗(r,m)↑. Then we reach a contra-

diction by instantiating ~X as follows: Xk = {h : N ⇀Inv N | h(m)↓}, and Xj,
for all j 6= k, by the PER with only one equivalence class and with domain
containing all partial involutions. In fact: ∀~g ∈ dom(~R. f~g(m)↑, i.e. f~g 6∈ Xk.

Hence f 6∈ dom(
⋂

~X
~R−−◦Xk). In order to conclude, we are left only to check

that ∃~g ∈ dom(~R). I.e., we have to check that ∀i.∃gi ∈ dom(Ri). Such gi’s ex-
ist, since each gi can be taken to be the function constantly equal to an element
in Xi, i.e., let h ∈ Xi, we define, for all n,m, t; g; t−1(r, n) = (r,m) if and only
if h(n) = m. Similarly, we can rule out the case ∃m,m′. f ∗(r,m) = (r,m′), by
instantiating Xk to the one-equivalence class PER {h : N ⇀Inv N | h(n)↑}. 2

The following technical definition will be useful in the sequel. It allows to
analyze the behaviour of a partial involution f , when it is applied to a vector
~g of n arguments.

Definition 3.1 Let

• f : N ⇀Inv N,
• Dn = (N× (N + N) + . . . + N× (N + N))︸ ︷︷ ︸

n

+N.

We define f ∗n : Dn ⇀Inv Dn to be be f “up-to coding”, i.e.: f ∗n =
idN × t + . . . + idN × t︸ ︷︷ ︸

n

+idN; p + . . . + p︸ ︷︷ ︸
n

+idN; tn−1; f ; t−1
n−1; p

−1 + . . . + p−1

︸ ︷︷ ︸
n

+

idN; idN × t−1 + . . . + idN × t−1

︸ ︷︷ ︸
n

+idN ,

where tn is defined by induction on n as follows:

34

t0 = t : N + N ⇀ N
tn+1 = [tn, idN] : (N + N) + . . . + N︸ ︷︷ ︸

n+3

⇀ N.

Lemma 3.2 Let
⋂

~X
~R−−◦Xk be a closed PER, where ~R = ⊗n

i=1 !Ri, and, for

all i = 1, . . . , n, Ri=Si −−◦Xi. Let f ∈ dom(
⋂

~X
~R−−◦Xk). Then there exists a

unique Ri =Si −−◦Xi, 1 ≤ i ≤ n, such that:

• Xi = Xk,
• ∀m. f ∗n(r,m) = (l, (i, !(r,m))) ,

where f ∗n is defined as in Definition 3.1, and !(r,m) denotes any element of
N× (N + N), whose second projection is (r,m).

Proof. By Lemma 3.1, if f ∈ dom(
⋂

~X
~R−−◦Xk), then ∀m. ∃a. f ∗n(r,m) = (l, a).

We prove first, by contradiction, that ∀m.∃i. f ∗n(r,m) = (l, (i, !(r,m))). As-

sume that ∃i.∃a′. f ∗n(r,m) = (l, (i, !(l, a′))). We instantiate each Xj in ~X by
{f : N ⇀Inv N | f(m) = m}. Then the partial involution gj such that
g∗j (r,m) = (r,m), where g∗j = t; gj; t

−1, is in Rj, for all j. In particular, we take
gi such that g∗i (l, a

′)↑. Then f •~g 6∈ Xk. Hence we reach a contradiction. Using a
similar argument, we rule out the case f ∗n(r,m) = (l, (i, !(r,m′))), for m 6= m′.
Moreover, if f ∗n(r,m) = (l, (i, !(r,m))), then Xi = Xk. Because, if Xi 6= Xk,
then we can instantiate Xk′ , for k′ 6= k, by the PER with only one equiva-
lence class and with domain containing all partial involutions, and Xk by {h :
N ⇀Inv N | h(m)↓}. But, for gi = ∅, this yields f•~g(m)↑, i.e. f•~g 6∈ Xk. There-
fore, we are left to show that ∃ !i.∀m. f ∗(r,m) = (l, (i, (r,m))). We prove it by
contradiction. Assume that ∃m,m′, ∃i, j such that f ∗n(r,m) = (l, (i, !(r,m)))
and f ∗n(r,m′) = (l, (j, !(r,m′))). First of all notice that, by the argument
above, Xi = Xj = Xk. Then let Xk = {f : N ⇀Inv N | f(m)lf(m′)}, and
Xk′ = {f | f ∈ [N ⇀Inv N]}, for k′ 6= k. Let gi be such that g∗i (r,m) = (r,m),
g∗i (r,m

′) = (r,m′), then gi ∈ Ti, and let gj = ∅ ∈ Tj. Then, for any gl ∈ Tl, for
l 6= i, j, f~g(m) = m, while f~g(m′)↑. 2

Lemma 3.3 Let
⋂

~X
~R−−◦Xk be a PER, where ~R = ⊗n

i=1 !Ri, and, for all

i = 1, . . . , n, Ri= Si−−◦Xi. Let f, f ′ ∈ dom(
⋂

~X
~R−−◦Xk). If f(

⋂
~X
~R−−◦Xk)f

′,
then

∀m. f ∗n(r,m) = f ′∗n (r,m) ,

where f ∗n, f ′∗n are defined as in Definition 3.1.

Proof. We proceed by contradiction. Assume that ∀m. f ∗n(r,m) = (l, (i, !(r,m)))
and ∀m. f ′∗n (r,m) = !(l, (j, !(r,m))), for i 6= j. Then taking Xk to be the PER
with the two equivalence classes {h : N ⇀Inv N | h(m)↑} and {h : N ⇀Inv

N | h(m)↓}, and taking gi = ∅, and gj such that g∗j (r,m) = (r,m), where
g∗j = t; gj; t

−1, we get (f~g, f ′~g) 6∈ Xk. Contradiction. 2

35

Now we introduce the total space of morphisms appearing in Axioms 2–4. This
is induced by a suitable subPER of the PER

⋂
~X(S −−◦Xi)−−◦(R −−◦Xk), which

is meant to contain only the equivalence classes of total maps. By subPER we
intend a PER whose equivalence classes form a subset of the set of equivalence
classes of the original PER. Notice that, in general, in PER categories, there is
no natural notion of strict/total map, since there are no natural ⊥-elements in
any PER. But, in the special case of our combinatory algebra, there is a natural
candidate for ⊥, i.e. the equivalence class of the empty partial involution. Of
course, this makes sense only if we restrict ourselves to PERs to which ∅
belongs. Then strict maps turn out to be those maps which indeed “look”
at their arguments, and total maps can be defined, as usual, as strict maps
different from ⊥. Bearing on this intuition, we can define the space of total
polymorphic maps used in Axiom 2 as follows (by Lemma 3.3 we are guaranteed
that the following definition yields a subPER, i.e. it identifies a subset of the
set of the equivalence classes of the original PER):

Definition 3.2 Let
⋂

~X(S −−◦Xi)−−◦(R −−◦Xk) be a closed PER.

• We define the total PER (
⋂

~X(S −−◦Xi)−−◦(R −−◦Xk))t to be the subPER
of

⋂
~X(S −−◦Xi)−−◦(R −−◦Xk), which contains only total partial involutions,

i.e.:

f ∈ dom((
⋂

~X(S −−◦Xi)−−◦(R −−◦Xk))t) iff
f ∈ dom(

⋂
~X(S −−◦Xi)−−◦(R −−◦Xk)) ∧ ∀m. f ∗(r, (r,m)) = (l, (r,m)) ,

where f ∗ = t + t; t; f ; t−1; t−1 + t−1.
• We define the space of total morphisms

Homt
L(~U)

((Λ ~X. S)−−◦πi, (Λ ~X. R)−−◦πk) to be the set

F ((
⋂

~X
(S −−◦Xi)−−◦(R −−◦Xk))t) .

We start by proving the validity of Axioms 3.

Theorem 3.4 (Type Coherence) Let
⋂

~X(S−−◦Xi)−−◦(R−−◦Xk) be a closed
PER such that Xi 6= Xk. Then

(
⋂

~X
(S−−◦Xi)−−◦(R−−◦Xk))t = ∅ .

Proof. Assume by contradiction f ∈ dom(
⋂

~X(S−−◦Xi)−−◦(R−−◦Xk))t. Then,
since f is total, ∀m.∃a. f ∗(r, (r,m)) = (l, a), where f ∗ : (N + N) + (N +
N) → (N + N) + (N + N) is t + t; t; t−1; t−1 + t−1. First of all, by suitably
instantiating the Xj’s (by mimicking part of the proof of Lemma 3.2), one
one can check that f ∗(r, (r,m)) = (l, (r,m)). But then, instantiating Xk by
{h : N ⇀Inv N | h(m)↓}, and Xj by the one equivalence class PER containing

all partial involutions, for all j 6= k, we get: ∅ ∈ ~S−−◦Xi, but f•∅ = ∅ 6∈ Xk. 2

36

Now we focus on Axiom 2, i.e.:

casei{F (σi)}i=1,...,n :
n∐

i=1

F ((
⋂

~X
Ri −−◦(~R−−◦Xk))t) ' F (

⋂
~X
~R−−◦Xk) ,

where σi is the appropriate canonical morphism (see Axiom 2 of Section 3.1.1).

Using Lemmata 3.2 and 3.3, one can show that the function casei{F (σi)}i=1,...,n

is surjective. I.e.:

Theorem 3.5 (Weak Linearization of Head Occurrence) Let
⋂

~X
~R−−◦Xk

be a closed PER. Then the following morphism is surjective:

casei{F (σi)}i=1,...,n :
∐n

i=1
F ((

⋂
~X
Ri −−◦(~R−−◦Xk))t) −→ F (

⋂
~X
~R−−◦Xk) ,

where σi = Λ ~X.Λ−1; Λ ~X.πi; τ−−◦idXk
; Λ ~X.con~R−−◦idXk

.

Proving injectivity of the above morphism is problematic. In fact, this amounts
to showing that, if it is not the case that f(

⋂
~X Ri −−◦(~R−−◦Xk))tf

′, then it

is not the case that σi(f)(
⋂

~X
~R−−◦Xk)σi(f

′). As already remarked at the end
of Section 3.1.1, the surjectivity of the function casei{F (σi)}i=1,...,n is at any
rate sufficient to guarantee that the relevant morphisms have a decomposition,
and therefore, if the finiteness condition also holds, we have full completeness.
The question remains whether the strong version of the Linearization of Head
Occurrence Axiom holds. What we can say is that we can prove a posteri-
ori that the isomorphism holds in the case in which we restrict ourselves to
universal PERs denoting ML-types. Namely, using the fact that the weak De-
composition Theorem and the Finiteness Axiom hold in our model (the latter
is proved in Section 4.3.4), we can infer that our model is fully-complete, i.e. all
morphisms from type interpretations to type interpretations are λ-definable.
But then, by Statman Theorem, since the model is non-trivial, any relevant
morphism denotes exactly one βη-normal form, and therefore the isomorphism
holds in Theorem 3.5, when the PER

⋂
~X
~R−−◦Xk denotes an ML-type.

A similar analysis can be done for the Linearization of Head Occurrence Axiom.
Using Lemmata 3.2 and 3.3, one can easily prove that the canonical morphism
in the Axiom is surjective (Theorem 3.6 below). Moreover, a posteriori, we can
prove that the isomorphism holds in case we are dealing with denotations of
ML-types.

Theorem 3.6 (Weak Linear Function Extensionality)
Let

⋂
~X(S−−◦Xk)−−◦(R−−◦Xk) be a closed PER. Then the following morphism

is surjective:

Λ ~X.(·) ~X−−◦idXk
:

⋂
~X
R−−◦S −→ (

⋂
~X
(S−−◦Xk)−−◦(R−−◦Xk))t .

37

4 Maximal Theory for the Simply Typed Lambda Calculus with
⊥,>

In this section, we define a model for λ⊥,> in a suitable subcategory of the
co-Kleisli category of PERAPInv

. We prove that this model is fully complete
and minimal, i.e. it realizes the maximal theory on λ⊥,>. Actually, it is fully
complete and minimal also for an infinitary version of λ⊥,>. Then, we present
some interesting applications of our full completeness result, including the
proof of the Finiteness Axiom for the model of ML-types of Section 3.

We start by introducing the Sierpinski PER O on APInv. Our model is defined
in the co-Kleisli category of the affine category freely generated by O.

Definition 4.1 (The PER O) Fix ∗ ∈ N. Let O be the PER on the combi-
natory algebra APInv consisting of two equivalence classes defined as follows:

• ⊥= {f : N ⇀Inv N | f(∗)↑}
• > = {f : N ⇀Inv N | f(∗) = ∗}.

Definition 4.2 (MO) Let MO = (CCPERO, •O, [[]]O) be the model of λ⊥,>
defined in the co-Kleisli category of the affine category freely generated by O,
where:

[[⊥]]O =⊥ and [[>]]O = > .

First of all notice that, by the fact that the PER O has only a finite number
of equivalence classes and by extensionality of the PER model, each PER in
CCPERO has only finitely many equivalence classes. Therefore, the model is
trivially not faithful w.r.t. the βη-theory. As we will see, the fact that it realizes
exactly the maximal theory follows as a consequence of the full completeness
result.

The proof of full completeness follows the standard general pattern based on a
Decomposition Theorem. But, in this case, the Decomposition Theorem holds
for the partial involutions in the domains of the PERs interpreting a simple
type (and not for the equivalence classes, which can identify different typed
Böhm trees):

Theorem 4.1 (Decomposition) Let T = T1 → . . . → Tn → o ∈ SimType,
n ≥ 0, where, for all i = 1, . . . , n, Ti = Ui1 → . . . → Uiqi

→ o. If f ∈
dom(⊗n

i=1 ![[Ti]]
O−−◦ O), then

• either f ∈ dom([[~x : ~T ` ci : o]]
O
), for some ci ∈ {⊥,>}

• or ∃i ∈ {1, . . . , n}, and ∃g1, . . . , gqi
, where

38

∀j ∈ {1, . . . , qi}. gj ∈ dom(⊗n
i=1 ![[Ti]]

O−−◦[[Uij]]
O), such that

f (×n
i=1 ![[Ti]]

O−−◦ O) (con⊗n
i=1 ![[Ti]]

O ; (πn
i ⊗ 〈g1, . . . , gqi

〉†);Ap) ,

where, by abuse of notation, we denote representatives of equivalence classes
of the canonical morphisms in the affine category freely generated by O by
the canonical morphisms themselves.

The proof of Theorem 4.1 is carried out in Section 4.1. As usual, once we have
a Decomposition Theorem, in order to get the full completeness result, we are
still left to rule out partial involutions generating trees whose height is infinite,
which would correspond to infinite typed Böhm trees. To this aim, we prove
the following:

Proposition 4.1 (Finite Representative Property) LetR be a simple PER
over O. Then, for each equivalence class of R, there exists a finite representa-
tive, i.e. a partial involution which generates, via iterative applications of the
Decomposition Theorem, a finite tree.

The proof of Proposition 4.1 above appears in Section 4.2. This concludes the
proof of full completeness.

Finally, by the full completeness result and by the definition of the PER model
MO, which is well-pointed, the following proposition follows immediately:

Proposition 4.2 (Minimality) The model MO realizes the maximal theory
on λo.

We remark that we have used the full completeness result in order to show
that MO is minimal.

4.1 Proof of the Decomposition Theorem

Let T ∈ SimType, and let R= [[T]]O, where R= ⊗n
i=1 ! Ri −−◦ O, and, for

all i = 1, . . . , n, Ri= ⊗qi
j=1 !Sij−−◦ O. Let f ∈ dom(⊗n

i=1 ! Ri −−◦ O). We
analyze the behaviour of f as operator in an application to arguments !g1 ∈
!R1, . . . , !gn ∈ ! Rn. That is, let us apply the coding functions t, p of Section
2.2, in order to get
f : ((N×N) + . . . + (N×N)) + N ⇀ ((N×N) + . . . + (N×N)) + N ,

where in the domain (codomain) of f there are n occurrences of N × N,
each one corresponding to one of the n arguments to which f applies. In the
interaction with the i-th argument !gi only the i-th occurrence of N×N in the
domain (codomain) of f is involved. In particular, the lefthand occurrence of

39

N in N×N refers to the copy of the argument !gi used, while the righthand
occurence of N carries the values from (to) gi.

We have three possibilities, according to the behaviour of f on the input ∗
(one can easily show that other input values are not relevant, by definition of
the PER O):

(1) f(r, ∗)↑. Then f ∈ [[~x : ~T `⊥: o]]
O
.

(2) f(r, ∗) = ∗. Then f ∈ [[~x : ~T ` > : o]]
O
.

(3) n > 0 and f “interrogates” one of its arguments, say the i-th (in the
j-th copy), i.e. f(r, ∗) = (l, (i, (j,m))), where m is the value passed to gi.
Notice that m must be equal to (r, ∗), otherwise one can easily show that
f 6∈ dom(R).

In the first two cases we are done. We now concentrate on the third case. By
the observations above, we have:

Lemma 4.1 (Linearization of Head Occurrence) LetR= ⊗n
i=1 ! Ri −−◦ O,

where, for all i = 1, . . . , n, Ri= ⊗qi
j=1 !Sij−−◦ O. For all f ∈ dom(~R−−◦ O) sati-

sfying 3, where ~R is an abbreviation for ⊗n
i=1 ! Ri, there exist i ∈ {1, . . . , n}

and f ′ ∈ dom(Ri −−◦~R−−◦ O) strict, i.e. t + t; t; f ′; t−1; t−1 + t−1(r, (r, ∗)) =
(l, (r, ∗)), such that

f R (con~R; πn
i ⊗ id~R; Λ−1(f ′)) .

2

Now we examine the structure of f ′. More in general, one can show Lemma
4.2 below:

Lemma 4.2 (Linear Function Extensionality) Let S,R be PERs. Then,
for all f ∈ dom((S−−◦ O)−−◦(R−−◦ O)) strict, there exists f ′ ∈ dom(R−−◦S)
such that

f ((S−−◦ O)−−◦(R−−◦ O)) (Λ((idS−−◦O ⊗ f ′);Ap)) .

The last technical lemma that we need in order to prove the Decomposition
Theorem is Uniformity of Threads, which amounts to Lemma 2.2(2).

Finally, we have:

Proof of the Decomposition Theorem 4.1. If either case 1 or case 2
above applies, then we are done. If case 3 applies, then, by Lemma 4.1, there
exists i ∈ {1, . . . , n} and f ′ ∈ dom(Ri −−◦(~R−−◦ O)) such that f (~R−−◦ O
) (con~R; πn

i ⊗id~R; Λ−1(f ′)). By Lemma 4.2, there exists g such that f ′ ((~Si−−◦ O

40

)−−◦(~R−−◦ O)) Λ((id ~Si−−◦O ⊗ g); Ap). Then f (~R−−◦ O) con~R; πn
i ⊗ g; Ap.

Finally, by Proposition 2.2(2), by definition of the product of PERs and by

the universality property of the product, we obtain g (~R−−◦~Si) 〈g1, . . . , gqi
〉†,

for some g1 ∈Si1, . . . , gqi
∈Siqi

. 2

4.2 Proof of the Finitary Representative Property

The proof of Proposition 4.1 uses an Approximation Theorem for partial in-
volutions in the domains of PERs interpreting simple types. Approximants of
partial involutions are defined using the Decomposition Theorem. By repeat-
edly applying the Decomposition Theorem to a partial involution f , we obtain
a (possibly) infinite typed Böhm tree. The k-th approximant of f is a par-
tial involution obtained by truncating this tree at level k, and by substituting
the empty partial involution for each possibly erased subtree. This is justified
by the fact that the empty partial involution lives in the interpretation of
λ~x : ~T . ⊥: ~T → o for any type ~T → o. Formally:

Definition 4.3 (Approximants) Let f ∈ dom(R), where R= [[T]]O, for
some simple type T .

• We define the k-th tree, tk(f), of height at most k, generated from f after
iterated applications of the Decomposition Theorem by induction on k as
follows:
· t0(f) is the tree of height 0 with only a root labeled by f ;
· given the tree tk(f) of height at most k, the tree tk+1(f) is obtained from the

tree tk(f) by expanding the possible leaves at level k via the Decomposition
Theorem.

• We define the k-th approximant of f , pk(f), as the partial involution ob-
tained from the tree tk(f) by substituting any partial involution at level k by
the empty partial involution.

We have the following lemma:

Lemma 4.3 Let T1→ . . .→Tn→o∈SimType, let f ∈dom(⊗n
i=1 ![[Ti]]

O−−◦ O).
Then, for all k ≥ 0,
i) pk(f) ∈ dom((⊗n

i=1 ![[Ti]]
O−−◦ O).

ii) pk(f) ⊆ pk+1(f).

Proof. The proof of i) follows from the fact that the empty partial involution
belongs to any simple PER. The proof of ii) follows from monotonicity of •. 2

Theorem 4.2 (Approximation) Let T1 → . . . → Tn → o be a simple type,

41

and let f ∈ dom(⊗n
i=1 ![[Ti]]

O−−◦ O). Then

f (⊗n
i=1 ![[Ti]]

O−−◦ O) (
⋃

k∈ω

pk(f)) .

Proof.(Sketch) We have to show that ∀~g ∈ ⊗n
i=1 ![[Ti]]

O. f •~g O (
⋃

k∈ω pk(f))•~g.
I.e.:
i) f • ~g(∗)↑ ⇐⇒ (

⋃
k∈ω pk(f)) • ~g(∗)↑ and

ii) f • ~g(∗) = ∗ ⇐⇒ (
⋃

k∈ω pk(f)) • ~g(∗) = ∗ .
The implications (⇒) in i) and (⇐) in ii) follow from monotonicity of • and
from the fact that, for all k the graph of pk(f) is contained in the graph of f .
In order to show i)(⇐) and ii)(⇒), one can check that, if f •~g(∗) = ∗ and the
result is obtained with a thread of length at most 2k, then pk(f)•~g(∗) = ∗. 2

Proposition 4.1 follows from the following crucial result:

Theorem 4.3 Let T1→ . . .→Tn→ o∈SimType, f ∈ dom(⊗n
i=1 ![[Ti]]

O−−◦ O).
Then there exists K ≥ 0 such that

f R pK(f) .

Proof. Since R has only finitely many equivalence classes, by Lemma 4.3,
there exists K ≥ 0 such that, for all m1,m2 ≥ K, pm1(f) R pm2(f). Hence, by
Theorem 4.2, we have that f R pK(f). 2

4.3 Some Applications of the Full Completeness Result

Our fully complete model provides immediate semantical proofs of some inter-
esting facts concerning the maximal theory ≈ on λ⊥,> and an infinitary version
of λ⊥,>, and it allows to conclude the proof of full completeness for the model
for ML-types of Section 3.

4.3.1 Context Lemma

Definition 4.4 (Applicative Equivalence) Let ≈app ⊆ Λ0
o × Λ0

o be defined
by

M ≈app N ⇔ ∀P1, . . . , Pn ∈ Λ0. MP1 . . . Pn =β NP1 . . . Pn : o .

Using our fully complete model, we can immediately (re)prove the following:

Lemma 4.4 (Context Lemma) The theory ≈ admits an applicative char-

42

acterization, i.e.
M ≈ N ⇐⇒ M ≈app N .

4.3.2 Infinite Typed Böhm Trees

Our model is actually a fully complete model for the maximal theory on the
infinitary λ⊥,>, i.e. the simply typed, possibly infinite, Böhm trees:

Definition 4.5 (Infinitary Typed Böhm Trees) We define the infinitary
typed Böhm trees as the trees obtained as supremums of typed Böhm trees
corresponding to approximants.

By Theorem 4.3, we have that:

Proposition 4.3 MO is a fully complete minimal model for the infinitary
typed Böhm trees.

4.3.2.1 The Theory on Infinitary Böhm Trees is Conservative. The
theory over infinitary typed Böhm trees ≈∞ is a conservative extension of ≈
w.r.t. terms in λ⊥,>, i.e.:

Proposition 4.4
≈∞|TBT = ≈|TBT ,

where ≈∞|TBT, ≈|TBT denote the theory ≈∞ and the theory ≈ restricted to the
finite typed Böhm trees, respectively.

4.3.3 Decidability Results

It is well-known that the theory≈ is decidable, [32,31]. Using our fully complete
model, we can give a semantical proof of the following decidability results:

Theorem 4.4 Let R be a simple PER, i.e. R=R1→ . . . →Rn→O. For all
f : Nat → Nat whose graph is finite, it is decidable whether f ∈ dom(R).

Proof. In order to decide whether f ∈ dom(R), it is sufficient to check the

behaviour of f when applied to the “relevant” ~g ∈ ~R, i.e. to the g’s whose
domains (and codomains), roughly, are contained in a suitable subset of the
domains of h, h′. More precisely, let
h, h

′
: ((N×N) + . . . + (N×N)) + N ⇀ ((N×N) + . . . + (N×N)) + N

be the partial involutions obtained from h, h′ using the coding functions t, p.
Then gi is “relevant” to h, h′ if dom(gi) ⊆ {n | ∃k. (l, (i, (k, n))) ∈ dom(h) ∪
dom(h

′
)}. These ~g’s are the only “relevant” ones for h, h′ in the sense that,

for any other “non-relevant” ~g, there exists ~g′ “relevant” such that h • ~g(∗) '

43

h •~g′(∗) and h′ •~g(∗) ' h′ •~g′(∗). Since h, h′ have finite graphs, then there are
only finitely many g1, . . . , gn whose graphs are finite. We can easily generate
all these “relevant” partial involutions g1, . . . , gn. At this point, we have to
eliminate the relevant ~g’s which are not in dom(~R). Moreover, we need to
know, for all relevant gi, g

′
i, whether gi is equivalent to g′i. In order to decide

this, we compute, in turn, the partial involutions which are relevant for gi and
g′i. And, recursively, we have to compute the relevant partial involutions of
the relevant partial involutions, until we reach the ground PER R. Once we
have eliminated those ~g which are not in dom(~R), and we have divided the
set of relevant ~g’s in equivalence classes, we can check, finally, the applicative
behaviour of f . Notice that the computations h • ~g(∗) and h′ • ~g(∗) always
terminate, since, by definition of partial involution, and by the fact that the
graphs of h, h′, g1, . . . , gn are all finite, there cannot be an infinite (possibly
cyclic) computation. Namely, the computation h•~g(∗) either converges to ∗ or
diverges because h or ~g are not defined on some element. This concludes the
proof.

2

Using a similar argument, we can prove:

Proposition 4.5 Let ` M : T , ` N : T be such that [[` M : T]]O, [[` N : T]]O

have representatives with finite graphs. Then it is decidable whether M ≈ N .

However, notice that, unfortunately, there are very few λ-terms whose inter-
pretation is finite in the sense of Proposition 4.5 above. E.g. the identity of
type ((o → o) → o) → ((o → o) → o) has no representatives with finite graph.
Intuitively, this depends on the fact that it’s argument can ask for any number
of copies of it’s argument.

4.3.4 Proof of the Finiteness Axiom for the Model for ML-types

We prove a weak form of the Finiteness Axiom 6, i.e. we consider only universal
PERs which are denotations of ML-types. In particular, we prove that the
trees generated by elements of these PERs, via repeated applications of the
Decomposition Theorem, have finite height. Therefore, the size function in the
Finiteness Axiom can be taken directly to be the height of the tree generated
via the Decompostion Theorem.

We use approximants, in order to define a measure on partial involutions in
MO, and hence in particular on partial involutions in the model of ML-types:

Definition 4.6 (Size Function) Let T = T1 → . . . → Tn → o be a type of

44

λ⊥,>, and let f ∈ dom(R), where R = ⊗n
i=1![[Ti]]

O−−◦O. We define

H(f) = supk H(tk(f)) ,

where H(tk(f)) is the height of the tree tk(f).

The following lemma follows from the Approximation Theorem 4.2:

Lemma 4.5 (Approximation) Let
⋂

~X
~R → Xk be the interpretation of an

ML-type, and let f ∈ dom(
⋂

~X
~R→ Xk). Then

i)

f (
⋂

~X
~R→ Xk)

⋃
k∈ω

pk(f) .

ii) For all ~X, for all g1 ∈ R1, . . . , gn ∈ Rn,

(
⋃

k∈ω
~Λ(pk(f)))• !g1 . . . • !gn =

⋃
k∈ω

(~Λ(pk(f))• !g1 . . . • !gn) .

Lemma 4.6 Let f ∈ dom(⊗n
i=1 ! Ri −−◦O), where R1→ . . . Rn→ O =

[[T1 → . . . → Tn → o]]O, for some simple type T1 → . . . → Tn → o. Then

pk(f) ∈ [[~x : ~T ` Mk : o]]
O

,

where Mk is the term of λ⊥,> whose (typed) Böhm tree corresponds to the tree
tk(f).

Proof. By induction on k. 2

Finally, using the Typed Separability Result of Section 1.2, we have:

Theorem 4.5 (Finiteness) Let f ∈ dom(
⋂

~X
~R → Xk), where

⋂
~X(~R → Xk)

is a closed PER denoting, up-to-uncurrying, the ML-type ∀ ~X.T1 → . . . →
Tn → Xk. Then H(f) < ∞.

Proof. We proceed by contradiction. Assume H(f) = ∞. Then,

∀Y. ~Λ(f) ∈ dom(~R[Y → Y/ ~X] → (Y → Y)) ,

hence, by Lemma 4.5, also

∀Y.
⋃

k∈ω

~Λ(pk(f)) ∈ dom(~R[Y → Y/ ~X] → (Y → Y)) .

Let

g1 ∈ [[Y ;` SαT1
: αT1]], . . . , gn ∈ [[Y ;` SαTn

: αTn]] ,

45

where SαTi
, for i = 1, . . . , n, are the convergence tests defined in Section 1.2.

Then

(
⋃

k∈ω
~Λ(pk(f)))g1 . . . gn ∈ dom(

⋂

Y

Y → Y).

By Lemma 4.5(ii), ~Λ(
⋃

k∈ωpk(f))g1 . . . gn =
⋃

k∈ω(~Λ(pk(f))g1 . . . gn). Now we

show that
⋃

k∈ω(~Λ(pk(f))g1 . . . gn) 6∈ dom(
⋂

Y Y → Y), thus obtaining a con-
tradiction. By Lemma 4.6,

(~Λ(pk(f))g1 . . . gn) ∈ ε

where

ε = [[Y ;` Mk : αT1 → . . . → αTn → [Y → Y]]]O • [[Y ;` SαT1
: αT1]]

O

• · · ·
• [[Y ;` SαTn

: αTn]]O

where Y plays the role of the type variable o in Lemma 4.6 and Mk is the
normal form whose Böhm tree corresponds to the tree determined by pk(f).
Then, since Mk contains ⊥, (because pk(f) is a truncation of an infinite tree),
by the Typed Separability Theorem 1.2,

(~Λ(pk(f))g1 . . . gn) ∈ [[Y ;` λx : Y. ⊥: Y → Y]]O

= {h : N ⇀Inv N | t; h; t−1(r, n)↑}.

(Note that this invocation of the Typed Separability Theorem is well-defined
because of the fact that, as already observed, the empty partial involution
lives in the interpretation of λ~x : ~T . ⊥: ~T → o for any type ~T → o. Thus
the same partial involution can serve as the denotation of the original term,
and its image under the substitution σ used in the statement of the Typed
Separability Theorem.) Therefore

⋃
k∈ω

(~Λ(pk(f))g1 . . . gn) 6∈ dom(
⋂

Y
Y → Y) ⊆ {h : N ⇀ N | t; h; t−1(r, n)↓}.

Contradiction. 2

46

5 Maximal Theory for the Simply Typed Lambda Calculus Ex-
tended with Ground Permutations

Immediate generalizations of the Sierpinski PER O to k equivalence classes fail
to give models fully complete for the simply typed λ-calculus with more than
two ground constants. However, a suitable generalization of O gives rise to a
model fully complete w.r.t. λk extended with constants for all transpositions 2

of type o → o. The proof of full completeness is based on an appropriate
version of the Decomposition Theorem for the extended calculus. The proof
of λ-definability is rather difficult, and it requires an Approximation Theorem
along the lines of Theorem 4.2 and an intermediate model, which turns out to
be itself fully complete w.r.t. an extended language.

We start by introducing the PER Ok on APInv, with k distinct equivalence
classes and the model induced by it.

Definition 5.1 (The PER Ok) Let MOk
= (CCPEROk

, •Ok
, [[]]Ok) be the

PER model induced by the PER Ok defined as follows. Fix distinct natural
numbers (“moves”) ∗1, . . . ∗k, a1, . . . , ak. Let Ok be the PER on the combinatory
algebra APInv consisting of k equivalence classes defined by:
– c1 = {f : N ⇀Inv N | f(∗1) = a1 ∧ ∀m 6= 1. ∗m, am 6∈ dom(f)}
– . . .
– ck = {f : N ⇀Inv N | f(∗k) = ak ∧ ∀m 6= k. ∗m, am 6∈ dom(f)}.

It is easy to check that the equivalence classes of the PER Ok −−◦ Ok cor-
respond to the permutations from Ok to Ok. I.e. an involution f belongs to
dom(Ok −−◦ Ok) if and only if ∀ci∃cj. f • ci = cj. Different permutations are
in different equivalence classes of Ok −−◦ Ok. It is standard that all permu-
tations can be obtained by suitably composing elementary permutations, i.e.
transpositions. Permutations (transpositions) of ground type are sufficient to
λ-define all the elements of MOk

, i.e. MOk
is fully complete. The Decomposi-

tion Theorem below allows to recover, for any given partial involution f , the
Böhm tree corresponding to f (up-to permutations):

Theorem 5.1 (Decomposition) Let T = T1 → . . . → Tn → o ∈ SimType,
n ≥ 0, where, for all i = 1, . . . , n, Ti = Ui1 → . . . → Uiqi

→ o. If f ∈
dom(⊗n

i=1 ![[Ti]]
Ok−−◦ Ok), then

• either f ∈ dom([[~x : ~T ` ci : o]]
Ok

), for some ci

• or ∃i ∈ {1, . . . , n}, ∃pOk
: Ok−−◦Ok permutation, and ∃g1, . . . , gqi

, where

∀j ∈ {1, . . . qi}. gj ∈ dom(⊗n
i=1 ![[Ti]]

Ok−−◦[[Uij]]
Ok), such that

2 I.e. permutations which exchange exactly two elements.

47

f (×n
i=1 ![[Ti]]

Ok−−◦ Ok) (con⊗n
i=1 ![[Ti]]

Ok ; (πn
i ⊗ 〈g1, . . . , gqi

〉†);Ap); pOk
.

The proof of Theorem 5.1 follows the usual standard pattern, and it is carried
out in detail in Section 5.1. The proof of λ-definability uses the Decomposition
Theorem, and two further ingredients: an Approximation Theorem, and an
intermediate model. These are discussed in Section 5.2.

5.1 Proof of the Decomposition Theorem

Let T ∈ SimType, and R= [[T]]Ok , where R= ⊗n
i=1 ! Ri −−◦ Ok, and, for all

i = 1, . . . , n,Ri= ⊗qi
j=1 !Sij−−◦ Ok. Let f ∈ dom(⊗n

i=1 ! Ri −−◦ Ok). We analyze
the behaviour of f as operator in an application to arguments

!g1∈! R1, . . . , !gn ∈ ! Rn .

I.e., let us apply the coding functions t, p of Section 2.2, in order to get

f : ((N×N) + . . . + (N×N)) + N ⇀ ((N×N) + . . . + (N×N)) + N ,

where in the domain (codomain) of f there are n occurrences of N × N,
each one corresponding to one of the n arguments to which f applies. In the
interaction with the i-th argument !gi only the i-th occurrence of N ×N in
the domain (codomain) of f is involved. In particular, the lefthand occurrence
of N in N×N refers to the copy of the argument !gi used, while the righthand
occurrence of N carries the values from (to) gi.

We have two possibilities, according to the behaviour of f on the inputs
∗1, . . . , ∗k (other input values are not relevant, by definition of the PER Ok):

Lemma 5.1 Let f ∈ dom(~R−−◦ Ok), where R= ⊗n
i=1 ! Ri −−◦ Ok, and, for

all i = 1, . . . , n, Ri= ⊗qi
j=1 !Sij−−◦ Ok. Then

(1) either ∃ ∗j . f(r, ∗j) = (r, aj) ∧ ∀∗k 6= qj. ((r, ∗k), (r, ak)) 6∈ dom(f) .

I.e. f ∈ [[~x : ~T ` cj : o]]
Ok

.
(2) or ∃i ∈ {1, . . . , n} such that

(a) ∀ ∗j ∃i0. f(r, ∗j) = (l, (i, (i0, m))) ∧ m = (r, yk) where yk ∈ {∗k, ak}
and

(b) ∀i, j (f(r, ∗j) = (l, (i, (i0, (r, ∗k)))) ⇒ f(l, (i, (i0, (r, ak)))) = (r, aj) ∧
f(r, ∗j) = (l, (i, (i0, (r, ak)))) ⇒ f(l, (i, (i0, (r, ∗k)))) = (r, aj).

48

Proof. Item 1 is easy to prove. We focus on the proof of item 2. As far as item
2a, one can easily show that, for any given ∗j, ∃i, i0 s.t. f(r, ∗j) = (l, (i, (i0,m)))
and m = (r, yk). The proof of the fact that, for all ∗j, the argument i inter-
rogated by f is the same is based on a “counting argument”. If we “split”
the responses to initial questions ∗j among different arguments, then we lose
totality, because of the constraints of being a partial involution. Namely, as-
sume by contradiction that it is not the case that for all initial questions ∗j

the responses are in the same argument. Then, for all i = 1, . . . , n ∃pi s.t.

∀ ∗j ∀i0 ∈ N. f(r, ∗j) 6= (l, (i, (i0, (r, xpi
)))) ,

for x ∈ {∗, a}.
Then consider constants (Kcp1), . . . , (Kcpn) in R1, . . . ,Rn. Then we have

∀ ∗j . f • (Kcp1) . . . (Kcpn)(∗j)↑, i.e. f 6∈ dom(~R−−◦ Ok). Contradiction.

Finally, in order to prove item 2b, one can proceed by contradiction, and by
case analysis. This concludes the proof of Lemma 5.1. 2

Using Lemma 5.1 above, one can easily prove the following two lemmata:
Linearization of Head Occurrence and Linear Function Extensionality. The
factorization of the proof of the Decomposition Theorem in these two lemmata
is standard, but notice the special form of Linear Function Extensionality,
where permutations come into play.

Lemma 5.2 (Linearization of Head Occurrence) LetR= ⊗n
i=1 ! Ri −−◦ Ok,

where, for all i = 1, . . . , n,Ri= ⊗qi
j=1 !Sij−−◦ Ok. Then, for all f ∈dom(~R−−◦ Ok

), where ~R is an abbreviation for ⊗n
i=1 ! Ri, there exist i ∈ {1, . . . , n} and f ′ ∈

dom(Ri −−◦~R−−◦ Ok) strict, i.e. t + t; t; f ′; t−1; t−1 + t−1(r, (r, ∗)) = (l, (r, ∗)),
such that

f R (con~R; πn
i ⊗ id~R; Λ−1(f ′)) .

2

Now we examine the structure of f ′. One can show that:

Lemma 5.3 (Linear Function Extensionality) Let S,R be PERs. Then,
for all f ∈ dom((S−−◦ Ok)−−◦(R−−◦ Ok)) strict, there exists f ′ ∈ dom(R−−◦S)
such that

f ((S−−◦ Ok)−−◦(R−−◦ Ok)) (Λ(((idS−−◦pOk
)⊗ f ′);Ap)) ,

where pOk
is a permutation in the PER Ok −−◦ Ok.

Finally, we have:

49

Proof of the Decomposition Theorem 5.1. If case 1 of Lemma 5.1 applies,
then we are done. If case 2 applies, then, by Lemma 5.2, there exist i ∈
{1, . . . , n} and f ′ ∈ dom(Ri −−◦(~R−−◦ Ok)) such that f (~R−−◦ Ok) (con~R; πn

i ⊗
id~R; Λ−1(f ′)). By Lemma 5.3, ∃g, pOk

such that f ′ ((~Si−−◦ Ok)−−◦(~R−−◦ Ok

)) Λ(((id ~Si
−−◦pOk

)⊗g); Ap). Then f (~R−−◦ Ok) con~R; (id ~Si
−−◦pOk

); πn
i ⊗g; Ap.

Finally, by Proposition 2.2(2), by definition of the product of PERs and by

the universality property of the product, we obtain g (~R−−◦~Si) 〈g1, . . . , gqi
〉†,

for some g1 ∈Si1, . . . , gqi
∈Siqi

. 2

5.2 Proof of λ-definability

The proof of the λ-definability property of MOk
is quite involved and it uses

an Approximation Theorem in the line of Theorem 4.2 of Section 4, and an
intermediate PER model MO⊥

k
for the simply typed λ-calculus λk with k

ground constants plus the extra undefined ground constant ⊥. This model
allows for partial elements (approximants).

5.2.1 The Approximation Theorem.

The notion of approximant of a partial involution is defined as in Definition
4.3. The proof of the following theorem is similar to the proof of Theorem 4.2.

Theorem 5.2 (Approximation) Let T1 → . . . → Tn → o be a simple type,
and let f ∈ dom(⊗n

i=1 ![[Ti]]
Ok−−◦ Ok). Then

f (⊗n
i=1 ![[Ti]]

Ok−−◦ Ok) (
⋃

j∈ω

pj(f)) .

5.2.2 The PER model MO⊥
k
.

Definition 5.2 Let MO⊥
k

be the PER model induced by the ground PER O⊥
k

defined as follows. Fix distinct natural numbers ∗1, . . . ∗k, a1, . . . , ak. Let O⊥
k

be the PER on the ACA APInv consisting of k + 1 equivalence classes defined
by:

⊥ = {f : N ⇀Inv N | ∀i ∈ {1, . . . , k}. ∗i, ai 6∈ dom(f)}
c1 = {f : N ⇀Inv N | f(∗1) = a1 ∧ ∀m 6= 1. ∗m, am 6∈ dom(f)}

. . .

ck = {f : N ⇀Inv N | f(∗k) = ak ∧ ∀m 6= k. ∗m, am 6∈ dom(f)}.

50

MO⊥
k

is a model of λ⊥k plus the extra undefined constant ⊥. In particular,
approximants are in MO⊥

k
. One can check that MO⊥

k
is not fully complete for

λk+ ⊥ (e.g. consider the type o → o → o). A remarkable fact is that the model
MO⊥

k
, for k = 1, should be fully complete for the decidable fragment of PCF

called “Unary PCF”.

The relationship with the model MOk
is given by the following lemma:

Lemma 5.4 Let f ∈ dom([[~T−−◦o]]Ok
). Then

i) f ∈ dom([[~T−−◦o]]O
⊥
k).

ii) ∃J ≥ 0. f [[~T−−◦o]]O
⊥
k pJ(f).

Proof. i) Assume that f ∈ dom([[~T−−◦o]]Ok
). By the Approximation Theorem

5.2, f ∼ ⋃
j∈ω pj(f) in MOk

. Moreover, for all j, pj(f) ∈ dom([[~T−−◦o]]O
⊥
k), and

hence also
⋃

j∈ω pj(f) ∈ dom([[~T−−◦o]]O
⊥
k). Then, using an argument similar

to the one used in the proof of the Approximation Theorem, one can check

that, ∀~g ∈ [[~T]]
O⊥k . ∀ ∗i . f • ~g(∗i) ' ⋃

j∈ω pj(f) • ~g(∗i). Hence, in particular,

f ∈ dom([[~T−−◦o]]O
⊥
k).

ii) By the proof of item i) of this lemma, f ∼ ⋃
j∈ω pj(f) in MO⊥

k
, and

∀j. pj(f) ∈ dom([[~T−−◦o]]O
⊥
k). Moreover, since [[~T−−◦o]]O

⊥
k has only finitely

many equivalence classes, by Lemma 4.3, there exists J ≥ 0 such that, for

all m1,m2 ≥ J , pm1(f)[[~T−−◦o]]O
⊥
k pm2(f). Hence f ∼ pJ(f) in MO⊥

k
. 2

5.2.3 λ-definability of MOk
.

Finally, we are in the position of proving that all partial involutions f ∈
dom([[~T−−◦o]]Ok

) are λ-definable. We proceed by induction on types. The base
case is easy. Let us consider the induction step.

By the Approximation Theorem 5.2, f [[~T−−◦o]]Ok
(
⋃

j∈ω pj(f)). By Lemma 5.4ii),
there exists J such that f ∼ pJ(f) in the model MO⊥

k
. Hence, using Lemma

5.4i), we have, in particular, that: ∀~g ∈ [[T]]Ok . ∀ ∗i . f • ~g(∗i) ' pJ(f) • ~g(∗i) .
Therefore, pJ(f) ∼ f in MOk

. Let us call PJ the λ-term whose interpretation
in MO⊥

k
is pJ(f). Two cases can arise:

1) ∃ ~M : ~T , ~M ⊥-free, such that PJ
~M =β⊥.

2) ∀ ~M : ~T , ~M ⊥-free, such that PJ
~M 6=β⊥.

If case 1 applies, then we have a contradiction, since ⊥6∈ Ok. If case 2 applies,
then one can check that PJ is equivalent in the maximal theory to any λ-term
P ′ obtained from PJ by substituting any constant c 6=⊥ for each possible oc-

51

currence of ⊥ in PJ . But then, since, by induction hypothesis, ∀~g ∈ [[T]]Ok , ~g
is λ-definable, [[P ′]]Ok •~g ∼ [[PJ]]Ok •~g in MOk

, and hence [[P ′]]Ok ∼ pJ(f) ∼ f ,
i.e. f is λ-definable.

This concludes the proof of full completeness of MOk
.

6 Maximal Theory for the Simply Typed Lambda Calculus with
Finitely Many Ground Constants

One can build a fully complete model for the simply typed λ-calculus λk,
by getting rid of permutations in the models MOk

. There are two ways of
doing this. The first is “low-level”, and it amounts to cutting down the affine
combinatory algebra of partial involutions, by placing additional constraints
on the partial involutions, similarly to what one does in [10] for getting a fully
abstract model for PCF. Alternatively, one can define a suitable logical relation
and use it to cut down the PER model. We sketch the first technique.

For the sake of simplicitly, let us consider, in place of the set of natural numbers,
the following set of inductively defined moves:

Definition 6.1 Let k ∈ N. We define

(Mk 3) m ::= ∗i | ai | (l, m) | (r,m) | 〈j, m〉 ,

where i = 1, . . . , k and j ∈ N.
We regard Mk as equipped with the intrinsic coding functions [l, r] : Mk +
Mk →Mk, and 〈 , 〉 : N×Mk →Mk.

One could equivalently take the moves to be natural numbers (under suitable
assumptions on coding functions), but the set Mk simplifies the argument. We
can immediately define a function v on moves, which, for any move m, provides
the index i of the basic move ∗i or ai which the move m is made up. I.e.:

Definition 6.2 Let v : Mk →Mk be defined as follows. For all i ∈ N, for all
m ∈Mk,
v(∗i) = v(ai) = i
v((l,m)) = v((r,m)) = v(〈i,m〉) = v(m).

Partial involutions which preserves the function v still form an affine combi-
natory algebra.

Proposition 6.1 (Full Completeness and Minimality) Let AvPInv be the
affine combinatory algebra whose carrier is the set of partial involutions f :

52

Mk → Mk such that, for all m ∈ dom(f), v(f(m)) = v(m) . Then the model
induced by the PER Ok over AvPInv is fully complete and minimal w.r.t. λk.

The results of Section 4.3 concerning the Context Lemma and the decidabilty
of the maximal theory hold also for the model defined in this section.

7 Conclusions and Future Work

In this paper, we have shown how the technique of Linear Realizability can be
used to provide fully complete models for various typed λ-calculi. Here we give
a list of remarks and interesting issues which still remain to be addressed.

• In this paper, we have presented a fully-complete model for ML-types. A
natural question arises: what happens beyond ML-types. Here is a partial
answer. Already at the type N → N, where Nat is the type of Church’s nu-
merals, i.e. ∀X.(X → X) → X → X, the PER model of partial involutions
is not fully-complete. In fact, not only all recursive functions, but even all
functions from natural numbers to natural numbers, can be encoded in the
type N → N. A similar problem arises even if we consider the term combi-
natory algebra. PER models as they are defined in this paper, do not seem
to give full-completeness beyond ML-types. An innovative construction is
called for here.

• Another question which arises naturally is whether the PER model over the
linear term combinatory algebra is fully-complete at ML-types. We conjec-
ture that this is the case, but a proof of this fact seems difficult. A logical
relation technique relating the term algebra and the term subalgebra of par-
tial involutions could be useful here. The interest of linear term algebras lies
in the fact that the PER model generated by these is essentially the PER
model shown to be fully-complete at algebraic types in [25].

• We have presented a linear realizability technique for building PER cate-
gories over an LCA. These PER categories turn out to be linear categories.
It would be interesting to carry on the investigation of the general properties
of these categories, e.g. define coproducts, products, etc.

• For the case of the simply typed λ-calculus, we could also abstract axioms for
full completeness from the lemmata in our proofs. However, these would not
imply faithfulness w.r.t. the maximal theory, i.e. that the theory of models
would be maximal.

• One could define fully complete Game Models for λk by considering strate-
gies in the style of [8]. But, by the intensionality of the Game Semantics,
these models would not realize the maximal theory, but rather the βη-theory.

• Models of partial involutions are worthwhile investigating also for untyped
λ-calculi. For example, partial involution strategies, i.e. strategies in the [8]
style, which are represented by partial involutions from Opponenent moves

53

to Player moves, could possibly provide fully abstract models, alternative to
those in [20,26].

• In [29], a fully abstract translation of “Finitary µ-PCF” into the simply
typed lambda calculus with constants is given. An interesting consequence
of this result is that our model is also fully abstract for this finitary µ-PCF.

• We feel that the fully complete models based on partial involutions defined
in this paper should provide a semantical proof of the decidability of the
maximal theory, alternative to those of Padovani and Loader. We should
capitalize on the possibility of checking equivalence of involutions by evalu-
ating them on finite sets of inputs (moves).

• Finally, it is interesting to remark that partial involutions provide models
for reversible computations [4]. A very general question is whether this is
related to the decidability of the various theories which can be modeled by
partial involutions.

References

[1] S. Abramsky, Retracing some paths in Process Algebra, in: U. Montanari,
V. Sassone (Eds), Concur’96, Lecture Notes in Computer Science, Vol. 1119,
Springer, Berlin, 1996, pp. 1–17.

[2] S. Abramsky, Interaction, Combinators, and Complexity, Notes, Siena (Italy),
1997.

[3] S. Abramsky, Axioms for Definability and Full Completeness, in: G. Plotkin, C.
Stirling, M. Tofte (Eds.), Proof, Language and Interaction: Essays in Honour of
Robin Milner, MIT Press, 2000, pp. 55–75.

[4] S. Abramsky, A Structural Approach to Reversible Computation, in LCCS
2001: Proceedings of the International Workshop on Logic and Complexity in
Computer Science, edited by D. Beauquier and Y. Matiyasevich, LACL 2001,
1–16.

[5] S. Abramsky, E. Haghverdi, P. Scott, Geometry of Interaction and Linear
Combinatory Algebras, Math.Struct. in Comp.Science 12 (5) (2002) 625–665.

[6] S. Abramsky, R. Jagadeesan, New foundations for the Geometry of Interaction,
Inform. Comput. 111 (1) (1994) 53–119.

[7] S. Abramsky, R. Jagadeesan, Games and Full Completeness for Multiplicative
Linear Logic, J. of Symbolic Logic 59 (2) (1994) 543–574.

[8] S. Abramsky, R. Jagadeesan, P. Malacaria, Full Abstraction for PCF, Inform.
Comput. 163 (2000) 409–470.

[9] S.Abramsky, M.Lenisa, Fully Complete Models for ML Polymorphic Types,
Technical Report ECS-LFCS-99-414, LFCS, 1999.

54

[10] S.Abramsky, J.Longley, Realizability models based on hystory-free strategies,
Draft paper, 1999.

[11] S. Abramsky, M. Lenisa, A Fully-complete PER Model for ML Polymorphic
Types, in: P. Clote, H. Schwichtenberg (Eds.), CSL’00, Lecture Notes in
Computer Science, Vol. 1862, Springer, Berlin, 2000, pp. 140–155.

[12] S. Abramsky, M. Lenisa, Axiomatizing Fully Complete Models for ML
Polymorphic Types, in: M. Nielsen, B. Rovan (Eds.), MFCS’00, Lecture Notes
in Computer Science, Vol. 1893, Springer, Berlin, 2000, pp. 141-151.

[13] S. Abramsky, M. Lenisa, A Fully Complete Minimal PER Model for the Simply
Typed λ-calculus, in: Fribourg (Ed.), CSL’01, Lecture Notes in Computer
Science, Vol. 2142, Springer, Berlin, 2001, pp. 443–457.

[14] A. Asperti, G. Longo, Categories, Types ad Structures: An introduction to
category theory for the working computer scientist, Foundations of Computing
Series, The MIT Press, 1991.

[15] H. Barendregt, The Lambda Calculus, its Syntax and Semantics, North Holland,
Amsterdam, 1984.

[16] V. Breazu-Tannen, T. Coquand, Extensional models for polymorphism, Theoret.
Comput. Sci. 59 (1988) 85–114.

[17] N. Benton, P. Wadler, Linear Logic, Monads and the Lambda Calculus, in:
LICS’96, 1996.

[18] G. Bierman, What is a categorical Model of Intuitionistic Linear Logic?, in: M.
Dezani et al (Eds.), TLCA’95, Lecture Notes in Computer Science, Vol. 902,
Springer, Berlin, 1995, pp. 78–93.

[19] R. Crole, Categories for Types, Cambridge University Press, 1993.

[20] P. Di Gianantonio, G. Franco, F. Honsell, Game Semantics for Untyped λ-
calculus, in: J.Y. Girard (Ed.), TLCA’99, Lecture Notes in Computer Science,
Vol. 1581, Springer, Berlin, 1999, pp. 114–128.

[21] J.Y. Girard, Interprétation functionelle et élimunation des coupures de
l’arithmètique d’ordre supérieur, Thèse d’Etat, Université Paris VII, 1972.

[22] J.Y. Girard, Towards a Geometry of Interaction, Contemporary Mathematics
92 (1989) 69–108.

[23] M. Hyland, L. Ong, On full abstraction for PCF, Inform. Comput. 163 (2000)
285–408.

[24] D.J.D. Hughes, Hypergame Semantics: Full Completeness for System F, Ph.D.
Thesis, University of Oxford, 1999.

[25] J. Hyland, E. Robinson, G. Rosolini, Algebraic types in PER models, in: M.Main
et al. (Eds.), MFPS’90, Lecture Notes in Computer Science, Vol. 442, Springer,
Berlin, 1990, pp. 333–350.

55

[26] A. Ker, H. Nickau, L. Ong, More Universal Game Models of Untyped λ-Calculus:
The Böhm Tree Strikes Back, in: J. Flum, M. Rodriquez-Artalejo (Eds.), CSL’99,
Lecture Notes in Computer Science, Vol. 1683, Springer, Berlin, 1999, pp. 405–
419.

[27] A. Joyal, R. Street, D. Verity, Traced monoidal categories, Math. Proc. Comb.
Phil. Soc. 119 (1996) 447–468.

[28] J. Laird, Full abstraction for functional languages with control, in: LICS’97,
1997, pp. 58–64.

[29] J. Laird, Games, control and full abstraction, Ph.D. Thesis, University of
Edinburgh, 2000.

[30] F. Lawvere, Equality in hyperdoctrines and the comprehension schema as an
adjoint functor, in: Proc. Symp. on Applications of Categorical Logic, 1970.

[31] R. Loader, An Algorithm for the Minimal Model, Note, 1997.

[32] V. Padovani, Decidability of all Minimal Models, in: S. Berardi, M. Coppo
(Eds.), TYPES’95, Lecture Notes in Computer Science, Vol. 1158, Springer,
Berlin, 1996, pp. 201–215.

[33] A. Pitts, Polymorphism is set-theoretic constructively, in: D. Pitt et al. (Ed.),
CTCS’88, Lecture Notes in Computer Science, Vol. 283, Springer, Berlin, 1988,
pp. 12–39.

[34] R. Seely, Linear logic, ∗-autonomous categories and cofree coalgebras, in:
Category theory, computer science and logic, American Math. Society, 1987.

[35] R. Seely, Polymorphic linear logic and topos models, in: Math. Reports,
Academy of Science (Canada) XII, 1990.

[36] R. Statman, Completeness, invariance and λ-definability, J. of Symbolic Logic
47 (1) (1982).

[37] R. Statman, λ-definable functionals and βη-conversion, Arch. Math. Logik 23
(1983) 21–26.

56

