
Distributed-File Systems

• Background

• Naming and Transparency

• Remote File Access

• Stateful versus Stateless Service

• File Replication

• Example Systems

– Typeset by FoilTEX – 1

Background

• Distributed file system (DFS) – a distributed implementation of the classical
time-sharing model of a file system, where multiple users share files and storage
resources.

• A DFS manages sets of dispersed storage devices.

• Overall storage space managed by a DFS is composed of different, remotely
located, smaller storage spaces.

• There is usually a correspondence between constituent storage spaces and sets
of files.

– Typeset by FoilTEX – 2

DFS Structure

• Service – software entity running on one or more machines and providing a
particular type of function to a priori unknown clients.

• Server – service software running on a single machine.

• Client – process that can invoke a service using a set of operations that forms
its client interface.

• A client interface for a file service is formed by a set of primitive file operations
(create, delete, read, write).

• Client interface of a DFS should be transparent, i.e., not distinguish between
local and remote files.

– Typeset by FoilTEX – 3

Naming and Transparency

• Naming – mapping between logical and physical objects.

• Multilevel mapping – abstraction of a file that hides the details of how and
where on the disk the file is actually stored.

• A transparent DFS hides the location where in the network the file is stored.

• For a file being replicated in several sites, the mapping returns a set of the
locations of this file’s replicas; both the existence of multiple copies and their
location are hidden.

– Typeset by FoilTEX – 4

Naming Structures

Location transparency – file name does not reveal the file’s physical storage
location.

• File name still denotes a specific, although hidden, set of physical disk
blocks.

• Convenient way to share data.
• Can expose correspondence between component units and machines.

Location independence – file name does not need to be changed when the file’s
physical storage location changes.

• Better file abstraction.
• Promotes sharing the storage space itself.
• Separates the naming hierarchy from the storage-devices hierarchy.

– Typeset by FoilTEX – 5

Naming Schemes — Three Main Approaches

• Files named by combination of their host name and local name; guarantees a
unique systemwide name.

• Attach remote directories to local directories, giving the appearance of a
coherent directory tree; only previously mounted remote directories can be
accessed transparently.

• Total integration of the component file systems.

– A single global name structure spans all the files in the system.
– If a server is unavailable; some arbitrary set of directories on different

machines also becomes unavailable.

– Typeset by FoilTEX – 6

Remote File Access

• Reduce network traffic by retaining recently accessed disk blocks in a cache,
so that repeated accesses to the same information can be handled locally.

– If needed data not already cached, a copy of data is brought from the server
to the user.

– Accesses are performed on the cached copy.
– Files identified with one master copy residing at the server machine, but

copies of (parts of) the file are scattered in different caches.

• Cache-consistency problem – keeping the cached copies consistent with the
master file.

– Typeset by FoilTEX – 7

Location – Disk Caches vs. Main Memory Cache

• Advantages of disk caches

– More reliable.
– Cached data kept on disk are still there during recovery and don’t need to

be fetched again.

• Advantages of main-memory caches:

– Permit workstations to be diskless.
– Data can be accessed more quickly.
– Performance speedup in bigger memories.
– Server caches (used to speed up disk I/O) are in main memory regardless

of where user caches are located; using main-memory caches on the user
machine permits a single caching mechanism for servers and users.

– Typeset by FoilTEX – 8

Cache Update Policy

• Write-through – write data through to disk as soon as they are placed on any
cache. Reliable, but poor performance.

• Delayed-write – modifications written to the cache and then written through
to the server later. Write accesses complete quickly; some data may be
overwritten before they are written back, and so need never be written at all.

– Poor reliability; unwritten data will be lost whenever a user machine crashes.
– Variation – scan cache at regular intervals and flush blocks that have been

modified since the last scan.
– Variation – write-on-close, writes data back to the server when the file is

closed. Best for files that are open for long periods and frequently modified.

– Typeset by FoilTEX – 9

Consistency

• Is locally cached copy of the data consistent with the master copy?

• Client-initiated approach

– Client initiates a validity check.
– Server checks whether the local data are consistent with the master copy.

• Server-initiated approach

– Server records, for each client, the (parts of) files it caches.
– When server detects a potential inconsistency, it must react.

– Typeset by FoilTEX – 10

Comparing Caching and Remote Service

• In caching, many remote accesses handled efficiently by the local cache; most
remote accesses will be served as fast as local ones.

• Servers are contacted only occasionally in caching (rather than for each access).

– Reduces server load and network traffic.
– Enhances potential for scalability.

• Remote server method handles every remote access across the network; penalty
in network traffic, server load, and performance.

• Total network overhead in transmitting big chunks of data (caching) is lower
than a series of responses to specific requests (remote-service).

– Typeset by FoilTEX – 11

Caching and Remote Service (Cont.)

• Caching is superior in access patterns with infrequent writes. With frequent
writes, substantial overhead incurred to overcome cache-consistency problem.

• Benefit from caching when execution carried out on machines with either local
disks or large main memories.

• Remote access on diskless, small-memory-capacity machines should be done
through remote-service method.

• In caching, the lower intermachine interface is different from the upper user
interface.

• In remote-service, the intermachine interface mirrors the local user-file-system
interface.

– Typeset by FoilTEX – 12

Stateful File Service

• Mechanism.

– Client opens a file.
– Server fetches information about the file from its disk, stores it in its memory,

and gives the client a connection identifier unique to the client and the open
file.

– Identifier is used for subsequent accesses until the session ends.
– Server must reclaim the main-memory space used by clients who are no

longer active.

• Increased performance.

– Fewer disk accesses.
– Stateful server knows if a file was opened for sequential access and can thus

read ahead the next blocks.

– Typeset by FoilTEX – 13

Stateless File Server

• Avoids state information by making each request self-contained.

• Each request identifies the file and position in the file.

• No need to establish and terminate a connection by open and close operations.

– Typeset by FoilTEX – 14

Distinctions between Stateful & Stateless Service

• Failure Recovery.

– A stateful server loses all its volatile state in a crash.
∗ Restore state by recovery protocol based on a dialog with clients, or abort

operations that were underway when the crash occurred.
∗ Server needs to be aware of client failures in order to reclaim space

allocated to record the state of crashed client processes (orphan detection
and elimination).

– With stateless server, the effects of server failures and recovery are almost
unnoticeable. A newly reincarnated server can respond to a self-contained
request without any difficulty.

– Typeset by FoilTEX – 15

Distinctions (Cont.)

• Penalties for using the robust stateless service:

– longer request messages
– slower request processing
– additional constraints imposed on DFS design

• Some environments require stateful service.

– A server employing server-initiated cache validation cannot provide stateless
service, since it maintains a record of which files are cached by which clients.

– UNIX use of file descriptors and implicit offsets is inherently stateful; servers
must maintain tables to map the file descriptors to inodes, and store the
current offset within a file.

– Typeset by FoilTEX – 16

File Replication

• Replicas of the same file reside on failure-independent machines.
• Improves availability and can shorten service time.
• Naming scheme maps a replicated file name to a particular replica.

– Existence of replicas should be invisible to higher levels.
– Replicas must be distinguished from one another by different lower-level

names.
• Updates – replicas of a file denote the same logical entity, and thus an update

to any replica must be reflected on all other replicas.
• Demand replication – reading a nonlocal replica causes it to be cached locally,

thereby generating a new nonprimary replica.

– Typeset by FoilTEX – 17

The Sun Network File System (NFS)

• An implementation and a specification of a software system for accessing
remote files across LANs (or WANs).

• The implementation is part of the SunOS operating system (version of 4.2BSD
UNIX), running on a Sun workstation using an unreliable datagram protocol
(UDP/IP protocol) and Ethernet.

– Typeset by FoilTEX – 18

NFS (Cont.)

• Interconnected workstations viewed as a set of independent machines with
independent file systems, which allows sharing among these file systems in a
transparent manner.

– A remote directory is mounted over a local file system directory. The
mounted directory looks like an integral subtree of the local file system,
replacing the subtree descending from the local directory.

– Specification of the remote directory for the mount operation is nontranspa-
rent; the host name of the remote directory has to be provided. Files in the
remote directory can then be accessed in a transparent manner.

– Subject to access-rights accreditation, potentially any file system (or direc-
tory within a file system), can be mounted remotely on top of any local
directory.

– Typeset by FoilTEX – 19

NFS (Cont.)

• NFS is designed to operate in a heterogeneous environment of different
machines, operating systems, and network architectures; the NFS specification
is independent of these media.

• This independence is achieved through the use of RPC primitives built on
top of an External Data Representation (XDR) protocol used between two
implementation-independent interfaces.

• The NFS specification distinguishes between the services provided by a mount
mechanism and the actual remote-file-access services.

– Typeset by FoilTEX – 20

NFS Mount Protocol

• Establishes initial logical connection between server and client.
• Mount operation includes name of remote directory to be mounted and name

of server machine storing it.

– Mount request is mapped to corresponding RPC and forwarded to mount
server running on server machine.

– Export list – specifies local file systems that server exports for mounting,
along with names of machines that are permitted to mount them.

• Following a mount request that conforms to its export list, the server returns
a file handle—a key for further accesses.

• File handle – a file-system identifier, and an inode number to identify the
mounted directory within the exported file system.

• The mount operation changes only the user’s view and does not affect the
server side.

– Typeset by FoilTEX – 21

NFS Protocol

• Provides a set of remote procedure calls for remote file operations. The
procedures support the following operations:
– searching for a file within a directory
– reading a set of directory entries
– manipulating links and directories
– accessing file attributes
– reading and writing files

• NFS servers are stateless; each request has to provide a full set of arguments.
• Modified data must be committed to the server’s disk before results are

returned to the client (lose advantages of caching).
• The NFS protocol does not provide concurrency-control mechanisms.

– Typeset by FoilTEX – 22

Three Major Layers of NFS Architecture

• UNIX file-system interface (based on the open, read, write, and close calls,
and file descriptors).

• Virtual File System (VFS) layer – distinguishes local files from remote ones,
and local files are further distinguished according to their file-system types.

– The VFS activates file-system-specific operations to handle local requests
according to their file-system types.

– Calls the NFS protocol procedures for remote requests.

• NFS service layer – bottom layer of the architecture; implements the NFS
protocol.

– Typeset by FoilTEX – 23

Schematic View of NFS Architecture

– Typeset by FoilTEX – 24

NFS Path-Name Translation

• Performed by breaking the path into component names and performing a
separate NFS lookup call for every pair of component name and directory
vnode.

• To make lookup faster, a directory name lookup cache on the client’s side
holds the vnodes for remote directory names.

– Typeset by FoilTEX – 25

NFS Remote Operations

• Nearly one-to-one correspondence between regular UNIX system calls and the
NFS protocol RPCs (except opening and closing files).

• NFS adheres to the remote-service paradigm, but employs buffering and
caching techniques for the sake of performance.

• File-blocks cache – when a file is opened, the kernel checks with the remote
server whether to fetch or revalidate the cached attributes. Cached file blocks
are used only if the corresponding cached attributes are up to date.

• File-attribute cache – the attribute cache is updated whenever new attributes
arrive from the server.

• Clients do not free delayed-write blocks until the server confirms that the data
have been written to disk.

– Typeset by FoilTEX – 26

Distributed Coordination

• Event Ordering

• Mutual Exclusion

• Atomicity

• Deadlock Handling

• Election Algorithms

– Typeset by FoilTEX – 27

Event Ordering

• Happened-before relation (denoted by →).

– If A and B are events in the same process, and A was executed before B,
then A → B.

– If A is the event of sending a message by one process and B is the event of
receiving that message by another process, then A → B.

– If A → B and B → C then A → C.

– Typeset by FoilTEX – 28

Implementation of →

• Associate a timestamp with each system event. Require that for every pair of
events A and B, if A → B, then the timestamp of A is less than the timestamp
of B.

• Within each process Pi a logical clock, LCi is associated. The logical clock
can be implemented as a simple counter that is incremented between any two
successive events executed within a process.

• A process advances its logical clock when it receives a message whose
timestamp is greater than the current value of its logical clock.

• If the timestamps of two events A and B are the same, then the events are
concurrent. We may use the process identity numbers to break ties and to
create a total ordering.

– Typeset by FoilTEX – 29

Distributed Mutual Exclusion (DME)

• Assumptions

– The system consists of n processes; each process Pi resides at a different
processor.

– Each process has a critical section that requires mutual exclusion.

• Requirement

– If Pi is executing in its critical section, then no other process Pj is executing
in its critical section.

• We present two algorithms to ensure the mutual exclusion execution of
processes in their critical sections.

– Typeset by FoilTEX – 30

DME: Centralized Approach

• One of the processes in the system is chosen to coordinate the entry to the
critical section.

• A process that wants to enter its critical section sends a request message to
the coordinator.

• The coordinator decides which process can enter the critical section next, and
it sends that process a reply message.

• When the process receives a reply message from the coordinator, it enters its
critical section.

• After exiting its critical section, the process sends a release message to the
coordinator and proceeds with its execution.

• This scheme requires three messages per critical-section entry:
request reply release

– Typeset by FoilTEX – 31

DME: Fully Distributed Approach

• When process Pi wants to enter its critical section, it generates a new
timestamp, TS, and sends the message request(Pi, TS) to all other processes
in the system.

• When process Pj receives a request message, it may reply immediately or it
may defer sending a reply back.

• When process Pi receives a reply message from all other processes in the
system, it can enter its critical section.

• After exiting its critical section, the process sends reply messages to all its
deferred requests.

– Typeset by FoilTEX – 32

DME: Fully Distributed Approach (Cont.)

• The decision whether process Pj replies immediately to a request(Pi, TS)
message or defers its reply is based on three factors:

– If Pj is in its critical section, then it defers its reply to Pi.
– If Pj does not want to enter its critical section, then it sends a reply

immediately to Pi.
– If Pj wants to enter its critical section but has not yet entered it, then it

compares its own request timestamp with the timestamp TS.
∗ If its own request timestamp is greater than TS, then it sends a reply

immediately to Pi (Pi asked first).
∗ Otherwise, the reply is deferred.

– Typeset by FoilTEX – 33

Desirable Behavior of Fully Distributed Approach

• Freedom from deadlock is ensured.

• Freedom from starvation is ensured, since entry to the critical section is
scheduled according to the timestamp ordering. The timestamp ordering
ensures that processes are served in a first-come, first-served order.

• The number of messages per critical-section entry is

2 × (n− 1).

This is the minimum number of required messages per critical-section entry
when processes act independently and concurrently.

– Typeset by FoilTEX – 34

Three Undesirable Consequences

• The processes need to know the identity of all other processes in the system,
which makes the dynamic addition and removal of processes more complex.

• If one of the processes fails, then the entire scheme collapses. This can be
dealt with by continuously monitoring the state of all the processes in the
system.

• Processes that have not entered their critical section must pause frequently
to assure other processes that they intend to enter the critical section. This
protocol is therefore suited for small, stable sets of cooperating processes.

– Typeset by FoilTEX – 35

Atomicity

• Either all the operations associated with a program unit are executed to
completion, or none are performed.

• Ensuring atomicity in a distributed system requires a transaction coordinator,
which is responsible for the following:

– Starting the execution of the transaction.
– Breaking the transaction into a number of subtransactions, and distributing

these subtransactions to the appropriate sites for execution.
– Coordinating the termination of the transaction, which may result in the

transaction being committed at all sites or aborted at all sites.

– Typeset by FoilTEX – 36

Two-Phase Commit Protocol (2PC)

• Assumes fail-stop model.

• Execution of the protocol is initiated by the coordinator after the last step of
the transaction has been reached.

• When the protocol is initiated, the transaction may still be executing at some
of the local sites.

• The protocol involves all the local sites at which the transaction executed.

• Example: Let T be a transaction initiated at site Si, and let the transaction
coordinator at Si be Ci.

– Typeset by FoilTEX – 37

Phase 1: Obtaining a Decision

• Ci adds <prepare T> record to the log.

• Ci sends <prepare T> message to all sites.

• When a site receives a <prepare T> message, the transaction manager
determines if it can commit the transaction.

– If no: add <no T> record to the log and respond to Ci with <abort T>.
– If yes:
∗ add <ready T> record to the log.
∗ force all log records for T onto stable storage.
∗ transaction manager sends <ready T> message to Ci.

– Typeset by FoilTEX – 38

Phase 1 (Cont.)

• Coordinator collects responses

– All respond “ready”,
decision is commit.

– At least one response is “abort”,
decision is abort.

– At least one participant fails to respond within timeout period,
decision is abort.

– Typeset by FoilTEX – 39

Phase 2: Recording Decision in the Database

• Coordinator adds a decision record

<abort T> or <commit T>

to its log and forces record onto stable storage.

• Once that record reaches stable storage it is irrevocable (even if failures occur).

• Coordinator sends a message to each participant informing it of the decision
(commit or abort).

• Participants take appropriate action locally.

– Typeset by FoilTEX – 40

Failure Handling in 2PC – Site Failure

• The log contains a <commit T> record. In this case, the site executes
redo(T).

• The log contains an <abort T> record. In this case, the site executes undo(T).

• The log contains a <ready T> record; consult Ci. If Ci is down, site sends
query-status T message to the other sites.

• The log contains no control records concerning T. In this case, the site executes
undo(T).

– Typeset by FoilTEX – 41

Failure Handling in 2PC – Coordinator Ci Failure

• If an active site contains a <commit T> record in its log, then T must be
committed.

• If an active site contains an <abort T> record in its log, then T must be
aborted.

• If some active site does not contain the record <ready T> in its log, then the
failed coordinator Ci cannot have decided to commit T. Rather than wait for
Ci to recover, it is preferable to abort T.

• All active sites have a <ready T> record in their logs, but no additional control
records. In this case we must wait for the coordinator to recover.

– Blocking problem – T is blocked pending the recovery of site Si.

– Typeset by FoilTEX – 42

Deadlock Prevention

• Resource-ordering deadlock-prevention – define a global ordering among the
system resources.

– Assign a unique number to all system resources.
– A process may request a resource with unique number i only if it is not

holding a resource with a unique number greater than i.
– Simple to implement; requires little overhead.

• Banker’s algorithm – designate one of the processes in the system as the
process that maintains the information necessary to carry out the Banker’s
algorithm.

– Also implemented easily, but may require too much overhead.

– Typeset by FoilTEX – 43

Timestamped Deadlock-Prevention Scheme

• Each process Pi is assigned a unique priority number.

• Priority numbers are used to decide whether a process Pi should wait for a
process Pj. Pi can wait for Pj if Pi has a higher priority than Pj; otherwise Pi

is rolled back.

• The scheme prevents deadlocks. For every edge Pi → Pj in the wait-for graph,
Pi has a higher priority than Pj. Thus, a cycle cannot exist.

– Typeset by FoilTEX – 44

Wait-Die Scheme

• Based on a nonpreemptive technique.

• If Pi requests a resource currently held by Pj, Pi is allowed to wait only if it
has a smaller timestamp than does Pj (Pi is older than Pj). Otherwise, Pi is
rolled back (dies).

• Example: Suppose that processes P1, P2, and P3 have timestamps 5, 10, and
15, respectively.

– If P1 requests a resource held by P2, then P1 will wait.
– If P3 requests a resource held by P2, then P3 will be rolled back.

– Typeset by FoilTEX – 45

Wound-Wait Scheme

• Based on a preemptive technique; counterpart to the wait-die system.

• If Pi requests a resource currently held by Pj, Pi is allowed to wait only if it
has a larger timestamp than does Pj (Pi is younger than Pj). Otherwise, Pj

is rolled back (Pj is wounded by Pi).

• Example: Suppose that processes P1, P2, and P3 have timestamps 5, 10, and
15, respectively.

– If P1 requests a resource held by P2, then the resource will be preempted
from P2 and P2 will be rolled back.

– If P3 requests a resource held by P2, then P3 will wait.

– Typeset by FoilTEX – 46

Deadlock Detection – Centralized Approach

• Each site keeps a local wait-for graph. The nodes of the graph correspond
to all the processes that are currently either holding or requesting any of the
resources local to that site.

• A global wait-for graph is maintained in a single coordination process; this
graph is the union of all local wait-for graphs.

• There are three different options (points in time) when the wait-for graph may
be constructed:
1. Whenever a new edge is inserted or removed in one of the local wait-for

graphs.
2. Periodically, when a number of changes have occurred in a wait-for graph.
3. Whenever the coordinator needs to invoke the cycle-detection algorithm.

• Unnecessary rollbacks may occur as a result of false cycles.

– Typeset by FoilTEX – 47

Detection Algorithm Based on Option 3

• Append unique identifiers (timestamps) to requests from different sites.

• When process Pi, at site A, requests a resource from process Pj, at site B, a
request message with timestamp TS is sent.

• The edge Pi → Pj with the label TS is inserted in the local wait-for of A.
This edge is inserted in the local wait-for graph of B only if B has received the
request message and cannot immediately grant the requested resource.

– Typeset by FoilTEX – 48

The Algorithm

1. The controller sends an initiating message to each site in the system.

2. On receiving this message, a site sends its local wait-for graph to the
coordinator.

3. When the controller has received a reply from each site, it constructs a graph
as follows:

(a) The constructed graph contains a vertex for every process in the system.
(b) The graph has an edge Pi → Pj if and only if (1) there is an edge Pi → Pj

in one of the wait-for graphs, or (2) an edge Pi → Pj with some label TS
appears in more than one wait-for graph.

If the constructed graph contains a cycle ⇒ deadlock.

– Typeset by FoilTEX – 49

Fully Distributed Approach

• All controllers share equally the responsibility for detecting deadlock.

• Every site constructs a wait-for graph that represents a part of the total graph.

• We add one additional node Pex to each local wait-for graph.

• If a local wait-for graph contains a cycle that does not involve node Pex, then
the system is in a deadlock state.

• A cycle involving Pex implies the possibility of a deadlock. To ascertain
whether a deadlock does exist, a distributed deadlock-detection algorithm
must be invoked.

– Typeset by FoilTEX – 50

Election Algorithms

• Determine where a new copy of the coordinator should be restarted.

• Assume that a unique priority number is associated with each active process
in the system, and assume that the priority number of process Pi is i.

• Assume a one-to-one correspondence between processes and sites.

• The coordinator is always the process with the largest priority number. When a
coordinator fails, the algorithm must elect that active process with the largest
priority number.

• Two algorithms, the bully algorithm and a ring algorithm, can be used to elect
a new coordinator in case of failures.

– Typeset by FoilTEX – 51

Ring Algorithm

• Applicable to systems organized as a ring (logically or physically).

• Assumes that the links are unidirectional, and that processes send their
messages to their right neighbors.

• Each process maintains an active list, consisting of all the priority numbers of
all active processes in the system when the algorithm ends.

• If process Pi detects a coordinator failure, it creates a new active list that is
initially empty. It then sends a message elect(i) to its right neighbor, and adds
the number i to its active list.

– Typeset by FoilTEX – 52

Ring Algorithm (Cont.)

• If Pi receives a message elect(j) from the process on the left, it must respond
in one of three ways:

1. If this is the first elect message it has seen or sent, Pi creates a new active
list with the numbers i and j. It then sends the message elect(i), followed
by the message elect(j).

2. If i 6= j, then Pi adds j to its active list and forwards the message to its
right neighbor.

3. If i = j, then the active list for Pi now contains the numbers of all the active
processes in the system. Pi can now determine the largest number in the
active list to identify the new coordinator process.

– Typeset by FoilTEX – 53

Protection

• Goals of Protection

• Domain of Protection

• Access Matrix

• Implementation of Access Matrix

• Revocation of Access Rights

• Capability-Based Systems

• Language-Based Protection

– Typeset by FoilTEX – 54

Protection

• Operating system consists of a collection of objects, hardware or software.

• Each object has a unique name and can be accessed through a well-defined
set of operations.

• Protection problem – ensure that each object is accessed correctly and only by
those processes that are allowed to do so.

– Typeset by FoilTEX – 55

Domain Structure

• Access-right = <object-name, rights-set>

Rights-set is a subset of all valid operations that can be performed on the
object.

• Domain = set of access-rights

D1

< O3, {read, write} >
< O1, {read, write} >
< O2, {execute} >

D2

< O2, {write} > < O4, {print} >
< O1, {execute} >
< O3, {read} >

D3

– Typeset by FoilTEX – 56

Access Matrix

• Rows – domains

• Columns – domains + objects

• Each entry – Access rights

Operator names

object →
domain ↓ F1 F2 F3 printer

D1 read read
D2 print
D3 read execute
D4 read read

write write

– Typeset by FoilTEX – 57

Use of Access Matrix

• If a process in Domain Di tries to do “op” on object Oj, then “op” must be
in the access matrix.

• Can be expanded to dynamic protection.

– Operations to add, delete access rights.
– Special access rights:
∗ owner of Oi

∗ copy op from Oi to Oj

∗ control – Di can modify Djs access rights
∗ transfer – switch from domain Di to Dj

– Typeset by FoilTEX – 58

Use of Access Matrix (Cont.)

• Access matrix design separates mechanism from policy.

– Mechanism
∗ Operating system provides Access-matrix + rules.
∗ It ensures that the matrix is only manipulated by authorized agents and

that rules are strictly enforced.
– Policy
∗ User dictates policy.
∗ Who can access what object and in what mode.

– Typeset by FoilTEX – 59

Implementation of Access Matrix

• Each column = Access-control list for one object
Defines who can perform what operation.

Domain 1 = Read,Write
Domain 2 = Read
Domain 3 = Read

...

• Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects.

Object 1 – Read
Object 4 – Read,Write,Execute
Object 5 – Read,Write,Delete,Copy

– Typeset by FoilTEX – 60

Revocation of Access Rights

• Access List – Delete access rights from access list.

– Simple
– Immediate

• Capability List – Scheme required to locate capability in the system before
capability can be revoked.

– Reacquisition
– Back-pointers
– Indirection
– Keys

– Typeset by FoilTEX – 61

Security

• The Security Problem

• Authentication

• Program Threats

• System Threats

• Threat Monitoring

• Encryption

– Typeset by FoilTEX – 62

The Security Problem

• Security must consider external environment of the system, and protect it
from:

– unauthorized access.
– malicious modification or destruction.
– accidental introduction of inconsistency.

• Easier to protect against accidental than malicious misuse.

– Typeset by FoilTEX – 63

Authentication

• User identity most often established through passwords, can be considered a
special case of either keys or capabilities.

• Passwords must be kept secret.

– Frequent change of passwords.
– Use of “non-guessable” passwords.
– Log all invalid access attempts.

– Typeset by FoilTEX – 64

Program Threats

• Trojan Horse

– Code segment that misuses its environment.
– Exploits mechanisms for allowing programs written by users to be executed

by other users.

• Trap Door

– Specific user identifier or password that circumvents normal security
procedures.

– Could be included in a compiler.

– Typeset by FoilTEX – 65

System Threats

• Worms – use spawn mechanism; standalone program.

• Internet worm

– Exploited UNIX networking features (remote access) and bugs in finger and
sendmail programs. (buffer overflows non controllati, dabbenaggine . . .)

– Grappling hook program uploaded main worm program.

• Viruses – fragment of code embedded in a legitimate program.

– Mainly effect microcomputer systems.
– Downloading viral programs from public bulletin boards or exchanging floppy

disks containing an infection.
– Safe computing.

– Typeset by FoilTEX – 66

Un worm famoso di R. Morris, 1988

– Typeset by FoilTEX – 67

Threat Monitoring

• Check for suspicious patterns of activity – i.e., several incorrect password
attempts may signal password guessing.

• Audit log – records the time, user, and type of all accesses to an object; useful
for recovery from a violation and developing better security measures.

• Scan the system periodically for security holes; done when the computer is
relatively unused.

– Typeset by FoilTEX – 68

Threat Monitoring (Cont.)

• Check for:

– Short or easy-to-guess passwords
– Unauthorized set-uid programs
– Unauthorized programs in system directories
– Unexpected long-running processes
– Improper directory protections
– Improper protections on system data files
– Dangerous entries in the program search path (Trojan horse)
– Changes to system programs; monitor checksum values

– Typeset by FoilTEX – 69

Firewalls e Zone Smilitarizzate

– Typeset by FoilTEX – 70

Encryption

• Encrypt clear text into cipher text.

• Properties of good encryption technique:

– Relatively simple for authorized users to encrypt and decrypt data.
– Encryption scheme depends not on the secrecy of the algorithm but on a

parameter of the algorithm called the encryption key.
– Extremely difficult for an intruder to determine the encryption key.

• Data Encryption Standard substitutes characters and rearranges their order
on the basis of an encryption key provided to authorized users via a secure
mechanism. Scheme only as secure as the mechanism.

– Typeset by FoilTEX – 71

Encryption (cont.)

• Public-key encryption based on each user having two keys:

– public key – published key used to encrypt data.
– private key – key known only to individual user used to decrypt data.

• Must be an encryption scheme that can be made public without making it
easy to figure out the decryption scheme.

– Efficient algorithm for testing whether or not a number is prime.
– No efficient algorithm is known for finding the prime factors of a number.

(esiste se P 6= NP)

– Typeset by FoilTEX – 72

Encryption (cont.)

• public key = (e, n)
• private key = (d, n)
• n := pq con p, q primi
• d deve essere preso coprimo con (p− 1)(q − 1)
• e := d−1 in Z(p−1)(q−1)

• E(m) := me mod n
• D(c) := cd mod n
• D ◦ E = id

– Typeset by FoilTEX – 73

