
A rule-based method to match Software
Patterns against UML Models

D. Ballisa A. Baruzzoa M. Cominia

a Dipartimento di Matematica e Informatica (DIMI), University of Udine,
Via delle Scienze 206, 33100 Udine, Italy.

Abstract

In a UML model, different aspects of a system are covered by different types of diagrams and this bears the
risk that an overall system specification becomes barely tractable by the designer. When the model grows,
it is likely that the architectural integrity will be compromised by extensions and bug-fixing operations.
Hence, it is important to provide means to help designers to search in big models for particular instances
of some variable schema of UML models (design patterns) they construct. This can help them both to find
potential problems in the architecture design and to ensure that intended architectural choices had not been
broken by mistake. In this paper we propose a rule-based method to find matches of design patterns into
a UML model. The method is general enough to tackle most patterns and antipatterns.

Keywords: Rule-based domain specific language, Pattern Matching, UML Design Patterns, UML formal
specification

1 Introduction

Maintenance is recognized as the most expensive activity of the software develop-
ment process. Numerous techniques and processes have been proposed to ease this
task. One of the most influential proposals are design patterns [8], a collection of
elegant and reusable solutions to recurring design problems. Design patterns have
been quickly adopted by the object-oriented community because they ease design-
ing, understanding, and re-engineering software.

As a complement to “good” solutions, proposed by design patterns, several au-
thors formalized typical design defects (e.g. antipatterns, code smells) that hinder
maintenance by decreasing software quality. The Blob [5] (or God class) and (un-
necessary) circular dependencies are typical examples of such flaws that cause large
object-oriented programs to be expensive to maintain.

However, all these proposals, at the boundary of programming languages and
design models, suffer from a lack of formalism. For this reason, their application
remains empirical and manually performed (which is certainly tedious and error
prone). We believe that this task should be automated or at least, be assisted.
In particular one of the most desirables automation is an a posteriori detection of
design patterns and antipatterns, in order to help designers to focus their attention

Ballis, Baruzzo, and Comini

only to specific components of a big project, which probably they could not easily
spot by themselves.

In this area, there have been lots of proposals. Without pretending to be ex-
haustive, we could categorize them as follows.

Exact (canonicals) pattern detection (like [14,3]) which provides tools that
aim at reconstructing the presence of some of the most common design patterns
from the code. The patterns which are identified are hard-coded in the tools.
This unfortunately has a quite limited pragmatic applicability, as plenty of small
variations (still provenly solid) of recognizable patterns are present in real sys-
tems, and these tools would not find them. Moreover, the designer might desire
to expressly find his customized “variations over the theme”.

Exact antipattern detection (like [10]) aim instead to detect antipatterns. Also
in this case only predefined antipatterns can be detected.

Approximate pattern detection tries to encompass the rigidity of exact pattern
detection, with approximate matches. For example [12] does a sort of approx-
imated graph matching 1 with suitable similarity measures, while [9] represents
patterns and models as strings and then does string matching. Instead [2,1] de-
fines patterns at the meta-model level and find matches by solving Constraint
Satisfaction Problems.

However, since algorithms cannot distinguish the meaning of user customiza-
tions, the number of presumed instancies of patterns can be quite huge (as tables
in [9] show clearly), sensibly reducing the usefulness of the results 2 .

Pattern description languages approaches like [7,6] instead introduce a (graph-
ical) formal language (LePUS) which provides a much higher expressive power.
Indeed LePUS is not an ad hoc collection of loosely related concepts but instead
originates from an insight on a small number of basic building blocks that are
ubiquitous in object-oriented design. One can easily define LePUS descriptions
of common design patterns, such as Proxy, Visitor, and Composite [8]. With this
approach the designer can easily redefine the descriptions of canonical patterns
to look for his customizations, or define new ones from scratch, or either simply
look for arbitrary compositions of other patterns at the same time.

We prefer this approach. However, LePUS is not powerful enough to express
descriptions of several relevant properties, amongst all (for example) circular de-
pendencies and, in general, antipatterns [5], which are essential to identify parts
of a complex model which do not conform to the expected design properties. Fur-
thermore the proposed prototype works only on code and not directly on UML
models.

In this paper we propose a general language that can express at the same time
patterns and antipatterns (which we will call simply patterns), plus a rule-based
matching algorithm to find all instances of a pattern in the graph which under-
lies the designers’ diagrams. Moreover, whenever code is also provided, matching

1 after having reduced the model to limit complexity of the algorithm
2 This is probably due to the fact that design pattern are based on a very limited set of simple structures
(typically one or two hierarchy and a bunch of classes connected together with some relations such as
dependencies or association). Hence, it is very likely that these simple structures can be very similar to
substructures of real-world systems which are not instancies of patterns.

Ballis, Baruzzo, and Comini

information can be (if needed) extracted from the code.
The paper is structured as follows. In Section 2 we present our representation

of class diagrams. In Section 3 we introduce a language that can express either pat-
terns and antipatterns. In Section 4 we provide the semantics of patterns in terms
of suitable sub-graphs of the class diagram graph (i.e., the merge of all class dia-
grams). In Section 5 we describe a matching algorithm obtained from the semantic
description that efficiently finds all instances of a pattern.

2 Class diagrams

Throughout this paper, we formalize the merge of all the class diagrams of an UML
model as a graph-shaped structure over a set C of classes and a set A of relations
(labeled arrows) between classes. We will often call it the class diagram. For a
thorough explanation of UML diagrams see [11,4].

A formal description of our representation of class diagrams is provided below.

2.1 Class diagram representation

Let us consider two infinite sets, namely CNand MN , which respectively represent
the set of class names and the set of method names. Given a set of basic types B
(including int, bool, char, float, double etc.), we denote a method signature by
notation s1, . . . , sn → s, where s1, . . . , sn, s ∈ B∪CN . A method m : s1, . . . , sn → s
consists of a method name m and a method signature s1, . . . , sn → s. For what
concerns our purpose attributes can be considered as a degenerate case of a method
which has no formal parameters. Hence, the set of all the methods (and attributes)
we can build over method names and method signatures is defined as follows:

Methods := {m : s1, . . . , sn → s | n ≥ 0,m ∈MN , s1, . . . , sn, s ∈ B ∪ CN}

Actually in the tool we also consider all typical method properties like visibility,
staticity, stereotypes, parameter passing modalities (in, out, . . .), etc.. Besides,
attributes are handled with a separate set. For the sake of simplicity we will not
clutter this presentation with all these details.

Let CProps be the set of all class properties (like abstract, concrete, static,
etc.) that are applicable to classes. A class is any term of a suitable ground term
algebra of the form c(P,M), where c is a class name, P is a set of class properties,
and M is a set of methods. Therefore, the set of all classes is defined as:

Classes := {c(P,M) | c ∈ CN , P ⊆ CProps,M ⊆ Methods}

Class diagrams relations are modeled by means of labeled arrows between classes
(like inh, aggr, comp, assoc, dep, etc.) possibly annotated (with stereotypes, roles,
etc.). We denote the set of all arrow labels by Kinds, and the set of all annotations
by Annot . Hence, given Arrows := Classes × Classes × Kinds × Annot , a class
diagram is a pair D := (C,A) where C is a finite subset of Classes, and A is a finite
subset of Arrows.

Ballis, Baruzzo, and Comini

Figure 1. An example of class diagram (taken from [13])

Example 2.1 Our representation of the diagram in Figure 1 is the pair DE :=
(CE , AE) with

CE := {NodeVisitor({abstract}, {visit : Link→ void,

visit : File→ void,

visit : Directory→ void}),
CatVisitor({concrete}, {visit : Link→ void,

visit : File→ void,

visit : Directory→ void}),
SuffixPrinterVisitor({concrete}, {. . .}),
Node({abstract}, {accept : NodeVisitor→ void}),
Link({concrete}, {accept : NodeVisitor→ void}),
File({concrete}, {accept : NodeVisitor→ void}),
Directory({concrete}, {accept : NodeVisitor→ void})}

AE := {Node(. . .) dep−−→ NodeVisitor(. . .),

CatVisitor(. . .) inh−−→ NodeVisitor(. . .),

SuffixPrinterVisitor(. . .) inh−−→ NodeVisitor(. . .),

NodeVisitor(. . .)
dep−−→ Link(. . .), NodeVisitor(. . .)

dep−−→ File(. . .),

NodeVisitor(. . .)
dep−−→ Directory(. . .), Link(. . .)

aggr−−−−→
subject

Node(. . .),

Link(. . .) inh−−→ Node(. . .), File(. . .) inh−−→ Node(. . .),

Directory(. . .) inh−−→ Node(. . .), Directory(. . .)
comp−−−−−→

children
Node(. . .)}

Ballis, Baruzzo, and Comini

Note that for the sake of conciseness we did not show all details (like relation
annotations, methods, etc).

3 A language to express software patterns

In this section, we present the syntax and an informal specification of our language
for design pattern detection. In the next section we present its formal semantics.
For a thorough explanation of design patterns see [8].

3.1 Class patterns

Class patterns are basically non-ground terms providing “templates” for the classes
of a class diagram. We define the set of all class patterns CPatterns as the typed
non-ground extension of the ground term algebra used to define the set Classes. A
class pattern is therefore a class that may contain variables. Note that we consider
typed variables, which play the role of placeholders for any unknown part of a class.
We thus assume to have infinite sets of variables for each type (class, class name,
method, method name, set of methods, etc.). We denote t :: τ a term (thus including
a variable) t of type τ . In particular, we denote the set of variables of type CN by
VCN .

3.2 Class diagram patterns

Class diagram patterns formalize general structures to be matched against class
diagrams. In the following, we assume that x, y are variables of type CPatterns,
a, b :: CN , and v, w ∈ VCN . Formally, a class diagram pattern (or simply pattern) p

is defined by means of the following BNF-like grammar:

p ::= inh(x, y) | dep(x, y) | assoc(x, y) | aggr(x, y) | comp(x, y) | any(x, y)
star(a, b, sp) | path(a, b, sp) | span(a, sp) |
hierarchy(x) | all2one(a, b, sp) | one2all(a, b, sp) |
onto(a, b, sp) | into(a, b, sp) | iso(a, b, sp) |
p⊕ p

sp ::= λv w.p

Observe that class name variables in a pattern might be bound via an abstraction
binder λ. By free(p) we denote the set of all free variables of p, according to standard
definitions 3 . For instance, let a′ ∈ VCN , consider the pattern p 4

span(a′, λv w.comp(v(∅, {m}), w(∅, ∅))⊕ aggr(w(∅, ∅), v(∅, {m}))).

Then, p is a legal pattern with respect to the grammar we defined above and
free(p) = {a′ :: CN ,m :: Methods}.

3 In particular, as the only variables that can be bound by λ are of type CN , all variables of other types
are always free.
4 Note that m :: Methods and a, a′, v, w :: CN .

Ballis, Baruzzo, and Comini

We call Pat the set of all class diagram patterns, while Gpat represents the set
of all ground class diagram patterns, i.e., patterns which do not contain any free
variable.

Roughly speaking, our pattern language is equipped with constructs to recognize
simple class diagrams relations (such as inheritance, aggregation, etc.), as well as
to perform more complex matches against the concrete class diagram.

In order to handle constructs like hierarchy(x) (which, as we will explain better
in a while, is intended to detect a inheritance hierarchy rooted at x) we need to
“stretch” the usual meaning of matching. Instead of obtaining a substitution for
the pattern which makes it identical to the matched term, we (possibly) need in
return a subgraph. For example to “match” hierarchy(x) we need to find within
the class diagram the whole hierarchy rooted at x. Thus in our setting, matching a
pattern with respect to a given class diagram corresponds to extracting the set of
all the class diagram relations which represent the matched substructure. In other
words, the execution of a pattern p against a class diagram D returns a subset S

of ℘(Arrows) such that each s ∈ S is a match of p with respect to D. When the
execution returns S = ∅, no match is found and we say that the pattern p fails on D.
Thus in the following we will use expressions like “the match of pattern p extracts
the set of relations R” meaning that we (non-deterministically) found a subgraph
R which is an instance of p.

We will provide the formal semantics of the language in Section 4. In the rest
of this section, we briefly illustrate the intended behavior of our basic constructs by
means of intuitive examples which refer to the class diagram of Figure 1.

By sp(a, b), we denote the pattern which is obtained from sp = λv w.p by re-
placing v with a and w with b in p.
arrow(x, y), arrow ∈ {inh, dep, assoc, aggr, comp} These constructs allow to

define patterns modeling the class diagram relations (i.e., inheritance, depen-
dency, association, aggregation, composition arrows) from a class pattern x to a
class pattern y. For instance, the pattern

comp(a({concrete}, {w}), Node(∅, {w}))

matches, against DE of Example 2.1,

{Directory({concrete}, {accept : NodeVisitor→ void}) comp−−−−−→
children

Node({abstract}, {accept : NodeVisitor→ void})}

after instantiating variable a with Directory and variable w with accept :
NodeVisitor→ void.

any(x, y) This construct allows to match any class diagram relation from class
pattern x to class pattern y independently of the arrow label. For instance,

any(a(∅, ∅), NodeVisitor({abstract}, ∅))

Ballis, Baruzzo, and Comini

matches (against DE of Example 2.1) the three arrows

{{Node(. . .) dep−−→ NodeVisitor(. . .)},

{CatVisitor(. . .) inh−−→ NodeVisitor(. . .)},

{SuffixPrinterVisitor(. . .) inh−−→ NodeVisitor(. . .)}}

when a is respectively replaced by Node, NodeVisitor, and SuffixPrinterVisitor.
path(a, b, sp) This construct allows to find a concatenated sequence of matches of

subpattern sp starting from a class identified by a and ending in a class identified
by b. For instance, the pattern

path(Node, Directory, λa b.dep(a({abstract}, ∅), b({concrete}, ∅)))

matches the unique dependency path from the abstract class Node to the concrete
class Directory, i.e.,

{Node(. . .) dep−−→ NodeVisitor(. . .), NodeVisitor(. . .)
dep−−→ Directory(. . .)}

hierarchy(x) The construct hierarchy selects all the inheritance arrows of a
given hierarchy whose root class matches the class pattern x. For example,

hierarchy(NodeVisitor({abstract}, {w1, w2, w3}))

matches the whole hierarchy (consisting, in this case, of two inheritance arrows)

{CatVisitor(. . .) inh−−→ NodeVisitor(. . .),

SuffixPrinterVisitor(. . .) inh−−→ NodeVisitor(. . .)}

span(a, sp) The span operator extracts all the class diagram relations matching
the union of the patterns sp(a, z), for any z ∈ CN . For example, the pattern

span(NodeVisitor, λa b.dep(a({abstract}, {w1, w2, w3}), b(∅, ∅))

matches

{NodeVisitor(. . .) dep−−→ Link(. . .), NodeVisitor(. . .)
dep−−→ File(. . .),

NodeVisitor(. . .)
dep−−→ Directory(. . .)}

star(a, b, sp) The star operator returns the set of all the class diagram relations
matching the subpattern sp(a, b). The application of this construct never fails,
since —when no match is found— it returns the set containing the empty set.
Consider the pattern

star(File, b, λv w.aggr(v({concrete}, ∅), w(∅, ∅)))

Ballis, Baruzzo, and Comini

as there are no outgoing aggregation arrows from the concrete class File, the
star operator returns {∅}. On the other hand, the pattern

aggr(File({concrete}, ∅), b(∅, ∅))

would fail on the given class diagram.
all2one(a, b, sp) Let H be a hierarchy whose root class has a name matching a,

and L be the set of all the class names of the leaf classes of H. Let cn be a class
name matching b. If sp(l, cn) does not fail, for l ∈ L, then the all2one operator
returns the union of all sp(l, cn), l ∈ L, otherwise it fails. For instance,

all2one(NodeVisitor, NodeVisitor,
λa b.inh(a({abstract}, ∅), b({abstract}, ∅)))

generates all the inheritance arrows corresponding to the hierarchy rooted by the
class NodeVisitor 5 .

one2all(a, b, sp) This construct behaves symmetrically to the all2one operator.
Let H be a hierarchy whose root class has a name matching b, and L be the set
of all the class names of the leaf classes of H. Let cn be a class name matching a.
If sp(cn, l) does not fail, for l ∈ L, then the all2one operator returns the union
of all sp(cn, l), l ∈ L, otherwise it fails.

morph(a, b, sp), morph ∈ {onto, into, iso} morph constructs allow to recog-
nize surjective (onto), injective (into), and bijective (iso) “morphisms” between
the leaf classes of two hierarchies whose root class names match a and b respec-
tively. Morphisms are represented by the subpattern sp. As an example, we might
employ the iso construct in order to find a one-to-one correspondence between
leaf classes of two hierarchies with respect to the dependency arrow kind as re-
quired to specify the Factory Method pattern [8]. In this case, the pattern could
be iso(a, b, λv w.dep(v, w)), where a and b are two class names representing two
root classes in the class diagram.

p ⊕ p ⊕ is a binary, associative and commutative operator, which can be employed
to build compound patterns starting from simpler ones. The pattern p1⊕p2 fails to
find a match, whenever either p1 or p2 fail on the given class diagram. Otherwise
the union of the matches computed by the compound pattern is delivered. For
instance, the pattern aggr(a(∅, ∅), b(∅, ∅))⊕ any(a(∅, ∅), b(∅, ∅)) matches

{Link(. . .) aggr−−−−→
subject

Node(. . .), Link(. . .) inh−−→ Node(. . .)}

while hierarchy(cp1)⊕hierarchy(cp2)⊕dep(cp1 , cp2) searches for hierarchies,
whose root classes match class patterns cp1 and cp1 and that are connected
through a dependency arrow.

5 This is indeed a completely artificial example, but with the model of Figure 1 we cannot show more
natural examples of the all2one constructor.

Ballis, Baruzzo, and Comini

Example 3.1 The Proxy pattern [8] can be represented with our syntax as

aggr(proxy({concrete}, {m}), realsubj({concrete}, {m}))⊕
inh(proxy({concrete}, {m}), subj({abstract}, {m}))⊕
inh(realsubj({concrete}, {m}), subj({abstract}, {m}))

Example 3.2 The Composite pattern can be represented with our syntax as

comp(composite({concrete}, ∅), component({abstract}, ∅))⊕
path(composite, component, λa b.inh(a({concrete}, ∅), b({abstract}, ∅)))⊕
hierarchy(component({abstract}, ∅))

Example 3.3 The Visitor pattern can be represented with our syntax as

dep(element({abstract}, ∅), visitor({abstract}, ∅))⊕
one2all(visitor, element, λa b.dep(a, b({concrete}, ∅)))⊕
hierarchy(element)⊕ hierarchy(visitor)

Example 3.4 The Abstract Factory pattern can be represented as follows:

span(absFact({abstract}, ∅),
λv absProd.iso(v, absProd({abstract}, ∅), λw z.dep(w, z)))

This actually is a fruitful example of usage of nesting of subpatterns, in order to
report just a single instance of Abstract Factory instead of several disjoint instancies
(one for each abstract product) as other methods do.

Example 3.5 The Circular Dependencies antipattern, which is used to detect any
circular path in a class diagram, can be represented with our syntax as

path(a, b, λv w.any(v(∅, ∅), w(∅, ∅))⊕ path(b, a, λv w.any(v(∅, ∅), w(∅, ∅))

4 Rule-based pattern semantics

In this section we provide a rule-based semantics formalizing the behavior of the
language we presented in Section 3. Basically, given a class diagram D, we first
define an evaluation function J·KD : Gpat → ℘(Arrows) such that, for any ground
pattern p (i.e., a pattern without free variables), JpKD returns a set of sets of class
diagram relations. Each set of class diagram relation represents a possible match
of the pattern p against D. Then we lift J·KD : Gpat → ℘(Arrows) to an evaluation
function J·KD : Pat → ℘(Arrows) 6 to manage non-ground patterns.

We formalize the evaluation function J·KD : Gpat → ℘(Arrows) by induction
on the syntax of the language constructs described in Section 3. Note that each
case can be directly translated into (possibly conditional) rules which can be easily
implemented using any functional language (see Section 5).

In order to give the formal definition of the evaluation function, we need the
following auxiliary notions. Let S be a set of sets, then flat(S) :=

⋃
X∈S X. Consider

6 By abuse of notation, the functional symbol J·KD is overloaded to deal with non-ground patterns.

Ballis, Baruzzo, and Comini

a root class x with class name cn of some hierarchy, then lf (cn) is the set of all the
class names of the leaf classes of the hierarchy rooted by x. 7

Definition 4.1 [evaluation function] Let D=(C,A) be a class diagram. Let
arrow ∈ {inh, dep, assoc, aggr, comp}, x, y, a1(P1,M1), a2(P2,M2) ∈ Classes,
a, b ∈ CN , and p, p1, p2 ∈ Gpat .

Jarrow(a1(P1,M1), a2(P2,M2))KD :=

{{e} | e ≡ (a1(P ′,M ′), a2(P ′′,M ′′), arrow, an) ∈ A,

M1 ⊆ M ′, P1 ⊆ P ′,M2 ⊆ M ′′, P2 ⊆ P ′′}
Jany(a1(P1,M1), a2(P2,M2))KD :=

{{e} | e ≡ (a1(P ′,M ′), a2(P ′′,M ′′), arrow, an) ∈ A,

arrow ∈ {inh, dep, assoc, aggr, comp},M1 ⊆ M ′, P1 ⊆ P ′,

M2 ⊆ M ′′, P2 ⊆ P ′′}
Jstar(a, b, sp)KD := {∅ ∪ {flat(Jsp(a, b)KD)}}
Jspan(a, sp)KD := {flat(

⋃
b∈CN

Jsp(a, b)KD)}

Jhierarchy(x)KD := {flat({flat(inh(z, x)) ∪ hierarchy(z) |
z ∈ Classes, inh(z, x) 6= ∅})}

Jall2one(a, b, sp)KD :=

{
{flat(

⋃
z∈CN Jsp(z, b)KD)} if Qa2o(a, b)

∅ otherwise

where Qa2o(a, b) := ∀z ∈ CN , z ∈ lf (a), Jsp(z, b)KD 6= ∅

Jone2all(a, b, sp)KD :=

{
{flat(

⋃
z∈CN Jsp(a, z)KD)} if Qo2a(a, b)

∅ otherwise

where Qo2a(a, b) := ∀z ∈ CN , z ∈ lf (b), Jsp(a, z)KD 6= ∅

Jp1 ⊕ p2KD := {X1 ∪X2 | X1 ∈ Jp1KD, X2 ∈ Jp2KD}

Jpath(a, b, sp)KD := Jsp(a, b)KD ∪

(⋃
z∈CN

Jsp(a, z)KD ⊕ path(z, b, sp)

)

Jonto(a, b, sp)KD :=

{
{flat(

⋃
z1,z2∈CN Jsp(z1, z2)KD)} if Qsurj (a, b)

∅ otherwise

where Qsurj (a, b) := ∀z1 ∈ CN ,∃z2 ∈ CN , z1 ∈ lf (a), z2 ∈ lf (b), Jsp(z1, z2)KD 6= ∅.
The definition for into(a, b, sp) and iso(a, b, sp) is similar to the one presented

for onto(a, b, sp), and can be obtained by simply replacing the predicate Qsurj (a, b)
with a suitable predicate Qinj (a, b) (respectively, Qbiject(a, b)) modeling an injective
(respectively, bijective) morphism.

7 Classes are univocally identified by means of their class name.

Ballis, Baruzzo, and Comini

The function J·KD : Gpat → ℘(Arrows) can be easily extended to manage non-
ground patterns. We simply take the union of the evaluations of all the ground
instances of the considered non-ground pattern.

More formally, given a non-ground pattern p, J·KD : Pat → ℘(Arrows) is defined
as

JpKD :=
⋃

p∈〈p〉

JpKD

where 〈p〉 is the set containing all the ground patterns which are instances of p.

5 Matching method

We have developed a nondeterministic matching method which computes (by need)
the aforementioned ground pattern semantics. A prototype of the algorithm, which
is coded in Curry (as well as in Haskell 8), implements an optimized version of
the evaluation function J·KD : Pat → ℘(Arrows) which shrinks the search space in
several ways.

Roughly speaking, we evaluate a (non necessarily ground) pattern p by induction
on the syntax, while generating instancies for variables only when needed. Moreover
(within the process), whenever we have to match a pattern variable, we apply
the resulting substitution on the whole p (similarly to what happens when using
narrowing in a functional logic setting) to generate more instantiated subpatterns
of p to narrow the search space.

In order to reduce the degree of nondeterminism, the algorithm employes a de-
structive matching mechanism; that is, when a nondeterministic match is found, the
matched substructure is removed from the class diagram representation, and so the
search proceeds on a smaller data structures. This approach preserves the complete-
ness of the matching with respect to the pattern semantics, since any ground arrow
cannot be matched twice by two distinct subpatterns of a given pattern. Moreover,
this avoids the generation of multiple versions of the same solutions.

Let us present in much detail what happens for pattern path(a, b, sp)⊕p, where
sp := λv w.p′. For the operator path we have two rules (which have to be tried
nondeterministically)

Base case We “apply” sp to a and b by matching v and w with a and b. If the
match succeeds then p′, which has been instantiated by the match, is recursively
tried for match. If it succeeds then its result is returned. The “upper level” then
tries p for match and if this succeeds the union of each result is returned.

Inductive case We generate a fresh variable z. Then we proceed as in the base
case but for variables a and z. If we succeed then we recursively try path(z, b, sp)
and if it succeeds then the union of each result is returned. (Then the “upper
level” will go on with p)

For the sake of conciseness we do not present all cases, as all rules of the matching
are derived analogously from the definition of the semantics.

8 We tried both to experiment the differences in the two languages

Ballis, Baruzzo, and Comini

Figure 2. Recognized instance of the Composite pattern

5.1 Examples of matches

Example 5.1 Let us show an example of a simple pattern that can also be discov-
ered by ad hoc tools. Consider the Composite Pattern pcom formalized in Exam-
ple 3.2. The execution of the match of pcom against DE of Example 2.1 is{

{Link(. . .) inh−−→ Node(. . .), File(. . .) inh−−→ Node(. . .),

Directory(. . .) inh−−→ Node(. . .),

Directory(. . .)
comp−−−−−→

children
Node(. . .)}

}
Figure 2 illustrates the (graphical version of the) outcome of the execution.

Example 5.2 Consider the compound pattern pvis formalized in Example 3.3. Fig-
ure 3 illustrates the outcome of the execution of pvis against DE .

Example 5.3 Now let us see what happens with variants of canonical patterns.
The designer which produced the diagram of Figure 1 did not employ a canoni-
cal Proxy pattern [8] to model a proxy architecture in his class diagram; instead,
he changed it by “moving” the original aggregation between “Proxy” and “Real
Subject” classes, to an aggregation between “Proxy” and “Subject” classes.

Our implementation reports indeed no matches of the Proxy pattern formalized
in Example 3.1. But if we change the target pattern, according to the designer’s
variation, in

aggr(proxy({concrete}, ∅), subj({abstract}, ∅))⊕
hierarchy(subj({abstract}, ∅))

our matching algorithm finds instead a solution. The outcome of its execution is
illustrated in Figure 4.

Example 5.4 Let us now see an example with an antipattern which cannot be
expressed with LePUS. Consider the pattern which we formalized in Example 3.5.

By executing such a pattern against DE , we are able to detect all the cycles
appearing in the diagram. Concretely, we recognize all five cycles involving the
classes Node, NodeVisitor, Directory, File and Link.

Ballis, Baruzzo, and Comini

Figure 3. Recognized instance of the Visitor pattern

Figure 4. Recognized instance of the Proxy pattern variant

5.2 Some details about the tool

In our prototype, for the moment, in order to simplify the implementation, the
operator ⊕ is not commutative and subpatterns are matched left to right. This
leads to the necessity to write patterns in the right order.

As told before, actually within the prototype we handle all the details of class
diagrams. See the excerpt from the data structures of the prototype in Figure 5 to
have an idea.

We are currently working on a (quite technical) extension of the tool. As the
information which is contained in class diagrams can be synthesized by inspecting
source code, we are integrating into the matching mechanism the possibility to
extract class information directly from the code. The difficult part of this is just to

Ballis, Baruzzo, and Comini

data Re lat ion = Relat ion RelationKind Stereotype Type Type
data RelationKind = WithoutProp WithoutPropKind

| WithProp AggregationKind RelProp
data Type = Class TyName AbsKind Stat Stereotype Attrs Methods

| I n t e r f a c e UmlName Methods
data TyName = TyName UmlName [TyName]
type Attrs = Set Attr ibute
type Methods = Set Method
data Att r ibute = Attr ibute Vis ib Stereotype UmlName TyName
data Method = Method AbsKind Vis ib Stereotype UmlName Params TyName
newtype Params = Params [Parameter]
data Parameter = Parameter ParameterKind UmlName TyName

Figure 5. An excerpt from the data structures of the prototype

build a parser for the target language, then it is just a matter of visiting the parse
tree.

6 Conclusions and future works

In this paper we proposed a formal language for describing both design patterns
and antipatterns. We provided a small number of basic building blocks, that are
ubiquitous in object-oriented design, plus some language connectives to glue other
blocks as desired, instead of giving an ad hoc collection of loosely related concepts.
With this language one can easily define descriptions of common design patterns,
as well as customized variations or arbitrary compositions of other patterns.

We developed a rule-based matching method that finds all instances of a pattern
in the designers’ diagrams. Moreover, whenever code is also provided matching
information can be (if needed) extracted from the code. The result encompasses
exact ad hoc proposals (like [14,3,10]), approximate ones (like [12,9,2,1]), as well as
more expressive ones like [7,6].

We have implemented a prototype in Curry (and Haskell).
We are now working on several refinements of both our theoretical method and

prototype. We are developing a semantically equivalent graphical version of the
proposed patterns (as the one of [7,6]). This could be the key for the adoption of
our tool in the UML community, as designers could use it without much cognitive
load. Furthermore, the prototype could be seamlessly integrated within a UML
editor.

We are modifying the matching method to have another interesting behavior.
As it can happen that a presumed pattern is no longer found because it has been
broken, we are changing the method to suggest/show which modifications should
be performed in a diagram to fix the pattern.

Another interesting extension that we would like to carry over is relative to
sequence diagrams. Several common patterns are supplied with natural language
notes which specify constraints over methods definitions [8]. We would like to
extend our patterns with sequence-patterns which have to match over UML model’s
sequence diagrams (or suitable methods calls in the code) to be able to fully assure
that we have found a proper pattern instance.

Ballis, Baruzzo, and Comini

References

[1] H. Albin-Amiot, P. Cointe, Y.-G. Gueheneuc, and N. Jussien. Instantiating and detecting design
patterns: Putting bits and pieces together. ase, 00:166, 2001.

[2] H. Albin-Amiot and Y.-G. Guhneuc. Meta-modeling design patterns: Application to pattern detection
and code synthesis. In Bedir Tekinerdogan, editor, Proceedings of ECOOP Workshop on Automating
Object-Oriented Software Development Methods, 2001.

[3] F. Bergenti and A. Poggi. Improving uml design using automatic design pattern detection. In Proc.
12th. International Conference on Software Engineering and Knowledge Engineering (SEKE 2000),
pages 336–343, 2000.

[4] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language User Guide, The (2nd Edition).
Addison-Wesley Professional, 2005.

[5] W. J. Brown, R. C. Malveau, H. W. McCormick, III, and T. J. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. John Wiley & Sons, New York, 1998.

[6] A. H. Eden. Formal Specification of Object-Oriented Design. In Proc. Int’l Conf. Multidisciplinary
Design in Engineering CSME-MDE 2001, Montreal, Canada, 2001.

[7] A. H. Eden. LePUS: A Visual Formalism for Object-Oriented Architectures. In Proc. 6th World Conf.
Integrated Design and Process Technology—IDPT 2002, Pasadena, CA, USA, 2002.

[8] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA, 1995.

[9] O. Kaczor, Y.-G. Gueheneuc, and S. Hamel. Efficient identification of design patterns with bit-vector
algorithm. In CSMR ’06: Proceedings of the Conference on Software Maintenance and Reengineering,
pages 175–184, Washington, DC, USA, 2006. IEEE Computer Society.

[10] N. Moha, Y.-G. Gueheneuc, and P. Leduc. Automatic generation of detection algorithms for design
defects. In ASE ’06: Proceedings of the 21st IEEE International Conference on Automated Software
Engineering (ASE’06), pages 297–300, Washington, DC, USA, 2006. IEEE Computer Society.

[11] Object Management Group. UML 2.0 Superstructure Specification, v2.0. Document – formal/05-07-04
(UML Superstructure Specification, v2.0).

[12] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.T. Halkidis. Design pattern detection using
similarity scoring. IEEE Transactions on Software Engineering, 32(11):896–909, 2006.

[13] J. M. Vlissides. Pattern Hatching: Design Patterns Applied. Addison-Wesley, Reading, MA, 1995.

[14] M. Vokác. An efficient tool for recovering Design Patterns from C++ Code. Journal of Object
Technology, 5(1):139–157, 2006.

	Introduction
	Class diagrams
	Class diagram representation

	A language to express software patterns
	Class patterns
	Class diagram patterns

	Rule-based pattern semantics
	Matching method
	Examples of matches
	Some details about the tool

	Conclusions and future works
	References

