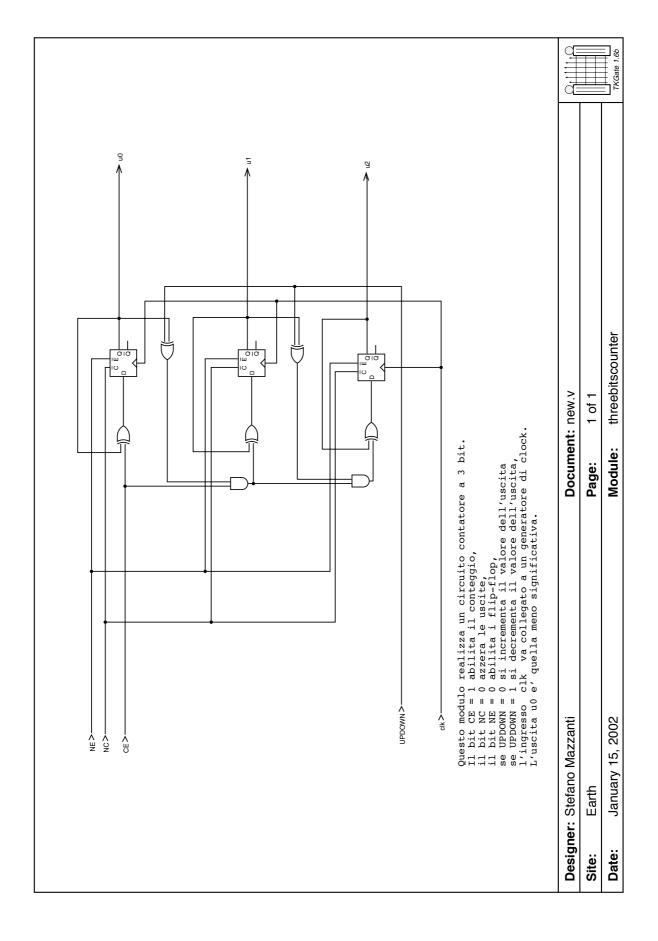
Laboratorio di Architetture degli elaboratori (n. 4, 18-19-21/11/02)


1. Realizzare un registro a 3 bit dotato di tre ingressi I_2 I_1 I_0 , di tre uscite A_2 A_1 A_0 e di 2 bit S_1 S_0 i cui valori selezionano 4 possibili operazioni:

S ₁	S_0	OPERAZIONE
0	0	No change
0	1	Parallel load
1	0	Clear A ₀
1	1	Clear A ₁ and A ₀ .

- 2. Supponendo di rappresentare i numeri interi da 0 a 15 in binario puro, realizzare un circuito a 4 ingressi che determina se l'ingresso rappresenta un numero non divisibile per 3.
- 3. Rifare l'esercizio precedente supponendo che i numeri in ingresso siano compresi tra 0 e 9. Per gli altri valori di ingresso l'uscita non è specificata.
- 4. Realizzare il modulo contatore a 3 bit bidirezionale (up/down) secondo lo schema allegato sul retro.
- 5. Realizzare un secondo modulo contatore che dispone anche di un nuovo ingresso LOAD/COUNT e di tre nuovi ingressi I₂ I₁ I₀. I flip-flop (e quindi le uscite U₂ U₁ U₀) devono assumere rispettivamente i valori di I₂ I₁ I₀ quando LOAD/COUNT = 1, altrimenti (LOAD/COUNT = 0) il circuito deve funzionare come il modulo precedente. Si consiglia di modificare il circuito del punto precedente.
- 6. Utilizzando il modulo del punto precedente, realizzare un contatore bidirezionale a 3 bit dotato di due ingressi S₁ S₀ i cui valori selezionano 4 possibili operazioni:

S ₁	S ₀	OPERAZIONE
0	0	no change
0	1	up count
1	0	down count
1	1	reset.

7. Simulare il circuito e verificare l'effetto di sincronizzazione del clock sulle uscite del registro (cioè verificare che i valori degli ingressi che determinano i valori di uscita siano quelli che si hanno al momento del fronte di salita/discesa del clock).

