
A Minimalist Visual Notation for Design
Patterns and Antipatterns

D. Ballis1, A. Baruzzo1 and M. Comini1

Dipartimento di Matematica e Informatica (DIMI), University of Udine,
Via delle Scienze 206, 33100 Udine, Italy.

Abstract Achieving a quality software system requires UML designers
a good understanding of both design patterns and antipatterns. Unfor-
tunately, UML models for real systems tend to be huge and so hardly
manageable, especially for models automatically generated from source
code. Thus it would be advisable to have tools to automatically identify
particular instances of patterns. For this a formal language to express
them is needed. However, a textual formalization of such a language is
barely usable by UML practitioners.
In this paper we propose a visual notation obtained by adding to UML
as little graphical elements as possible in order to express both patterns
and antipatterns (with the needed formality). As such additions are really
few and intuitive, we believe that this approach has low cognitive load,
thus being both usable by practitioners and still enough rigorous for
implementation.
This notation will be used to add a GUI front-end for a prototypical tool,
that we have recently developed, which is able to discover (anti)patterns
in models.

1 Introduction

Achieving a quality software system requires UML designers a good understand-
ing of both design patterns [9] and antipatterns [5]. Design patterns are, for their
nature, at the boundary of programming languages and design models, suffer-
ing from a lack of formalism. For this reason, their application often remains
empirical and manually performed (which is certainly tedious and error prone).

The knowledge on patterns is potentially very important in the whole soft-
ware life cycle. For example maintaining software involves recognizing places
that can be improved by using better design decisions, like those advocated by
design patterns. Nevertheless, there is a lack of tools automatizing the use of
design patterns to achieve well-designed pieces of software, to identify recurrent
architectural forms, and to maintain software.

In [3] we proposed a rule-based matching algorithm to identify all instances
of a pattern in the graph which underlies the designers’ diagrams. A pattern
is given in a general textual language that can express at the same time pat-
terns and antipatterns. However, a textual specification is barely usable by UML
practitioners. This work indeed was just our first step towards a more ambitious

goal: providing a pattern-matching tool that works with a graphical language
which extends UML adding as little graphical primitives as possible in order to
be usable, yet at the same time retaining the needed precision to be effectively
implementable.

In this paper we propose such a visual notation. As the additional primi-
tives are really few and intuitive, we believe that this approach involves a lean
cognitive load for the UML designer. Moreover, we provide a description of an
algorithm to convert the visual representation of a pattern to an equivalent tex-
tual description in terms of the language proposed in [3]. This description can
eventually be fed to the prototypical tool that we have so far developed.

The paper is structured as follows. In Section 2 we express our motivations
related to the existing literature. In Section 3 we introduce our visual notation
for patterns and antipatterns, providing some examples of use. In Section 4 we
describe an algorithm to translate patterns in our graphical notation to terms
of the textual language for pattern specification. In Section 5 we discuss some
future work directions. Section A contains the graphical representations (with
our notation) of all GOF patterns not presented in the former part of the paper.

2 Motivations and related work

In the area of software pattern recognition there have been lots of proposals.
Without pretending to be exhaustive, we could categorize them as follows.

Precise detection of predefined design patterns (like [16,4]) which provides
tools that aim at reconstructing the presence of some of the most common de-
sign patterns from the code. The patterns which are identified are hard-coded
in the tools. This unfortunately has a quite limited pragmatic applicability,
as plenty of small variations (still provenly solid) of recognizable patterns
are present in real systems, and these tools would not find them. Moreover,
the designer might desire to expressly find his customized “variations over
the theme”.

Precise detection of predefined antipatterns (like [13]) which aims instead
to detect antipatterns. Also in this case only predefined antipatterns can be
detected.

Detection of approximate design patterns tries to encompass the rigidity
of exact pattern detection, with approximate matches. For example [14] de-
fines a sort of approximated graph matching1 with suitable similarity mea-
sures, while [10] represents patterns and models as strings and then performs
string matching. Instead [2,1] defines patterns at the meta-model level and
find matches by solving Constraint Satisfaction Problems.
However, since algorithms cannot distinguish the meaning of user customiza-
tions, the number of presumed instances of patterns can be quite huge (as
tables in [10] show clearly), sensibly reducing the usefulness of the results 2.

1 after having reduced the model to limit the complexity of the algorithm
2 This is probably due to the fact that design pattern are based on a very limited set

of simple structures (typically one or two hierarchy and a bunch of classes connected

2

Design pattern description languages approaches like [11,6,7,8] instead in-
troduce a (graphical) formal language which provides a much higher expres-
sive power. Actually for [11,8] there is no tool support that, starting from the
(description of the) pattern and a target model, finds all instances, as their
focus is just to precisely define the intended semantics of a pattern (which is
indeed typically expressed in a quite informal way in design patterns books
like [9]).
With this approach the designer can easily redefine the descriptions of canon-
ical patterns to specify his customizations, or define new ones from scratch,
or either simply look for arbitrary compositions of other patterns at the same
time.
Nevertheless, we do not believe these formalisms are good candidates as a
graphical language for a pattern-matching tool. Indeed [11] is really difficult
to draw, while [8], even if it is quite easy for whom who already know (and
understand) the UML meta-model, probably is not that usable by most
designers.
The graphical language LePUS of [6,7] is designed on the graphical version
of some basic building blocks that are ubiquitous in object-oriented design.
Coupled with the language there is a tool which identifies pattern instances
in Java/C++ code. Pragmatically, however, what the LePUS notation misses
is the integration with UML which is nowadays a standard de-facto for spec-
ifying object-oriented systems. Moreover, LePUS is not powerful enough to
express descriptions of several relevant properties which are needed for an-
tipatterns 3.

In spite of the defects, we appreciate the spirit of LePUS approach. Anyway,
instead of redefining UML notations, we prefer just to add what is needed to
express a design pattern precisely. Moreover the resulting notation should work
for antipatterns too, as both pattern categories are important aspects of a quality
design.

Actually there are also some other kinds of patterns which do not fall in
neither of these two categories, but which we believe are also relevant for quality
design. One emblematic example is circular dependencies: typically a circular
dependency represents an accidental complexity of a software architecture that
is introduced by inexperienced designers or hasty developments/maintenance.
Sometimes, however, it is due to essential complexity of the application domain
and thus it is not considerable as an antipattern. Following the “code smells”
terminology coined by Kent Beck we will call, in the following, this kind of
patterns smelly patterns.

What we aim to get then is a graphical language which

– is able to express all these three kinds of patterns;

together with some relations such as dependencies or associations). Hence, it is very
likely that these simple structures can be very similar to substructures of real-world
systems which are not instances of patterns.

3 Not to mention that it works on code and not on UML models.

3

1..*

(a) Replication

1..*

AbstractClass

(b) Hierarchy (c) Concatenation

Figure 1. New graphical primitives

– extends UML with as little graphical elements as possible in order to be
usable with a very low cognitive load,

– yet retains the needed precision to model patterns faithfully and,
– last but not least, has a coupled tool that, after getting as input the graphics

of a pattern and a target UML model, provides as output the graphics of
(all) actual instances of the pattern within the target model.

3 A minimalist visual notation for patterns

In this section we present the graphical primitives we add to UML for (visual)
patterns specification. Then we discuss some issues about applicability and prag-
matics in the use of our notation.

3.1 Visual primitives

The underlying idea of patterns is that classes are to be considered as variables
over classes within a target model. So they are meant more to describe a role of
an actual instance. However many times happens that to describe more precisely
a pattern something like a variable representing a whole bunch of classes would
be needed. The same consideration applies for relations.

Our proposal is to extend UML (which most object-oriented designers already
know) with just three new graphical primitives.

Replication (Figure 1(a)) This “cloud” is meant to be used to surround a part
of a pattern which, in an actual instance, could be replicated an arbitrary
number of times according to the specified multiplicity.
This construct cannot be expressed using UML 4, because the language lacks
a primitive to talk about a variable set of classes, related all together with
one or more model elements.

4 at least without resorting to the meta-model, which we do not want to do, as ex-
plained in Section 2.

4

1..*

AbstractClass

Figure 2. Hierarchy is “syntactic sugar”

Hierarchy (Figure 1(b)) This is meant to refer to a whole hierarchy. The num-
ber of possible concrete classes in the hierarchy has to respect the specified
multiplicity. The class at the base of the triangle is a placeholder for any
concrete class in the hierarchy.
We exploit heavily this two primitives for design patterns, as shown by the
following examples.

Concatenation (Figure 1(c)) This is meant to specify that an arbitrary con-
catenation of a certain relation (also according to the specified multiplicity)
is admissible. We exploited this primitive for smelly patterns and antipat-
terns (see the following examples).

Note that actually we could have used just the concatenation and replication
primitives, as the hierarchy can be expressed just by means of the other two,
as illustrated in Figure 2. However, considering that hierarchy is so pervasively
used in (design) patterns and also it is so much intuitive than its “de-sugared”
version, we prefer to keep it in our visual notation.

With this three constructs we believe it is possible to define in a rather
intuitive, yet precise, way all patterns, as shown by the following examples.

Example 1 (Abstract Factory). In Figure 3 we represent the Abstract Factory
pattern using our notation. This description captures the structural constraints
concerning the dependencies between the AbstractFactory and the AbstractProd-
uct hierarchies. The replication primitive (represented with the cloud surround-
ing the AbstractProduct hierarchy) describes the binding between one concrete
factory with one or more concrete products, each one belonging to its specific
AbstractProduct hierarchy.

Example 2 (Interpreter). In Figure 4 we represent the Interpreter pattern using
our notation. This pattern represents another interesting use of the replication
primitive, this time to represent a variable set of relationships between two model
elements. The variable set of composition relationships between the NonTermi-
nalExpression and the AbstractExpression roles is an example of such situation.

5

1..*

AbstractProduct

1..*

1..*

<<create>>

AbstractFactory
<<return>>

Figure 3. Abstract Factory Pattern

Context
+ Interpreter(Context)

AbstractExpression

Client

NonTerminal
Expression

1..*

1..*

0..*

Figure 4. Interpreter Pattern

Example 3 (Bridge). In Figure 5 we represent the Bridge pattern. In this case,
our notation captures all the pattern structural constraints concerning the Ab-
straction and the Implementation hierarchies. If we compare this representation
with the canonical representation provided in the GOF book [9], we lack the
representation for the note associated to the method Operation declared in the
Abstraction class. We discuss in the following how we expect to convey such
non-structural constraints in a precise way (see Section 3.2).

Example 4 (Facade). In Figure 6 we represent the Facade pattern using our
notation. A potential drawback of our representation is the need to express
directly in the pattern’s graphical definition the cardinality of the variable sets
for both the Client and the Subsystem roles. We use the multiplicity to bound
the range of instances to be included in the set. Whereas selecting a value for
the upper bound usually is not an issue, picking a proper value for the lower
bound is critical, as we discuss in the Section 3.2.

6

OperationImp()

Implementation

1..*

1..*

Operation()

Abstraction
1

imp

Figure 5. Bridge Pattern

3..*

5..*

Client Façade

Subsystem

Figure 6. Facade Pattern

Example 5 (Composite Variant). It is straightforward to change/customize a
pattern. For example in Figure 7 we illustrates a variation in the structure of
the Composite pattern which is used in the Incremental Testing Framework
pattern.

Example 6 (Proxy Variant). In Figure 8 we show a well-known variant of the
Proxy pattern [15] in which the designer moved the original aggregation between
Proxy and Real Subject roles to an aggregation between Proxy and Subject roles.

Example 7 (Circular Dependency). In Figure 9 we use our notation to describe
the circular dependency pattern. It illustrates the use of the concatenation prim-
itive, which requires a path of dependencies coming back the same class whose
length is at least 2.

Example 8 (Blob). In Figure 10 we describe the Blob antipattern [5]. As in the
case of the Facade pattern, we should adjust the multiplicities lower bounds. We
have chosen the values in figure as suggested in [5].

3.2 Applicability and expressiveness

In this section we discuss some aspects of pattern specifications that we consider
very important for both applicability and pragmatics considerations.

7

Run()

Component

1..*

Run()

Composite
1..*0..*

1..*

Figure 7. A Variant of Composite Pattern

Request()

Subject

Proxy

RealSubject

0..*

subject

Figure 8. A Variant of Proxy Pattern

At first, as we just extend UML we believe we have a rather rich and scalable
methodology, as we have at least the expressive power of UML.

Our notation exploits the UML concept of multiplicity in both hierarchy
and replication primitives. This sometimes poses the problem of selecting proper
values for lower bounds. In fact, to avoid many false positive it is better to choose
high values, thus reducing the number of matches. At the same time, anyway, we
would need low values in order to avoid any missed match, increasing the recall.
Preserving good levels of both precision and recall is not possible. In practice we
plan to provide a GUI with some kind of sliders so users can customize values
quickly when looking for matches of patterns like Facade and Blob. A much clever
way to cope with this issue could be to introduce variables in multiplicity plus
an OCL constraint relating these variables. For example in the Blob antipattern
we could use n and m instead of the two fixed lower bounds (representing both
the number of attributes and the number of methods in the complex controller
class) and then add a constraint like n+m > 50, closely resembling what stated
in [5].

The canonical forms of many design patterns are often enriched with (textual)
annotations concerning the methods’ implementation, in order to provide infor-
mal semantics about specific constraints that the graphical representation alone
cannot convey. A good example of these constraints are Bridge and Composite

8

2..*

Figure 9. Circular Dependency Smelly Pattern

Blob

Method()
60..*

20..*

Figure 10. Blob Antipattern

patterns (see Examples 3 and 5). In the case of Bridge, our visual notation can-
not specify that the Operation method (polymorphically) calls the OperationImp
method declared in the Implementation class. However, all these informal notes
clearly cannot be used in a tool. Instead of inventing a new primitive to provide
this information, we believe that a better choice should be to add either UML
sequence diagrams or OCL declarations. Sequence diagrams, in particular, can
be precise enough to show the Bridge dynamics and, at the same time, easier to
understand for a UML practitioner (which usually is less comfortable with OCL
expressions).

Another interesting issue to cope with is the specification of run-time type
constraints. For example, in Example 6 the Proxy aggregates a Subject object.
Because Subject is an abstract base class, this is clearly an example of polymor-
phic binding with a derived class. Anyway, also Proxy is derived from Subject, so
we should express the constraint that the Subject role can be covered by any class
in the hierarchy, except Proxy itself. This could be easily handled by adding an
OCL constraint specifying that the type of Proxy->subject has to be different
from Proxy.

4 Automatic translation from visual notation to pattern
language

Hoping to have convinced the reader that the previous visual notation is really
intuitive (making it suited for a low cognitive tool), it remains to face the problem
of employing it in practice to do the matching on the target model. As the visual
notation is meant for persons, it is very high level and thus difficult to implement
directly. Actually we have decided to solve this issue by splitting it into two
phases.

9

1. Design a set of constructs providing basic building blocks for which it is quite
easy to provide an abstract machine which, taken a description of a pattern
and a target model, realizes all possible matches.

2. Then provide an algorithm to convert the visual representation to an equiv-
alent textual description in terms of the language of Point 1

We started to approach Point 1 in [3] and then, while the development of the
corresponding prototypical tool went by, we made some enhancements. In the
following we briefly summarize this work in order to give a formal description
of what follows (for details consult [3]). Then in Section 4.2 we describe the
conversion from the graphics representation to this building blocks.

4.1 A low level language to express patterns

The spirit we had/have in developing this language is to provide a (possibly
wide) set of small building blocks which are

1. small enough to be easily implementable,
2. convey a precise semantics,
3. are altogether expressive enough to cover all possibile uses in a UML design.

In the following, we assume that x, y are (pattern) class variables, a, b class
names variables, and v, w method names variables. With c(P,M) we denote
a class pattern where c is the class name, P is a set of class properties (like
abstract, concrete, static, etc.) and M is a set of methods (of the form
m : s1, . . . , sn → s, where s’s are either basic type names or class names).
Actually in the tool we also consider all typical method properties like visibility,
staticity, stereotypes, parameter passing modalities (in, out, . . .), etc.. Besides,
we have also the set of attributes. For the sake of simplicity we will not clutter
this presentation with all these details.

Formally, a class diagram pattern (or simply pattern) p and sub-pattern sp
are defined by means of the following BNF-like grammar:

p ::= inh(x , y) | dep(x , y) | assoc(x , y) | aggr(x , y) | comp(x , y)
| any(x , y) | star(a, b, sp) | path(a, b, sp) | span(a, sp) | hierarchy(x)
| all2one(a, b, sp) | one2all(a, a, sp) | onto(a, b, sp) | into(a, b, sp)
| iso(a, b, sp) | p⊕ p

sp ::= λv w.p

Observe that class name variables in a pattern might be bound via an abstraction
binder λ. This induces the usual notion of free variables (i.e., those not bound
by λ’s).

Roughly speaking, our pattern language is equipped with constructs to rec-
ognize simple class diagrams relations (such as inheritance, aggregation, etc.), as
well as to perform more complex matches against the target class diagram. The
sense of matching is not just the usual one, i.e., a variable is instantiated with

10

some value, as high order constructs like hierarchy(x) do instantiate x but also
(possibly) return a (sub)diagram with all subclasses of the actual x.

Now we briefly explain the meaning of all constructs (for details consult [3]).
Note that by sp(a, b) we denote the pattern which is obtained from sp = λv w.p
by replacing v with a and w with b in p.

p ⊕ p ⊕ is a binary, associative and commutative operator, which can be em-
ployed to build compound patterns starting from simpler ones. The pattern
p1⊕p2 fails to find a match, whenever either p1 or p2 fail on the target class
diagram. Otherwise the union of the matches computed by the compound
pattern is delivered.

arrow(x , y), arrow ∈ {inh, dep, assoc, aggr, comp} These constructs allow
to define patterns modeling the class diagram relations (i.e., inheritance,
dependency, association, aggregation, composition relations) from a class
pattern x to a class pattern y.

any(x , y) This construct allows to match any class diagram relation from class
pattern x to class pattern y independently of the relation kind.

path(a, b, sp) This construct allows to find a concatenated sequence of matches
of subpattern sp starting from a class identified by a and ending in a class
identified by b.

hierarchy(x) The construct hierarchy selects all the inheritance relations of
a given hierarchy whose root class matches the class pattern x.

span(a, sp) The span operator extracts all the class diagram relations match-
ing the union of the patterns sp(a, z), for any class name z.

star(a, b, sp) The star operator returns the set of all the class diagram rela-
tions matching the subpattern sp(a, b).

all2one(a, b, sp) Let H be a hierarchy whose root class has a name matching
a, and L be the set of all the class names of the target classes of H. Let cn
be a class name matching b. If sp(l, cn) does not fail, for l ∈ L, then the
all2one operator returns the union of all sp(l, cn), l ∈ L, otherwise it fails.

morph(a, b, sp), morph ∈ {onto, into, iso} morph constructs allow to rec-
ognize surjective (onto), injective (into), and bijective (iso) “morphisms”
between the concrete classes of two hierarchies whose root class names match
a and b respectively. Morphisms are represented by the subpattern sp.

Actually, in the current prototype we introduced also the construct

hierarchy(x , sp) that selects all the inheritance relations of a given hierarchy
whose root class matches the class pattern x.

Moreover all high order constructs (like span, star, etc.) have multiplicities to
give fine control over the number of admissible matches. For the sake of simplicity
we won’t clutter the following presentation with all this details, as we believe it
is always clear from the context which are the multiplicity values.

11

4.2 Description of the translation algorithm

The level of granularity of the textual language is certainly suited for implemen-
tation (we indeed have a prototype for it). It can be used to express precisely
which is the structure of admitted instancies. However, it is very fine graned and
it is even too expressive, in the sense that it allows to express constructions that
in practice have little sense.

In order to provide a simpler algorithm to convert the graphical notation to
low level language, we adopted some reasonable assumptions on the structure
of patterns that we consider valid inputs for our tool. These assumptions are
satisfied by any pattern presented here, and for all those described in [9], [5], and
[15] (which we have not included in this paper due to obvious space limitations).
The most relevant is that, whenever in a pattern specified with our notation
there is some relationship between two placeholders belonging in two different
hierarchies, we assume that there should also be a relationship between the
hierarchies roots. This assumption reflects the object-oriented practice of using
public inheritance only in conjunction with polymorphism, preserving the Liskov
Substitution Principle [12]. The same argument in general is applicable for any
hierarchy and its clients.

We assume to have an underlying data structure which:

– is able to enumerate in some way all relationships (in order to define the
algorithm by induction);

– can identify all relationships which incides on a given class;
– can determine which subpattern is under a certain cloud and if a certain

relation is under a cloud.

The algorithm works in two phases. Note that the classes on which rela-
tions incide are translated along the way trivially (for example AbstractExpres-
sion of Figure 4 is converted to AbstractExpression({concrete}, {Interpreter :
Context → void}).

Phase 1 We first start translating the pattern ignoring clouds around subpat-
terns. The translation is done componentwise on the set of all relationships,
including concatenation and hierarchy (which just have a special treatment),
by processing first relations and concatenations between classes, then hi-
erarchies and (within that process) relations between any placeholder and
everything else (i.e., other classes or placeholders). All single translations
are “composed” with ⊕. As ⊕ is commutative and associative, the order in
processing does not matter.
UML relationships between classes Here the translation is almost triv-

ial. For each relation we have the corresponding textual primitive5. The
only special case is for the dependency relation. Whenever in a pattern
we have a dependency with a stereotype like �create� and �return� it

5 Remember that in the actual implementation of the language this primitives have
fields for relation role and multiplicities.

12

is clearly the case that in the target model we need to match only depen-
dency with that stereotype. In this case we translate to dep. Otherwise
we translate to any.

Concatenation between classes If we have the concatenation of a rela-
tion and p(a, b) is the translation of that relation, we translate to path(a,
b, λc d.p(c, d))6.

Clouds on relations If we have a cloud on a relation and p(a, b) is the
translation of that relation, we translate to star(a, b, λc d.p(c, d)).

Hierarchy When we have a hierarchy between a class x and a placeholder
y then
– for all relations to a class z, where the translation of the relations to

z is p(y, z), we translate to all2one(x , z , λy′ z′.p(y′, z′)).
– for all relations to a placeholder z, where the translation of the rela-

tions to z is p(y, z), in case the relation between the root classes of
the two placeholders has
multiplicity 1 we translate to iso(x , z , λy′ z′.p(y′, z′)),
otherwise we translate to onto(x , z , λy′ z′.p(y′, z′)).

– in case we have no relations on y (excluding the hierarchy itself) we
translate to hierarchy(x).

Note that actually the renaming of variable names is irrelevant as the λ
binder introduces local variables. We showed renamed variables for the sake
of clarity.

Phase 2 We consider the parts of the pattern which are under a cloud. For the
sake of clarity let consider a subpattern under the cloud that has a class y in
relation r to another class outside the cloud x. Let call p the translation of
all this part (both the subpattern and r). We than substitute p with span(x ,
λx′ y′.p). The case where r is a concatenation or a “clouded” relation is
analogous. It is just a matter of considering the free variables involved in the
cloud and the related surroundings.

Example 9. We show now the translation of Examples 1 and 2.

Abstract Factory: phase 1 delivers

dep(AbstractFactory({abstract}, ∅),AbstractProduct({abstract}, ∅))⊕
iso(AbstractFactory ,AbstractProduct , λc d.dep(c(∅, ∅), d(∅, ∅)))

and, as iso is under a cloud and there is a dep between AbstractFactory and
AbstractProduct , phase 2 delivers

span(AbstractFactory({abstract}, ∅), λa b.

dep(a({abstract}, ∅), b({abstract}, ∅))⊕
iso(a, b, λc d.dep(c(∅, ∅), d(∅, ∅))))

6 We also store the multiplicity values in the corresponding primitive’s field.

13

Interpreter: the algorithm delivers

assoc(Client({concrete}, ∅),Context({concrete}, ∅))⊕
assoc(Client({concrete}, ∅),AbstractExpr({abstract}, ∅))⊕
dep(AbstractExpr({abstract}, ∅),Context({concrete}, ∅))⊕
all2one(AbstractExpr ,AbstractExpr , λa b.star(a, b, λc d.comp(c, d)))

5 Conclusions and future works

In this paper we proposed a visual notation to express design, smelly and anti
patterns. As it relies on UML plus just three intuitive graphic primitives we
believe that this approach should be fruitfully usable by UML practitioners. We
provided a description of an algorithm to convert the visual representation of a
pattern to an equivalent textual description in terms of the language proposed
in [3]. This promises that eventually we’ll be able to combine this graphical
notation in a intuitive GUI for the prototypical tool that we have developed so
far.

Apart from the implementation of such a combined tool, in the future we
think it would also be interesting to cope with specification and matching of
sequence diagrams, as they are sometimes needed to convey the precise mean-
ing of certain implementation constraints (that in GOF patterns for example
are presented informally). Sequence diagrams can be precise enough to specify
method dynamics and are easy to understand for a UML practitioner. This could
be useful to better tune the matching.

Another possibility is to employ OCL constraints in pattern specification.
This would certainly enhance the expressive power of both class and sequence
pattern diagrams, introducing a flexible way for defining patterns more precisely
and thus reducing the number of false positives. It would however be important
to see if this extra feature would be used by UML practitioners, which usually
are less comfortable with OCL expressions.

References

1. H. Albin-Amiot, P. Cointe, Y.-G. Gueheneuc, and N. Jussien. Instantiating and
detecting design patterns: Putting bits and pieces together. ase, 00:166, 2001.

2. H. Albin-Amiot and Y.-G. Guhneuc. Meta-modeling design patterns: Application
to pattern detection and code synthesis. In Bedir Tekinerdogan, editor, Proceed-
ings of ECOOP Workshop on Automating Object-Oriented Software Development
Methods, 2001.

3. D. Ballis, A. Baruzzo, and M. Comini. A rule-based method to match Software
Patterns against UML Models. In The 8th International Workshop on Rule-Based
Programming, 2007.

4. F. Bergenti and A. Poggi. Improving uml design using automatic design pattern
detection. In Proc. 12th. International Conference on Software Engineering and
Knowledge Engineering (SEKE 2000), pages 336–343, 2000.

14

5. W. J. Brown, R. C. Malveau, H. W. McCormick, III, and T. J. Mowbray. AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis. John Wiley &
Sons, New York, 1998.

6. A. H. Eden. Formal Specification of Object-Oriented Design. In Proc. Int’l Conf.
Multidisciplinary Design in Engineering CSME-MDE 2001, Montreal, Canada,
2001.

7. A. H. Eden. LePUS: A Visual Formalism for Object-Oriented Architectures. In
Proc. 6th World Conf. Integrated Design and Process Technology—IDPT 2002,
Pasadena, CA, USA, 2002.

8. R. B. France and S. Ghosh. A UML-Based Pattern Specification Techniques. IEEE
Transactions On Software Engineering, 30(3):193–206, 2004.

9. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

10. O. Kaczor, Y.-G. Gueheneuc, and S. Hamel. Efficient identification of design pat-
terns with bit-vector algorithm. In CSMR ’06: Proceedings of the Conference on
Software Maintenance and Reengineering, pages 175–184, Washington, DC, USA,
2006. IEEE Computer Society.

11. A. Lauder and S. Kent. Precise visual specification of design patterns. In Eric
Jul, editor, ECOOP, volume 1445 of Lecture Notes in Computer Science, pages
114–134. Springer, 1998.

12. B. Liskov and J. M. Wing. Family values: A behavioral notion of subtyping.
Technical report, Pittsburgh, PA, USA, 1993.

13. N. Moha, Y.-G. Gueheneuc, and P. Leduc. Automatic generation of detection
algorithms for design defects. In ASE ’06: Proceedings of the 21st IEEE Interna-
tional Conference on Automated Software Engineering (ASE’06), pages 297–300,
Washington, DC, USA, 2006. IEEE Computer Society.

14. N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.T. Halkidis. Design pattern
detection using similarity scoring. IEEE Transactions on Software Engineering,
32(11):896–909, 2006.

15. J. M. Vlissides. Pattern Hatching: Design Patterns Applied. Addison-Wesley,
Reading, MA, 1995.

16. M. Vokác. An efficient tool for recovering Design Patterns from C++ Code. Journal
of Object Technology, 5(1):139–157, 2006.

15

A (Precise) Graphical representation of GOF patterns

This appendix contains the graphical representations (with our notation) of all
GOF patterns not included in the former part of the paper as well as some well
known (architectural) anti pattern.

A.1 Missing GOF patterns

Adapter

Request()

Target

0..*

Client
1

Adaptor

SpecificRequest()

Adaptee
1

adaptee

Builder

BuildPart()

Builder

Construct()

Director

1..*

builder

Product

<<create>>

1..*

Chain of Responsibility

HandlerClient

1..*

HandlerRequest()

successor

1

1

16

Command

Client

Execute()

Command

1..*

Invoker
1

Receiver

1..*

<<create>>

0..*

receiver

Command Processor
AbstractCommand

1..*

Do_it(AbsCommand)
Undo_it()

CommandProcessor
1..*

Controller

1

Supplier
1

<<create>>

1..*

Composite

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Component

Composite
1..*

1..*

children

17

Decorator

1..*

Operation()

Component

Decorator
1..*

component

1

Factory Method

FactoryMethod()
Operation()

Creator

1..*

1..*

<<create>>

Product
<<return>>

Flyweight

Operation()

Flyweight

GetFlyweight()

FlyweightFactory

1..*

1..*

Client

flyweights

18

Iterator

First()
Next()
isDone()
CurrentItem()

Iterator

1..*

1..*

<<create>>

CreateIterator()

Aggregate

1

<<return>>

Memento

SetMemento(Memento)
CreateMemento()

State

Originator

GetState()
SetState()

State

Memento

CareTaker
1<<create>>

memento

Observer
Observer

1..*

1..*

subject

Attach(Observer)
Detach(Observer)
Notify()

Subject

1

0..*
observers

Prototype

Clone()

Prototype

1..*

Operation()

Client
1

prototype

19

Proxy

Real Subject

Request()

Subject

1
Proxy

<<create>>

realsubject

Singleton

<<static>> Instance()

<<static>> state

Singleton

State
Context

Request()

1..*

1..*
State

Handle()

1..*1
state

Strategy

AlgorithmInterface()

Strategy

1..*

ContextInterface()

Context
1

strategy

20

Template Method

TemplateMethod()

Abstract Class

1..*

PrimitiveOp()

1..*

Visitor

Visit(ConcreteElement)

Visitor

1..*

1..*

Accept(Visitor)

Element
1

ObjectStructure

0..*

A.2 More anti patterns

Functional Decomposition

m()
1..3

10..*

Poltergeist

a()
0..0

10..*
2..*

21

