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Preface

What we are about to present is

• a unifying framework for standard and approximate semantics of logic pro-

grams based on abstract interpretation techniques; we will reconstruct some

already existing semantics to prove the applicability of our ideas to some well

known issues,

• abstract diagnosis, which is an application of the framework to program diagno-

sis; we illustrate its usefulness for debugging by using the various reconstructed

semantics.

Motivations

Definite logic programs have a very elegant declarative semantics, i.e., the least Her-

brand model. However, some semantics-based techniques (such as program analysis,

debugging and transformation) require more traditional semantics which are able to

capture computational rather than declarative properties. Several ad-hoc semantics

modeling various abstraction of SLD-trees (observables) have been defined, includ-

ing the ones specifically designed for static program analysis. The first motivation

of this work was to develop a framework to systematically derive the semantics

modeling an observable; to address problems such as the relation between the op-

erational and the denotational semantics and to reason about their properties (e.g.,

compositionality, correctness and precision degree).

One interesting example of semantics-based technique (concerned with model-

theoretic properties) which can take advantage of more concrete semantics is declar-

ative debugging. Our second motivation was that of applying the results of the theo-

retical framework to extend declarative debugging techniques to cope with the analy-

sis of abstract operational properties described by finite domains, such as groundness

dependencies.
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Contributions

The idea of using abstract interpretation techniques as unifying framework for var-

ious semantics is well-known [36]. However the originality of this thesis is that we

fully exploit this idea and provide a real flexible framework which provides useful

theoretical bases for new semantic-based applications.

The first contribution of this thesis is a uniform framework for the reconstruc-

tion of existing semantics and for the systematic design of new semantics able

to deal also with the approximation typical of static program analysis. A

framework where one can define denotations modeling various non-approx-

imate observables (thus inheriting the basic constructions and results) was

given in [53], by defining the observables by means of equivalence relations.

More general semantic frameworks, which can also take into account approx-

imation, can be defined using abstract interpretation. This is the approach

taken in [20], where an observable is an abstraction according to abstract

interpretation theory, and in [58], where abstract interpretation is used to

discuss the relation among different semantics. [57] introduces a framework

for non-standard semantics which are approximations of the computed answer

semantics. Our framework encompasses the limitations of this ones. It deals

with any abstraction of SLD-trees and uniformly accounts also approximation.

Moreover we can systematically choose the appropriate level of abstraction for

specializing the semantics operators of the framework.

The ingredients of our semantic framework are a concrete semantics (modeling

SLD-trees) and an observable (abstraction of SLD-trees). The denotational

semantics and the transition system for SLD-trees are defined in terms of four

semantic operators, directly related to the syntactic structure of language.

This allows us to reason about properties of the SLD-trees via an algebraic

construction which gives new insights in the clarification of the proof space.

Using abstract interpretation techniques to model abstraction allows us to

state algebraic conditions on several classes of observables w.r.t. the four basic

semantic operators. These conditions guarantee the validity of several general

theorems, once the correctness of the abstraction has been proven. Depending

on the class, we automatically obtain a new denotational semantics, transition

system, top-down and bottom-up denotations, together with several interest-

ing theorems (equivalence, compositionality w.r.t. the various syntactic op-

erators, correctness and minimality of the denotations and precision degree).

Our taxonomy of observables is useful to design a new semantics with some a

priori given properties. One needs only to define an observable and check if it
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belongs to the right class, since the axioms for a class are sufficient conditions

for the derived semantics to have the required properties.

The second contribution of this thesis is abstract diagnosis, which is an appli-

cation of the framework to declarative debugging. Declarative debugging is

concerned with model-theoretic properties. The related declarative semantics

is the least Herbrand model in [91], the set of program completion models in

[74] and the set of atomic logical consequences in [48]. The idea behind declar-

ative debugging is to collect information about what the program is intended

to do and compare this with what it actually does. By using these symptoms,

a diagnoser can find errors.

The aim of abstract diagnosis is to extend declarative debugging to the case

where the intended behavior (specification) of the diagnosed program is finite

and define a program property rather than its semantics. The resulting tech-

nique shows that our approach is useful to define new elegant and powerful

semantic-based techniques for programming tools. We propose some diagnosis

techniques which would be of practical interest.

Partial diagnosis can be used whenever we have a (finite) partial knowl-

edge about the intended behavior. This knowledge can be derived from

symptom detection and symptom-directed queries to the user, as in the

symptom-directed debuggers.

Diagnosis w.r.t. approximate observables is instead useful when one per-

forms the diagnosis w.r.t. properties which can be modeled by abstrac-

tions over finite (Noetherian) domains. Finite specifications lead to the

systematic derivation of the diagnosis algorithms from the underlying

theory with no need for symptom detection.

Modular diagnosis shows that the diagnosis method does not need to be

extended to perform the diagnosis in a modular way. We can verify

and debug incomplete programs, once we have the specifications for the

missing program components.

The theoretical results on partial correctness, completeness and bug derivation

are valid for the diagnosis algorithms too. We show a prototype implementa-

tion of the algorithms by means of Prolog meta-programs.

Joint Work

Much of the content of this thesis has already been published. This dissertation is

the compilation and adaptation of three major papers (which are about to appear
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in journals) and several minor papers (which already appeared in international con-

ference proceedings). Part I is based on previous work which I done together with

G. Levi and M. C. Meo. Part II is based on previous work which I done together

with G. Levi, M. C. Meo and G. Vitiello.

This work has evolved over a relatively long period of time. The framework

originates from summer 1993 (by the ideas of my Master’s Thesis) but has been

revised and enriched a number of times. The work of abstract diagnosis dates back

to autumn 1994, inspired by the framework results, and has evolved together with

it. They both were subject to several revisions, the most recent as late as december

1997.

Organization

The thesis is divided into four parts. The first of these is introductory in nature. It

consists in two chapters which provide goals and motivation for the work and prelim-

inary material common to the following parts. The last part of the thesis contains a

discussion about the results, conclusions and directions for future research. To help

the reader we also introduced at the end an index of the notions and the symbols

introduced in the thesis.

Each of the two intermediate parts is divided in two chapters. Each chapter

begins with an introductory section intended to familiarize the reader with the area

and to introduce specific conventions and terminology. Most of this material is not

original work although much of it has been reformulated and adapted to harmonize

with the rest of the text. Each chapter ends with a section discussing the problems

addressed in the chapter, the impact of the work and its relations to previous work.

We structured the text in such a way that both intermediate parts can be read

independently of each other.

As already pointed out, the thesis is based on several papers with different no-

tation and terminology. In compiling them we have tried to make the notation and

terminology as coherent as possible. We have tried to the best of our ability to lift

out material which is common to the parts and to place that material in Chapter 1.

This chapter provides then the basic mathematical notation and the basic notions

on semantics of logic programs and abstract interpretation.

Some examples of semantics are provided. It is not our goal to define new seman-

tics, but mainly to reconstruct some already existing ones to prove the applicability

of our ideas. However, is some cases this moves away from a mainly academic exer-

cise, by introducing interesting theoretical problems. Technical proofs that do not

contribute to the main results of the thesis are grouped into technical sections and

are sometimes only outlined.



Introduction

A semantics for a programming language provides meanings for programs or, more

generally, program components. The first objective of a semantics is to help under-

stand the meaning of programs. However this is not the only one. Some successful

applications are the semantics-based techniques (such as program analysis, debug-

ging and transformation) which have been used to develop useful programming tools.

One relevant example is the class of tools for debugging of logic programs.

Definite logic programs have a very elegant declarative semantics. The elegance

of the classical approach to its semantics has long been considered one of the most

appealing features of logic programming as well as the reason for its popularity.

The classical semantics is a mathematical object which is defined in model-theoretic

terms and which can be computed by a top-down construction (the success set)

and by a bottom-up construction (the least fixpoint of the immediate consequence

operator). However this approach to the semantics of logic languages has some

limitations. One relevant missing feature is compositionality.

Lack of compositionality of conventional logic programming semantics has been

a serious limitation, since by their very nature, logic program fragments are written

to be used in an extensible, modular fashion. Moreover, even if the simplicity of the

classical semantics of logic programming support different programming techniques,

most of the existing semantics-based techniques require more concrete semantics

which are able to capture computational rather than declarative properties. The

difference between all these semantics is related to the property of the computation

(observable) the semantics is intended to model. Some observables model declara-

tive properties but many useful ones model operational properties. Since programs

compute substitutions, reasoning about program behavior in terms of success sets

(or equivalently in terms of Herbrand models) is inadequate.

This discussion should have convinced the reader that, even if the classical ap-

proach is appealing, it is not adequate to provide the semantic tools needed to

develop real software which is based on the logic programming paradigm. What we

need is a framework for defining semantics adequate to model any abstraction of

SLD-trees (precise or approximated) and to reason about its properties. In partic-
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ular, this framework should allow us to address problems such as

• the relation between the operational semantics and the denotational semantics

• the existence of a goal-independent denotation for a set of definite clauses

• the properties of the denotations (e.g., compositionality, correctness and min-

imality).

This is exactly the motivation of the work presented in this thesis. In addition, one

of the main benefits of such a construction is to provide solid theoretical bases to

support the development of new semantics-based techniques for programming tools

or to extend some existing ones.

We will construct such a framework starting from a semantics modeling SLD-

trees and then applying abstract interpretation techniques to define and classify ob-

servables. We will then use this framework to extend declarative debugging to cope

with the analysis of operational properties, such as computed and correct answers,

and of abstract properties, such as depth(k) answers and groundness dependencies.

The resulting technique (abstract diagnosis) shows that our approach is useful to

define new elegant and powerful semantic-based techniques for programming tools.

The next sections introduce some terminology and deeper discussions concerning

all these topics. Section I.4 describes our approach and Section I.5 give a brief

account of the contents of the thesis.

I.1 Computation Properties and Semantics

Semantics can help to develop practical tools such as those which perform program

analysis, program debugging and program transformation. For this purpose we seek

notions of models which really capture the operational properties of logic programs

and are, therefore, useful to define program equivalences and for semantics-based

analysis.

A program can have different semantics depending on which properties of the

computation (observables) we are interested in. A given choice of the observable

α induces an observational equivalence on programs. Namely P1 ≈� P2 if and

only if P1 and P2 are observationally indistinguishable according to α, or, in other

terms, they have the same behavior w.r.t. the property which we are interested

in. In pure logic programs we can be interested in different observables: if we

are only concerned with the input-output behavior of programs, we should just

observe computed answers and finite failures. However, there are tasks, such as

program analysis and optimization, which force us to observe and take into account

other features of the derivation. In principle one could be interested in the complete
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information about the SLD-tree, namely the sequences of goals, most general unifiers

and variants of clauses.

Defining an equivalence on programs ≈� and a formal semantics S�JPK are two

strongly related tasks. If the semantics enjoys the property P1 ≈� P2 ⇐⇒ S�JP1K =

S�JP2K, then it identifies all and only the programs which are observationally indis-

tinguishable w.r.t. α. Such an abstract model can be considered to be the semantics

of a language w.r.t. a given observable: all the other semantics can be reduced to it

by abstracting from the redundant information. Moreover this property is impor-

tant, for instance, for deciding correctness of program transformation techniques.

For example if s denotes successful derivations, P1 ≈s P2 if and only if, for any

goal G, G is refutable in P1 if and only if G is refutable in P2. This observable is

adequate to characterize a theorem prover, yet it is definitely too abstract to cap-

ture the essence of logic programming, i.e., the ability to compute answers. The

observable is the property which allows us to distinguish programs and is also the

property we want to preserve in equivalence preserving transformations. Hence the

most adequate observable in the case of logic programming is computed answer sub-

stitutions (denoted by ca), which are exactly the result of logic programs execution.

P1 ≈ca P2 if and only if, for any goal G, G has the same computed answers in P1
and in P2.

As first shown in [45], the van Emden and Kowalski semantics is not correct

w.r.t. the observational equivalence based on computed answer substitutions. Hence,

when we have to analyze or transform programs, this semantics cannot be taken as

reference semantics.

In addition to the problem related to modeling the computed answer substi-

tution equivalences, there exists another problem with the least Herbrand model

semantics. Namely a very important property, i.e., compositionality does not hold.

Compositionality is considered one of the most desirable characteristics of a formal

semantics, since it provides a foundation for program verification and modular de-

sign. Compositionality, also known as functoriality, has to do with a (syntactic)

program construction operator ◦, and holds when the semantics of the compound

construct C1 ◦C2 can be computed by composing the semantics of the constituents

C1 and C2, i.e., if for a suitable homomorphism σ, S�JP1 ◦P2K = S�JP1Kσ(◦)S�JP2K.
Note that the typical operations that characterize a modular language are oper-

ations on the parts which compose the program rather than on the program itself.

Separate compilation or analysis are examples of these operations. For instance we

might want to apply certain optimizing transformations on a module, or to reason

about the data flow within it, independently of the context that module belongs to.

In the case of logic programs, the construct which raises a compositionality problem

is the union of clauses (OR-compositionality). As we will see, the least Herbrand
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model semantics of logic programs is not compositional w.r.t. the union. In fact the

least Herbrand model of the union of two programs can not be determined by the

least Herbrand model of the two programs.

I.2 Abstract Interpretation and Program Analy-

sis

Abstract interpretation [32, 34], a technique for constructing verified analyses of

program execution behavior, has been extensively applied to logic programming

[65, 78, 57]. The relevant feature of abstract interpretation is that, once the prop-

erty relevant for the analysis has been modeled by an abstract domain, we have a

methodology to systematically derive an abstract semantics, which in turn allows

us to effectively compute a (correct) approximation of the property. By using this

approach, most of the theorem-proving, in the logical theory involved in program

verification, boils down to computing on the abstract domain. This is obtained in

general at the expense of precision.

A program analysis is viewed as a non-standard, abstract semantics defined over

a domain of data description. An abstract semantics is constructed by replacing

operations in a suitable concrete semantics with the corresponding abstract oper-

ations defined on data descriptions, namely, abstract domains. Such domains are

called abstract because they abstract, from the concrete computation domain, the

properties of interest.

The definition of an appropriate concrete semantics, capable of modeling those

program properties of interest, is a key point in abstract interpretation [32] and

semantic-based data-flow analysis. Program analyses are then defined by providing

finitely computable abstract interpretations which preserve interesting aspects of

program behavior. Formal justification of program analyses is reduced to proving

conditions on the relation between data and data descriptions and on the elementary

operations defined on the data description.

In program analysis, abstract interpretation theory is often used to establish

the correctness of specific analysis algorithms and abstract domains. We are more

concerned instead in its application to the systematic derivation of the (optimal)

abstract semantics from the abstract domain. Recent results on domain refinement

operators (see, for example, [50, 62, 89]) show that (optimal) abstract domains can

systematically be derived from the property to be proved.

Abstract interpretation is inherently semantic sensitive and different semantic

definition styles lead to different approaches to program analysis. In the case of

logic programs, two main approaches exist, namely, the top-down and the bottom-
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up approaches. The most popular approach is the top-down, which propagates the

information as SLD-resolution does. In this class there are ad hoc algorithms, frame-

works based on an operational semantics and frameworks based on a denotational

semantics. The bottom-up approach propagates the information as in the compu-

tation of the least fixpoint of the immediate consequence operator TP. The main

difference between the top-down and the bottom-up approach is usually related to

goal dependency. In particular, a top-down analysis starts with a specific goal, while

the bottom-up approach determines an approximation of properties of programs

which is goal independent. Note, however, that goal-independent (concrete and

abstract) semantics can also be defined in a top-down way.

I.3 Program Debugging

The time and effort spent on validation of computer programs is known to take

well over half of the total time for software development. Debugging, an essential

ingredient in the testing stage of development, may also arise after the installation

of the software and throughout its lifetime. Development of powerful programming

languages, by easing the task of programming and resulting in higher level of com-

plexity, can at the same time make debugging more tedious and difficult. Thus the

emergence of automatic tools for debugging closely follows the development of new

programming paradigms and languages.

Debugging of logic programs is a special case of the general problem of debugging.

The role of debugging in general is to identify and eliminate differences between the

intended semantics of a program and its actual semantics. We will assume that the

user has a clear idea about the results that should be computed by the program.

An error occurs when the program computes something that the programmer did

not intend, or when it fails to compute something he wanted.

An advantage of logic programming languages is that they facilitate declarative

programming. They make it possible, at least to a certain extent, to separate the

declarative, logical semantics (what is computed) from the operational semantics

(how it is computed). In principle, all the reasoning concerning the correctness of a

program can be done on the level of the declarative semantics, thus abstracting from

any details of the computation. This advantage is however lost when debugging

has to be done on the level of the concrete computations. This happens in the

case of usual debugging tools which are various versions of tracers. They force the

programmer to think in terms of the sequences of computation steps. Thus it is

important to develop debugging methods based on more abstract semantics which

take into account abstract properties of the computation.
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The debugging problem can formally be defined as follows. Let P be a program,

S�JPK be the behavior of P w.r.t. the observable property α, and I� be the spec-

ification of the intended behavior of P w.r.t. α. Debugging consists in comparing

S�JPK and I� and determining the wrong program components which are sources

of errors, when S�JPK 6= I�. The formulation is parametric w.r.t. the property α

considered in the specification I� and in the actual behavior S�JPK.
Declarative debugging [91, 74, 48] is concerned with model-theoretic properties.

The specification is the intended declarative semantics (the least Herbrand model in

[91] and the set of atomic logical consequences in [48]). The idea behind declarative

error diagnosis is to collect information about what the program is intended to do

and compare this with what it actually does. By reasoning from this, a diagnoser can

find errors. The information needed can be found by asking for example the user, a

formal specification, or an older (correct) version of the program. The entities that

provide the diagnoser with information are with a common term referred to as the

oracle.

The declarative debugging method consists in two main techniques: incorrect-

ness error diagnosis and insufficiency error diagnosis. Incorrectness symptoms are

answers which are in the actual program semantics and are not in the intended

semantics. The principal idea to find incorrectness errors is to inspect the proof

tree constructed for an incorrectness symptom. To find the erroneous clause the

diagnoser traverses the proof tree. At each node it asks the oracle about the validity

of the corresponding atom. With the aid of the answers the diagnoser is able to

identify the erroneous clause.

Insufficiency symptoms are answers which are in the intended semantics and are

not in the actual program semantics. Hence insufficiency error diagnosis concerns

the case when a program fails to compute some expected results. The objective for

insufficiency diagnosis is to scrutinize the attempt to construct a proof for an atom

which incorrectly fails. The reason for the error is located to one of the procedures

(all clauses defining a predicate) in the computation.

The idea in declarative debugging to restrict attention to model-theoretic prop-

erties has some limitations.

• The most natural observable for the diagnosis of positive logic programs is

computed answers. It leads to a more precise diagnosis technique than the

declarative debugging in [91, 48], which can be reconstructed in terms of the

more abstract observables ground instances of computed answers and correct

answers.

• Debugging w.r.t. depth(k)-answers or groundness dependencies makes diagno-

sis effective, since both I� and S�JPK are finite.
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• Debugging w.r.t. types allows us to detect bugs as the inadmissible calls in [85].

If I� specifies the intended program behavior w.r.t. types, abstract diagnosis

boils down to type checking.

• Debugging w.r.t. modes and ground dependencies allows us to verify other

partial program properties.

Thus, declarative debugging is not adequate to most real-life debugging problems

and we need to extend it to cope with the analysis of operational properties and of

abstract properties.

I.4 The Thesis Approach

This work is greatly influenced by the s-semantics approach [13] to the semantics

of logic programs which has the ambition to model the operational behavior of a

variety of logic languages. Here we will focus on pure logic programs. The aim of

our approach is to model a given observable behavior (possibly in a compositional

way) for pure logic languages. So we will have to consider any possible abstraction

of SLD-trees. In the conclusions we will suggest some possible ways to move to

other real-life logic languages.

The s-semantics approach is based on the idea of using denotations consisting

of (equivalence classes of) syntactic objects. Because of the use of more syntax

(like variables) in the semantic domains, they are more expressive than Herbrand

interpretations. The idea is to provide a semantics of a program which enjoys

several properties, for example the ability of the semantics to capture the observable

behavior, so that two programs have the same denotation if and only if they are

observationally equivalent (w.r.t. any goal G).

Semantic definitions can be different in style, as in the case of the top-down SLD-

resolution operational semantics and the bottom-up fixpoint denotational semantics.

They can be different because of some of their properties. For example, SLD-

resolution is goal-dependent since it allows to compute a denotation for a given goal.

The fixpoint semantics is instead goal-independent, since it provides a denotation

for a set of procedure declarations.

Some important properties of a semantics can be described as compositionality

properties. One example is OR-compositionality, which tells us that the denotation

of a set of clauses can be obtained by composing the denotations of the clauses

themselves. Most of the existing goal-independent semantics, such as standard fix-

point semantics, are not OR-compositional. However, the most relevant difference

is related to the observable the semantics is intended to model. Some observables
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model declarative properties: an example is correct answer substitutions. However,

most useful observables model operational properties: examples are resultants, proof

trees, finite failures, computed answer substitutions, partial answers, call patterns,

types and groundness dependencies.

In this thesis we push forward the s-semantics approach, by constructing a con-

crete semantics modeling SLD-trees and by combining it with the use of abstract

interpretation techniques to model and classify SLD-tree abstractions (observables).

This allow us to model, within the same framework, both the approximation which is

involved in the abstractions used for program analysis and usual (precise) semantics.

Using abstract interpretation techniques allows us to state algebraic conditions on

the observables which guarantee the validity of several compositionality and equiva-

lence theorems. This led to a flexible classification of the observables, where we can

reason about properties such as OR-compositionality, existence of abstract transi-

tion system and precision degree. Actually, depending on the class, we automatically

obtain

• a new denotational semantics,

• a transition system,

• top-down and bottom-up denotations,

together with several interesting theorems

• equivalence of operational and denotational semantics,

• compositionality w.r.t. the various syntactic operators,

• correctness and minimality of the denotations,

• precision degree.

The reconstruction of an existing semantics or the construction of a new semantics

in the framework requires just a few very simple steps.

1. The formalization of the property we want to model as a Galois insertion

〈α, γ〉 between SLD-derivations and the property domain.

2. The verification of some algebraic properties relating 〈α, γ〉 and the basic

semantic operators on SLD-derivations, to assign the property to the right

class of observables.

3. Depending on the class, we automatically obtain the new denotational seman-

tics, transition system, top-down and bottom-up denotations, together with

several interesting theorems (equivalence, compositionality w.r.t. the various

syntactic operators, correctness and minimality of the denotations).
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We argue that the taxonomy is useful to design a new semantics with some a

priori given properties. One need only to define an observable and check if it be-

longs to the right class, since the axioms for a class are sufficient conditions for the

derived semantics to have the required properties. Furthermore, if the observable

does not belong to the right class, by focusing on the axioms which are not satis-

fied, the “observable designer” can find useful suggestions on how to transform an

unsatisfactory abstraction into a good observable, by using standard abstract inter-

pretation techniques for the systematic construction of “more concrete” observables

(e.g., reduced product, disjunctive completion, functional dependencies and Heyting

completion).

The first class we consider is the one of perfect observables. We prove that perfect

observables are precise and have all the properties of the concrete semantics.

For the class of denotational observables, we can obtain the optimal abstract

semantics only in a denotational way, by taking the optimal abstract version of the

semantic operator defining the denotation of the clauses. The abstract operational

semantics is less precise. We prove that denotational observables have a precise

abstract denotational semantics and that the abstract (goal-independent) denotation

is correct, minimal and AND-compositional. Therefore, by moving from perfect to

denotational observables, we lose the precision of the abstract transition system and

OR-compositionality.

The third class of observables we study is the class of semi-denotational observ-

ables, intended to model some of the properties useful for static program analysis,

where we give up precision to achieve termination in the construction of the abstract

semantics. The semantics construction of semi-denotational observables is the same

of denotational observables. We just lose the precision of the abstract denotational

semantics (which is in any case more precise than the operational one). The deno-

tation is the minimal AND-compositional denotation correct w.r.t. the observable.

The last class of observables we study is the class of semi-perfect observables

which have all the properties of perfect observables apart from precision. In partic-

ular, they have equivalent operational and denotational semantics and their goal-in-

dependent denotations are both AND-compositional and OR-compositional. Let us

just note that semi-perfect observables are essentially the observables which model

top-down abstract interpretation frameworks (for example, [15, 69]).

As argued before, the aim of this semantics framework is to provide solid the-

oretical bases to support the development of new semantics-based techniques for

programming tools or to extend some existing ones. To show our ideas at work,

we considered declarative debugging. By applying our theoretical results, we showed

how declarative debugging techniques can be extended to cope with the analysis

of operational properties, such as computed and correct answers, and of abstract
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properties, such as depth(k) answers and groundness dependencies. The resulting

technique (abstract diagnosis) leads to elegant and powerful bottom-up and top-

down diagnosis methods, which enjoy several interesting features when compared to

the existing methods [91, 92, 48, 74].

• It is not required to determine the symptoms in advance.

• It allows us to obtain a more accurate diagnosis than the one that can be

obtained using the least Herbrand model or the logical atomic consequence

semantics.

• It is effective in the case of abstract properties described by finite (Noetherian)

domains. The goal-independency property is essential to make the diagnosis

finite.

In order for abstract diagnosis to be self-contained, we specialize the framework

to practical application cases where we are only concerned with properties which

are abstraction of the computed answer semantics and we are interested in equiv-

alent top-down and bottom-up semantics. The denotational concrete semantics is

essentially the s-semantics and the operational concrete semantics is obtained by

further abstraction of SLD-trees (both given for an equational version of positive

logic programs).

Only two classes of observables can arise (complete and approximate), depending

on the precision degree. They enjoy several interesting semantic properties:

• there exists a goal-independent abstract top-down denotation (defined by means

of a transition system), which is AND-compositional.

• there exists an abstract bottom-up denotation (defined by means of a denota-

tional semantic definition), which is equivalent to the top-down one.

• the abstract transition system and the abstract denotational definition are

systematically derived from the collecting semantics.

The difference between complete and approximate observables is related to precision.

Namely, the abstract semantics coincides with the abstraction of the collecting se-

mantics, in the case of complete observables, while it is just a correct approximation

in the case of approximate observables.

Declarative debugging is based on the preliminary detection of symptoms, which

are deviations from the expected behavior, which have to be determined by using

other techniques, e.g., testing techniques. Our formalization of abstract diagnosis

does not require to determine symptoms in advance. The systematic derivation of
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all the errors in the program is possible because the semantics we use exhibit sev-

eral useful properties (such as existence of a goal-independent top-down denotation

equivalent to the fixpoint semantics, AND-compositionality, etc). The same proper-

ties allow us to relate naturally bottom-up and top-down diagnosis algorithms. Our

diagnosis method is based on incorrect clauses and uncovered elements, which are

detected by means of very simple bottom-up or top-down algorithms, without ac-

tually computing the abstract semantics (i.e., no fixpoint computation is required).

In particular, we propose some diagnosis techniques which would be of practical

interest.

Partial diagnosis can be used whenever we have a (finite) partial knowledge about

the intended behavior. This knowledge can be derived from symptom detec-

tion (performed using testing techniques) and symptom-directed queries to the

user, as in the symptom-directed debuggers. One might think of other partial

knowledge acquisition techniques.

Diagnosis w.r.t. approximate observables is instead useful when one wants to

perform the diagnosis w.r.t. properties which can be modeled by abstractions

over Noetherian domains. This is interesting because several useful proper-

ties are modeled by approximate observables or by observables which can be

systematically refined to approximate observables. Finite specifications lead

to the systematic derivation of the diagnosis algorithms from the underlying

theory with no need for symptom detection.

Modular diagnosis shows that the diagnosis method does not need to be extended

to perform the diagnosis in a modular way. This is due to the fact that both

the top-down and the bottom-up diagnosis algorithms are essentially based

on the application of the “abstract immediate consequence operator” which is

intrinsically compositional. This property shows that we can verify and debug

incomplete programs, once we have the specifications for the missing program

components.

I.5 Thesis Overview

In short, the thesis is organized as follows. Notations and basic concepts of logic

programming (syntax and semantics) are introduced in Chapter 1. After having

shown the classical results, we give also an introduction to abstract interpretation.

In Chapter 2 we define a semantic framework to reason about compositional prop-

erties of SLD-trees and their abstractions. We obtain a kind of ‘collecting’ semantics,

which gives the maximum amount of information on computations and allows us to
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observe all the internal details of SLD-trees. Moreover, we address problems such

as relation between the operational semantics and the denotational semantics, the

existence of a denotation for a set of definite clauses and their properties (com-

positionality w.r.t. various syntactic operators, correctness and minimality). The

denotational semantics and the transition system for SLD-trees are defined in terms

of four semantic operators, directly related to the syntactic structure of language.

The proofs of all main theorems heavily rely on some basic results, which express

properties of the concrete primitive semantic operators.

In Chapter 3 we define the semantic framework together with a flexible clas-

sification of the observables, where we can reason about properties such as OR-

compositionality and existence of an abstract transition system. The observables

are formalized by using Galois insertions between the domain of the SLD-trees and

abstract domains. Using abstract interpretation techniques to model abstraction

allows us to state very simple conditions on several classes of observables which

guarantee the validity of several general theorems, once the correctness of the ab-

straction has been proved. By using the interaction between the properties of the

abstraction and the properties of the concrete primitive semantic operators, we can

easily inherit in the abstract case all those properties of the collecting semantics for

which the suitable lemmata on the semantic operators hold. The reconstruction of

several existing semantics is shown.

In Chapter 4 we specialize the framework to practical application cases where we

are only concerned with properties which are abstraction of the computed answer

semantics and we are interested in equivalent top-down and bottom-up semantics.

This framework is deeply used in Chapter 5 to show how declarative debugging

techniques can be extended to cope with the analysis of operational properties (such

as computed and correct answers) and of abstract properties (such as depth(k)

answers and groundness dependencies). The resulting technique (abstract diagnosis)

leads to elegant bottom-up and top-down diagnosis methods, which do not require to

determine the symptoms in advance, and which are effective in the case of abstract

properties described by finite domains.

Finally, the last chapter is devoted to some conclusive remarks.
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Preliminaries

Most of the notations used in this thesis are introduced in this chapter. The expe-

rienced readers are advised to have a look at the “notation summary” Section 1.5

first.

Essentially, this chapter presents the informal, logical and set-theoretic notations

and concepts we will use to write down and reason about our ideas. The chapter

is simply presented by using an informal extension of our everyday language to

talk about mathematical objects like sets; it is not to be confused with the formal

definitions about them that we will encounter later.

Some more specific notions will be introduced in the chapters where they are

needed. For the terminology not explicitly shown and for a more motivated in-

troduction about fixpoint theory and algebraic notation, the reader can consult

[77, 11, 10]. We will refer to [75, 3] for further details on the logic programming

theory.

1.1 Basic Set Theory

To define the basic notions we will use the standard (meta) logical notation to denote

conjunction, disjunction, quantification and so on (and, or, for each, . . . ). We will

use some informal logical notation in order to stop our mathematical statements

getting out of hand. For statements (or assertions) A and B, we will commonly use

abbreviations like:

A,B for (A and B), the conjunction of A and B,

A =⇒ B for (A implies B), which means (if A then B),

A ⇐⇒ B for (A if and only if B), which expresses the logical equivalence

of A and B.
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We will also make statements by forming disjunctions (A or B), with the self-evident

meaning, and negations (not A), sometimes written ¬A, which is true if and only if

A is false. It is a tradition to write x 6< y instead of ¬(x < y).

A statement like P(x, y), which involves variables x, y, is called a predicate

(or property, or relation, or condition) and it only becomes true or false when the

pair x, y stands for particular things. We use logical quantifiers ∃ (read “there

exists”) and ∀ (read “for all”) to write assertions like ∃x. P(x) as abbreviating “for

some x, P(x)” or “there exists x such that P(x)”, and ∀x. P(x) as abbreviating

“for all x, P(x)” or “for any x, P(x)”. The statement ∃x, y, . . . , z. P(x, y, . . . , z)
abbreviates ∃x.∃y. · · · ∃z. P(x, y, . . . , z), and ∀x, y, . . . , z. P(x, y, . . . , z) abbreviates

∀x.∀y. · · · ∀z. P(x, y, . . . , z). In order to specify a set S over which a quantifier ranges,

we write ∀x ∈ S. P(x) instead of ∀x. x ∈ S =⇒ P(x), and ∃x ∈ S. P(x) instead of

∃x. x ∈ S, P(x).

1.1.1 Sets

Intuitively, a set is an (unordered) collection of objects, which are elements (or

members) of it. We write a ∈ S when a is an element of the set S. Moreover, we

write {a, b, c, . . .} for the set of elements a, b, c, . . ..

A set S is said to be a subset of a set S ′, written S ⊆ S ′, if and only if every

element of S is an element of S ′, i.e., S ⊆ S ′ ⇐⇒ ∀z ∈ S. z ∈ S ′. A set is determined

solely by its elements in the sense that two sets are equal if and only if they have

the same elements. So, sets S and S ′ are equal, written S = S ′, if and only if every

element of S is an element of S ′ and vice versa.

Sets and Properties

A set can be determined by a property P. We write S := {x | P(x)}, meaning that

the set S has as elements precisely all those x for which P(x) is true. We will not

be formal about it, but we will avoid trouble like Russell’s paradox and will have at

the same time a world of sets rich enough to support most mathematics. This will

be achieved by assuming that certain given sets exist right from the start and by

using safe methods for constructing new sets.

We write ∅ for the null or empty set and N for the set of natural numbers

0, 1, 2, . . ..

The cardinality of a set S is denoted by card(S). A set S is called denumerable

if card(S) = card(N) and countable if card(S) ≤ card(N).
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Constructions on Sets

Let S be a set and P(x) be a property. By {x ∈ S | P(x)} we denote the set {x |

x ∈ S, P(x)}. Sometimes, we will use a further abbreviation. Suppose E(x1, . . . , xn)
is some expression which for particular elements x1 ∈ S1, . . . , xn ∈ Sn yields a

particular element and P(x1, . . . , xn) is a property of such x1, . . . , xn. We use

{E(x1, . . . , xn) | x1 ∈ S1, . . . , xn ∈ Sn, P(x1, . . . , xn)} to abbreviate {y | ∃x1 ∈
S1, . . . , xn ∈ Sn. y = E(x1, . . . , xn), P(x1, . . . , xn)}.

The powerset of a set S, {S ′ | S ′ ⊆ S}, is denoted by ℘(S).

Let I be a set. By {xi}i∈I (or {xi | i ∈ I}) we denote the set of (unique) objects

xi, for any i ∈ I. The elements xi are said to be indexed by the elements i ∈ I.
The union of two sets is S ∪ S ′ := {a | a ∈ S or a ∈ S ′}. Let S be a set of sets,⋃
S = {a | ∃S ∈ S. a ∈ S}. When S = {Si}i∈I, for some indexing set I, we write

⋃
S

as
⋃i∈I Si. The intersection of two sets is S ∩ S ′ := {a | a ∈ S, a ∈ S ′}. Let S be a

nonempty set of sets. Then
⋂
S := {a | ∀S ∈ S. a ∈ S}. When S = {Si}i∈I we write⋂

S as
⋂i∈I Si.

The cartesian product of S and S ′ is the set S×S ′ := {(a, b) | a ∈ S, b ∈ S ′}, the

set of ordered pairs of elements with the first from S and the second from S ′. More

generally S1 × S2 × · · · × Sn consists of the set of n-tuples (x1, . . . , xn) with xi ∈ Si
and Sn denotes the set of n-tuples of elements in S.

S \ S ′ denotes the set where all the elements from S, which are also in S ′, have

been removed, i.e., S \ S ′ := {x | x ∈ S, x 6∈ S ′}.

1.1.2 Relations and Functions

A binary relation between S and S ′ (R : S×S ′) is an element of ℘(S×S ′). We write

x R y for (x, y) ∈ R.

A partial function from S to S ′ is a relation f : S×S ′ for which ∀x, y, y ′. (x, y) ∈
f, (x, y ′) ∈ f =⇒ y = y ′. By f : S⇀ S ′ we denote a partial function of the set S (the

domain) into the set S ′ (the range). The set of all partial functions from S to S ′ is

denoted by [S⇀ S ′]. Moreover, we use the notation f(x) = y when there is a y such

that (x, y) ∈ f and we say f(x) is defined, otherwise f(x) is undefined. Sometimes,

when f(x) is undefined, we write f(x) = ℵ, where ℵ denotes the undefined element.

For each set S we assume that ℵ ⊆ S, ℵ ∪ S = S and ∅ 6⊆ ℵ. This will be formally

motivated in Section 1.2.1.

Given a partial function f : S ⇀ S ′, the sets supp(f) := {x ∈ S | f(x) is defined}

and img(f) := {f(x) ∈ S ′ | ∃x ∈ S. f(x) is defined} are, respectively, the support

and the image of f. A partial function is said to be finite-support if supp(f) is

finite. Moreover, it is said to be finite if both supp(f) and img(f) are finite. In the

following, we will often use finite-support partial functions. Hence, to simplify the
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notation, by

f :=


v1 7→ r1

...

vn 7→ rn
we will denote (by cases) any function f which assumes on input values v1, . . . , vn
output values r1, . . . , rn and is otherwise undefined. Furthermore, if the support of

f is just the singleton {v}, we will denote it by f := v 7→ r.

A (total) function f from S to S ′ is a partial function from S to S ′ such that,

for all x ∈ S, there is some y ∈ S ′ such that f(x) = y. That is equivalent as saying

that f is total if supp(f) = S. Although total functions are a special kind of partial

function, it is a tradition to understand something described as simply a function

to be a total function. So we will always say explicitly when a function is partial.

To indicate that a function f from S to S ′ is total, we write f : S → S ′. Moreover,

the set of all (total) functions from S to S ′ is denoted by [S→ S ′].

A function f : S → S ′ is injective if and only if for each x, y ∈ S if f(x) = f(y)

then x = y. f is surjective if and only if for each x ′ ∈ S ′ there exists x ∈ S such that

f(x) = x ′.

We denote by f = g the extensional equality, i.e., for each x ∈ S, f(x) = g(x).

Furthermore, g := f[v/x] denotes the function g which differs from f only for the

assignment of v to x, i.e., g(x) = v and, for each y 6= x, g(y) = f(y).

Lambda Notation

It is sometimes useful to use the lambda notation to describe functions. It provides

a way of referring to functions without having to name them. Suppose f : S→ S ′ is

a function which, for any element x ∈ S, gives a value f(x) which is exactly described

by expression E, probably involving x. Then we can write λx ∈ S. E for the function

f. Thus, (λx ∈ S. E) := {(x, E[x]) | x ∈ S} and so λx ∈ S. E is just an abbreviation

for the set of input-output values determined by the expression E[x]. We use the

lambda notation also to denote partial functions by allowing expressions in lambda-

terms that are not always defined. Hence, a lambda expression λx ∈ S. E denotes a

partial function S ⇀ S ′ which, on input x ∈ S, assumes the value E[x] ∈ S ′, if the

expression E[x] is defined, and otherwise it is undefined.

Composing Relations and Functions

We compose relations, and so partial and total functions, R : S× S ′ and Q : S ′× S ′′
by defining their composition (a relation between S and S ′′) by Q◦R := {(x, z) ∈ S×



Basic Set Theory 5

S ′′ | y ∈ S ′, (x, y) ∈ R, (y, z) ∈ Q}. Rn is the relation

R ◦ · · · ◦ R︸ ︷︷ ︸n
,

i.e., R1 := R and (assuming Rn is defined) Rn+1 := R ◦ Rn. Each set S is associated

with an identity function IdS := {(x, x) | x ∈ S}, which is the neutral element of ◦.
Thus we define R0 := IdS.

The transitive and reflexive closure R∗ of a relation R on S is R∗ :=
⋃i∈N Ri.

The function composition of g : S ⇀ S ′ and f : S ′ ⇀ S ′′ is the partial function

f ◦ g : S ⇀ S ′′, where (f ◦ g)(x) := f(g(x)), if g(x) (first) and f(g(x)) (then) are

defined, and it is otherwise undefined. When it is clear from the context ◦ will be

omitted.

A function f : S→ S ′ is bijective if it has an inverse g : S ′ → S, i.e., if and only

if there exists a function g such that g ◦ f = IdS and f ◦ g = IdS ′ . Then the sets

S and S ′ are said to be in 1-1 correspondence. Any set in 1-1 correspondence with

a subset of natural numbers N is said to be countable. Note that a function f is

bijective if and only if it is injective and surjective.

Direct and Inverse Image of a Relation

We extend relations, and thus partial and total functions, R : S× S ′ to functions on

subsets by taking R(X) := {y ∈ S ′ | ∃x ∈ X. (x, y) ∈ R} for X ⊆ S. The set R(X) is

called the direct image of X under R. We define R-1(Y) := {x ∈ S | ∃y ∈ Y. (x, y) ∈ R}

for Y ⊆ S ′. The set R-1(Y) is called the inverse image of Y under R. Thus, if

f : S⇀ S ′ is a partial function, X ⊆ S and X ′ ⊆ S ′, we denote by f(X) the image of

X under f, i.e., f(X) := {f(x) | x ∈ X} and by f-1(X ′) the inverse image of X ′ under

f, i.e., f-1(X ′) := {x | f(x) ∈ X ′}.

Equivalence Relations and Congruences

An equivalence relation ≈ on a set S is a binary relation on S (≈: S× S) such that,

for each x, y, z ∈ S,

x R x (reflexivity)

x R y =⇒ y R x (symmetricity)

x R y, y R z =⇒ x R z (transitivity)

The equivalence class of an element x ∈ S, with respect to ≈, is the subset [x]≈ :=

{y | x ≈ y}. When clear from the context we abbreviate [x]≈ by [x] and often abuse

notation by letting the elements of a set denote their correspondent equivalence
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classes. The quotient set S
/
≈ of S modulo ≈ is the set of equivalence classes of

elements in S (w.r.t. ≈).

An equivalence relation≈ on S is a congruence w.r.t. a partial function f : Sn ⇀ S

if and only if, for each pair of elements ai, bi ∈ S such that ai ≈ bi, (if f(a1, . . . , an)
is defined then also f(b1, . . . , bn) is defined and)

f(a1, . . . , an) ≈ f(b1, . . . , bn).
Then, we can define the partial function f≈ : (S

/
≈)n ⇀ S

/
≈ as

f≈([a1]≈, . . . , [an]≈) := [f(a1, . . . , an)]≈,
since, given [a1]≈, . . . , [an]≈, the class [f(a1, . . . , an)]≈ is uniquely determined inde-

pendently of the choice of the representatives a1, . . . , an.

1.2 Domain Theory

We will present here the (abstract) concepts of complete lattices, continuous func-

tions and fixpoint theory, which are the standard tools of denotational semantics.

1.2.1 Complete Lattices and Continuous Functions

A binary relation ≤ on S (≤: S× S) is a partial order if, for each x, y ∈ S,

x ≤ x (reflexivity)

x ≤ y, y ≤ x =⇒ x = y (antisymmetry)

x ≤ y, y ≤ z =⇒ x ≤ z (transitivity)

A partially ordered set (poset) (S, ≤) is a set S equipped with a partial order ≤. A

set S is totally ordered if it is partially ordered and, for each x, y ∈ S, x ≤ y or y ≤ x.
A chain is a (possibly empty) totally ordered subset of S.

A preorder is a binary relation which is reflexive and transitive. A preorder ≤ on

a set S induces on S an equivalence relation ≈ defined as follows: for each x, y ∈ S,

x ≈ y⇐⇒ x ≤ y, y ≤ x.

Moreover, ≤ induces on S
/
≈ the partial order≤≈ such that, for each [x]≈, [y]≈ ∈ S

/
≈,

[x]≈ ≤≈ [y]≈ ⇐⇒ x ≤ y.

A binary relation < is strict if and only if it is anti-reflexive (i.e., not x < x) and

transitive.
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Given a poset (S, ≤) and X ⊆ S, y ∈ S is an upper bound for X if and only if, for

each x ∈ X, x ≤ y. Moreover, y ∈ S is the least upper bound (called also join) of X, if

y is an upper bound of X and, for every upper bound y ′ of X, y ≤ y ′. A least upper

bound of X is often denoted by lubS X or by
⊔S X. We also write

⊔S{d1, . . . , dn}
as d1 tS · · · tS dn. Dually an element y ∈ S is a lower bound for X if and only if,

for each x ∈ X, y ≤ x. Moreover, y ∈ S is the greatest lower bound (called also

meet) of X, if y is a lower bound of X and for every lower bound y ′ of X, y ′ ≤ y.

A greatest lower bound of X is often denoted by glbS X or by
dS X. We also writedS{d1, . . . , dn} as d1 uS · · · uS dn. When it is clear from the context, the subscript

S will be omitted. Moreover
⊔

{Di}i∈I and
d

{Di}i∈I can be denoted by
⊔i∈IDi anddi∈IDi. It is easy to check that if lub and glb exist, then they are unique.

Complete Partial Orders and Lattices

A direct set is a poset in which any subset of two elements (and hence any finite

subset) has an upper bound in the set. A complete partial order (CPO) S is a

poset such that every chain D has the least upper bound (i.e., there exists
⊔
D).

Notice that any set ordered by the identity relation forms a CPO, of course without

a bottom element. Such CPOs are called discrete. We can add a bottom element to

any poset (S, ≤) which does not have one (even to a poset which already has one).

The new poset S⊥ is obtained by adding a new element ⊥ to S and by extending

the ordering ≤ as ∀x ∈ S.⊥ ≤ x. If S is a discrete CPO, then S⊥ is a CPO with

bottom element, which is called flat.

A complete lattice is a poset (S, ≤) such that for every subset X of S there exists⊔
X and

d
X. Let > denote the top element

⊔
S =

d
∅ and ⊥ denote the bottom

element
d
S =

⊔
∅ of S. The elements of a complete lattice are thought of as points

of information and the ordering as an approximation relation between them. Thus,

x ≤ y means x approximates y (or, x has less or the same information as y) and so

⊥ is the point of least information. It is easy to check that, for any set S, ℘(S) under

the subset ordering ⊆ is a complete lattice, where t is union, u is intersection, the

top element is S and the bottom element is ∅. Also (℘(S))⊥ is a complete lattice.

Given a complete lattice (L, ≤), the set of all partial functions F = [S ⇀ L]

inherits the complete lattice structure of L. Let simply define f � g := ∀x ∈
S. f(x) ≤ g(x), (ft g)(x) := f(x)t g(x), (fu g)(x) := f(x)u g(x), ⊥F := λx ∈ S.⊥L
and >F := λx ∈ S.>L. In the following f+ g will be used to denote f t g.
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Continuous and Additive Functions

Let (L, ≤) and (M, v) be (complete) lattices. A function f : L →M is monotonic

if and only if

∀x, y ∈ L. x ≤ y =⇒ f(x) v f(y).

Moreover, f is continuous if and only if, for each non-empty chain D ⊆ L,

f(
⊔
L
D) =

⊔
M
f(D).

Every continuous function is also monotonic, since x ≤ y =⇒ ⊔M{f(x), f(y)} =

f(
⊔L{x, y}) = f(y) =⇒ f(x) v f(y).

Complete partial orders correspond to types of data (data that can be used

as input or output to a computation) and computable functions are modeled as

continuous functions between them.

A partial function f : S ⇀ S ′ is additive if and only if the previous continuity

condition is satisfied for each non-empty set. Hence, every additive function is also

continuous. Dually we define co-continuity and co-additivity , by using u instead of

t.

It can be proved that the composition of monotonic, continuous or additive

functions is, respectively, monotonic, continuous or additive.

The mathematical way of expressing that structures are “essentially the same”

is through the concept of isomorphism which establishes when structures are iso-

morphic. A continuous function f : D → E between CPOs D and E is said to be

an isomorphism if there is a continuous function g : E → D such that g ◦ f = IdD
and f ◦ g = IdE. Thus f and g are mutual inverses. This is actually an instance of

a general definition which applies to a class of objects and functions between them

(CPOs and continuous functions in this case). It follows from the definition that

isomorphic CPOs are essentially the same but for a renaming of elements. It can

be proved that a function f : D → E is an isomorphism if and only if f is bijective

and, for all x, y ∈ D, x ≤D y⇐⇒ f(x) ≤E f(y).
Function Space

LetD,E be CPOs. It is a very important fact that the set of all continuous functions

from D to E can be made into a complete partial order. The function space [D→ E]

consists of continuous functions f : D → E ordered pointwise by f v g ⇐⇒ ∀d ∈
D. f(d) v g(d). This makes the function space a complete partial order. Note that,

provided E has a bottom element ⊥E, such a function space of CPOs has a bottom

element, the constantly ⊥E function ⊥[D!E] := λd ∈ D.⊥E. Least upper bounds of
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chains of functions are given pointwise, i.e., a chain of functions f0 v f1 v . . . v
fn v . . . has lub

⊔
[D!E] fn := λd ∈ D.

⊔E{fn(d)}n∈N.

It is not hard to see that the partial functions L⇀ D are in 1-1 correspondence

with the (total) functions L→ D⊥, and that, in this case, any total function is con-

tinuous; the inclusion order between partial functions corresponds to the “pointwise

order” f v g⇐⇒ ∀σ ∈ L. f(σ) v g(σ) between functions L→ D⊥. Because partial

functions from a CPO so does the set of functions [L→ D⊥] ordered pointwise. This

is the reason why we assumed that, for each set S, ℵ ⊆ S, ℵ ∪ S = S and ∅ 6⊆ ℵ.

1.2.2 Fixpoint Theory

Given a poset (S, ≤) and a function f : S → S, a fixpoint of f is an element x ∈ S
such that f(x) = x. A pre-fixpoint of f is an element x ∈ S such that f(x) ≤ x and

dually a post-fixpoint of f is an element x ∈ S such that x ≤ f(x). Moreover, we say

that x ∈ S is the least fixpoint of f (denoted by lfp f) if and only if x is a fixpoint of

f and for all fixpoints y of f, x ≤ y. Dually, we define the greatest fixpoint (denoted

by gfp f).

The fundamental theorem of Knaster-Tarski states that the set of fixpoints of a

monotonic function f is a complete lattice.

Theorem 1.2.1 (Fixpoint theorem) [96] A monotonic function f on a complete

lattice (L, ≤) has the least fixpoint and the greatest fixpoint. Moreover,

lfp(f) =
l

{x | f(x) ≤ x} =
l

{x | x = f(x)}

gfp(f) =
⊔

{x | x ≤ f(x)} =
⊔

{x | x = f(x)}.

The Knaster-Tarski Theorem is important because it applies to any monotone

function on a complete lattice. However, most of the time we will be concerned with

least fixpoints of continuous functions which we will construct by the techniques

of the previous section, as least upper bounds of chains in a CPO. Therefore, it’s

useful to state some more notations and results on fixpoints of continuous functions

defined on (complete) lattices.

First of all we have to introduce the notion of ordinal . We assume that an

ordinal is a set, where every element of an ordinal is still an ordinal and the class

of ordinals is ordered by membership relation (α < β means α ∈ β). Consequently,

every ordinal coincides with the set of all smaller ordinals. The least ordinals are 0,

1 := {0}, 2 := {0, {0}}, etc. Intuitively, the class of ordinals is the transfinite sequence

0 < 1 < 2 < . . . < ω < ω+1 < . . . < ω+ω < . . . < ω!, etc. Ordinals will be often

denoted by Greek letters. An ordinal γ is a limit ordinal if it is neither 0 nor the

successor of an ordinal; so, if β < γ, then there exists σ such that β < σ < γ. The
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first limit ordinal, which is equipotent with the set of natural numbers, is denoted

(by an abuse of notation) by ω. Often, in the definitions of CPO and of continuity,

directed sets are used instead of chains. It is possible to show that if the set S is

denumerable, then the definitions are equivalent.

The ordinal powers of a monotonic function T : S → S on a CPO S are defined

as

T↑�(x) :=


x if α = 0

T(T↑(�-1)(x)) if α is a successor ordinal⊔
{T↑�(x) | β < α} if α is a limit ordinal.

In the following, we will use the standard notation T↑� := T↑�(⊥), where ⊥ is the

least element of S. In particular, T↑! :=
⊔n<! T↑n, T↑n+1 := T(T↑n), for n < ω,

and T↑0 := ⊥, where
⊔

is the lub operation of S. Sometimes, T↑�(x) may be denoted

simply by T�(x).
The next important result is usually attributed to Kleene and gives an explicit

construction of the least fixpoint of a continuous function f on a CPO D.

Theorem 1.2.2 (Fixpoint Theorem) Let f : D → D be a continuous function

on a CPO D and d ∈ D be a pre-fixpoint of f. Then
⊔

{f↑n(d) | n ≤ ω} is the

least fixpoint of f greater than d. In particular f↑! is the least pre-fixpoint and least

fixpoint of f.

Each CPO D with bottom ⊥ is associated with a fixpoint operator fix : [D →
D] → D, fix :=

⊔n<!(λf. fn(⊥)), i.e., fix is the least upper bound of the chain of

the functions λf.⊥ v λf. f(⊥) v λf. f(f(⊥)) v . . ., where each of these is continuous

and so an element of the CPO [[D→ D]→ D].

1.3 Logic Programming

In this section we will introduce some notations about logic programming that will

be used in the following and, for the reader’s convenience, we will recall some basic

notions. We refer to [75, 3] for further details on the theory of logic programming.

1.3.1 Basic Logical Definitions

A first order language consists of an alphabet and of a set of well-formed formulas

defined on it. An alphabet contains two kinds of symbols: the logical and the

non-logical ones. All the sets we consider below are countable.

The logical symbols are common to all first order languages and consist of the

following sets
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logical
connectives:

¬ (negation), → (implication), ∨ (disjunction), ∧ (conjunc-

tion), ↔ (equivalence),

variables: an enumerable set V of variables,

quantifiers: ∃ (there exists) and ∀ (for all),

propositional
constants:

true and false,

punctuation
symbols:

parentheses, comma and full stop.

The non-logical symbols determine a specific first order language and consist of the

following sets

• a set Σ of function symbols of fixed arity,

• a set Π of predicate symbols of fixed arity.

A (predicate or function) symbol f with arity n will be denoted by f/n. Function

symbols whose arity is 0 are called also constant symbols. We assume that V , Σ and

Π are pairwise disjoint and do not share any symbol with the other sets mentioned

above.

The set T(Σ,V) of terms of the language is inductively defined as follows.

• A variable is a term.

• A constant symbol is a term.

• If f is a function symbol with arity n and t1, . . . , tn are terms, then also

f(t1, . . . , tn) is a term.

T(Σ) denotes the set of ground terms (i.e., terms not containing variables). In the

following, by t and x we denote tuples of, respectively, terms and distinct variables.

Moreover, we denote by t both the tuple and the set of corresponding syntactic

objects.

Finally we can inductively define the class of (well-formed) formulas of the lan-

guage as follows:

• true and false are formulas.

• If p is a predicate symbol of arity n and t1, . . . , tn are terms, then p(t1, . . . , tn)
is a formula (called an atomic formula or, more simply atom).

• If F and G are formulas, then so are ¬F, F∧G, F∨G, F→ G and F↔ G.

• If F is a formula and x is a variable, then ∀x. F and ∃x. F are formulas.
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An expression E is any syntactic object, i.e., terms, formulas, etc. A ground

expression is a variable-free expression. In the following the set of variables that

occurs in a syntactic object E is denoted var(E). Moreover, by preds(E) we denote

the set of predicates occurring in E.

1.3.2 Unification Theory

Now we will introduce some general definitions and some results concerning uni-

fication that we need in the following. The readers interested in more details on

substitutions, equations and unification can see [42, 68, 84].

A substitution is a mapping ϑ : V → T(Σ,V), such that the set dom(ϑ) := {x |

ϑ(x) 6= x} (domain of ϑ) is finite. Substitutions which gives ground terms are called

ground . By ε we denote the empty substitution (i.e., the identity function). We will

use the set-theoretic notation to represent ϑ. Namely,

ϑ = {x1/t1, . . . , xn/tn}
where {x1, . . . , xn} := dom(ϑ) and ti := ϑ(xi). A pair xi/ti is called a binding . Note

that by definition of substitution, the variables x1, . . . , xn are different and xi 6= ti,
for any i ∈ [1, n]. Let x := x1, . . . , xn and t := t1, . . . , tn. In the following, if (for

any i ∈ [1, n]) xi 6= ti, then {x/t} denotes the substitution {x1/t1, . . . , xn/tn}.
range(ϑ) denotes the range of ϑ, i.e., the set {y | x ∈ dom(ϑ), y ∈ var(ϑ(x))}.

Thus, the substitution ϑ is ground if and only if range(ϑ) = ∅. Note that dom(ϑ)∪
range(ϑ) = var(ϑ).

The application Eϑ of ϑ to an expression E is defined as the expression obtained

by simultaneously replacing each variable x in E by the corresponding term ϑ(x). Eϑ

is called an instance of E and by ground(E) we denote the set of ground instances

of E. If ϑ is a substitution and W ⊆ V is a set of variables, ϑ|W is the restriction of

ϑ to the variables W defined as follows

ϑ|W(x) :=

{
xϑ if x ∈W
x if x 6∈W.

In the following, when no ambiguity arise, we will denote the substitution ϑ|var(E)
simply by ϑ|E.

The composition ϑσ of the substitutions ϑ and σ is defined as (ϑσ)(x) :=

(xϑ)σ. By using the set-theoretic notation, if ϑ := {x1/t1, . . . , xn/tn} and σ :=

{y1/s1, . . . , ym/sm}, their composition ϑσ is defined by removing from the set

{x1/t1σ, . . . , xn/tnσ, y1/s1, . . . , ym/sm}
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the bindings xi/tiσ for which xi = tiσ, as well as those bindings yj/sj for which yj ∈
{x1, . . . , xn}. We recall that the composition is associative, the empty substitution ε

is the neutral element and, for each expression E, E(ϑσ) = (Eϑ)σ.

The pre-ordering ≤ (more general than) on substitutions is such that ϑ ≤ σ if

and only if there exists ϑ ′ such that ϑϑ ′ = σ. Similarly, given two terms t and t ′,

we define t ≤ t ′ (t is more general than t ′) if and only if there exists a substitution

ϑ such that tϑ = t ′. The relation ≤ is a preorder (called subsumption) and by ≡
we denote the associated equivalence relation (variance). Then two terms t and t ′

are variants if and only if t is an instance of t ′ and vice versa. This definition is

equivalent to say that t and t ′ are variants if and only if there exists a renaming ρ

such that t = t ′ρ. A renaming is a substitution ρ for which there exists the inverse

ρ-1, such that ρρ-1 = ρ-1ρ = ε.

These definitions can be extended to any kind of expression in the obvious way.

A substitution ϑ is idempotent if ϑϑ = ϑ or, equivalently, if dom(ϑ)∩ range(ϑ) =

∅. In the following, we restrict our attention to idempotent substitutions, unless

explicitly stated otherwise. The set of all idempotent substitutions is denoted by

Subst .

Unifiers and Equations

A substitution ϑ is a unifier of the terms t and t ′ if tϑ = t ′ϑ. An unifier ϑ of t and

t ′ is called relevant if all the variables appearing in ϑ also appear in t or t ′. An

unifier of t and t ′ is called the most general unifier (mgu) if it is more general of

any other unifier of t and t ′. If t := t1, . . . , tn and s := s1, . . . , sn, a (most general)

unifier of t and s is a (most general) unifier of (s1, . . . , sn) and (t1, . . . , tn).
It is well known that the mgu of two terms is unique up to renaming (see for

example [42]). Moreover, if two terms are unifiable, then there exists an idempotent

mgu for them. This is formally stated by following theorem due to Robinson [87].

Theorem 1.3.1 (Unification Theorem) [87] There exists an algorithm (called

unification algorithm) which, for any two atoms, produces their most general unifier,

if they are unifiable, and otherwise reports non-existence of an unifier.

Since idempotent mgus of t1 and t2 are unique up to renaming, we will denote

by mgu(t1, t2) the idempotent most general unifier of t1 and t2 obtained by any

(arbitrary but once and for all given) choice between the possibly equivalent mgus.

All the above definitions can be extended to other syntactic expressions in the

obvious way.

An equation is an atom s =e t, where s, t are terms and =e is a predicate symbol

which is interpreted as the syntactic equality (=e is written in infix form to improve
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the readability). If s := s1, . . . , sn and t := t1, . . . , tn, then t =e s denotes the

equation set {s1 =e t1, . . . , sn =e tn}. If A := p(s) and B := p(t), A =e B is a

shorthand for s =e t. This notation is extended to conjunction of atoms in the

obvious way. In the following chapters, sets and conjunctions of equations will often

be identified and, when clear from the context, we will abuse notation denoting =e
by =.

Given an equation set E := {s =e t}, a (most general) unifier of E is a (most

general) unifier of s and t. A unifiable set of equations (terms) has an idempotent

mgu. Well known results on idempotent mgus state that, if ϑ is an idempotent mgu

of an equation set E, then ϑ is a relevant unifier of E, i.e., var(ϑ) ⊆ var(E). Any

unifier ϑ for E is called solution if Eϑ is variable free. A set E is solvable if it has

solutions. The preordering ≤e on equation sets is such that E ≤e E ′ if and only

if the solutions of E are also solutions of E ′. Two sets E, E ′ are called equivalent

(denoted by E ≈e E ′) if they have the same solutions.

An equation set (possibly empty) is in solved form if it has the form {v1 =e
t1, . . . , vn =e tn} and the vi are distinct variables which do not occur in any tj. The

variables vi are said to be eliminable. The set {v1, . . . , vn} is denoted by elim(E).

In the following, given a set of solved form equation sets E , by elim(E) we denote⋃E∈E elim(E). If a set E is solvable then it has an equivalent solved form which

is unique up to renaming. There exists an algorithm [68] which transforms any

solvable equation set into an equivalent solved form equation set.

The lattice structure on idempotent substitutions [42] is isomorphic to the lat-

tice structure on equations introduced in [68]. Therefore, we can indifferently use

equations or idempotent mgus. The following results show the connections between

the two notions we will use in the following. Given a substitution ϑ := {x/t} we

define eqn(ϑ) := {x =e t}. If ϑ is an idempotent mgu of E, eqn(ϑ) is called the solved

form of E [68]. Observe that, for any substitution ϑ, ϑ = mgu(eqn(ϑ)).

Here are some technical results on properties of substitutions and equation sets.

Theorem 1.3.2 [68] Assume that the Herbrand universe is non-trivial (i.e., it con-

tains at least two elements). ϑ is an idempotent mgu of E if and only if eqn(ϑ) ≈e E.
In the following we will always implicitly consider a non-trivial Herbrand universe.

From the above result we can derive the following useful lemmata.

Lemma 1.3.3 [13] Let E1, E2 be equation sets. Then there exists β := mgu(E1 ∪
E2) if and only if there exist ϑ := mgu(E1) and δ = mgu(E2ϑ), such that β = ϑδ.

Lemma 1.3.4 [54] Let E be an equation set and ϑ = mgu(E). Then for any substi-

tution δ, mgu(Eδ) = mgu(eqn(ϑ)δ).
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Corollary 1.3.5 Let E be an equation set and ϑ = mgu(E). Given a renaming ρ,

let δ := {xρ/tρ | x/t ∈ ϑ}. Then the following facts hold

1. δ = mgu(Eρ),

2. ρδρ-1 = ϑ (and therefore δ = ρ-1ϑρ).
Proof. We prove the points separately.

Point 1 By Lemma 1.3.4 we have only to prove that δ = mgu(eqn(ϑ)ρ). Then it

is sufficient to observe that δ is an idempotent substitution and eqn(ϑ)ρ = eqn(δ).

Point 2 Let z be a variable. By definition of δ, ρδρ-1(z) = ρρ-1(ϑ(z)) = ϑ(z).

1.3.3 Logic Programs and their Classical Semantics

Throughout the thesis we will assume logic programs and goals being defined on

a fixed first order language given by a non-empty signature Σ, a finite set Π of

predicates and a denumerable set V of variables .

An atom (as already mentioned) is an object of the form p(t1, . . . , tn) where

p/n ∈ Π and t1, . . . , tn ∈ T(Σ,V). The set of all atoms is denoted by Atoms . An

atom is called pure if it is in the form p(x).

A program (or definite) clause is a formula of the form H← B1, . . . , Bn with

n ≥ 0, where H (the head) and B1, . . . , Bn (the body) are atoms, “←” and “,” denote

logical implication and conjunction respectively, and all the variables are assumed

to be universally quantified in front of the formula (here and in the following we

omit the quantifiers). If the body is empty the clause is a unit clause.

A goal (or negative clause) is a formula of the form ←A1, . . . , An, with n ≥ 0.
When no ambiguity arises, we will denote the above goal simply by the sequence of

atoms A1, . . . , An. If n = 1, the goal is called atomic and, by an abuse of notation,

it is denoted with the corresponding atom. Moreover, if n = 0 the goal is called

empty and is denoted by �. The set of all goals is denoted by Goals . A goal is called

pure if it contains only pure atoms which do not share variables. We denote by G

and B possibly empty sequences of atoms. Hence, a clause can be simply denoted

by H← B. By B,B ′ we denote the concatenation of B and B ′.

A logic program is a finite set of (program) clauses and a query is the union of

a goal G with a logic program P, here denoted by the formula G in P.

The syntax of logic programs can finally be formally defined as

QUERY ::= GOAL in PROG

GOAL ::= � | ATOM ,GOAL
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PROG ::= ∅ |
{
CLAUSE

}
∪ PROG

CLAUSE ::= ATOM ←GOAL

where the language generated by ATOM is the set Atoms .

An equational goal is an object of the form (E ,B) where B is a pure goal and E
is a finite set of solved form equation sets such that elim(E) ⊆ var(B). {∅},B will be

denoted by B. An equational clause is a formula of the form H←E,B, where (H,B)

is a pure goal and E is a solved form equation set such that elim(E) ⊆ var(H,B). In

the following, given any program clause p(t)← p1(t1), . . . , pn(tn), we will consider

(when needed) its equational form p(x)← E, p1(x1), . . . , pn(xn) where E := {x =e
t, x1 =e t1, . . . , xn =e tn} (and x, x1, . . . , xn are new distinct variables).

Traditional Declarative Semantics

The traditional declarative semantics provides the meaning of a program P without

analyzing the underlying computational mechanism. Therefore, to understand the

meaning of a logic program, we can use the classical model theory of first order logic,

based on the notion of interpretation à la Tarski. Let L be the underlying first order

language of P.

An interpretation I of a first order language L simply consists of

1. a non-empty set D (domain of the interpretation) over which the variables

range,

2. an assignment of each constant in L to an element of the domain D,

3. an assignment of each function symbol of arity n in L to a mapping from Dn
to D,

4. an assignment of each predicate symbol of arity n in L to a subset of Dn (i.e.,

to a relation on Dn).
Thus, each interpretation specifies a meaning for each symbol in the language. A

variable assignment σ (w.r.t. I) is an assignment to each variable in L of an element

in the domain of I. A variable assignment σ can be lifted homomorphically to a

function, still denoted by σ and called valuation, which maps terms to D. It is

possible to show that such a lifting is unique.

The semantics (validity) of a formula F in a variable assignment σ over I, written

I |=� F, can be defined inductively on its structure as follows:

• I |=� true and not I |=� false,

• I |=� p(t1, . . . , tn) if and only if pI is the relation associated with p in I and

(σ(t1), . . . , σ(tn)) ∈ pI,
• I |=� ¬F if and only if not I |=� F,
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• I |=� F∧G if and only if I |=� F and I |=� G,

• I |=� ∀x. F if and only if, for all d ∈ D, I |=�[d/x] F.1

The semantics of all the other connectives can be expressed by means of the se-

mantics of ∧, ¬ and ∀, by defining F ∨ G := ¬(F ∧ G), F → G := ¬F ∨ G,

F↔ G := F→ G∧G→ F and ∃x. F := ¬∀x.¬F.
We say that F is true in an interpretation I (I |= F) if and only if it is true for

each variable assignment. Moreover, we say that an interpretation I is a model of a

set of formulas S if and only if each formula in S is true in I. A set of formulas S is

satisfiable (or consistent) if and only if S has a model. Otherwise, we say that it is

unsatisfiable (or inconsistent). Moreover, a query G in P is consistent (inconsistent)

if the set of formulas {←G} ∪ P it is. Given two sets of formulas, S and S ′, we say

S ′ is a logical consequence of S if and only if every model of S is also a model for S ′.

When considering logic programs, the basic problem is to prove that a query

G in P is unsatisfiable. According to the definition, this implies showing that every

interpretation of G in P is not a model. However, this problem can be solved in a

convenient way, by considering a restricted class of interpretations, namely Herbrand

interpretations. The importance of Herbrand interpretations relies in the fact that

(by Theorem 1.3.6), in order to prove the unsatisfiability of a set of clauses, it is

sufficient to consider only Herbrand interpretations.

The Herbrand Universe UL for the language L is the set of ground terms T(Σ),

while the Herbrand Base BL of L is the set of all ground atoms of L. A Herbrand

interpretation H is an interpretation with domain UL, which assigns

• each constant in L to itself,

• each function symbol f/n in L to the mapping fH : UnL → UL, defined by

fH(t1, . . . , tn) := f(t1, . . . , tn),
• each predicate symbol p/n ∈ Π to an element pH in ℘(UnL ).

We make no restriction on the assignment of predicate symbols in L. So, for each

different assignment, there is a different Herbrand interpretation. A Herbrand model

is a Herbrand interpretation which is a model.

Each Herbrand interpretationH can be uniquely determined by a set I ⊆ BL, such

that p(t) ∈ I if and only if t ∈ pH. Thus, from now on we can identify a Herbrand

interpretation H by the set of atom determining it. Herbrand interpretations (as

sets of atoms) with the subset ordering are a complete lattice.

In the following we will assume that Σ contains at least one function symbol of

arity 0 (a constant) and therefore the Herbrand universe is not empty.

1We recall that σ
[

d
/
x

]
is the valuation which differs from σ only for the assignment of x to d.
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Theorem 1.3.6 (Herbrand Theorem) A set of clauses S has a model if and only

if it has a Herbrand model.

As a consequence, when considering the model-theoretic semantics of logic programs,

we need to look only to Herbrand models.

Herbrand models are closed under intersection. Namely, let P be a program and

{Mi}i∈I be a non-empty set of Herbrand models of P. Then
⋂i∈IMi is a Herbrand

model of P and is the least Herbrand model . The least Herbrand model was proposed

by van Emden and Kowalski [97] as model-theoretic semantics for logic programs.

We can give an alternative fixpoint characterization of the least Herbrand model.

Associated with every program there is a monotonic map, the immediate consequence

operator TP, which maps Herbrand interpretations to Herbrand interpretations [97,

7]. The TP operator (associated to the logic program P) can be defined as follows.

Let I be a Herbrand interpretation. Then

TP(I) :=
{
H ∈ BL | H← B is a ground instance of a clause in P and B ⊆ I

}
.

The TP mapping is continuous on the complete lattice of Herbrand interpreta-

tions. Herbrand interpretations which are models for P can be characterized in terms

of TP. Namely, given a Herbrand interpretation I, I is a model for P if and only if

it is a pre-fixpoint of TP (i.e., TP(I) ⊆ I). An immediate consequence of this result

(using Theorem 1.2.2) is that MP = lfp TP = TP↑!.

Traditional Operational Semantics

Definite clauses have a natural computational reading based on the resolution pro-

cedure. Resolution was introduced by Robinson [87] as an inference rule for clauses.

The specific resolution strategy that we consider here is called SLD-resolution (Se-

lection rule driven Linear resolution for Definite clauses) [7] and can be described

as follows. Let G := A1, . . . , Ak be a goal and c := H← B be a input clause. G ′ is

derived from G and c (or, equivalently, G ′ is a resolvent of G and c) by using ϑ if

and only if the following facts hold

1. Am (with 1 ≤ m ≤ k) is the selected atom in G,

2. ϑ = mgu(Am, H),

3. G ′ := (A1, . . . , Am-1,B, Am+1, . . . , Ak)ϑ.
Given a goal G and a program P, an SLD-derivation (or simply a derivation) d of

G in P consists of

1. a (possibly infinite) sequence of goalsG0,G1,G2, . . . called resolvents, together

with
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2. a sequence c1, c2, . . . of variants of clauses in P which are renamed apart2 and

3. a sequence ϑ1, ϑ2, . . . of idempotent mgus3,

such that G0 = G and, for i ≥ 1, each Gi is derived from Gi-1 and ci by using ϑi.
An SLD-refutation of G in P is a finite SLD-derivation of G in P which has the

empty goal � as the last goal in the derivation. If ϑ1, . . . , ϑn are the mgus used

in the refutation of G in P, we say that ϑ := (ϑ1 · · · ϑn)|G is a computed answer

substitution (or simply a computed answer) of G in P. Moreover, given a derivation

d of G in P, with B as last goal and ϑ1, . . . , ϑn as the used mgus, we say that

ϑ := (ϑ1 · · · ϑn)|G;B is a (partial) computed answer substitution of d. In case d is a

refutation, this definition boils down to the previous definition of computed answer

for G in P.

Given a derivation d, first(d) and last(d) (if d is finite) are respectively the

first and the last goal of d. By clauses(d) we denote the sequence of clauses of

d and by answer(d) we denote the (partial) computed answer substitution of d.

Moreover, length(d) denotes the length of the derivation d, i.e., the number of the

SLD-derivation steps. By an abuse of notation, we denote a zero-length derivation of

G by G itself. Hence, when the length of the derivation is 0, first(d) = last(d) = G

and answer(d) = ε. Finally, prefix (d) is the set of all SLD-derivations which are

prefixes of d.

Example 1.3.7

Consider the derivations

d0 := p(x, y)

d1 := p(x, y)
fv=x;w=yg

−−−−−−−−−→p(v;w) q(v;w)
q(x, y)

d2 := q(x, y)
ft=x;u=yg

−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), x)
fr=f(s);x=ag
−−−−−−−→n(r;a) �

d3 := p(x, y)
fx=g(a);y=bg
−−−−−−−→p(g(a);b) �

d4 := q(f(x), z)
ft=f(x);z=ag

−−−−−−−−−−→q(t;a) m(g(s);t) m(g(s), f(x))
fr=g(s);x=g(s)g
−−−−−−−−→m(r;f(r)) �

2i.e., such that ci does not share any variable with G0, c1, . . . , ci−1.
3The mgus used in SLD-derivations are not always assumed to be idempotent. Note that, since

idempotent mgus are also relevant, the previous “static” definition of renaming apart of clauses is
sufficient (see [3]). Such a static renaming would not be correct when non relevant mgus are used.
For example, if the (non relevant) mgu of the goal G and of the head of clause c1 introduces a new
variable x 6∈ var(G) ∪ var(c1), according to the previous definition, c2 could (incorrectly) contain
the variable x. In this case, a correct notion of renaming apart should involve also the previously
mgus used in the derivation. Therefore, such a notion could not be stated independently of the
derivation.
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d5 := n(x)
ft=xg

−−−−−−−→n(t) p(t;t) p(x, x)
Then the following holds.

first(d1) = p(x, y) last(d1) = q(x, z)

first(d4) = q(f(x), z) last(d4) = �
answer(d0) = ε answer(d1) = ε

answer(d2) = {x/a} answer(d3) = {x/g(a), y/b}

answer(d4) = {x/g(s), z/a} answer(d5) = ε

length(d0) = 0 length(d2) = 2

Moreover,

clauses(d1) = [p(v,w)← q(v,w)]

clauses(d2) = [q(t, u)← n(f(s), t); n(r, a)←]

clauses(d4) = [q(t, a)←m(g(s), t); m(r, f(r))←]

and

prefix (d1) =
{
p(x, y); d1}

prefix (d2) =
{
q(x, y); q(x, y)

ft=x;u=yg
−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), x); d2}

prefix (d4) =
{
q(f(x), z); q(f(x), z)

ft=f(x);z=ag
−−−−−−−−−−→q(t;a) m(g(s);t) m(g(s), f(x)); d4}

Note that card(prefix (d)) = length(d) + 1.

According to the definition of SLD-derivation the following two choices are per-

formed at each step in the resolvent construction:

1. choice of the selected atom in the goal,

2. choice of the input clause in the program.

The choice of the input clause can cause some problems, related to the possibly

lack of completeness of the resulting SLD-refutations, as shown in [75]. In the

following we will assume that any program clause can be applied to perform SLD-

derivations.

The choice of the selected atom in the goal is done according to the selection

rule R, which is usually defined (see [3]) as a function which, when applied to a

“history” containing the goal and all the clauses and the mgus used in the derivation

G0,G1, . . . ,Gi, returns an atom in Gi. Such an atom is the selected atom in Gi.
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Given a selection rule R, an SLD-derivation via R is an SLD-derivation where

all the selections of atoms in the resolvents are computed according to R. An R-

computed answer of G in P is a computed answer of an SLD-refutation via R. There

is an important theorem about independence from selection rule which states that

if the substitution ϑ is a computed answer of G in P, then (for any selection rule R)

there exists an R-computed answer σ of G in P such that Gϑ and Gσ are variants.

Thus, the choice of the selection rule only affects termination (and in general how

efficiently a computed answer is found). A rule R is fair if any SLD-derivation via

R is fair, i.e., if it is either finite or every atom appearing in it is eventually selected.

When searching for a refutation of a goal, SLD-derivations are constructed with

the aim of generating the empty goal. The totality of these derivations forms a search

space. One way of organizing this search space is by grouping SLD-derivations

according to the selection rule used. This brings up to the concept of SLD-tree.

An SLD-tree of G in P via R is the prefix tree of all SLD-derivations of G in P

via R. The prefix tree of a set of possibly infinite sequences W (all starting with the

same element) is a tree which has as nodes all the elements of the sequences in W

(without repetitions) and whose branches link nodes which are consecutive elements

of a sequence in W. In everyday practice, input clauses and resolvent substitutions

are moved from the nodes to the label of the incoming arc of the node. Thus, the

root node in an SLD-tree for G in P via R is G and every node in this tree is a goal

whose descendant are all its resolvents with (variants of) clauses of P, where the

selected atom is chosen according to R.

We call an SLD-tree successful if it contains the empty goal and finitely failed if

it is finite and not successful.

In the following, for the sake of simplicity, we will consider the PROLOG selection

rule, which always selects the leftmost atom and is then called leftmost . All our

results can be generalized to skeleton rules [54] (the leftmost rule is a particular case

of skeleton rules). SLD-derivations via the leftmost rule are called LD-derivations .

In the following G
#
−→c B denotes an LD-derivation step of G which uses the input

clause c, where ϑ is the computed mgu and B is the resolvent. Moreover, by

d := G
#1−→c1 · · · #n−→cn Gn

we denote a (finite) LD-derivation of G in P, where any ci is a renamed clause

of P. We also denote by G
#

−→P ∗ B a finite LD-derivation of G in P, where ϑ is

the (partial) computed answer substitution and B is the last resolvent. In the

following, to simplify the notation, G0 #
−−−−→c1;:::;cn Gn will represent the derivation

G0 #1−→c1 · · · #n−→cn Gn such that ϑ = ϑ1 · · · ϑn.
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SLD-derivations enjoy an interesting (technical) property, stated by the following

lemma, which will be useful in the sequel. The proof of it is essentially the same of

that given for Lemma 2.2 in [54], except for a slight difference in the notation.

Lemma 1.3.8 [54] Let G be a goal and δ be an idempotent substitution.

1. For any derivation Gδ
#

−−−−−→c1;:::;cm Gm such that var(c1, . . . , cm) ∩ var(G) = ∅,

there exist a derivation G
# ′

−−−−−→c1;:::;cm G ′m and a substitution δ ′ = mgu(Gδ,Gϑ ′),

such that δ|Gϑ = ϑ ′δ ′ and Gm = G ′mδ ′.
2. Conversely, for any derivation G

# ′
−−−−−→c1;:::;cm G ′m such that var(c1, . . . , cm) ∩

var(Gδ) = ∅ and Gδ and Gϑ ′ are unifiable, then there exists a derivation

Gδ
#

−−−−−→c1;:::;cm Gm and a substitution δ ′ = mgu(Gδ,Gϑ ′), such that δ|Gϑ = ϑ ′δ ′

and Gm = G ′mδ ′.
Up to now we have shown how SLD-derivation gives a proof-theory for logic

programs. The operational semantics of logic programs can then be defined naturally

in terms of such an inference rule. Namely, given a program P on the language L,

we can define the success set of a program P as the set of all (ground) atoms A in

the Herbrand Base BL, such that A in P has a refutation, i.e.,

OssJPK =
{
A ∈ BL | A

"
−→P ∗ �}.

Classical Results

The following result shows the equivalence between the traditional operational def-

inition (success set) and the traditional declarative one (least Herbrand model).

Theorem 1.3.9 (Success set theorem) [7] The success set of a program P is

equal to its least Herbrand model (OssJPK = MP).
The main classical results on SLD-resolution concern its soundness and com-

pleteness w.r.t. semantics.

Theorem 1.3.10 (Soundness) [16] Let P be a program, G := A1, . . . , Ak be a goal

and ϑ1, . . . , ϑn be the sequence of mgus computed in an SLD-refutation of G in P.

Then (A1 ∧ · · ·∧Ak)ϑ1 · · · ϑn is a logical consequence of P.

As a corollary of the previous theorem, if there exists an SLD-refutation ofGinP

then G in P is inconsistent. The converse of this corollary gives a first completeness

result. It is due to Hill [63] even if the proof is due to Apt and van Emden [7].
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Theorem 1.3.11 (Completeness) [7] Let P be a program and G be a goal. If

G in P is inconsistent then there exists an SLD-refutation of G in P.

A major completeness result can be obtained by considering computed answer

substitutions. Let G := A1, . . . , Ak be a goal and ϑ be a substitution. We say that

ϑ is a correct answer for G in P if and only if dom(ϑ) ⊆ var(G) and P |= (A1∧ · · ·∧
Ak)ϑ.
Theorem 1.3.12 [16] Let P be a program and G := A1, . . . , Ak be a goal. If ϑ is

a correct answer for G in P, then there exists a computed answer σ of G in P such

that Gσ is more general than Gϑ.

We can generalize Theorems 1.3.11 and 1.3.12 by showing that their results do not

depend on the choice of the selection rule.

Theorem 1.3.13 (Strong Completeness) [63] Let P be a program, G be a goal

and R be a selection rule. If GinP is inconsistent then there exists an SLD-refutation

of G in P via R.

Theorem 1.3.14 [16] Let P be a program, G := A1, . . . , Ak be a goal and R a

selection rule. If ϑ is a correct answer for G in P, then there exists a R-computed

answer σ of G in P such that Gσ is more general than Gϑ.

Equational Version of SLD-derivations

In order to prove several of the technical results in the thesis we introduce now

an equational version [98] of SLD-derivations, denoted by
eq
−→c , which uses equations

instead of idempotent mgus. The equivalence between these two different versions of

SLD-derivation can be easily proved by using the previously mentioned isomorphism

between substitutions and equations.

An equational goal is a conjunction E,G where E is a conjunction of equations

andG is a conjunction of non-equational atoms. We also assume that the equational

part of queries is never taken into account by the selection rule (i.e., the selection

rule as a function does not have the equational parts of resolvents neither in its

domain nor in its range). Hence, for example, the leftmost rule selects the atom

p(a, x) in the goal s = t, p(a, x), q(x, y).

Equational derivations (via the leftmost selection rule) are formally defined as

follows. Let us consider the equational goal E,A1, . . . , An and let c := H ← B

be a renamed apart clause such that E ′ := E ∪ {A1 =e H} is unifiable. Then we

have an equational derivation step E,A1, . . . , An eq
−→c E ′,B, A2, . . . , An. Equational

derivations are obtained from derivation steps in the usual way. An equational
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refutation is a finite equational derivation which has only equational atoms in the

last resolvent.

As pointed out in [98], any SLD-derivation can be transformed in an equivalent

equational one, which uses the same clauses. If ϑ is the idempotent mgu of E, then

the (idempotent) mgu ϑ ′ of E ′ϑ is the computed substitution corresponding to the

same step of the original SLD-derivation. The equivalence is formally stated by the

following lemma. To simplify the notation, E0,G0 eq
−−−−→c1;:::;cn En,Gn will represent the

equational derivation E0,G0 eq
−→c1 · · · eq

−→cn En,Gn.

Lemma 1.3.15 [54] Let G be a goal. There exists a derivation G
#

−−−−→c1;:::;cn A if and

only if there exists an equational derivation G
eq

−−−−→c1;:::;cn E,B such that ϑ = mgu(E)

and A = Bϑ.

1.3.4 The s-semantics Approach

The aim of the s-semantics approach is modeling the observable behaviors of logic

programs (for a complete survey see [13]). It is worth noting that the aim of the

approach is not defining a new (artificial and futile) notion of model. The matter is

that the traditional declarative semantics is unsatisfactory because it characterizes

the logical properties only. So it is not very useful from the programming point

of view. For instance, the standard bottom-up semantics, being defined on ground

atoms only, does not allow us to model correctly the concept of logical variable

which is essential in describing properties like types and ground dependencies. A

satisfactory solution to the simple case of positive logic programs is needed to gain

a better understanding of more practical languages, such as real PROLOG and its

purely declarative counterparts.

The fundamental observable property which is taken into account is the computed

answer substitutions which induces the program equivalence P1 ≈ca P2 defined as

G in P1 has the same (modulo variance) computed answer substitutions as G in P2,
for any goal G.

The semantics modeling computed answers (the s-semantics [45, 46, 13]) is de-

fined on a generalization of Herbrand interpretation. This semantics is both simpler

than the traditional denotational one and more typical for logic programming. More-

over, since it is able to deal with logical variables, it allows us to extend the scope

of the bottom-up approach to analysis problems4.

4Indeed, we will obtain two semantics modeling “groundness dependencies of computed an-
swer substitutions” and “computed depth(k)-answer substitutions” (Sections 3.5.1 and 3.5.2) by
abstracting our (equivalent) reconstruction of the s-semantics (Section 3.4.1).
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The denotations are defined by syntactic objects, as in the case of Herbrand in-

terpretations. Denotations (called π-interpretations) are not interpretations in the

conventional mathematical logic sense. Namely, a π-interpretation I is a set of (non

necessarily ground) atoms, i.e., I ⊆ Atoms . As in the case of the van Emden and

Kowalski semantics, denotations can be computed both by a top-down construc-

tion (a success set) and by a bottom-up construction (the least fixpoint of suitable

continuous immediate consequence operators on π-interpretations).

The top-down denotation can be obtained by taking the behavior (the computed

answers) of pure atomic goals modulo variance. Namely,

OcaJPK :=
{
p(x)ϑ ∈ Atoms | p(x)

#
−→P ∗ �}/≡

and actually models computed answer substitutions since P1 ≈ca P2 if and only if

OcaJP1K = OcaJP2K. Furthermore, the behavior of any (possibly conjunctive) goal G

can be derived from OcaJPK by “executing” G in OcaJPK. Namely,

Theorem 1.3.16 [44, 45] Let G := A1, . . . , An be a goal. Then G
#

−→P ∗ � if and

only if there exist (renamed apart) atoms A ′1, . . . , A ′n ∈ OcaJPK such that ϑ = δρ,

where δ := mgu((A1, . . . , An), (A ′1, . . . , A ′n)|G and ρ is a renaming.

This property is a kind of AND-compositionality , i.e., it shows that OcaJPK provides

a denotation which can actually be used to simulate the program execution for

any goal. This is also the key property which allows us to use abstractions of the

semantics for goal-independent abstract interpretation.

In [13] it is shown that the classical success set semantics is not correct with

respect to computed answers and that the correctness cannot be achieved by just

using interpretations consisting of sets of non-ground atoms. In fact, also the atomic

logical consequence semantics [16, 47] does not correctly model the computed an-

swers. The atomic logical consequence semantics (which is also called c-semantics

in [45]) is defined by the top-down denotation

OlcJPK :=
{
A ∈ Atoms | A

"
−→P ∗ �}.

The s-semantics fixpoint denotation is FcaJPK := lfp T caP , where

T caP (I) =
{
Hϑ ∈ Atoms | H← B ∈ P, B 0 ⊆ I, ϑ = mgu(B,B 0)

}
Note that T caP is different from the standard TP operator [97] in that it derives

instances of the clause heads by unifying the clause bodies with atoms in the current

π-interpretation, rather than by taking all the possible ground instances. In other

words, T caP defines a bottom-up inference based on the same rule (unification) which

is used by top-down SLD-resolution.
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Another related useful property of the s-semantics is its independence from the

language. This means that the denotation defined by OcaJPK is not affected by

the choice of the language signature. In principle, the language signature affects

the domain of π-interpretations Atoms and, since OcaJPK is a subset of Atoms , it

might also be affected. This is indeed not the case [70], since if LP is the language

underlying program P, then OcaJPK(LP) = OcaJPK(L ′P) for any extension L ′P of LP.
OcaJPK(L) denotes the s-semantics of P for a given language L.

This shows the language independence property . This property also means that

the denotation of a program fragment is determined by the symbols it contains with-

out considering the entire underlying alphabet. The advantage of enjoying such a

property becomes more tangible in the case where we wish to actually compute pro-

gram denotations – as in the case of semantic based program analysis and diagnosis.

Note that the same property does not hold for other variable-based semantics, such

as those in [16, 48].

1.4 Abstract Interpretation

In this section we give the basic notations and concepts of approximation theory in

semantics as firstly developed in [32]. For the terminology not explicitly shown and

for a more motivated introduction the reader can consult [32, 34, 1, 82].

1.4.1 Closures on Complete Lattices

Closures play a fundamental role in semantics and approximation theory [34]. In

the following we recall some basic notions on closure theory that will be useful

throughout the thesis. For a more complete treatment of the subject see [10, 33].

A closure operator on a complete lattice (L, ≤) is an operator ρ : L→ L such that,

for each x, y ∈ L,

x ≤ ρ(x) (extensivity)

x ≤ y =⇒ ρ(x) ≤ ρ(y) (monotonicity)

ρ(ρ(x)) = ρ(x) (idempotence)

Let (L, ≤) be a complete lattice. In the following we enumerate some basic

properties of closure operators on L. Let ρ be an upper closure operator on (L, ≤).

• For all x ∈ L, the set {y ∈ ρ(L) | x ≤ y} is not empty and ρ(x) is the least

element.

• The image R := ρ(L) of L by ρ is a complete lattice (R, ≤), such that
⊔R(X) =

ρ(
⊔L(X)) and

dR(X) =
dL(X).
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• ρ is a quasi-complete-join-morphism. Namely, for each X ⊆ L, ρ(
⊔

(X)) =

ρ(
⊔

(ρ(X))).

• Let R ⊆ L and ρ : L→ R such that, for any x ∈ L, ρ(x) is the least element in

{y ∈ R | x ≤ y}. Then ρ is an upper closure operator on (L, ≤) and R := ρ(L).

• Let uco(L) be the set of all upper closure operators on L. Then (uco(L), �) is

a complete lattice, where � is defined as follows. For each ρ, ρ ′ ∈ uco(L),

ρ � ρ ′ ⇐⇒ ∀x ∈ L. ρ(x) ≤ ρ ′(x).

1.4.2 Galois Insertions and Abstract Interpretation

Abstract Interpretation is a theory developed to reason about the abstraction relation

between two different semantics (the concrete and the abstract semantics). The

idea of approximating program properties by evaluating a program on a simpler

domain of descriptions of “concrete” program states goes back to the early 70’s. The

inspiration was that of approximating properties from the exact (concrete) semantics

into an approximate (abstract) semantics, that explicitly exhibits a structure (e.g.,

ordering) which is somehow present in the richer concrete structure associated to

program execution.

The guiding idea is to relate the concrete and the abstract interpretation of the

calculus by a pair of functions, abstraction α and concretization γ, which form a

Galois connection. Galois connections are used to formalize this relation between

abstract and concrete meaning of a computation. This notion has been introduced

in [83] to discuss a general type of correspondence between structures occurring

in a great variety of mathematical theories. Galois connections can be defined on

preordered sets. However in this thesis we restrict our attention to complete lattices.

Let (C, v) (concrete domain) be the domain of the concrete semantics, while

(A, ≤) (abstract domain) be the domain of the abstract semantics. The partial order

relations reflect an approximation relation. Since in approximation theory a partial

order specifies the precision degree of any element in a poset, it is obvious to assume

that if α is a mapping associating an abstract object in (A, ≤) for any concrete

element in (C, v) then the following holds: if α(x) ≤ y, then y is also a correct,

although less precise, abstract approximation of x. The same argument holds if

x v γ(y). Then y is also a correct approximation of x, although x provides more

accurate information than γ(y). This gives rise to the following formal definition.

Definition 1.4.1 (Galois Insertion) Let (C, v) and (A, ≤) be two posets (the

concrete and the abstract domain). A Galois Connection 〈α, γ〉 : (C, v) 
 (A, ≤)

is a pair of maps α : C→ A and γ : A→ C such that
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1. α and γ are monotonic,

2. for each x ∈ C, x v (γ ◦ α)(x) and

3. for each y ∈ A, (α ◦ γ)(y) ≤ y.

Moreover, a Galois Insertion (of A in C) 〈α, γ〉 : (C, v) 
 (A, ≤) is a Galois

connection where α ◦ γ = IdA.

Property 2 is called extensivity of γα. The map α (γ) is called the lower (upper)

adjoint or abstraction (concretization) in the context of abstract interpretation.

The following basic properties are satisfied by any Galois insertion.

1. γ is injective if and only if α is surjective if and only if α ◦ γ = IdA.

2. γ ◦ α is an upper closure operator in (C, v).

3. α is additive and γ is co-additive.

4. Upper and lower adjoints uniquely determine each other. Namely,

γ = λy.
⊔
C
{
x ∈ C | α(x) v y

}
, α = λx.

l
A
{
y ∈ A | x ≤ γ(y)

}
.

5. α is an isomorphism from (γα)(C) to A, having γ as its inverse.

The last properties characterize the ability of Galois insertions to formalize the

notion of “machine-representable” abstractions. An abstract domain is isomorphic

(up to representation) to an upper closure operator of the concrete domain of the

computation. Thus, in principle, we can handle abstract computations as concrete

computations on the complete lattice which is the image of the upper closure op-

erator γ ◦ α. However, machine representable abstractions often result to be more

intuitive and provides better experimental results in efficient implementations.

A straightforward consequence of the latter observation is that abstract inter-

pretations can be formalized in a hierarchical framework. Abstract domains can

be partially ordered using the ordering on the corresponding closure operators on

the concrete domain of computation. The lattice of abstract interpretations is then

the lattice of closure operators over the concrete domain. As observed in [83] the

composition of upper closure operators is not (in general) an upper closure operator.

However, an abstract domain can be designed by successive approximations. Let

(L, ≤) be a complete lattice, ρ be an upper closure operators on (L, ≤) and η be

an upper operator on ρ(L). Then η ◦ ρ is an upper closure operator on (L, ≤). In

view of the compositional design of abstract interpretations we have that the com-

position of Galois insertions is a Galois insertion. Several techniques can be used
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to systematically derive new abstract interpretations from a given set of abstract

domains [34, 35]. We do not address these techniques because they are outside the

scope of this thesis.

When, in a Galois connection 〈α, γ〉, γ is not injective, several distinct elements

of the abstract domain (A, ≤) have the same meaning (by γ). This is usually

considered useless [34]; thus a Galois insertion can always be forced by considering a

more concise abstract domain (A
/

≈
, ≤

≈
), such that for each x, y ∈ A : x


≈ y⇐⇒

γ(x) = γ(y).

1.4.3 Correctness and Precision of Abstract Semantic Func-
tions

Given a concrete semantics and a Galois insertion between the concrete and the

abstract domain, we want to define an abstract semantics. The theory requires the

concrete semantics to be the least fixpoint of a semantic function F : C → C. The

abstract semantic function F̃ : A→ A is correct if ∀x ∈ C. F(x) v γ(F̃(α(x))).

It is often the case (at least in this thesis) that F is in turn defined as com-

position of “primitive” operators. Let f : Cn → C be one such an operator and

assume that f̃ is its abstract counterpart. Then f̃ is (locally) correct w.r.t. f if

∀x1, . . . , xn ∈ C. f(x1, . . . , xn) v γ(f̃(α(x1), . . . , α(xn))). The local correctness of

all the primitive operators implies the global correctness. Hence, we can define an

abstract semantics by defining locally correct abstract primitive semantic functions.

An abstract computation is then related to the concrete computation, simply by

replacing the concrete operators by the corresponding abstract operators. Accord-

ing to the theory, for each operator f, there exists an optimal (most precise) locally

correct abstract operator f̃ defined as f̃(y1, . . . , yn) = α(f(γ(y1), . . . , γ(yn))). How-

ever, the composition of optimal operators is not necessarily optimal.

The abstract operator f̃ is precise5 if

∀x1, . . . , xn ∈ C.α(f(x1, . . . , xn)) = f̃(α(x1), . . . , α(xn))
which is equivalent to α(f(x1, . . . , xn)) = α(f((γ ◦ α)(x1), . . . , (γ ◦ α)(xn))). Hence

the precision of an optimal abstract operator can be reformulated in terms of prop-

erties of α, γ and the corresponding concrete operator. The above definitions are

naturally extended to “primitive” semantic operators from ℘(C) to C.

5There is not presently an agreement on a name for what we call precision. For instance:
[61] calls it full-completeness; [37, 80, 86, 90] use the term completeness; while [38] use the term
optimality for the same notion. We prefer to use the term precision, since completeness may be
confused with the completeness of a semantics.
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Note that if
⊔

is the lub operation over (C, v) and 〈α, γ〉 is a Galois insertion

then
⊔̃

= α ◦
⊔
◦ γ is the lub of (A, ≤) and is precise, i.e.,

⊔̃
◦α = α ◦

⊔
(which is

equivalent to α ◦
⊔

= α ◦
⊔
◦ γ ◦ α).

1.5 Quick Reference: Notation, Terminology and

Basic Assumptions

We summarize most of the notations used in the thesis (introduced in the previous

sections) and the basic assumptions for the experienced reader’s convenience.

Basic Set Theory

We write ∅ for the null or empty set and N for the set of natural numbers 0, 1, 2, . . ..

The cardinality of a set S is denoted by card(S). The powerset of a set S is denoted

by ℘(S). By {xi}i∈I we denote the set of objects xi indexed by i ∈ I.
By ∃x, y, . . . , z. P(x, y, . . . , z) we abbreviate ∃x.∃y. · · · ∃z. P(x, y, . . . , z) and by

∀x, y, . . . , z. P(x, y, . . . , z) we abbreviate ∀x.∀y. · · · ∀z. P(x, y, . . . , z). Moreover, if

E(x1, . . . , xn) is an expression and P(x1, . . . , xn) is a property, by {E(x1, . . . , xn) |

x1 ∈ S1, . . . , xn ∈ Sn, P(x1, . . . , xn)} we abbreviate {y | ∃x1 ∈ S1, . . . , xn ∈ Sn. y =

E(x1, . . . , xn), P(x1, . . . , xn)}.
By f : S ⇀ S ′ we denote a partial function of the set S into the set S ′. The set

of all partial functions from S to S ′ is denoted by [S⇀ S ′]. When f(x) is undefined,

we write f(x) = ℵ, where ℵ denotes the undefined element. For each set S we

assume that ℵ ⊆ S, ℵ ∪ S = S and ∅ 6⊆ ℵ. Given a partial function f : S ⇀ S ′,

the set supp(f) := {x ∈ S | f(x) is defined} is the support of f. A partial function is

said to be finite-support if supp(f) is finite. Moreover, it is said to be finite if both

supp(f) and {f(x) ∈ S ′ | ∃x ∈ S. f(x) is defined} are finite. We will denote (by cases)

a finite-support function f, which assumes on input values v1, . . . , vn output values

r1, . . . , rn and is otherwise undefined, by

f :=


v1 7→ r1

...

vn 7→ rn
Furthermore, if the support of f is just the singleton {v}, we will denote it by f :=

v 7→ r.

We use the lambda notation also to denote partial functions by allowing expres-

sions in lambda-terms that are not always defined. Hence, a lambda expression

λx ∈ S. E denotes a partial function S ⇀ S ′ which, on input x ∈ S, assumes the

value E[x] ∈ S ′, if the expression E[x] is defined, and otherwise it is undefined.
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To indicate that a function f from S to S ′ is total, we write f : S→ S ′. Moreover,

the set of all (total) functions from S to S ′ is denoted by [S → S ′]. We denote by

f = g the extensional equality. Furthermore, g := f[v/x] denotes the function g

which differs from f only for the assignment of v to x.

The equivalence class of an element x ∈ S, with respect to ≈, is denoted by [x]≈.

When clear from the context we abbreviate [x]≈ by [x] and often abuse notation by

letting the elements of a set denote their correspondent equivalence classes.

Domain Theory

Let (S, ≤) be a a poset and X ⊆ S. A least upper bound of X is denoted by lub X

or by
⊔
X. We also write

⊔
{d1, . . . , dn} as d1 t · · · t dn. A greatest lower bound

of X is denoted by glb X or by
d
X. We also write

d
{d1, . . . , dn} as d1 u · · · u dn.

When it is clear from the context, the subscript S will be omitted. Let > denote

the top element
⊔
S =

d
∅ and ⊥ denote the bottom element

d
S =

⊔
∅ of S. Given

a complete lattice (L, ≤), the set of all partial functions F = [S ⇀ L] inherits the

complete lattice structure of L; f � g := ∀x ∈ S. f(x) ≤ g(x), (f t g)(x) := f(x) t
g(x) and ⊥F := λx ∈ S.⊥L. In the following f+ g will be used to denote f t g.

We will use the standard notation T↑� := T↑�(⊥), where ⊥ is the least element

of S, to denote ordinal powers of an operator T : S → S. In particular, T↑! :=⊔n<! T↑n, T↑n+1 := T(T↑n), for n < ω, and T↑0 := ⊥, where
⊔

is the lub operation

of S. Sometimes, T↑�(x) may be denoted simply by T�(x).

Logic Programming

In the following, by t and x we denote tuples of, respectively, terms and distinct

variables. Moreover, we denote by t both the tuple and the set of corresponding

syntactic objects. An expression E is any syntactic object, i.e., terms, formulas,

etc. A ground expression is a variable-free expression. In the following the set of

variables that occurs in a syntactic object E is denoted by var(E). Moreover, by

preds(E) we denote the set of predicates occurring in E.

By ε we denote the empty substitution (i.e., the identity function). Let x :=

x1, . . . , xn and t := t1, . . . , tn. In the following, if (for any i ∈ [1, n]) xi 6= ti, then

{x/t} denotes the substitution {x1/t1, . . . , xn/tn}. dom(ϑ) and range(ϑ) denote the

domain and range of ϑ. If ϑ is a substitution and W ⊆ V is a set of variables, ϑ|W
is the restriction of ϑ to the variables W. In the following, when no ambiguity arise,

we will denote the substitution ϑ|var(E) simply by ϑ|E. A substitution ϑ is idempotent

if ϑϑ = ϑ or, equivalently, if dom(ϑ) ∩ range(ϑ) = ∅. In the following, we restrict

our attention to idempotent substitutions, unless explicitly stated otherwise. The

set of all idempotent substitutions is denoted by Subst .
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The pre-ordering ≤ (more general than) on substitutions is such that ϑ ≤ σ if

and only if there exists ϑ ′ such that ϑϑ ′ = σ. Similarly, given two terms t and t ′, we

define t ≤ t ′ (t is more general than t ′) if and only if there exists a substitution ϑ

such that tϑ = t ′. The relation ≤ is a preorder and by ≡ we denote the associated

equivalence relation (variance).

If t := t1, . . . , tn and s := s1, . . . , sn, a (most general) unifier of t and s is a

(most general) unifier of (s1, . . . , sn) and (t1, . . . , tn). Since idempotent mgus of t1
and t2 are unique up to renaming, we will denote by mgu(t1, t2) the idempotent

most general unifier of t1 and t2 obtained by any (arbitrary but once and for all

given) choice between the possibly equivalent mgus. t =e s denotes the equation

set {s1 =e t1, . . . , sn =e tn}. If A := p(s) and B := p(t), A =e B is a shorthand for

s =e t. This notation is extended to conjunction of atoms in the obvious way. In

the following, sets and conjunctions of equations will often be identified and, when

clear from the context, we abuse notation denoting =e by =.

Given an equation set E := {s =e t}, a (most general) unifier of E is a (most

general) unifier of s and t. The preordering ≤e on equation sets is such that E ≤e E ′
if and only if the solutions of E are also solutions of E ′. Two sets E, E ′ are called

equivalent (denoted by E ≈e E ′) if they have the same solutions. If E is the solved

form equation set {v1 =e t1, . . . , vn =e tn}, the variables vi are said to be eliminable.

The set {v1, . . . , vn} is denoted by elim(E). In the following, given a set of solved

form equation sets E , by elim(E) we denote
⋃E∈E elim(E).

Throughout the thesis we will assume logic programs and goals being defined

on a fixed first order language given by a non-empty signature Σ, a finite set Π of

predicates and a denumerable set V of variables. A (predicate or function) symbol

f with arity n will be denoted by f/n. Function symbols whose arity is 0 are called

also constant symbols. We assume that V , Σ and Π are pairwise disjoint. T(Σ,V)

denotes the set of terms and T(Σ) denotes the set of ground terms. The set of all

atoms is denoted by Atoms . An atom is called pure if it is in the form p(x). We

will denote a goal by the sequence of atoms A1, . . . , An. If n = 1, the goal is called

atomic and, by an abuse of notation, it is denoted with the corresponding atom.

Moreover, if n = 0 the goal is called empty and is denoted by �. The set of all goals

is denoted by Goals . A goal is called pure if it contains only pure atoms which do

not share variables. We denote by G and B possibly empty sequences of atoms. A

clause is denoted by H←B. By B,B ′ we denote the concatenation of B and B ′. A

query is the union of a goal G with a logic program P, here denoted by the formula

G in P.

An equational goal is an object of the form (E ,B) where B is a pure goal and E
is a finite set of solved form equation sets such that elim(E) ⊆ var(B). {∅},B will be

denoted by B. An equational clause is a formula of the form H←E,B, where (H,B)
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is a pure goal and E is a solved form equation set such that elim(E) ⊆ var(H,B). In

the following, given any program clause p(t)← p1(t1), . . . , pn(tn), we will consider

(when needed) its equational form p(x)← E, p1(x1), . . . , pn(xn) where E := {x =e
t, x1 =e t1, . . . , xn =e tn} (and x, x1, . . . , xn are new distinct variables).

The Herbrand Universe UL for the language L is the set of ground terms T(Σ),

while the Herbrand Base BL of L is the set of all ground atoms of L. In the following

we will assume that Σ contains at least one function symbol of arity 0 (a constant)

and therefore the Herbrand universe is not empty.

Given a derivation d, first(d) and last(d) (if d is finite) are respectively the

first and the last goal of d. By clauses(d) we denote the sequence of clauses of

d and by answer(d) we denote the (partial) computed answer substitution of d.

Moreover, length(d) denotes the length of the derivation d, i.e., the number of the

SLD-derivation steps. By an abuse of notation, we denote a zero-length derivation

ofG byG itself. Finally, prefix (d) is the set of all SLD-derivations which are prefixes

of d.

In the following, for the sake of simplicity, we will consider the PROLOG selection

rule. All our results can be generalized to skeleton rules [54] (the leftmost rule is a

particular case of skeleton rules). SLD-derivations via the leftmost rule are called

LD-derivations. In the following G
#
−→c B denotes an LD-derivation step of G which

uses the input clause c, where ϑ is the computed mgu and B is the resolvent.

Moreover, by

d := G
#1−→c1 · · · #n−→cn Gn

we denote a (finite) LD-derivation of G in P, where any ci is a renamed clause of P.

We also denote by G
#

−→P ∗ B a finite LD-derivation of G in P, where ϑ is the (partial)

computed answer substitution and B is the last resolvent.

Equational derivations (via the leftmost selection rule) are formally defined as

follows. Let us consider the equational goal E,A1, . . . , An and let c := H← B be a

renamed apart clause such that E ′ := E ∪ {A1 =e H} is unifiable. Then we have an

equational derivation step E,A1, . . . , An eq
−→c E ′,B, A2, . . . , An. Equational deriva-

tions are obtained from derivation steps in the usual way. A successful equational

derivation is a finite one which has only equational atoms in the last resolvent. In

the following, to simplify the notation G0 #
−−−−→c1;:::;cn Gn will represent the derivation

d = G0 #1−→c1 · · · #n
−→cn Gn such that ϑ = ϑ1 · · · ϑn and E0,G0 eq

−−−−→c1;:::;cn En,Gn will

represent the equational derivation E0,G0 eq
−→c1 · · · eq

−→cn En,Gn.
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Abstract Interpretation

Consider a concrete semantics and a Galois insertion between the concrete and the

abstract domain. The theory requires the concrete semantics to be the least fixpoint

of a semantic function F : C→ C. The abstract semantic function F̃ : A→ A is cor-

rect if ∀x ∈ C. F(x) v γ(F̃(α(x))). It is often the case (at least in this thesis) that F is

in turn defined as composition of “primitive” operators. Let f : Cn → C be one such

an operator and assume that f̃ is its abstract counterpart. Then f̃ is (locally) correct

w.r.t. f if ∀x1, . . . , xn ∈ C. f(x1, . . . , xn) v γ(f̃(α(x1), . . . , α(xn))). The abstract op-

erator f̃ is precise if ∀x1, . . . , xn ∈ C.α(f(x1, . . . , xn)) = f̃(α(x1), . . . , α(xn)) which

is equivalent to α(f(x1, . . . , xn)) = α(f((γ ◦ α)(x1), . . . , (γ ◦ α)(xn))). Hence the

precision of an optimal abstract operator can be reformulated in terms of properties

of α, γ and the corresponding concrete operator. The above definitions are naturally

extended to “primitive” semantic operators from ℘(C) to C.



Part I

A Theory of Observables for Logic
Programs





Chapter 2

The Collecting Semantics of the
Framework

Lack of compositionality of conventional logic programming semantics has been

a serious limitation, since by their very nature PROLOG program fragments are

written to be used in an extensible, modular fashion. It has often been noted, in

particular, that traditional bottom-up and top-down semantics fail to be sufficiently

operational, identify too many computationally distinct programs and are blind to

many interesting observables.

The chapter introduces a semantics for definite logic programs, expressed in term

of SLD-derivations, and studies various properties of SLD-derivations by using the

above semantics. The semantics is defined according to the approach in [13], which

was already used for some abstractions of SLD-derivations, such as computed an-

swers [45], call patterns and partial answers [52] and resultants [54]. The basic

idea underlying the approach is the goal independent program denotation, which can

equivalently be specified by top-down and bottom-up constructions. The top-down

definition is the set of SLD-derivations for pure atomic goals, while the bottom-

up definition is the least fixpoint of a suitable immediate consequence operator.

The denotation is proved to be correct and minimal w.r.t. the observational equiva-

lence induced on programs by SLD-derivations. Moreover, it is proved to enjoy two

important compositionality properties, i.e., AND-compositionality and OR-composi-

tionality . AND-compositionality means that the SLD-derivations of any goal can be

reconstructed from the goal independent denotation. OR-compositionality means

that the denotation of P1 ∪ P2 can be reconstructed from the denotations of P1 and

P2.
The above results simply extend to SLD-derivations similar results obtained for

other (more abstract) observables. The main novelty of this work is the semantic

definition methodology and the structure of the resulting semantics. We will start by
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defining a denotational semantics on domains consisting of sets of SLD-derivations.

It is a rather standard denotational definition with two peculiarities. First it deals

with low-level operational details, while the usual denotational semantics operates on

the domain of computed answers and is therefore much more abstract. Moreover,

the typical compositional style of denotational semantics allows us to identify a

small set of primitive semantic operators , which are the semantic counterpart of the

language syntactic operators. The same primitive semantic operators are then used

to define the operational semantics, by means of a transition system.

The proof of all the main theorems, such as

• equivalence between denotational and operational semantics,

• equivalence between bottom-up and top-down (goal independent) denotations,

• correctness and minimality of the denotation,

• AND-compositionality and OR-compositionality of the denotation,

heavily rely on some lemmata, which express properties of the primitive semantic

operators. This is even more important, because the SLD-derivations semantics

has been conceived as the collecting semantics for a hierarchy of semantics (see

Chapter 3), systematically derived by using abstract interpretation theory [32]. Its

definition style (denotational semantics and transition system) will be inherited by

all the abstract semantics. Moreover, since abstraction is essentially abstraction of

the primitive semantic operators, the abstract semantics will inherit all those prop-

erties of the collecting semantics for which the suitable lemmata on the semantic

operators hold. This provides the basis for the definition of a taxonomy of abstrac-

tions [21, 22], which is fully presented in Chapter 3. It is worth noting that the

SLD-derivation semantics is the most natural choice for a collecting semantics. It

is essentially a trace semantics and it contains all the relevant information of SLD-

trees. A more abstract semantics, such as the resultant semantics, would not allow

to derive properties such as proof trees (used in the Heyting’s semantics in [66, 67])

or derivation lengths.

The chapter is organized as follows. Section 2.1 defines the semantic domain.

Section 2.2 introduces the denotational semantics and the primitive semantic opera-

tors. Section 2.3 defines the transition system. Section 2.4 defines the goal indepen-

dent denotations. Section 2.5 contains the main equivalence and compositionality

theorems. Finally Section 2.7 contains the proofs of the technical results.

The results of this chapter are from [30, 21].
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2.1 Semantic Domain

We assume the reader to be familiar with the notions of SLD-resolution and SLD-

tree introduced in Section 1.3. We want to represent here, for notational convenience,

SLD-trees as sets of derivations.

1. A set of derivations S is well-formed if and only if, for any d ∈ S, prefix (d) ⊆ S.
Each well-formed set where all the clauses used in derivations are in P is a

representation of a family of partial SLD-trees of P.

2. We denote by WFS the complete lattice of well-formed sets of derivations,

partially ordered by inclusion. The maximal well-formed set of derivations of

G in P is a representation of the SLD-tree of G in P.

3. A collection D is a partial function Goals ⇀ WFS such that, for every G ∈
Goals , D(G) is a well-formed set of derivations all starting from G or it is

undefined. Formally, ∀d ∈ D(G). first(d) = G. Hence a collection is a partial

function which associates to any goal G a (representation of) a partial SLD-

tree of G in P. A pure collection is a collection defined only for pure atomic

goals.

4. C is the domain of all the collections ordered the by lifting of inclusion to

functions, i.e., D v D ′ if and only if ∀G. D(G) ⊆ D ′(G). The partial order

on C formalizes the evolution of the computation process. It is easy to prove

that (C, v) is a complete lattice. By PC we denote the sub-lattice of all pure

collections.

Example 2.1.1

Consider the SLD-tree of Figure 2.1. The collection D, which represents it, is a

function which associates G to the (well-formed) set of derivations{
G; G

#1−→c1 A; G
#2−→c2 B; G

#3−→c3 C; G
#1−→c1 A #4−→c4 D}

and is undefined for all the other inputs.

Figures 2.2 and 2.3 are a representation1 of the collections

D1 :=

{
p(x, y) 7→ {p(x, y); d1; d3}
n(x) 7→ {n(x); d5}

1In the following examples we will represent by a family of SLD-trees, for goals G1, . . . ,Gn,
the collection which associates to any goal Gi the well-formed set representing the SLD-tree cor-
responding to Gi and is undefined for any goal other than G1, . . . ,Gn.
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Figure 2.1: The SLD-tree corresponding to the collection D in Example 2.1.1

D2 :=

{
q(x, y) 7→ {q(x, y); d7; d2}
q(f(x), z) 7→ {q(f(x), z); d6; d4}

where (as in Example 1.3.7 on page 19)

d1 := p(x, y)
fv=x;w=yg

−−−−−−−−−→p(v;w) q(v;w)
q(x, y)

d2 := q(x, y)
ft=x;u=yg

−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), x)
fr=f(s);x=ag
−−−−−−−→n(r;a) �

d3 := p(x, y)
fx=g(a);y=bg
−−−−−−−→p(g(a);b) �

d4 := q(f(x), z)
ft=f(x);z=ag

−−−−−−−−−−→q(t;a) m(g(s);t) m(g(s), f(x))
fr=g(s);x=g(s)g
−−−−−−−−→m(r;f(r)) �

d5 := n(x)
ft=xg

−−−−−−−→n(t) p(t;t) p(x, x)
d6 := q(f(x), z)

ft=f(x);z=ag
−−−−−−−−−−→q(t;a) m(g(s);t) m(g(s), f(x))

d7 := q(x, y)
ft=x;u=yg

−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), x)

The goal we want to achieve is to develop a denotation modeling partial SLD-

trees. We follow the approach in [13], by defining a “syntactic” semantic domain

(interpretation). Our modeling of partial SLD-trees is similar to the basic denotation

defined in terms of clauses in [52].
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{x/g(a), y/b}

p(g(a), b)←
�

{t/x}

n(x)

p(x, x)

?

n(t)← p(t, t)

Figure 2.2: The SLD-trees corresponding to the collection D1 in Example 2.1.1

In order for the semantics not to depend upon variable names and on the specific

unification algorithm, we define the equivalence modulo enhanced variance ≡C on

collections. Namely, D ≡C D ′ if and only if, for any G such that D(G) is defined,

there exists a variant G ′ of G such that D ′(G ′) is defined and, for any d ∈ D(G),

there exists d ′ ∈ D ′(G ′), such that clauses(d) ≡ clauses(d ′) and vice versa. Hence,

derivations with a different choice of the mgu and of the new variables introduced

by the renaming apart operation are equivalent modulo enhanced variance.

Definition 2.1.2 An interpretation I (C-interpretation) is a pure collection modulo

enhanced variance. We denote by IC the set of interpretations and, by abuse of

notation, we denote the induced quotient order on IC by v. Thus (IC, v) is a

complete lattice.

Note that in interpretations the enhanced variance relation allows us to abstract

w.r.t. the variables names occurring in the initial goals of any collection.

2.2 Denotational Semantics of SLD-derivations

Several denotational semantics have been defined for logic programs (see, for exam-

ple, [64, 65, 39]). The main differences w.r.t. the above definitions are that we do not

consider the PROLOG search rule and that our denotations model SLD-derivations

rather than just computed answers.

We denote the equivalence class (modulo enhanced variance) of a collection σ

by σ itself. Moreover, any interpretation I of IC is implicitly considered also as

an arbitrary collection obtained by choosing an arbitrary representative of I. All

the semantic operators that we use on interpretations are independent of the choice

of the representative. Therefore, we can define any operator on IC in terms of its

counterpart defined on C, independently from the choice of the representative. All
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{r/f(s), x/a}

{t/x, u/y}

n(f(s), x)

q(x, y)
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?

n(r, a)←

q(t, u)← n(f(s), t)

{r/g(s), x/g(s)}

{t/f(x), z/a}

m(g(s), f(x))

q(f(x), z)

�
?

?

m(r, f(r))←

q(t, a)←m(g(s), t)

Figure 2.3: The SLD-trees corresponding to the collection D2 in Example 2.1.1

the definitions are independent from the choice of the syntactic object. To simplify

the notation, we denote the corresponding operators on IC and C by the same name.

We define the denotational semantics inductively on the syntax of logic programs.

Hence, the semantic functions are

QJ·K : QUERY −→ C,
GJ·K : GOAL −→ (IC → C), AJ·K : ATOM −→ (IC → C),

PJ·K : PROG −→ (IC → IC), CJ·K : CLAUSE −→ (IC → IC)

and are defined in terms of the semantic operators ·, ×, .,
∑

defined in Section 2.2.2.

The choice of the semantic operators is induced by syntactic operations, due to the

compositional nature of definitions in the denotational style. The informal meaning

of the operators is the following. The operator · “solves” an atomic goal A into an

interpretation I. The operator × computes the conjunction of two interpretations.

The operator . computes the interpretation obtained by replacement. The operator∑
computes the non-deterministic union of a class of interpretations. Note that

when the class is finite we use the infix notation +. Finally the function φ� is the

collection of the empty goal and tree maps clauses to collections.

QJG in PK := GJGKlfp PJPK (2.2.1)

GJA,GKI := AJAKI × GJGKI GJ�KI := φ� (2.2.2)

AJAKI := A · I (2.2.3)

PJ{c} ∪ PKI := CJcKI + PJPKI PJ∅KI := Id I (2.2.4)

CJH← BKI := tree(H← B) . GJBKI, (2.2.5)

where lfp PJPK means lfpIC λI. PJPKI.
The last definition (2.2.5) evaluates to the (collection mapping the pure version

of the head of the clause to the) one step derivation, using the clause H←B followed
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by all (suitably renamed) derivations starting with B obtained by composition from

I.

We give now a preliminary example to focus the main ideas of the semantics.

We refer to Sections 2.2.1 and 2.2.2 for more details.

Example 2.2.1

Consider the (slight modification2 of the well-known append) program P of Figure 2.4

and the goal G := ap([a], [l], x), ap(x, [h], z). The denotation of G in P is

QJG in PK = GJGKlfp PJPK
= AJap([a], [l], x)Klfp PJPK ×AJap(x, [h], z)Klfp PJPK × φ�
=
(
ap([a], [l], x) · lfp PJPK)× (ap(x, [h], z) · lfp PJPK)

Since

PJPKI = ap(x, y, z) 7→ {ap(x, y, z); ap(x, y, z) fx=[ ];y=v;z=vg
−−−−−−−−→ap([ ];v;v) �;

ap(x, y, z)
fx=[lju];y=t;z=[ljv]g

−−−−−−−−−−−−−−−→ap([lju];t;[ljv]) ap(u;t;v) ap(u, t, v)
}

. (ap(u, t, v) · I)

and

lfp PJPK = ap(x, y, z) 7→ {ap(x, y, z); ap(x, y, z) fx=[ ];y=v;z=vg
−−−−−−−−→ap([ ];v;v) �;

ap(x, y, z)
fx=[lju];y=t;z=[ljv]g

−−−−−−−−−−−−−−−→ap([lju];t;[ljv]) ap(u;t;v) ap(u, t, v);
ap(x, y, z)

fx=[lju];y=t;z=[ljv]g
−−−−−−−−−−−−−−−→ap([lju];t;[ljv]) ap(u;t;v) ap(u, t, v)

fu=[ ];t=w;v=wg
−−−−−−−−−→ap([ ];w;w) 

�;

. . .
}
,

then

ap([a], [l], x) · lfp PJPK = ap([a], [l], x) 7→ prefix
(
ap([a], [l], x)

fx=[ajw];v=[l];y=[ ];r=ag
−−−−−−−−−−−−−−−−→ap([rjy];v;[rjw]) ap(y;v;w)

ap([ ], [l], w)
fw=[l];t=[l]g
−−−−−−→ap([ ];t;t) �)

ap(x, [h], z) · lfp PJPK = ap(x, [h], z)) 7→ prefix
(
ap(x, [h], z)

fx=[ ];z=[h];y=[h]g
−−−−−−−−−−→ap([ ];y;y) 

� ) ∪ prefix
(
ap(x, [h], z)

fx=[ljy];t=[h];z=[ljv]g
−−−−−−−−−−−−−−−→ap([ljy];t;[ljv]) ap(y;t;v)

ap(y, [h], v)
fy=[ ];u=[h];v=[h]g
−−−−−−−−−−→ap([ ];u;u) �) ∪ . . .

2I shortened all predicates names to limit the size of the formulas.
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c1: ap([], Xs, Xs).

c2: ap([X|Xs], Ys, [X|Zs]) :- ap(Xs, Ys, Zs).

Figure 2.4: The append program

Thus, the semantics of G in P is

QJG in PK = G 7→ prefix
(
ap([a], [l], x), ap(x, [h], z)

fx=[ajw];v=[l];y=[ ];r=ag
−−−−−−−−−−−−−−−−→ap([rjy];v;[rjw]) ap(y;v;w)

ap([ ], [l], w), ap([a|w], [h], z)
fw=[l];t=[l]g
−−−−−−→ap([ ];t;t) 

ap([a, l], [h], z)
fo=a;v ′=[l];u=[h];z=[ajs]g

−−−−−−−−−−−−−−−−−→ap([ojv ′];u;[ojs]) ap(v ′;u;s)
ap([l], [h], s)

fo ′=l;v ′′=[ ];u ′=[h];s=[ljs ′]g
−−−−−−−−−−−−−−−−−−−−−→ap([o ′jv ′′];u ′;[o ′js ′]) ap(v ′′;u ′;s ′)

ap([ ], [h], s ′)
ft ′=[h];s ′=[h]g
−−−−−−−−→ap([ ];t ′;t ′) �).

See Figures 2.5 and 2.6 for an SLD-tree representation.

2.2.1 Basic Operators on Derivations

In order to define the semantic operators we first need to define three auxiliary

operations on derivations. Such operators will be used later to define the semantic

operations on interpretations. The first operation formalizes the concatenation of

two derivations, the second computes the instantiation of a derivation, and finally

the third defines the AND-compositional conjunction of two derivations. These are

the formal definitions.

1. Let d1, d2 be derivations such that last(d1) = first(d2) and var(d1)∩var(d2) =

var(first(d2)). Then d1 :: d2 denotes the concatenation of d1 and d2.
2. Let d := G ′0 # ′1−→c1 · · ·

# ′k−→ck G ′k be a derivation and δ be an idempotent substitution

such that var(G ′0δ) ∩ var(clauses(d)) = ∅. Then ∂�(d) := G0 #1−→c1 · · · #h−→ch Gh
where

• G0 := G ′0δ and

• for any 0 < i ≤ k, if Gi-1 = (A, Ḡi) and ci = H← B then (if an mgu

exists) ϑi := mgu(A,H) and Gi := (B, Ḡi)ϑi.
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Figure 2.5: The PJPK operator of Example 2.2.1

Note that ∂�(d) is the derivation obtained by applying the substitution δ to

first(d) and attempting to build as long a derivation as possible (until a failure

in finding an mgu occurs) using the same clauses as in d. Thus, in particular,

h ≤ k.

3. Let d1 := G ′0 #1−→c1 · · · #k−→ck G ′k, d2 be derivations such that G ′′0 = first(d2) and

var(d1) ∩ var(d2) = var(G ′0) ∩ var(G ′′0 ). Then

d1 ∧ d2 :=

(G ′0,G ′′0 ) #1−→c1 · · · #k−→ck (G ′k,G ′′0ϑ1 · · · ϑk) if G ′k 6= �
(G ′0,G ′′0 ) #1−→c1 · · · #k−→ck G ′′0ϑ1 · · · ϑk :: ∂#1···#k(d2) otherwise

Note that d1 ∧ d2 is the derivation obtained by adding (a suitable instantia-

tion of) the goal first(d2) to each goal in d1 and then (if d1 is a refutation)

attempting to build as long a derivation as possible using the same clauses as

in d2.
The constraints on the variables of derivations are used to avoid variable name

clashes in the clauses. Moreover, note that, for any choice of the mgu used in the

construction of the derivations, the results are equivalent modulo variance.

Example 2.2.2

Consider (as in Example 2.1.1) the following derivations.

d1 := p(x, y)
fv=x;w=yg

−−−−−−−−−→p(v;w) q(v;w)
q(x, y)
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{y/[ ], u/[h], v/[h]}

ap([l|y], t, [l|v])← ap(y, t, v)
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{x/[a|w], v/[l], y/[ ], r/a}
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ap([r|y], v, [r|w])← ap(y, v,w)

{w/[l], t/[l]}

ap([ ], [l], w)

�?
ap([ ], t, t)←

Figure 2.6: The SLD-trees of Example 2.2.1
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d2 := q(x, y)
ft=x;u=yg

−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), x)
fr=f(s);x=ag
−−−−−−−→n(r;a) �

d3 := p(x, y)
fx=g(a);y=bg
−−−−−−−→p(g(a);b) �

d4 := q(f(x), z)
ft=f(x);z=ag

−−−−−−−−−−→q(t;a) m(g(s);t) m(g(s), f(x))
fr=g(s);x=g(s)g
−−−−−−−−→m(r;f(r)) �

Since var(d1) ∩ var(d2) = var(d3) ∩ var(d2) = {x, y} and var(d3) ∩ var(d4) = {x},

the operations d1 :: d2, d1 ∧ d2, d3 ∧ d2 and d3 ∧ d4 are defined and, in particular,

the following holds.

d1 :: d2 = p(x, y)
fv=x;w=yg

−−−−−−−−−→p(v;w) q(v;w)
q(x, y)

ft=x;u=yg
−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), x)

fr=f(s);x=ag
−−−−−−−→n(r;a) �

d1 ∧ d2 = p(x, y), q(x, y)
fv=x;w=yg

−−−−−−−−−→p(v;w) q(v;w)
q(x, y), q(x, y)

d3 ∧ d2 = p(x, y), q(x, y)
fx=g(a);y=bg
−−−−−−−→p(g(a);b) q(g(a), b)

ft=g(a);u=bg
−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), g(a))

d3 ∧ d4 = p(x, y), q(f(x), z)
fx=g(a);y=bg
−−−−−−−→p(g(a);b) q(f(g(a)), z)

ft=f(g(a));z=ag
−−−−−−−−−−→q(t;a) m(g(s);t)

m(g(s), f(g(a)))
fr=g(a);s=ag
−−−−−−−→m(r;f(r)) �

Moreover, considered that var(clauses(d1)) = {v,w}, var(clauses(d2)) = {t, u, s, r},

var(clauses(d3)) = ∅ and var(clauses(d4)) = {t, s, r}, the operations ∂fx=f(t);w=cg(d1),
∂fx=f(g(z));y=zg(d2), ∂fx=bg(d3) and ∂fx=g(z)g(d4) are defined and, in particular, the fol-

lowing holds.

∂fx=f(t);w=cg(d1) = p(f(t), y)
fv=f(t);w=yg

−−−−−−−−−→p(v;w) q(v;w)
q(f(t), y)

∂fx=f(g(z));y=zg(d2) = q(f(g(z)), z)
ft=f(g(z));u=zg

−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), f(g(z)))

∂fx=g(a);y=bg(d3) = p(g(a), b)
"

−−−−−−−→p(g(a);b) �
∂fx=g(z)g(d4) = q(f(g(z)), z)

ft=f(g(a));z=ag
−−−−−−−−−−→q(t;a) m(g(s);t) m(g(s), f(g(a)))

fr=g(a);s=ag
−−−−−−−→m(r;f(r)) �

Note that, since the binding w/c does not affect the goal p(f(t), y), head of the

derivation d1, then ∂fx=f(t);w=cg(d1) = ∂fx=f(t)g(d1).
The following lemma states that the above operations are well defined.
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Lemma 2.2.3 Let d1, d2 be derivations and δ be an idempotent substitution. Then

the following properties hold.

1. If d1 :: d2 is defined then d1 :: d2 is a derivation.

2. If ∂�(d1) is defined, then ∂�(d1) is a derivation.

3. If d1 ∧ d2 is defined then d1 ∧ d2 is a derivation.

Lemma 2.2.4 Let d1, d2, d3 be derivations and δ be an idempotent substitution.

Then the following holds.

1. If ∂�(d1 ∧ d2) and ∂�(d1) ∧ ∂�(d2) are defined then ∂�(d1 ∧ d2) = ∂�(d1) ∧

∂�(d2).
2. If (d1∧d2)∧d3 and d1∧ (d2∧d3) are defined then (d1∧d2)∧d3 = d1∧ (d2∧

d3).

2.2.2 Basic Operators on Collections

Let D,D1, D2 be collections in C, G be a goal and A be an atom.

• The void collection φ is the collection λG.ℵ, i.e., the always undefined func-

tion.

• The identity collection IdC is the collection of zero-length derivations for each

goal, i.e., λG. {G}, while the pure identity collection Id I is the collection3

λp(x). {p(x)}. Moreover, φG denotes the collection φ
[
fGg
/
G
]
4.

• The instantiation of D with A is

A ·D := φ
[S/A] where S :=

{
∂�(d) | S ′ is a renamed apart (from A)

version of D(A ′), for some A ′ ≤ A, d ∈ S ′ and there exists δ
such that A = first(d)δ

}
.

• The product of D1 and D2 is

D1 ×D2 := λG.
{
d1 ∧ d2 | (G1,G2) = G and for i = 1, 2, G ′i ≡ Gi, di is

a renamed version of an element in Di(G ′i), such that
Gi = first(di) and d1 ∧ d2 is defined

}
.

3Note that when we write λp(x). E we denote a partial function which is defined only for inputs
of the form p(x) and is otherwise undefined.

4Note that the void collection, viewed as a set of ordered pairs, is just the empty set and φG is
just the singleton {〈G, {G}〉}.
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• The (compatible) extension of D1 by D2 is

D1 .D2 := λG. D1(G) ∪
{
d1 :: d2 | d1 ∈ D1(G), G2 ≡ last(d1) and d2 is

a renamed version of an element in D2(G2), such that
d1 :: d2 is defined

}
.

The . operator is extensive on the first argument, i.e., D1 v D1 .D2.
• The sum of a class {Dj}j∈J is∑

{Dj}j∈J := λG.
⋃
j∈J
Dj(G).

and D1 + D2 denotes5
∑

{D1, D2}. Note that D1 v D2 ⇐⇒ D1 + D2 = D2
and that the lub operation on (C, v) coincides with

∑
.

• The operator tree maps clauses to collections. Indeed, every clause c := p(t)←
B can be viewed as the “one step” interpretation (collection)

tree(c) := φ

[{p(x); p(x) fx=tg
−−−→c B

}/
p(x)
]
,

where x is a tuple of new distinct variables. Moreover, tree can be extended

to programs simply as tree(P) :=
∑

{tree(c)}c∈P.
Example 2.2.5

Consider (as in Example 2.1.1 on page 39) the following collections.

D1 :=

{
p(x, y) 7→ {p(x, y); d1; d3}
n(x) 7→ {n(x); d5}

D2 :=

{
q(x, y) 7→ {q(x, y); d7; d2}
q(f(x), z) 7→ {q(f(x), z); d6; d4}

where

d1 := p(x, y)
fv=x;w=yg

−−−−−−−−−→p(v;w) q(v;w)
q(x, y)

d2 := q(x, y)
ft=x;u=yg

−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), x)
fr=f(s);x=ag
−−−−−−−→n(r;a) �

d3 := p(x, y)
fx=g(a);y=bg
−−−−−−−→p(g(a);b) �

5Remember that + is an infix notation for
∑

when applied to finite classes.
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n(f(s), f(g(z)))

{t/f(g(z)), u/z}

q(t, u)← n(f(s), t)

q(f(g(z)), z)

{t/f(g(a)), z/a}

�
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�

�
�

�
�

�
�

��+
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{r/g(a), s/a}

q(t, a)←m(g(s), t)

m(g(s), f(g(a)))

�
?

m(r, f(r))←

Figure 2.7: The SLD-tree corresponding to collection q(f(g(z)), z) · D2 in Exam-
ple 2.2.5

d4 := q(f(x), z)
ft=f(x);z=ag

−−−−−−−−−−→q(t;a) m(g(s);t) m(g(s), f(x))
fr=g(s);x=g(s)g
−−−−−−−−→m(r;f(r)) �

d5 := n(x)
ft=xg

−−−−−−−→n(t) p(t;t) p(x, x)
d6 := q(f(x), z)

ft=f(x);z=ag
−−−−−−−−−−→q(t;a) m(g(s);t) m(g(s), f(x))

d7 := q(x, y)
ft=x;u=yg

−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), x)

A representation of D1 and D2 is in Figures 2.2 and 2.3. The following hold.

q(f(g(z)), z) ·D2 = q(f(g(z)), z) 7→ prefix (∂fx=g(z)g(d4))∪{
∂fx=f(g(z));y=zg(d2)}

D1 .D2 =

{
p(x, y) 7→ prefix (d1 :: d2) ∪ {d3}
n(x) 7→ {n(x); d5}

D1 ×D2 =


p(x, y), q(x, y) 7→ prefix (d3 ∧ d2) ∪ {d1 ∧ d2}
p(x, y), q(f(x), y) 7→ prefix (d3 ∧ d4) ∪ {d1 ∧ d4}
n(x), q(x, y) 7→ {n(x), q(x, y); d5 ∧ d2}
n(x), q(f(x), y) 7→ {n(x), q(f(x), y); d5 ∧ d4}

where (as in Example 2.2.2 on page 45)

∂fx=f(g(z));y=zg(d2) = q(f(g(z)), z)
ft=f(g(z));u=zg

−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), f(g(z)))
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{r/f(s), x/a}

{t/x, u/y}

n(f(s), x)

q(x, y)

{v/x,w/y}

�?

?

n(r, a)←

q(t, u)← n(f(s), t)

p(v,w)← q(v,w)

p(x, y)
�

�
�

�
�

�
�

�
�

�
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HHHH
HHH

HHH
HHHj

{x/g(a), y/b}

p(g(a), b)←
�

{t/x}

n(x)

p(x, x)
?

n(t)← p(t, t)

Figure 2.8: The SLD-trees corresponding to collection D1 .D2 in Example 2.2.5

∂fx=g(z)g(d4) = q(f(g(z)), z)
ft=f(g(a));z=ag

−−−−−−−−−−→q(t;a) m(g(s);t) m(g(s), f(g(a)))

fr=g(a);s=ag
−−−−−−−→m(r;f(r)) �

and

d1 :: d2 = p(x, y)
fv=x;w=yg

−−−−−−−−−→p(v;w) q(v;w)
q(x, y)

ft=x;u=yg
−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), x)

fr=f(s);x=ag
−−−−−−−→n(r;a) �

d1 ∧ d2 = p(x, y), q(x, y)
fv=x;w=yg

−−−−−−−−−→p(v;w) q(v;w)
q(x, y), q(x, y)

d3 ∧ d2 = p(x, y), q(x, y)
fx=g(a);y=bg
−−−−−−−→p(g(a);b) q(g(a), b)

ft=g(a);u=bg
−−−−−−−−−−→q(t;u) n(f(s);t) n(f(s), g(a))

d3 ∧ d4 = p(x, y), q(f(x), z)
fx=g(a);y=bg
−−−−−−−→p(g(a);b) q(f(g(a)), z)

ft=f(g(a));z=ag
−−−−−−−−−−→q(t;a) m(g(s);t)

m(g(s), f(g(a)))
fr=g(a);s=ag
−−−−−−−→m(r;f(r)) �

d1 ∧ d4 = p(x, y), q(f(x), z)
fv=x;w=yg

−−−−−−−−−→p(v;w) q(v;w)
q(x, y), q(f(x), z)

d5 ∧ d2 = n(x), q(x, y)
ft=xg

−−−−−−−→n(t) p(t;t) p(x, x), q(x, y)

d5 ∧ d4 = n(x), q(f(x), z)
ft=xg

−−−−−−−→n(t) p(t;t) p(x, x), q(f(x), z)
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q(x, y), q(x, y)

{v/x,w/y}

p(v,w)← q(v,w)

p(x, y), q(x, y)
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{x/g(a), y/b}

{t/g(a), u/b}

p(g(a), b)←

n(f(s), g(a))

q(g(a), b)

?

q(t, u)← n(f(s), t)

{t/x}

p(x, x), q(x, y)

n(x), q(x, y)

?

n(t)← p(t, t)

q(x, y), q(x, y)

{v/x,w/y}

p(v,w)← q(v,w)

p(x, y), q(f(x), z)
�

�
�

�
�

�
�

�
�

�
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{x/g(a), y/b}

{t/f(g(a)), z/a}

{r/g(a), s/a}

p(g(a), b)←
q(f(g(a)), z)

m(g(s), f(g(a)))

�?

?

m(r, f(r))←

q(t, a)←m(g(s), t)

{t/x}

p(x, x), q(f(x), z)

n(x), q(f(x), z)

?

n(t)← p(t, t)

Figure 2.9: The SLD-trees corresponding to collection D1 ×D2 in Example 2.2.5
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See Figures 2.7, 2.8 and 2.9 for the corresponding SLD-tree representations.

Note that
{
p(x, y); d1; d3} ⊂ prefix (d1 :: d2)∪ {d3} and that, even if {d1 ∧ d4}

it is not a well-formed set of derivations, the set prefix (d3 ∧ d4) ∪ {d1 ∧ d4} it is.

It is important to note that ≡C is a congruence w.r.t. ·, ×, . and
∑

because

of the renaming apart property and the “collecting” nature of these operations.

Furthermore, for each A ∈ Atoms , D,D ′ ∈ C such that D ≡C D ′,

A ·D = A ·D ′. (2.2.6)

Now we prove some properties of the operations on collections that will be useful in

the sequel.

Lemma 2.2.6 Let D1, D2, D3 ∈ C. Then

1. D1 × (D2 ×D3) = (D1 ×D2)×D3
2. If D3 v D2 then D1 . (D2 .D3) = (D1 .D2) .D3.

Proof. The proof of Point 1 follows by Point 2 of Lemma 2.2.4 and by definition of

×. To prove Point 2, first of all observe that, by definition of ., for any D1, D2, D3 ∈
C, (D1 .D2) .D3 = D1 . ((D2 .D3) +D3). Moreover, if D3 v D2, D3 v D2 .D3
and then, since + is the lub operation on C, (D2 .D3) +D3 = D2 .D3. Therefore,

D1 . ((D2 .D3) +D3) = D1 . (D2 .D3).
Note that, by Lemma 2.2.6 and by a straightforward inductive argument, for any

n ≥ 2 and D ∈ C,

D . (D . (· · · .D))︸ ︷︷ ︸n
= ((D .D) . · · · ) .D︸ ︷︷ ︸n

. (2.2.7)

Therefore, we can omit the parentheses in such formulas.

Lemma 2.2.7 ·, × and . distribute over sums in (C, v).

Proof. We have to prove that, for any {Dj}j∈J ⊆ C and D ∈ C,
∑

{Dj . D}j∈J =

(
∑

{Dj}j∈J) .D and D . (
∑

{Dj}j∈J) =
∑

{D .Dj}j∈J. Analogously for · and ×. The

proof is straightforward by observing that ., · and × are defined by collecting the

results of operations defined on single derivations.

Since the lub operation on (C, v) coincides with
∑

, a straightforward consequence

is that ·, × and . are continuous (and monotonic) on (C, v).
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2.3 Operational Semantics

The operational semantics of queries in the program P can be described in terms

of the following transition system T := (C, 7−→P ). Since we want the rules of T do

depend on properties of well-formed sets, rather than on the structure of a single

derivation step, we can use the rule

D ∈ C, D 6= D . su(tree(P))

D 7−→P D . su(tree(P)) (2.3.1)

where, for any pure collection D,

su(D) :=
∑{

(A ·D)× IdC
}
A∈Atoms

. (2.3.2)

Note that su(D) can be viewed as the sequential unfolding of the pure collection D

and it is closed under renaming and under instantiation, since we consider all the

possible evaluations of D. Note that we use the construction · × IdC to allow the

construction · . su(tree(P)) to extend all derivations in the range of D whose last

goal leftmost atom matches the head of a clause in P.

The initial states of T are all the collections of SLD-derivations of length zero,

while the final states are the collections of SLD-refutations and finite failures.

As the intuition suggests, the transition system T defines the usual notion of

SLD-derivation. The formal statement is given in Theorem 2.3.2. The specificity

of this transition system is due to the fact that we have defined it using the same

semantic operators used in the denotational definition.

Example 2.3.1

Consider the (slight modification6 of the well-known ancestor) program P of Fig-

ure 2.10 and the collection D := tree(P) which is (see Figure 2.11){
anc(x, y) 7→ {anc(x, y); da; db}
par(x, y) 7→ {par(x, y); dc; de}

where

da := anc(x, y)
fv=x;w=yg

−−−−−−−−−−−−→anc(v;w) par(v;w)
par(x, y)

db := anc(x, y)
fv=x;w=yg

−−−−−−−−−−−−−−−−−→anc(v;w) par(v;z);anc(z;w)
par(x, z), anc(z, y)

dc := par(x, y)
fx=joe;y=jayg

−−−−−−−−−→par(joe;jay) �
6I shortened all predicates names to limit the size of the formulas.
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c1: anc(X,Y) :- par(X,Y).

c2: anc(X,Y) :- par(X,Z), anc(Z,Y).

c3: par(joe,jay).

c4: par(jay,tim).

Figure 2.10: The ancestor program

de := par(x, y)
fx=jay;y=timg

−−−−−−−−−→par(jay;tim) 
�

Furthermore, consider the collection D ′ := φanc(x;y) and let D ′′ := D
[
@
/par(x;y)].

Since, for each pure atom p(x), D(p(x)) = su(D)(p(x)), it is easy to see that

D ′ 7−→P D ′′.

Now we want to compute the collection D ′′ . su(D). First of all note that, if for

a collection D̄ the set D̄(G) is finite, for any goal G, the operation D̄ . su(tree(P))

can use only a finite part of su(tree(P)) to extend D̄. Hence it is quite easy to build

a finite collection D ′′′ @ su(D) such that D ′′ . su(D) = D ′′ .D ′′′. It is the collection

D ′′′ :=

{
par(x, z), anc(z, y) 7→ prefix (da) ∪ {db}
par(x, y) 7→ {par(x, y); dc; de}

where

da := par(x, z), anc(z, y)
fx=joe;z=jayg

−−−−−−−−−→par(joe;jay) anc(jay, y)

db := par(x, z), anc(z, y)
fx=jay;z=timg

−−−−−−−−−→par(jay;tim) 
anc(tim, y)

dc := par(x, y)
fx=joe;y=jayg

−−−−−−−−−→par(joe;jay) �
de := par(x, y)

fx=jay;y=timg
−−−−−−−−−→par(jay;tim) 

�
Since D ′′ .D ′′′ A D ′′, we can do the transition D ′′ 7−→P D ′′′′, where

D ′′′′ := D ′′ .D ′′′ = anc(x, y) 7→ prefix (df) ∪ {dg; dh; di}
and

df := anc(x, y)
fv=x;w=yg

−−−−−−−−−−−−→anc(v;w) par(v;w)
par(x, y)

fx=joe;y=jayg
−−−−−−−−−→par(joe;jay) �

dg := anc(x, y)
fv=x;w=yg

−−−−−−−−−−−−→anc(v;w) par(v;w)
par(x, y)

fx=jay;y=timg
−−−−−−−−−→par(jay;tim) 

�
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par(x, y)

{v/x,w/y}

anc(v,w)← par(v,w)

anc(x, y)
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{v/x,w/y}

anc(v,w)← par(v, z), anc(z,w)

par(x, z), anc(z, y)

{x/joe, y/jay}

�
par(joe, jay)←

{x/jay, y/tim}

par(x, y)
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�
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par(jay, tim)←
�

Figure 2.11: The SLD-trees corresponding to collection D of Example 2.3.1

dh := anc(x, y)
fv=x;w=yg

−−−−−−−−−−−−−−−−−→anc(v;w) par(v;z);anc(z;w)
par(x, z), anc(z, y)

fx=joe;z=jayg
−−−−−−−−−→par(joe;jay) anc(jay, y)

di := anc(x, y)
fv=x;w=yg

−−−−−−−−−−−−−−−−−→anc(v;w) par(v;z);anc(z;w)
par(x, z), anc(z, y)

fx=jay;z=timg
−−−−−−−−−→par(jay;tim) 

anc(tim, y)

See Figure 2.12 for an SLD-tree representation of this transition.

Since we are interested in all the SLD-derivations of a query G in P, we define

its behavior as

BJG in PK :=
∑{

D | φG 7−→P ∗ D
}

(2.3.3)

where 7−→P ∗ is the reflexive and transitive closure of 7−→P . The behavior (modulo

variance) of a query is the operational semantics of the query. As we will see in the

following (Corollary 2.5.17) every query has equivalent operational and denotational

semantics.

The behavior of a query indeed models all SLD-trees of that query, as shown by

the following theorem.
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par(x, y)

{v/x,w/y}

anc(v,w)← par(v,w)

anc(x, y)
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{v/x,w/y}

anc(v,w)← par(v, z), anc(z,w)

par(x, z), anc(z, y)

par(x, y)

�?

{v/x,w/y}

anc(v,w)← par(v,w)

anc(x, y)
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{v/x,w/y}

anc(v,w)← par(v, z), anc(z,w)

par(x, z), anc(z, y)

{x/joe, y/jay}
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Figure 2.12: We show the SLD-tree transition D ′′ 7−→P D ′′′′ of Example 2.3.1, where

D ′′ and D ′′′′ are represented by the upper and lower trees of the figure
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Theorem 2.3.2 Let P be a program and G be a goal. Then

BJG in PK = φ

[{
djd:=G #

−→
P

∗B;B∈Goals
}/

G

]
.

Proof. To prove the thesis it is sufficient to show that, for any collection D and

any goal G, such that D 7−→P D . su(tree(P)), d̄ ∈ (D . su(tree(P)))(G) \ D(G) if

and only if d̄ = G
#1−→c1 · · · #n−→cn (A,G ′)

�
−→c ′ (B ′,G ′)σ, where G

#1−→c1 · · · #n−→cn (A,G ′) =:

d ∈ D(G), c ′ = p(t ′)← B ′ is a renamed apart (w.r.t. d) version of a clause c ∈ P
and σ = mgu(A,p(t ′)). The proof follows then by definition of BJG in PK, by

definition of derivation and by a straightforward inductive argument. We prove the

two implications separately.

=⇒ By definition of su , . and since su(D) is closed under renaming, there exists

a derivation d = G
#1−→c1 · · · #n

−→cn (A,G ′) ∈ D and there exists a non-null

derivation d1 ∈ ((A · tree(P))× φG ′)(A,G ′) such that

d̄ = d :: d1 and var(d) ∩ var(d1) = var(A,G ′). (1)

By definition of ×, there exists

d2 ∈ (A · tree(P))(A) \ {A} such that d1 = d2 ∧G ′. (2)

Moreover, by definition of · and tree, d2 = ∂�(dc), where dc = p(x)
fx=t�g
−−−→c� Bρ,

c = p(t)←B ∈ P, x is a tuple of new distinct variables, var(A)∩ var(cρ) = ∅
and δ is an idempotent substitution such that A = p(x)δ. Then, by definition

of ∂ and since d2 6= A, d2 = A
�

−→c� Bρσ, where σ = mgu(A,p(t)ρ). Moreover,

by (1) and (2), var(d) ∩ var(cρ) = ∅. Then, by (2) and by definition of ∧,

d1 = (A,G ′)
�

−→c� Bρσ,G ′σ. Hence, d̄ = G
#1−→c1 · · · #n−→cn (A,G ′)

�
−→c� (Bρ,G ′)σ.

Now, to complete it is sufficient to observe that cρ is a renamed apart (w.r.t.

d) version of c ∈ P.

⇐= By definition of derivation, var(c ′) ∩ var(A) = ∅. Then, by definition of

∂, there exists d1 = ∂�(p(x) fx=t ′g
−−−→c ′ B ′), where x is a tuple of new distinct

variables and δ is an idempotent substitution such that A = p(x)δ. More-

over, by definition of tree and ·, d1 ∈ (A · tree(c))(A). Therefore, since

c ∈ P, by definition of tree and since · is monotonic, d1 ∈ (A · tree(P))(A).

Then, by definition of ×, d ′ = d1 ∧ G ′ = (A,G ′)
�
−→c ′ (B 0σ,G ′σ) ∈ ((A ·

tree(P))×IdC)(A,G ′) = su(tree(P))(A,G ′). Moreover, by definition of deriva-

tion, var(d) ∩ var(d ′) = var(A,G ′). Then to prove the thesis it is sufficient
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to observe that, by definition of ., since d ∈ D(G) and last(d) = first(d ′),

d̄ = d :: d ′ ∈ (D . su(tree(P)))(G).

2.4 The Program Denotation

From the notion of query behavior, we can define the behavior of a program as

the collection
∑

{BJG in PK}G∈Goals . This collection can be viewed as a program

denotation but we can define a better top-down program denotation. This can

be obtained7 by collecting only the behaviors for all pure atomic goals, i.e., the

behaviors of the procedures with no constraints on the inputs. This yields a compact

denotation which is a finite-support function (that may give infinite results).

The top-down SLD-tree denotation of a program P is the interpretation

OJPK :=
∑{

BJp(x) in PK/≡C}p(x)∈Goals
. (2.4.1)

This can be viewed as a program denotation, since it is the semantics of the program

as a set of definite clauses (or a set of procedure definitions).

Using standard techniques it can be proved that PJPK is continuous; hence, we

can define the fixpoint SLD-tree denotation of the program P as the interpretation

FJPK := lfp PJPK. (2.4.2)

In the following we will prove that FJPK = OJPK.
Example 2.4.1

We give now an example to present some nice properties of our base semantic, which

have the same flavor of those of s-semantics approach.

Consider the toy program P of Figure 2.13. By definition of PJ·K,
PJPK↑1 = PJPK� = q(x) 7→ {q(x); q(x)

fx=f(y)g
−−−−−→q(f(y)) �} =: I

PJPK↑2 = PJPKI =


p(x, y) 7→ prefix

(
p(x, y)

fv=x;y=ag
−−−−−−−→p(v;a) q(v) q(x)

fx=f(w)g
−−−−−−→q(f(w)) 

�)
q(x) 7→ {q(x); q(x)

fx=f(y)g
−−−−−→q(f(y)) �}

PJPK↑3 = PJPK↑2 = PJPK↑!
It is interesting to note that the denotation of the program P, even if fully detailed,

is finite. This is not the case of a (much much more) abstract semantics as the

success set semantics (see Section 1.3.3), which denotes P by the (infinite) set{
q(f(a)); p(f(a), a); q(f(f(a))); p(f(f(a)), a); q(f(f(f(a)))); . . .

}
7Essentially because of Corollary 2.5.5.
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c1: q(f(X)).

c2: p(X,a) :- q(X).

Figure 2.13: The toy program of Example 2.4.1

One of the properties which is involved in such a phenomenon is the independence

from the language, which means that the denotation is not affected by the choice of

the language signature. This property also means that the denotation of a program

fragment is determined by the symbols it contains without considering the entire

underlying alphabet. The advantage of enjoying such a property becomes more

tangible in the case where we wish to actually compute program denotations – as

in the case of semantic-based program analysis and diagnosis. Note that the same

property does not hold for other variable-based semantics, such as those in [16, 48].

Program denotations are strongly related to program equivalences. We define

the equivalence ≈ of two programs P1, P2 as the equivalence of the behaviors of the

two programs, i.e.,

P1 ≈ P2 ⇐⇒ ∀G ∈ Goals. BJG in P1K = BJG in P2K.
Now we give two definitions to relate program equivalences to denotations. Let

SJPK be a program denotation and ∼ be a program equivalence. Then

1. SJ·K is correct w.r.t. ∼ if SJP1K = SJP2K =⇒ P1 ∼ P2,
2. SJ·K is minimal w.r.t. ∼ if P1 ∼ P2 =⇒ SJP1K = SJP2K.

In the following (Corollary 2.5.6) we will prove that OJPK (and FJPK) is correct and

minimal w.r.t. ≈. Note that if a semantics is correct and minimal then it is also the

most abstract semantics among the correct ones.

2.5 Semantic Properties of SLD-derivations

We show that the program denotation OJPK has several interesting properties, which

can all be viewed as compositionality properties. The first compositionality result is

Theorem 2.5.4 which shows that the semantic function BJ·K is compositional w.r.t.

procedure calls (atomic goals) and composition (conjunction) inside goals (AND-

compositionality).

Lemma 2.5.1 Let A be an atom, D ∈ PC, D ′, D ′′ ∈ C and G be a goal. Then
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1. A · (D ′ . su(D)) = (A ·D ′) . su(D).

2. (D ′ . su(D))× φG v (D ′ × φG) . su(D).

3. If D ′ . su(D) = D ′ then (D ′ ×D ′′) . su(D) = D ′ × (D ′′ . su(D)).

Given a pure collection D, we denote by sun(D) the collection8

su(D) . · · · . su(D)︸ ︷︷ ︸n
.

Thus, the following corollary holds.

Corollary 2.5.2 Let P be a program and G a goal. Then

1. BJG in PK = φG .
∑

{sun(tree(P))}n≥0.
2. OJPK = (Id I .

∑
{sun(tree(P))}n≥0)/≡C.

Proof. We prove the points separately.

Point 1 We use the notation D 7−→P n D ′ to denote that the collection D results in

the collection D ′ with at most n transition steps 7−→P . We prove (by induction on

n) that
∑

{D ′ | D 7−→P n D ′} = D . sun(tree(P)). For n = 0,
∑

{D ′ | D 7−→P 0 D ′} =

D = D . su0(tree(P)). For n > 0 the following facts hold.∑
{D ′ | D 7−→P n D ′} = [ by definition of 7−→P n ]∑
{D ′ | D 7−→P n-1 D ′′, D ′′ 7−→P 1 D ′} = [ by set theory ]∑
{
∑

{D ′ | D ′′ 7−→P 1 D ′} | D 7−→P n-1 D ′′} = [ by definition of 7−→P and tree ]∑
{D ′′ . su(tree(P)) | D 7−→P n-1 D ′′} = [ by Lemma 2.2.7 ]∑
{D ′′ | D 7−→P n-1 D ′′} . su(tree(P)) = [ by inductive hypothesis ]

(D . sun-1(tree(P))) . su(tree(P)) = [ by Point 2 of Lemma 2.2.6 ]

D . sun(tree(P)).

Finally

BJG in PK = [ by definition ]∑
{D | φG 7−→P ∗ D} = [ by definition of 7−→P ∗ ]

8Note that su1(D) = su (D) and we assume that su0(D) := φ.
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∑
{
∑

{D | φG 7−→P n D}}n≥0 = [ by the previous result ]∑
{φG . sun(tree(P))}n≥0 = [ by Lemma 2.2.7 ]

φG .
∑

{sun(tree(P))}n≥0.
Point 2 The following facts hold.

OJPK =

[ by definition of OJ·K and since ≡C is a congruence w.r.t.
∑

](∑
{BJp(x) in PK}p(x)∈Goals

)/
≡C

=

[ by the previous Point 1 ](∑
{φp(x) .

∑
{sun(tree(P))}n≥0}p(x)∈Goals

)/
≡C

=

[Lemma 2.2.7 and by definition of Id I ](
Id I .

∑
{sun(tree(P))}n≥0

)/
≡C
.

The following technical corollary follows by Lemmata 2.5.1 and 2.2.6 and a straight-

forward inductive argument.

Corollary 2.5.3 Let A be an atom, G be a goal, D ∈ PC and D ′, D ′′ ∈ C. Then,

for any n ≥ 0,

1. A · (D ′ . sun(D)) = (A ·D ′) . sun(D).

2. (D ′ . sun(D))× φG v (D ′ × φG) . sun(D).

3. If D ′ . sun(D) = D ′ then (D ′ ×D ′′) . sun(D) = D ′ × (D ′′ . sun(D)).

Theorem 2.5.4 Let A be an atom, G1, G2 be goals and P be a program. Then

1. BJA in PK = A · OJPK. (the semantics of any atomic goal can be derived from

the goal-independent denotation)

2. BJ(G1,G2) in PK = BJG1 in PK×BJG2 in PK.
Proof. We prove the points separately.

Point 1 The following equalities hold

BJA in PK = [ by Point 1 of Corollary 2.5.2 ]
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φA .
∑

{sun(tree(P))}n≥0 = [ by definition of · and Id I ]

(A · Id I) .
∑

{sun(tree(P))}n≥0 = [ by Corollary 2.5.3 and Lemma 2.2.7 ]

A · (Id I .
∑

{sun(tree(P))}n≥0).
Finally, since (by (2.2.6)) ≡C is a congruence w.r.t. · and by Corollary 2.5.2, A ·
(Id I .

∑
{sun(tree(P))}n≥0) = A · OJPK.

Point 2 First of all note that, for any goal G and any n ≥ 0,

BJG in PK . sun(tree(P)) = [ by Corollary 2.5.2 ]

(φG .
∑

{suk(tree(P))}k≥0) . sun(tree(P)) = [ by Lemmata 2.2.6 and 2.2.7 ]

φG .
∑

{suk(tree(P)) . sun(tree(P))}k≥0 = [ by (2.2.7) ]

φG .
∑

{suk(tree(P))}k≥0 = [ by Corollary 2.5.2 ]

BJG in PK.
Now we prove the two inclusions of the thesis separately.

v The following facts hold.

BJ(G1,G2) in PK =

[ by Point 1 of Corollary 2.5.2 and by definition of × ]

(φG1 × φG2) .
∑

{sun(tree(P))}n≥0 v
[ since × and . are monotonic and φG1 v BJG1 in PK ]

(BJG1 in PK× φG2) .
∑

{sun(tree(P))}n≥0 =

[ by Point 3 of Corollary 2.5.3 and by Lemma 2.2.7 ]

BJG1 in PK× (φG2 .
∑

{sun(tree(P))}n≥0) =

[ by Corollary 2.5.2 ]

BJG1 in PK×BJG2 in PK.

w The following facts hold.

BJG1 in PK×BJG2 in PK =

[ by repeating the previous steps ]

(BJG1 in PK× φG2) .
∑

{sun(tree(P))}n≥0 =

[ by Corollary 2.5.2 ]
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((φG1 .
∑

{suk(tree(P))}k≥0)× φG2) .
∑

{sun(tree(P))}n≥0 v
[ by Point 2 of Corollary 2.5.3 and by Lemma 2.2.7 ]

((φG1 × φG2) .
∑

{suk(tree(P))}k≥0) .
∑

{sun(tree(P))}n≥0 v
[ by definition of × and by Point 1 of Corollary 2.5.2 ]

BJ(G1,G2) in PK .
∑

{sun(tree(P))}n≥0 =

[ by Lemma 2.2.7 and by the previous observation ]

BJ(G1,G2) in PK.

The property expressed in Point 1 is sometimes referred to as condensing in the

program analysis field. It essentially shows that the behavior of any atomic goal can

be derived from the goal-independent denotation OJPK.
Essentially because of Theorem 2.5.4 we can always reconstruct an SLD-tree

for a generic (non-pure and non-atomic) goal from the SLD-trees of pure atoms.

Indeed, we can immediately derive the following result.

Corollary 2.5.5 (AND-compositionality) Let A be an atom, G be a goal and

P be a program. Then

1. BJ� in PK = φ�,

2. BJ(A,G) in PK = (A · OJPK)×BJG in PK.
This property is usually called AND-compositionality and shows that the behavior

of any (conjunctive) goal can be derived from the goal-independent denotation OJPK,
i.e., from the behaviors of (finitely many) pure atomic goals. It is the property which

allows us to take OJPK as the semantics of a program, without being concerned with

the behaviors for all possible goals. Indeed, by applying repeatedly Corollary 2.5.5,

BJA1, . . . , An in PK = A1 · OJPK× · · · ×An · OJPK. (2.5.1)

This closure property of OJ·K w.r.t. BJ·K allows us to show that the denotation

OJ·K is both correct and minimal w.r.t. ≈.

Corollary 2.5.6 Let P1, P2 be two programs. Then P1 ≈ P2 ⇐⇒ OJP1K = OJP2K.
Proof. The proof of the implication =⇒ is straightforward by definition of ≈ and of

OJ·K. The proof of the other implication is by contradiction. Assume that P1 6≈ P2
and OJP1K = OJP2K. By definition of ≈, there exists G ∈ Goals such that BJG in

P1K 6= BJG in P2K. Now the proof is by structural induction on G.
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G = � Contradictory, since by Point 1 of Corollary 2.5.5, BJ� in P1K = φ� =

BJ� in P2K.
G = (A,G 0) By Point 2 of Corollary 2.5.5 two cases arise. If A ·OJP1K 6= A ·OJP2K,

OJP1K 6= OJP2K and this contradicts the hypothesis.

Otherwise BJG ′ in P1K 6= BJG ′ in P2K and then, by inductive hypothesis, we

have a contradiction.

Using the extension operator . we can define a semantic operator ] which computes

the OR-composition of two denotations. Namely, given D1, D2 ∈ PC,

D1 ]D2 := [D1 +D2]∗ (2.5.2)

where [D]∗ is the least solution of the equation

[D]∗ = Id I + [D]∗ . su(D), (2.5.3)

or (equivalently) the least fixpoint of the operator

HD(D ′) := Id I +D ′ . su(D). (2.5.4)

Theorem 2.5.9 shows the OR-compositionality property of OJ·K, i.e., the compo-

sitionality w.r.t. the ∪ operator. First we need the following (technical) lemma and

its corollary.

Lemma 2.5.7 Let D, D ′ ∈ PC. Then su(D . su(D ′)) v su(D) . su(D ′).

Proof. The following facts hold.

su(D . su(D ′)) =

[ by definition of su ]∑
{(A · (D . su(D ′)))× IdC}A∈Atoms =

[ by Point 1 of Lemma 2.5.1 and by definition of IdC ]∑
{((A ·D) . su(D ′))×

∑
{φG}G∈Goals}A∈Atoms =

[ by Lemma 2.2.7 ]∑
{
∑

{((A ·D) . su(D ′))× φG}G∈Goals}A∈Atoms v

[ by Point 2 of Lemma 2.5.1 ]∑
{
∑

{((A ·D)× φG) . su(D ′)}G∈Goals}A∈Atoms =

[ by Lemma 2.2.7 ]



66 The Collecting Semantics

∑
{(A ·D)×

∑
{φG}G∈Goals}A∈Atoms . su(D ′) =

[ by definition of IdC and of su ]

su(D) . su(D ′).

Corollary 2.5.8 Let D,D ′ ∈ PC. Then, for any k ≥ 0, su(D.suk(D ′)) v su(D).

suk(D ′).

Proof. The proof is by induction on k. If k = 0, by definition of . and since

su0(D ′) = φ, su(D . φ) = su(D) = su(D) . φ.

Otherwise, note that, by definition of suk, su(D.suk(D ′)) = su(D.(suk-1(D ′).

su(D ′))) and, for k > 1, su(D ′) v suk-1(D ′). Then by Lemma 2.2.6, D. suk(D ′) =

(D . suk-1(D ′)) . su(D ′). This result trivially holds also for k = 1. To conclude

su(D . suk(D ′)) = [ by the previous result ]

su((D . suk-1(D ′)) . su(D ′)) v [ by Lemma 2.5.7 ]

su(D . suk-1(D ′)) . su(D ′) v [ by inductive hypothesis ]

(su(D) . suk-1(D ′)) . su(D ′) = [ by the previous result ]

su(D) . suk(D ′).

Theorem 2.5.9 Let P1, P2 be programs. Then OJP1 ∪ P2K = OJP1K ] OJP2K. (OR-

compositionality of the top-down denotation)

Proof. By definition of ], OJP1K ] OJP2K = [OJP1K+ OJP2K]∗. Since PC is a com-

plete lattice, [D]∗ = lfp(HD) = HD↑! =
∑

{HD↑n}n≥0, where HD : PC → PC
is the continuous function of equation (2.5.4). First of all, we prove by induction

that, for any n ≥ 1, HD↑n = Id I . sun-1(D). Then, by Lemma 2.2.7, [D]∗ = Id I .∑
{sun(D)}n≥0.

n = 1 HD↑1 = HD(φ) = Id I + (φ . su(D)) = Id I = Id I . su0(D).

n > 1 The following hold.

HD↑n = [ by definition of ·↑n ]

HD(HD↑(n-1)) = [ by inductive hypothesis ]

HD(Id I . sun-1(D)) = [ by definition of HD ]

Id I + ((Id I . sun-1(D)) . su(D)) = [ by Lemma 2.2.6 ]

Id I + (Id I . sun(D)) = [ since . is extensive ]

Id I . sun(D).
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Now, to prove the thesis, we have to prove that∑
{sun(tree(P1 ∪ P2))}n≥0 =

∑
{sun(OJP1K+ OJP2K)}n≥0.

We prove the two inclusions separately.

v First of all observe that, since (for any program P) tree(P) is a pure collection,

tree(P) v Id I . su(tree(P)) v OJPK. Then, by definition of tree, tree(P1 ∪
P2) = tree(P1) + tree(P2) v OJP1K + OJP2K and therefore, since · and × are

monotonic, su(tree(P1 ∪ P2)) v su(OJP1K + OJP2K). Then, since . is also

monotonic, for any n ≥ 0, sun(tree(P1 ∪ P2)) v sun(OJP1K+ OJP2K).
w We prove (by induction on h) that, for any derivation d, if there exists h ≥ 0

such that d ∈ suh(OJP1K + OJP2K)(G) then there exists k ≥ 0 such that

d ∈ suk(tree(P1 ∪ P2))(G). If h = 0 simply choose k = 0.

Otherwise let h > 0 and observe that, by definition of suh and by Lemma 2.2.6,

suh(OJP1K+ OJP2K) = suh-1(OJP1K+ OJP2K) . su(OJP1K+ OJP2K). (1)

We have two possibilities. If d ∈ suh-1(OJP1K+ OJP2K)(G) then, by inductive

hypothesis, there exists k ≥ 0 such that d ∈ suk(tree(P1 ∪ P2))(G) and then

the thesis follows.

Otherwise, by definition of ., by (1) and since su(OJP1K+OJP2K) is closed under

renaming, d = d1 :: d2, where d1 ∈ suh-1(OJP1K + OJP2K)(G), last(d1) = B

and

d2 ∈ (su(OJP1K+ OJP2K))(B). (2)

By inductive hypothesis, there exists m ≥ 0 such that

d1 ∈ sum(tree(P1 ∪ P2))(G). (3)

Now note that, by Lemma 2.2.7, su(OJP1K+OJP2K) = su(OJP1K)+ su(OJP2K)
and therefore, by (2), d2 ∈ (su(OJP1K)+su(OJP2K))(B). Now assume, without

loss of generality, that d2 ∈ su(OJP1K)(B). Then, by Point 2 of Corollary 2.5.2,

by Lemma 2.2.7 and since tree(P1) v tree(P1 ∪ P2), there exists l ≥ 0 such

that

d2 ∈ su(Id I . sul(tree(P1)))(B) ⊆ su(Id I . sul(tree(P1 ∪ P2)))(B). (4)

Moreover, by Corollary 2.5.8 and since su(Id I) v IdC, su(Id I . sul(tree(P1 ∪
P2))) v su(Id I) . sul(tree(P1 ∪ P2)) v IdC . sul(tree(P1 ∪ P2)).
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By the previous result and by (4), d2 ∈ (IdC . sul(tree(P1 ∪ P2)))(B) and

therefore, by (3) and since d = d1 :: d2, d ∈ (sum(tree(P1 ∪ P2)) . (IdC .

sul(tree(P1 ∪ P2))))(G). Finally note that, by definition of ., for any D ∈ C,

IdC.D = IdC+D andD.IdC = D. Then, by (2.2.7) and since . is additive and

extensive, d ∈ (sum(tree(P1 ∪ P2)) . sul(tree(P1 ∪ P2)))(G) = sum+l(tree(P1 ∪
P2))(G).

In Theorem 2.5.15 we will prove that the top-down and the bottom-up denota-

tions are equivalent, which implies (by Theorem 2.5.4) the equivalence between the

denotational and the operational semantics.

In the following, to simplify the notation, given a pure collection D, we denote

by pu(D), pun(D) and pun(D) respectively the collections9

pu(D) :=
∑{

GJGKD}G∈Goals
, (2.5.5)

pun(D) := pu(D) . · · · . pu(D)︸ ︷︷ ︸n
, (2.5.6)

pun(D) := pu(D . pu(D . pu(· · · )))︸ ︷︷ ︸n
. (2.5.7)

Note that pu(D) can be viewed as the parallel unfolding of the pure collection D

and (analogously to su(D)) it is closed under renaming and under instantiation,

since we consider all the possible evaluations of D. It is interesting to note that the

operators su and pu enjoy some closure properties. Namely, given a pure collection

D the following properties hold.

• If d is a renamed version of an element d ′ ∈ su(D)(G), by using a renaming

ρ, then d ∈ su(D)(Gρ). The same holds for pu .

• Using Lemma 2.2.4, it is easy to check that, for any idempotent substitution

δ, goal G and derivation d, such that ∂�(d) is defined, d ∈ su(D)(G) implies

∂�(d) ∈ su(D)(Gδ). Moreover, if d ∈ su(D)(Gδ) and var(d) ∩ var(G) ⊆
var(Gδ), then there exists a derivation d ′ ∈ su(D)(G) such that clauses(d ′) =

clauses(d) and d = ∂�(d ′). The same for holds pu .

Using the definition of pu(D) we can replace the equation (2.2.5) of CJ·K by the

equation CJcKI = tree(c).pu(I) and it is easy to check that the equation (2.2.4) can

be replaced by the equation

PJPKI = Id I + (tree(P) . pu(I)). (2.5.8)

9Note that pu1(D) = pu1(D) = pu (D) and we assume that pu0(D) := pu0(D) := φ.
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The proof of the equivalence between the denotational and the operational se-

mantics is mainly achieved by proving that the parallel unfolding can be simulated

by the sequential one. Corollary 2.5.11 proves a form of associativity of the parallel

unfolding which reverses from bottom-up to top-down. Then, Lemma 2.5.12 states

that a step of sequential unfolding can be safely replaced by a step of parallel un-

folding and that the parallel unfolding of a (finite) goal can be simulated by (a finite

number of steps of) the sequential unfolding.

Lemma 2.5.10 Let D,D ′ ∈ PC and h ≥ 0. Then

1. pu(D) . pu(D ′) v pu(D . pu(D ′)).

2. puh(D) v
∑

{puk(D)}k≥0.
Corollary 2.5.11 Let D ∈ PC. Then

∑
{puh(D)}h≥0 =

∑
{puk(D)}k≥0.

Proof. The inclusion v is straightforward by Lemma 2.5.10. For the other inclusion

we prove (by induction on n) that, for any n ≥ 0, pun(D) v pun(D). If n = 0, by

definition, pu0(D) = φ = pu0(D).

Otherwise the following holds.

pun(D) = [ by (2.5.6) and by (2.2.7) ]

pu(D) . pun-1(D) v [ by inductive hypothesis and since . is monotonic ]

pu(D) . pu(n-1)(D) v [ by Lemma 2.5.10 ]

pu(D . pu(n-1)(D)) = [ by (2.5.7) ]

pun(D).

Lemma 2.5.12 Let D ∈ PC. Then

1. su(D) v pu(D+ Id I).

2. pu(D) v IdC +
∑

{sun(D)}n≥0.
Corollary 2.5.13 Let D ∈ PC. Then∑{

puh(Id I +D)
}
h≥0 = IdC +

∑{
suk(D)

}
k≥0.

Note that, by (2.5.5), by (2.3.2) and by definition of ., + and Id I, for any

D ∈ PC,

Id I +D = Id I . pu(D) = Id I . su(D). (2.5.9)
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Corollary 2.5.14 Let P be a program. Then

FJPK = (Id I + tree(P)) .
∑{

pun(Id I + tree(P))
}
n≥0.

Proof. First of all recall that PJPK is continuous and φ is the bottom of C. We will

prove (by induction on n) that, for any n > 0, PJPK↑n = (Id I+tree(P)).pu(n-1)(Id I+
tree(P)). Then, by definition of FJ·K, FJPK =

∑
{PJPK↑n}n≥0 =

∑
{(Id I + tree(P)) .

pun(Id I + tree(P))}n≥0 and then the thesis follows by Lemma 2.2.7.

n = 1 By (2.5.8), PJPK↑1 = Id I+(tree(P).pu(φ)) = Id I+tree(P) = (Id I+tree(P)).

pu0(Id I + tree(P)).

n > 1 The following holds.

PJPK↑n =

[ since PJPK↑(n-1) v PJPK↑n ]

PJPK↑n+ PJPK↑(n-1) =

[ by definition of ·↑n and (2.5.8) ]

(Id I + (tree(P) . pu(PJPK↑(n-1)))) + PJPK↑(n-1) =

[ by (2.5.9) ]

(tree(P) . pu(PJPK↑(n-1))) + (Id I . pu(PJPK↑(n-1))) =

[ by definition of pu and Lemma 2.2.7 twice ]

(Id I + tree(P)) . pu(PJPK↑(n-1)) =

[ by inductive hypothesis ]

(Id I + tree(P)) . pu((Id I + tree(P)) . pun-2(Id I + tree(P))) =

[ by definition of pun ]

(Id I + tree(P)) . pu(n-1)(Id I + tree(P)).

Now we can prove the equivalence of the top-down and bottom-up goal-independent

denotations.

Theorem 2.5.15 Let P be a program. Then OJPK = FJPK (equivalence of the top-

down and bottom-up goal-independent denotations).

Proof. By Corollaries 2.5.14 and 2.5.13, and since D . IdC = D,

FJPK = (Id I + tree(P)) .
∑

{pun(Id I + tree(P))}n≥0
= (Id I + tree(P)) .

∑
{sun(tree(P))}n≥0.

(1)
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Now, since tree(P) is a pure collection and by (2.5.9), Id I+tree(P) = Id I.su(tree(P)).

Finally, by Lemma 2.2.6, by (1), by Point 2 of Corollary 2.5.2, and by a straightfor-

ward inductive argumentation, FJPK = (Id I . su(tree(P))) .
∑

{sun(tree(P))}n≥0 =

Id I .
∑

{sun(tree(P))}n≥0 = OJPK.
Now we can show the OR-compositionality of the fixpoint denotation (which fol-

lows immediately from Theorems 2.5.15 and 2.5.9) and the equivalence between the

denotational and the operational semantics.

Corollary 2.5.16 Let P1, P2 be programs. Then FJP1 ∪ P2K = FJP1K]FJP2K.
Corollary 2.5.17 For any goal G and program P, QJG in PK = BJG in PK. (equiv-

alence of the operational and denotational semantics)

Proof. The proof is by structural induction on G.

G = � By definition of QJ·K, FJ·K and GJ·K and by Point 1 of Corollary 2.5.5, QJ�in

PK = GJ�KFJPK = φ� = BJ� in PK.
G = (A,G 0) The following equalities hold

QJ(A,G ′) in PK = [ by definition of QJ·K and FJ·K ]

GJ(A,G ′)KFJPK = [ by definition of GJ·K and QJ·K ]

AJAKFJPK × QJG ′ in PK = [ by definition of AJ·K and induction ]

(A · FJPK)×BJG ′ in PK = [ by Theorem 2.5.15 ]

(A · OJPK)×BJG ′ in PK = [ by Point 2 of Corollary 2.5.5 ]

BJ(A,G ′) in PK.

2.6 Discussions on the Results

As already mentioned at the beginning of the chapter, our SLD-tree semantics was

defined as the concrete (collecting) semantics of the framework presented in Chap-

ter 3 for the systematic derivation of more abstract semantics, using the formal tools

of abstract interpretation. The main novelty is in its definition style (denotational

semantics and transition system), which has been conceived in such a way that it

will be inherited by all the abstract semantics. This will also be the case for the

compositionality and equivalence properties stated in Section 2.5.

Furthermore, the structure of the main results is performed keeping the abstrac-

tion framework in mind. Indeed the proof of all main theorems heavily rely on some
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basic results, which express properties of the abstract primitive semantic operators.

This technical lemmata embed (and “hide”) all the properties of SLD-derivations

which are needed to prove the main results. This is even more important since, by

using the interaction between the properties of the abstraction and the properties of

the concrete primitive semantic operators, we can easily inherit all those properties

of the collecting semantics for which the suitable lemmata on the semantic opera-

tors hold. Then, when in the abstract case these lemmata will be proved, by using

some properties of the abstraction, the abstract versions of the main results about

collections will hold for free.

We will see that, due to the relation between the properties of the primitive

semantic operators and the properties of the semantics, we can define a taxonomy

of observables (abstractions). Each class in the taxonomy is characterized by a set of

properties relating the primitive semantic operators and the Galois insertion which

defines the observable. For each class we have

• a methodology to automatically derive the “best” abstract semantics (transi-

tion system, denotational semantics or both),

• the validity for the abstract semantics of some of the theorems which hold for

the collecting semantics (equivalence between operational and denotational

semantics, equivalence between top-down and bottom-up denotation, correct-

ness, minimality and AND and OR compositionality).

The new relevant issue which can be discussed in the abstraction framework is preci-

sion, i.e., how good is the abstract semantics w.r.t. the abstraction of the collecting

semantics. We have therefore classes of precise observables, where we can recon-

struct all the semantics discussed in [13], and classes of approximate observables,

where we can reconstruct several domains proposed for program analysis (ground-

ness, types, . . . ). The abstraction framework has also been used as the semantic

foundation of abstract diagnosis, which is presented in Chapter 5.

Let us finally note that, since our framework is based on standard operational

and denotational semantic definitions, it can be adapted to other programming

languages (especially extensions of logic programming).

2.7 Technical Proofs of the Chapter

In this section we give the technical proofs missing in the previous part of the

chapter. We will need the following technical lemma.

Lemma 2.7.1 Let d1, d2 be derivations and σ, δ be idempotent substitutions. Then

the following holds.



Technical Proofs of the Chapter 73

1. If σδ is idempotent and ∂��(d1) and ∂�(∂�(d1)) are defined, then ∂��(d1) =

∂�(∂�(d1)).
2. If ∂�(d1 :: d2) is defined, then either

- length(∂�(d1)) < length(d1) and ∂�(d1 :: d2) = ∂�(d1) or

- length(∂�(d1)) = length(d1) and ∂�(d1 :: d2) = ∂�(d1) :: ∂� ′(d2), where σ ′

is an idempotent substitution such that last(∂�(d1)) = (last(d1))σ ′.
Proof. The proof of Point 1 is straightforward by definition of ∂. To prove Point 2

observe that if length(∂�(d1)) < length(d1) then the proof is straightforward by

definition of ∂ operation.

Otherwise, let G := (A,G ′), c := H← B and σ be an idempotent substitution

such that var(c)∩var(σ) = ∅. Moreover, let ϑ ′ := mgu(A,H) and ϑ := mgu(Aσ,H).

We prove that there exists an idempotent substitution σ ′ such that (B,G ′)ϑ ′σ ′ =

(B,G ′)σϑ. Then the proof follows by definition of derivation and by a straightfor-

ward inductive argument.

First of all observe that, since var(c) ∩ var(σ) = ∅, then ϑ = mgu(Aσ,Hσ) and

therefore, by Lemma 1.3.3,

σϑ = mgu(eqn(σ) ∪ {A = H}) (1)

Then, by Lemma 1.3.3, there exist ϑ ′′ := mgu(A,H) and σ ′′ := mgu(eqn(σ)ϑ ′′) such

that σϑ = ϑ ′′σ ′′. Moreover, by definition of mgu and since ϑ ′ = mgu(A,H), there

exists a renaming ρ such that ϑ ′′ = ϑ ′ρ and therefore, by (1), σϑ = ϑ ′ρσ ′′. Now let

σ ′ := (ρσ ′′)|(B;G ′)# ′ . Then

(B,G ′)ϑ ′σ ′ = [ by definition of σ ′ ]

(B,G ′)ϑ ′(ρσ ′′)|(B;G ′)# ′ = [ by definition of composition ]

(B,G ′)ϑ ′ρσ ′′ = [ since σϑ = ϑ ′ρσ ′′ ]

(B,G ′)σϑ.

Finally to prove the thesis we have only to prove that σ ′ is idempotent. First of

all observe that, since ϑ ′ is idempotent, dom(ϑ ′) ∩ var((B,G ′)ϑ ′) = ∅. Then, by

definition of composition and since dom(σ ′) ⊆ var((B,G ′)ϑ ′), for any x/t ∈ σ ′,
x/t ∈ ϑ ′σ ′ and therefore, since σ ′ = (ρσ ′′)|(B;G ′)# ′ , x/t ∈ ϑ ′ρσ ′′ = σϑ. Then, the

thesis follows since by construction σϑ is an idempotent substitution.

Now we can give the proof of all technical lemmata.
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Proof of Lemma 2.2.3. The proof of Points 1 and 2 is straightforward by defin-

ition of :: and ∂ operation. To prove Point 3 assume that d1 = G ′0 #1−→c1 · · · #k−→ck G ′k
and let ϑ := ϑ1 · · · ϑk and G ′′0 := first(d2) such that d1 ∧ d2 is defined. If G ′k 6= �
then the thesis is straightforward by definition of ∧.

Otherwise, by definition of ∧, d1 ∧ d2 = d ′ :: ∂#(d2), where d ′ = (G ′0,G ′′0 ) #1−→c1
(G ′1,G ′′0ϑ1) #2−→c2 · · · #k−→ck G ′′0ϑ is a derivation. Moreover, since d1 ∧ d2 is defined,

var(d1)∩var(d2) = var(G ′0)∩var(G ′′0 ) and therefore var(d1)∩var(clauses(d2)) = ∅.
Then, since var(G ′′0ϑ) ⊆ var(G ′′0 ) ∪ var(d1), var(G ′′0ϑ) ∩ var(d2) ⊆ var(G ′′0 ) and

therefore ∂#(d2) is defined and, by Point 2, ∂#(d2) is a derivation of G ′′0ϑ. Finally

observe that by definition of ∂, var(d ′) ∩ var(∂#(d2)) = var(G ′′0ϑ). Therefore, d ′ ::

∂#(d2) is defined and the thesis follows by Point 1.

Proof of Lemma 2.2.4. We prove the points separately.

Point 1 Let Gi := first(di), for i = 1, 2. First of all observe that by definition of

∧ it is easy to check that

∂�(d1 ∧G2) = ∂�(d1) ∧G2δ and (1)

∀β ∈ Subst . ∂�(d2) = ∂�jG2 (d2). (2)

Then in the following we can assume, without loss of generality, that given a deriva-

tion ∂�(d), dom(β) ∩ var(d) ⊆ var(first(d)). We distinguish the following three

cases.

last(d1) 6= � In this case last(∂�(d1)) 6= � and therefore, by definition of ∧, d1 ∧

d2 = d1 ∧G2 and ∂�(d1) ∧ ∂�(d2) = ∂�(d1) ∧G2δ. Then the thesis follows by

(1).

last(d1) = � and last(∂�(d1)) 6= � Let d1 := G1 #
−−−−→c1;:::;ck �. By definition of ∧,

d1 ∧ d2 = (d1 ∧G2) :: ∂#(d2) and (3)

∂�(d1) ∧ ∂�(d2) = ∂�(d1) ∧G2δ. (4)

Moreover, by the previous hypothesis, length(∂�(d1)) < length(d1) and there-

fore length(∂�(d1∧G2)) < length(d1∧G2). Then, by Point 2 of Lemma 2.7.1,

∂�((d1 ∧G2) :: ∂#(d2)) = ∂�(d1 ∧G2) and therefore

∂�(d1 ∧ d2) = [ by (3) and last result ]

∂�(d1 ∧G2) = [ by (1) and (4) ]

∂�(d1) ∧ ∂�(d2).
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last(∂�(d1)) = � In this case last(d1) = � and then there exists k ≥ 0 such that

d1 = G1 #1−→c1 · · · #k−→ck � and ∂�(d1) = G1δ �1−→c1 · · · �k−→ck �. Let ϑ := ϑ1 · · · ϑk and

σ := σ1 · · ·σk. Then, by definition of ∧,

d1 ∧ d2 = (d1 ∧G2) :: ∂#(d2) and (5)

∂�(d1) ∧ ∂�(d2) = (∂�(d1) ∧G2δ) :: ∂�(∂�(d2)). (6)

Now observe that, since var(G1)∩var(clauses(d1)) = ∅, by definition of deriva-

tion, δσ is idempotent. Moreover, since d1∧d2 and ∂#(d2) are defined, (var(δ)∪
var(σ)) ∩ var(clauses(d2)) = ∅ and ∂�#(d2) is defined.

Since length(∂�(d1)) = length(d1), by Point 2 of Lemma 2.7.1,

∂�((d1 ∧G2) :: ∂#(d2)) = ∂�(d1 ∧G2) :: ∂�(∂#(d2)), (7)

where G2δσ = last(∂�(d1 ∧G2)) = last(d1 ∧G2)β = G2ϑβ. Then

(δσ)|G2 = (ϑβ)|G2 (8)

and, since δσ is idempotent, (ϑβ)|G2 is also idempotent and, by (4), ∂#�(d2)
is defined. Finally

∂�(d1 ∧ d2) = [ by (5) and (7) ]

∂�(d1 ∧G2) :: ∂�(∂#(d2)) = [ by Point 1 of Lemma 2.7.1 ]

∂�(d1 ∧G2) :: ∂#�(d2) = [ by (8) and (2) ]

∂�(d1 ∧G2) :: ∂��(d2) = [ by Point 1 of Lemma 2.7.1 ]

∂�(d1 ∧G2) :: ∂�(∂�(d2)) = [ by (1) and (6) ]

∂�(d1) ∧ ∂�(d2).

Point 2 We have two possibilities. If last(d1) 6= �, d1 ∧ (d2 ∧ d3) = d1 ∧ (G2,G3)
and (d1∧d2)∧d3 = (d1∧G2)∧G3. Then the proof is straightforward by definition

of ∧.

Otherwise, let d1 := G1 #1−→c1 · · · #k−→ck � and ϑ := ϑ1 · · · ϑk. By definition of ∧,

d1 ∧ d2 = (d1 ∧G2) :: ∂#(d2) (9)

d1 ∧ (d2 ∧ d3) = (d1 ∧ (G2,G3)) :: ∂#(d2 ∧ d3) (10)

Two cases arise.
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last(∂#(d2)) 6= � In this case ∂#(d2) ∧ ∂#(d3) = ∂#(d2) ∧G3ϑ and therefore

d1 ∧ (d2 ∧ d3) = [ by (10) and Point 1 ]

(d1 ∧ (G2,G3)) :: (∂#(d2) ∧ ∂#(d3)) = [ by the previous observation ]

(d1 ∧ (G2,G3)) :: (∂#(d2) ∧G3ϑ) = [ by definition of :: ]

((d1 ∧G2) :: ∂#(d2)) ∧G3 = [ since last(∂#(d2)) 6= � ]

((d1 ∧G2) :: ∂#(d2)) ∧ d3 = [ by (9) ]

(d1 ∧ d2) ∧ d3.
last(∂#(d2)) = � Let ∂#(d2) := G2ϑ �1−→c ′1 · · · �m−−→c ′m � and σ := σ1 · · ·σm. Then, by

definition of ∧,

∂#(d2) ∧ ∂#(d3) = (∂#(d2) ∧G3ϑ) :: ∂�(∂#(d3))
= ∂#(d2 ∧G3) :: ∂�(∂#(d3)). (11)

Moreover, observe that, by definition of ∧,

d1 ∧ d2 = (G1,G2) #1−→c1 · · · #k−→ck G2ϑ �1−→c ′1 · · · �m−−→c ′m � (12)

and ϑσ is an idempotent substitution. Furthermore, analogously to the the

previous case, ∂#�(d3) is defined. Finally

d1 ∧ (d2 ∧ d3) =

[ by (10), Point 1 and (11) ]

(d1 ∧ (G2,G3)) :: (∂#(d2 ∧G3) :: ∂�(∂#(d3))) =

[ since :: is associative ]

((d1 ∧ (G2,G3)) :: ∂#(d2 ∧G3)) :: ∂�(∂#(d3)) =

[ by definition of ∧ ]

(((d1 ∧G2) :: ∂#(d2)) ∧G3) :: ∂�(∂#(d3)) =

[ by Point 1 of Lemma 2.7.1 ]

(((d1 ∧G2) :: ∂#(d2)) ∧G3) :: ∂#�(d3) =

[ by (9), by (12), by (10) and Point 1 ]

(d1 ∧ d2) ∧ d3.

Proof of Lemma 2.5.1. We prove the points separately.

Point 1 We prove the two inclusions separately.
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w Let d ∈ ((A · D ′) . su(D))(A). If d ∈ (A · D ′)(A) then, since . is extensive

and · is monotonic, d ∈ (A · (D ′ . su(D)))(A).

Otherwise, by definition of . and since su(D) is closed under renaming, there

exist two derivations d1 ∈ (A · D ′)(A) and d2 ∈ su(D)(G) such that G =

last(d1),
d = d1 :: d2 and var(d1) ∩ var(d2) = var(G). (1)

By definition of · there exists a derivation d3, which is a renamed apart (w.r.t.

A) version of an element in D ′(A ′), for some atom A ′ ≤ A, and there exists

an idempotent substitution δ such that first(d3)δ = A and

d1 = ∂�(d3). (2)

Without loss of generality, we can assume that

var(first(d3)) ∩ var(d2) = ∅. (3)

Moreover, since D ′(A ′) is a well-formed set of derivations, we can assume that

length(d3) = length(d1) = length(∂�(d3)). (4)

Then, by Point 2 of Lemma 2.7.1, there exists an idempotent substitution δ ′

such that last(d1) = G = G ′δ ′ whereG ′ = last(d3). Moreover, by definition of

∂, by (1) and (3), var(d3) ∩ var(d2) = ∅ and therefore var(G ′) ∩ var(d2) = ∅.
Then, by properties of su(D) and since d2 ∈ su(D)(G ′δ ′), there exists a

derivation d4 ∈ su(D)(G ′) such that var(d3) ∩ var(d4) = var(G ′) and

∂� ′(d4) = d2. (5)

Then, by definition of . and by properties of su(D), d3 :: d4 is a renamed apart

(w.r.t. A) version of an element in (D ′ . su(D))(A ′). Moreover, by definition

of ∂ and of δ, ∂�(d3 :: d4) ∈ (A · (D ′ . su(D)))(A). Finally the following hold.

∂�(d3 :: d4) = [ by Point 2 of Lemma 2.7.1 and by (4) ]

∂�(d3) :: ∂� ′(d4) = [ by (2), (5) and (1) ]

d.

v Let d ∈ (A · (D ′ . su(D)))(A). If d ∈ (A ·D ′)(A) then, since (by extensivity)

A ·D ′ v (A ·D ′) . su(D), d ∈ ((A ·D ′) . su(D))(A).
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Otherwise, by definition of . and of ·, there exists a renamed apart (w.r.t. A)

version d ′ of an element in (D ′ .su(D))(A ′), for some atom A ′ ≤ A, and there

exists an idempotent substitution δ such that A = first(d ′)δ and

∂�(d ′) = d. (6)

Since d ′ is a renamed version of an element in (D ′ . su(D))(A ′) and d 6∈ (A ·
D ′)(A),

d ′ = d ′1 :: d ′2, (7)

where d ′1 is a renamed version of an element in D ′(A ′), G ′ = last(d ′1) and,

since su(D) is closed under renaming, d ′2 ∈ su(D)(G ′). Then, by definition of

·,

∂�(d ′1) ∈ (A ·D ′)(A). (8)

Moreover, by (6), (7) and (8) and since (by hypothesis) d 6∈ (A · D ′)(A),

length(∂�(d ′)) > length(∂�(d ′1)) and then length(∂�(d ′1)) = length(d ′1). There-

fore, by Point 2 of Lemma 2.7.1,

∂�(d ′1 :: d ′2) = ∂�(d ′1) :: ∂� ′(d ′2), (9)

where δ ′ is a substitution such that last(∂�(d ′1)) = G ′δ ′ = (last(d ′1))δ ′. Then,

since d ′2 ∈ su(D)(G ′), ∂� ′(d ′2) is defined and, by properties of su(D), ∂� ′(d ′2) ∈
su(D)(G ′δ ′). Therefore, by definition of ., (8) and (9), ∂�(d ′1) :: ∂� ′(d ′2) ∈ ((A·
D ′) . su(D))(A).

Now to prove the thesis it is sufficient to observe that, by (9), (7) and (6),

∂�(d ′1) :: ∂� ′(d ′2) = ∂�(d ′1 :: d ′2) = ∂�(d ′) = d.

Point 2 By definition of v, we have to prove that, for any G ′ ∈ Goals , ((D ′ .

su(D))× φG)(G ′) ⊆ ((D ′ × φG) . su(D))(G ′). Let d ∈ ((D ′ . su(D))× φG)(G ′).

Then, by definition of ×, G ′ = (G0,G) and there exists a renamed version d1 of an

element in (D ′ . su(D))(G0) such that first(d1) = G0 and

d = d1 ∧G. (10)

Now, by definition of ., two cases arise. If d1 is a renamed version of an element

in D ′(G0) then, by definition of × and by (10), d ∈ (D ′ × φG)(G ′) and therefore,

since . is extensive, d ∈ ((D ′ × φG) . su(D))(G ′).

Otherwise, by definition of . and since su(D) is closed under renaming, d1 =

d3 :: d4, where d3 = G0 #1−→c1 · · · #k−→ck B is a renamed version of an element in D ′(G0),
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B 6= �, d4 ∈ su(D)(B) and var(d3) ∩ var(d4) = var(B). Let ϑ := ϑ1 · · · ϑk. By

(10) and by definition of ∧, d = (d3 ∧G) :: (d4 ∧Gϑ) and, by definition of ×, d3 ∧

G ∈ (D ′ × φG)(G ′). Moreover, since d4 ∈ su(D)(B), by definition of su and since

B 6= �, d4 ∧ Gϑ ∈ su(D)(B,Gϑ). Finally, by definition of ., d ∈ ((D ′ × φG) .

su(D))(G ′).

Point 3 We prove the two inclusions separately.

v Let d ∈ ((D ′ × D ′′) . su(D))(G0). We have two possibilities. If d ∈ (D ′ ×
D ′′)(G0) then, since . is extensive and × is monotonic, d ∈ (D ′ × (D ′′ .

su(D)))(G0).
Otherwise, by definition of . and since su(D) is closed under renaming, there

exist two derivations d ′ ∈ (D ′ × D ′′)(G0) and d ′′ ∈ su(D)(G) such that

last(d ′) = G,

d = d ′ :: d ′′ and var(d ′) ∩ var(d ′′) = var(G). (11)

Then, by definition of ×, there exist two goals G ′0, G ′′0 and two derivations

d2 and d1 = G ′0 #1−→c1 · · · #k−→ck G ′k (which are renamed versions of elements in

D ′′(G ′′0 ) and D ′(G ′0) respectively) such that first(d2) = G ′′0 , G0 = (G ′0,G ′′0 )
and d ′ = d1 ∧ d2. Let ϑ := ϑ1 · · · ϑk. Two cases arise

G 0
k 6= � By definition of ∧, d ′ = d1 ∧ G ′′0 . Since (by hypothesis) d2 is a

renamed version of an element in D ′′(G ′′0 ), D ′′(G ′′0 ) 6= ∅ and since (by

definition of collection) D ′′(G ′′0 ) is a well-formed set of derivations, G ′′0 ∈
D ′′(G ′′0 ). By (11), since last(d1) = G ′k 6= � and last(d ′) = (G ′k,G ′′0ϑ),

d = (d1 :: d3) ∧G ′′0 , where (12)

d3 ∈ su(D)(G ′k) is such that d ′′ = d3 ∧G ′′0ϑ. (13)

By definition of ., since d1 :: d3 is defined, since d1 is a renamed version

of an element in D ′(G ′0) and by (13), d1 :: d3 is a renamed version of an

element in (D ′ . su(D))(G ′0) = D ′(G ′0). The last equality holds since

(by hypothesis) D ′ . su(D) = D ′. Therefore, by (12), by definition of ×
and since G ′′0 ∈ D ′′(G ′′0 ), d = (d1 :: d3) ∧G ′′0 ∈ (D ′ ×D ′′)(G0) and this

contradicts the hypothesis.

G 0
k = � By definition of ∧,

d ′ = d1 ∧ d2 = (d1 ∧G ′′0 ) :: ∂#(d2). (14)

We can assume that length(d2) = length(∂#(d2)), since D ′′(G ′′0 ) is a well-

formed set of derivations. Then, by definition of ∂, by (11), since (by
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(14)) last(∂#(d2)) = last(d ′) = G and by Point 2 of Lemma 2.7.1, there

exists an idempotent substitution δ such that last(∂#(d2)) = G ′′δ = G,

where G ′′ = last(d2).
Note that by (11) and since var(d ′) = var(d1) ∪ var(d2), var(d2) ∩
var(clauses(d ′′)) = ∅ and var(G ′′) ∩ var(clauses(d ′′)) = ∅. Then, by

properties of su(D), since d ′′ ∈ su(D)(G) and G = G ′′δ, there exists

d3 ∈ su(D)(G ′′) such that

d ′′ = ∂�(d3) and var(d3) ∩ var(d2) = var(G ′′). (15)

Then d2 :: d3 is defined and, by Point 2 of Lemma 2.7.1 and since (by

assumption) length(d2) = length(∂#(d2)),
∂#(d2 :: d3) = ∂#(d2) :: ∂�(d3). (16)

Then

d = [ by (11), (14) and (15) ]

(d1 ∧ d2) :: ∂�(d3) = [ by definition of ∧ ]

((d1 ∧G ′′0 ) :: ∂#(d2)) :: ∂�(d3) = [ since :: is associative ]

(d1 ∧G ′′0 ) :: (∂#(d2) :: ∂�(d3)) = [ by (16) ]

(d1 ∧G ′′0 ) :: ∂#(d2 :: d3) = [ by definition of ∧ and of d1 ]

d1 ∧ (d2 :: d3).
To conclude, by definition of ., since d2 is a renamed version of an element

in D ′′(G ′′0 ), since d3 ∈ su(D)(G ′′) and su(D) is closed under renaming,

d2 :: d3 is a renamed version of an element in (D ′′ . su(D))(G ′′0 ) such that

first(d2 :: d3) = G ′′0 . Hence, since d1 is a renamed version of an element

in D ′(G ′0) and first(d1) = G ′0, by definition of ×, d1 ∧ (d2 :: d3) ∈ (D ′ ×
(D ′′ . su(D)))(G ′0,G ′′0 ).

w Let d ∈ (D ′× (D ′′ .su(D)))(G0). Then, by definition of ×, d = d ′∧d ′′, where

G0 = (G ′0,G ′′0 ) and d ′, d ′′ are renamed versions of elements in D ′(G ′0) and in

(D ′′ . su(D))(G ′′0 ) respectively, such that first(d ′) = G ′0 and first(d ′′) = G ′′0 .
By definition of ×, two cases arise.

last(d 0) 6= � In this case d = d ′ ∧G ′′0 ∈ (D ′ ×D ′′)(G0). Therefore, since .

is extensive, d ∈ ((D ′ ×D ′′) . su(D))(G0).
last(d 0) = � By definition of ., we distinguish two cases. If d ′′ is a renamed

version of an element in D ′′(G ′′0 ), d = d ′ ∧ d ′′ ∈ (D ′ × D ′′)(G0) and

therefore, analogously to the previous case, d ∈ ((D ′×D ′′).su(D))(G0).
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Otherwise assume that d ′ = G ′0 #1−→c1 · · · #k−→ck � and let ϑ := ϑ1 · · · ϑk. By

definition of . and since su(D) is closed under renaming, d ′′ = (d1 :: d2),
where d1 = G ′′0 �1−→c ′1 · · · �h−→c ′h G ′′h is a renamed version of an element in

D ′′(G0) and d2 ∈ su(D)(G ′′h). Moreover, by definition of ∧,

d = (d ′ ∧G ′′0 ) :: ∂#(d ′′) = (d ′ ∧G ′′0 ) :: ∂#(d1 :: d2). (17)

Now we have two possibilities.

length(∂#(d1)) < length(d1) By Point 2 of Lemma 2.7.1, ∂#(d1 :: d2) =

∂#(d1) and therefore, by (17) and by definition of ∧, d = (d ′ ∧

G ′′0 ) :: ∂#(d1) = d ′∧d1 ∈ (D ′×D ′′)(G0) ⊆ ((D ′×D ′′). su(D))(G0).
length(∂#(d1)) = length(d1) By Point 2 of Lemma 2.7.1 there exists

an idempotent substitution δ such that G ′′hδ = last(∂#(d1)) and

∂#(d1 :: d2) = ∂#(d1) :: ∂�(d2). (18)

Moreover, since ∂�(d2) is defined, by properties of su(D) and since

d2 ∈ su(D)(G ′′h),
∂�(d2) ∈ su(D)(G ′′hδ). (19)

Then the following facts hold.

d = [ by (17) and (18) ]

(d ′ ∧G ′′0 ) :: (∂#(d1) :: ∂�(d2)) = [ since :: is associative ]

((d ′ ∧G ′′0 ) :: ∂#(d1)) :: ∂�(d2) = [ by definition of ∧ ]

(d ′ ∧ d1) :: ∂�(d2).
Finally, by construction and (19), (d ′∧d1) ∈ (D ′×D ′′)(G0), ∂�(d2) ∈
su(D)(G ′′hδ). Therefore, since (d ′ ∧ d1) :: ∂�(d2) is defined, by defin-

ition of . and by the previous result, d = (d ′ ∧ d1) :: ∂�(d2) ∈ ((D ′×
D ′′) . su(D))(G0).

We need now another technical lemma.

Lemma 2.7.2 Let D ∈ PC, D1, D2 ∈ C and A ∈ Atoms. Then

1. (A ·D1) . pu(D) = A · (D1 . pu(D)).

2. (D1 ×D2) . pu(D) v (D1 . pu(D))× (D2 . pu(D)).
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Proof. The proof of Point 1 is analogous to the one of Point 1 of Lemma 2.5.1 and

hence omitted.

To prove Point 2, let d ∈ ((D1 ×D2) . pu(D))(G). If d ∈ (D1 ×D2)(G) then,

since . is extensive and × is monotonic, d ∈ ((D1 . pu(D))× (D2 . pu(D)))(G).

Otherwise, by definition of . and since pu(D) is closed under renaming,

d = d ′ :: d ′′, (1)

where d ′ ∈ (D1 ×D2)(G), last(d ′) = B 6= �, d ′′ ∈ pu(D)(B) and

var(d ′) ∩ var(d ′′) = var(B). (2)

By definition of ×, d ′ = d1 ∧ d2, where G = (G1,G2) and (for i = 1, 2) di is a

renamed version of an element in Di(Gi) such that first(di) = Gi and var(d1) ∩
var(d2) = var(G1) ∩ var(G2). Let d1 = G1 #1−→c1 · · · #k−→ck B ′ and ϑ := ϑ1 · · · ϑk. Two

cases arise but we prove only the case B ′ 6= � since the other is analogous. First of

all,

d ′ = d1 ∧G2, (3)

B = (B ′,G2ϑ) and d ′′ ∈ pu(D)(B ′,G2ϑ). Moreover, by (2.5.5) and since (by

Lemma 2.2.6) × is associative,

d ′′ = d3 ∧ d4, (4)

where d3 ∈ pu(D)(B ′) and d4 ∈ pu(D)(G2ϑ). By (2), var(d1) ∩ var(d3) = var(B ′)

and therefore, by definition of . and since pu is closed under renaming,

d1 :: d3 is a renamed version of an element in (D1 . pu(D))(G1). (5)

Moreover, since d4 ∈ pu(D)(G2ϑ), since (by our hypothesis on variables) var(d4) ∩
var(G2) ⊆ var(G2ϑ) and by properties of pu(D), there exists

d5 ∈ pu(D)(G2) such that d4 = ∂#(d5). (6)

Now observe that, sinceD2(G2) 6= ∅ is a well-formed set of derivations,G2 ∈ D2(G2)
and therefore, by definition of .,

d5 = G2 :: d5 ∈ (D2 . pu(D))(G2). (7)

By our hypothesis on variables, var(d1 :: d3)∩ var(d5) = var(G1)∩ var(G2). There-

fore, by definition of ×, by (5), by (7) and sinceG = (G1,G2), (d1 :: d3)∧d5 ∈ ((D1.
pu(D))× (D2 . pu(D)))(G). Finally, since (by hypothesis) last(d1) 6= �,

(d1 :: d3) ∧ d5 = [ by definition of ∧ ]
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(d1 ∧G2) :: (d3 ∧ ∂#(d5)) = [ by (6) ]

(d1 ∧G2) :: (d3 ∧ d4) = [ by (3) and (4) ]

d ′ :: d ′′ = [ by (1) ]

d.

Proof of Lemma 2.5.10. We prove the points separately.

Point 1 We have to prove that ∀G ∈ Goals. (pu(D) . pu(D ′))(G) ⊆ (pu(D .

pu(D ′)))(G). The proof is by structural induction on G. If G = � then, by (2.5.5),

(pu(D) . pu(D ′))(�) = {�} = (pu(D . pu(D ′)))(�).

Otherwise let G := (A,G ′) and d ∈ (pu(D) . pu(D ′))(G). Two cases arise.

d ∈ pu(D)(G) In this case, since . is extensive and · and × are monotonic,

pu(D) v pu(D . pu(D ′)) and then d ∈ pu(D . pu(D ′))(G).

d 6∈ pu(D)(G) Since pu(D ′) is closed under renaming,

d = d1 :: d2, (1)

where d1 ∈ pu(D)(G), last(d1) = B 6= � and d2 ∈ pu(D ′)(B). By (2.5.5) and

since pu is closed under renaming, d1 = d3 ∧ d4, where d3 ∈ (A ·D)(A) and

d4 ∈ pu(D)(G ′). Then, by definition of × and by Point 2 of Lemma 2.7.2,

d1 :: d2 ∈ (((A ·D)× pu(D)) . pu(D ′))(G) ⊆ (((A ·D) . pu(D ′))× (pu(D) .

pu(D ′)))(G). Therefore, by (1), by definition of × and since G = (A,G ′),

there exist two renamed versions d5 and d6 of elements in ((A·D).pu(D ′))(A)

and in (pu(D) . pu(D ′))(G ′) respectively, such that

d = d5 ∧ d6. (2)

By inductive hypothesis, d6 is a renamed version of an element in pu(D .

pu(D ′))(G ′). Moreover (since d5 is a renamed version of an element in ((A ·
D) . pu(D ′))(A)), by Point 1 of Lemma 2.7.2, d5 is a renamed version of an

element in (A · (D . pu(D ′)))(A). Finally, by definition of × and pu and by

(2), d ∈ ((A · (D . pu(D ′)))× pu(D . pu(D ′)))(G) ⊆ pu(D . pu(D ′))(G).

Point 2 The proof is by induction on h. The case h = 0 is straightforward, since

pu0(D) = φ = pu0(D).

Otherwise the proof is by structural induction on G.

G = � By (2.5.7) and (2.5.6), puh(D)(�) = {�} = pu1(D)(�).
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G = A,G 0
Let d ∈ puh(D)(G) = (pu(D . puh-1(D)))(G). Then, by (2.5.7),

d = d1 ∧ d2, where d1 ∈ (A · (D . puh-1(D)))(A) (3)

and d2 ∈ puh(D)(G ′). By inductive hypothesis, d2 ∈∑{puk(D)}k≥0(G ′) and

therefore there exists m ≥ 0 such that

d2 ∈ pum(D)(G ′). (4)

Moreover,

A · (D . puh-1(D)) = [ by Point 1 of Lemma 2.7.2 ]

(A ·D) . puh-1(D) v [ by inductive hypothesis ]

(A ·D) .
∑

{puk(D)}k≥0 v [ by (2.5.5) ]

pu(D) .
∑

{puk(D)}k≥0 = [ by Lemma 2.2.7 ]∑
{pu(D) . puk(D)}k≥0 = [ by (2.5.6) ]∑
{puk(D)}k≥0.

Then, by (3), there exists l ≥ 0 such that

d1 ∈ pul(D)(A). (5)

Now, by definition of ∧, we have two possibilities.

last(d1) 6= � In this case d = d1 ∧ G ′. Since d2 ∈ pum(D)(G ′), for any

predicate symbol p occurring inG ′, D(p(x)) 6= ∅. ThenG ′ ∈ pul(D)(G ′)

and therefore, by (2.5.5), by (5) and by definition of ., d = d1 ∧ G ′ ∈
pul(D)(G) ⊆ (

∑
{puk(D)}k≥0)(G).

last(d1) = � Let d1 := A
#1−→c1 · · · #k−→ck � and ϑ := ϑ1 · · · ϑk. By definition of

∧ and by (3),

d = (d1 ∧G ′) :: ∂#(d2). (6)

Analogously to the previous case, using (5),

d1 ∧G ′ ∈ pul(D)(G). (7)

Moreover, by (6), ∂#(d2) is defined. Then, by (4), by properties of pu and

by a straightforward inductive argument, ∂#(d2) ∈ pum(D)(G ′ϑ). Hence,

by definition of ., by (6) and (7), d = (d1 ∧ G ′) :: ∂#(d2) ∈ (pul(D) .

pum(D))(G) and therefore, by Lemma 2.2.6 and by a straightforward

inductive argument, d ∈ pul+m(D)(G).
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Proof of Lemma 2.5.12. We prove the points separately.

Point 1 By definition of v it is sufficient to prove that, for any G ∈ Goals ,

su(D)(G) ⊆ pu(D + Id I)(G). We distinguish two cases. If G = �, su(D)(�)

is not defined and then the thesis follows trivially.

Otherwise let G = (A,G ′) and observe that, by (2.5.5), IdC v pu(D + Id I).
Then the following facts hold

su(D)(G) = [ by (2.3.2) ]

((A ·D)× IdC)(G) ⊆ [ by the previous observation ]

((A ·D)× pu(D+ Id I))(G) ⊆ [ since × is monotonic ]

((A · (D+ Id I))× pu(D+ Id I))(G) = [ by definition of pu ]

pu(D+ Id I)(G).

Point 2 We prove (by induction on n) that, for any G = A1, . . . , An ∈ Goals and

n ≥ 0, GJGKD v IdC + sun(D). Then the thesis follows by (2.5.5).

If n = 0 the thesis follows trivially, since G = � and, by definition, GJ�KD =

φ� v IdC.

Otherwise let G := A,G ′. Then

GJA,G ′KD = [ by definition of GJ·K and AJ·K ]

(A ·D)× GJG ′KD v [ by inductive hypothesis ]

(A ·D)× (IdC + sun-1(D)).

Now let d ∈ GJGKD(G). By the previous result and by definition of ×, d = d1 ∧ d2,
where d1 ∈ (A ·D)(A) and d2 ∈ (IdC + sun-1(D))(G ′). Two cases arise.

last(d1) 6= � In this case, by definition of ∧, d = d1 ∧ G ′ ∈ ((A · D) × IdC)(G)

and therefore, by (2.3.2), d ∈ su(D)(G). Then, by definition of . and of +,

d ∈ (IdC + sun(D))(G).

last(d1) = � Let d1 := A
#1−→c1 · · · #k−→ck � and ϑ := ϑ1 · · · ϑk. By definition of ∧,

d = (d1 ∧ G ′) :: ∂#(d2). Then, since d1 ∈ (A · D)(A), d1 ∧ G ′ ∈ ((A · D) ×
IdC)(G) and therefore, by (2.3.2), d1 ∧ G ′ ∈ su(D)(G). Moreover, since

∂#(d2) is defined and d2 ∈ (IdC+ sun-1(D))(G ′), by properties of su and by a

straightforward inductive argument, ∂#(d2) ∈ (IdC + sun-1(D))(G ′ϑ). By the

previous results and by definition of .,

d = (d1 ∧G ′) :: ∂#(d2) ∈ (su(D) . (IdC + sun-1(D)))(G). (1)
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Finally observe that, since n ≥ 1, su(D) v sun(D). Then

su(D) . (IdC + sun-1(D)) =

[ by Lemma 2.2.7 ]

(su(D) . IdC) + (su(D) . sun-1(D)) =

[ since D . IdC = D ]

su(D) + (su(D) . sun-1(D)) =

[ by (2.2.7) and the previous observation ]

sun(D).

Therefore, by (1), d ∈ sun(D)(G) ⊆ (IdC + sun(D))(G).

Proof of Corollary 2.5.13. The inclusionw is straightforward by Corollary 2.5.11

and by Point 1 of Lemma 2.5.12. For the other inclusion we prove that, for any h ≥ 0,
puh(Id I +D) v IdC +

∑
{suk(D)}k≥0. Then the thesis follows by Corollary 2.5.11.

For h = 0 the proof is trivial, since pu0(Id I +D) = φ.

Otherwise we prove the statement by induction on h ≥ 1.

h = 1 Straightforward by Point 2 of Lemma 2.5.12.

h > 1 Let G be a goal and d ∈ puh(Id I + D)(G). By (2.5.6) and by Point 2 of

Lemma 2.2.6, d ∈ (puh-1(Id I + D) . pu(Id I + D))(G). If d ∈ puh-1(Id I +

D)(G) then the thesis follows by inductive hypothesis (and definition of v).

Otherwise, by definition of ., we can assume that

d = d1 :: d2, where d1 ∈ puh-1(Id I +D)(G),

last(d1) = B 6= � and d2 ∈ pu(Id I +D)(B).
(1)

By inductive hypothesis, d1 ∈ (IdC+
∑

{suk(D)}k≥0)(G) and then there exists

n ≥ 0 such that

d1 ∈ (IdC + sun(D))(G). (2)

Moreover, by Point 2 of Lemma 2.5.12 and by (1), d2 ∈ (IdC + (
∑

{suk(Id I +

D))}k≥0)(B) and therefore there exists m ≥ 0 such that

d2 ∈ (IdC + (sum(Id I +D)))(B). (3)

Now observe that, by Lemma 2.2.7 and since IdC = su(Id I) + φ�, su(Id I +

D) = su(Id I) + su(D) = IdC + su(D). Then (since ∀D ∈ C. D . IdC = D,

IdC .D = IdC +D) IdC + sum(Id I +D) = IdC +
∑

{suk(D)}k≤m +
∑

{IdC +
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suk(D)}k<m. Hence (since ∀D ∈ C, k ≤ k ′. suk(D) v suk ′(D)) IdC+sum(Id I+
D) = IdC + sum(D) and therefore, by (3), d2 ∈ (IdC + sum(D))(B). Then the

following holds.

d ∈
[ by (1), by definition of ., by (2) and last result ]

((IdC + sun(D)) . (IdC + sum(D)))(G) =

[ by Lemma 2.2.7 and since . is extensive ]

(IdC + (sun(D) . IdC) + (sun(D) . sum(D)))(G) =

[ since ∀D ∈ C. D . IdC = D and since . is extensive ]

(IdC + sun(D) . sum(D))(G) =

[ by (2.2.7) ]

(IdC + sun+m(D))(G) ⊆
[ by definition of

∑
]

(IdC +
∑

{suk(D)}k≥0)(G).
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Chapter 3

The Abstraction Framework

Definite logic programs have a very elegant declarative semantics, i.e., the least Her-

brand model. However, some semantics-based techniques (such as program analysis,

debugging and transformation) require more traditional semantics which are able to

capture computational rather than declarative properties. Semantic definitions can

be different in style, as in the case of the top-down SLD-resolution operational se-

mantics and the bottom-up fixpoint denotational semantics . They can be different

because of some of their properties. For example, SLD-resolution is goal-dependent

since it allows us to compute a denotation for a given goal. The fixpoint semantics

is instead goal-independent , since it provides a denotation for a set of procedure

declarations.

Some important properties of a semantics can be described as compositionality

properties. One example is OR-compositionality , which tells us that the denotation

of a set of clauses can be obtained by composing the denotations of the clauses.

Most of the existing goal-independent semantics, such as the standard fixpoint se-

mantics, are not OR-compositional. However the most relevant difference is related

to the observable the semantics is intended to model. An observable is any property

which can be observed in an SLD-tree. Some observables model declarative proper-

ties. An example is correct answer substitutions. However most useful observables

model operational properties. Examples are resultants, proof trees, finite failures,

computed answer substitutions, partial answers, call patterns, types and groundness

dependencies.

Several ad-hoc semantics modeling various observables have been defined. These

include correct answer substitutions [16, 48], computed answer substitutions [45],

partial answers [43], OR-compositional correct answers [56], OR-compositional com-

puted answers [14], call patterns [55], proof trees [66, 67] and resultants [54]. In ad-

dition there are several semantics specifically designed for static program analysis,

which can handle various observables such as types and groundness dependencies.
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A framework where one can define denotations modeling various observables

(thus inheriting the basic constructions and results) was given in [53], by defining the

observables by means of equivalence relations. More general semantic frameworks,

which can also take into account approximation, can be defined by using abstract

interpretation [32, 34], a theory which was developed to reason about the relation

among different semantics, including the approximate semantics useful for static

program analysis. This is the approach taken in [20], where an observable is an

abstraction according to abstract interpretation theory, and in [58], where abstract

interpretation is used to discuss the relation among different semantics.

In this thesis we push forward the approach in [20], by defining a semantic frame-

work whose ingredients are, as in the case of most abstract interpretation frame-

works, a concrete semantics and an observable. Our concrete semantics (Chapter 2)

models SLD-trees and is formalized both denotationally and operationally. It’s main

properties (see Section 2.5) are

• equivalence between operational semantics and denotational semantics,

• existence of a goal-independent denotation for a set of definite clauses, de-

fined in terms of a transition system, equivalent to the (denotational) fixpoint

semantics,

• correctness and minimality (w.r.t. SLD-trees), AND-compositionality and OR-

compositionality of the goal-independent denotations.

An observable (Section 3.1) is a Galois insertion between the domain of SLD-

trees and an abstract domain describing the properties to be modeled. The abstract

denotational definition, transition system and goal-independent denotations are sys-

tematically derived from the concrete ones, by replacing the concrete semantic op-

erators by their optimal abstract versions (Section 3.2). Therefore, the definition

style (denotational semantics and transition system) of the concrete semantics will

be inherited by all the abstract semantics.

The next step is the definition of a taxonomy of classes of observables. An

observable belongs to a class if it satisfies a set of conditions relating the concrete

semantic operators and the Galois insertion. Once we have shown that an observable

belongs to a given class, we know how to automatically derive the “best” semantics

and which are the properties of such a semantics. The properties we consider include

precision, relation between abstract operational semantics and abstract denotational

semantics, existence of a goal-independent denotation for a set of definite clauses,

correctness, minimality and compositionality w.r.t. various syntactic operators.

The first class we consider is the one of perfect observables (Section 3.3). We

prove that perfect observables are precise and have all the properties of the concrete

semantics. We show that this class includes resultants and proof trees.
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For the class of denotational observables (Section 3.4), we can obtain the opti-

mal abstract semantics only in a denotational way, by taking the optimal abstract

version of the semantic operator defining the denotation of the clauses (roughly

speaking, the immediate consequence operator). The abstract operational seman-

tics is less precise. We prove that denotational observables have a precise abstract

denotational semantics and that the abstract (goal-independent) denotation is cor-

rect, minimal and AND-compositional. Therefore, by moving from perfect to de-

notational observables, we lose the precision of the abstract transition system and

OR-compositionality. We show that the class includes computed answer substitu-

tions and call patterns.

The third class of observables we study is the class of semi-denotational ob-

servables (Section 3.5), intended to model some of the properties useful for static

program analysis, where we give up precision to achieve termination in the construc-

tion of the abstract semantics. The semantics construction of semi-denotational

observables is the same of denotational observables. We just lose the precision of

the abstract denotational semantics (which is in any case more precise than the

operational one). We formally show that the class includes the domain POS for

groundness analysis and the domain depth(k).

Finally, we consider the class of semi-perfect observables (Section 3.6) which

allow us to handle approximate properties in an operational way and to model

top-down program analysis. These observables have all the properties of perfect

observables apart from precision. In particular, they have equivalent operational

and denotational semantics, and the (top-down and bottom-up) goal-independent

denotations are AND-compositional and OR-compositional. Let us just note that

semi-perfect observables are essentially the observables which model top-down ab-

stract interpretation frameworks (for example, [15, 69]).

In Section 3.7 we show how our results give some new insights into some clas-

sical controversial issues, such as top-down analysis versus bottom-up analysis and

goal-dependence versus goal-independence. Finally, in Section 3.8, we discuss some

practical applications (in particular to program diagnosis, which is discussed exten-

sively in Chapter 5) and possible extensions.

The results of this chapter are from [22, 21].

3.1 The Observables

The properties found in Chapter 2 for OJPK and FJPK allow us to claim that we have

a good denotation modeling SLD-trees. Our goal however is to find the same results

for the denotations modeling more abstract observables. We want then to develop a
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theory according to which the semantic properties of SLD-trees shown in Chapter 2

are inherited by the denotations which model abstractions of the SLD-trees. We

will model the abstractions by using the Abstract Interpretation theory [34].

An observable property domain is a set of properties of derivations with an or-

dering relation which can be viewed as an approximation structure. An observation

consists of looking at an SLD-tree, and then extracting some property (abstraction).

Since any SLD-tree is (isomorphic to) a collection, an observable is a function from

C to a suitable property domain D, which preserves the approximation structure.

Such a function must be a Galois insertion.

Let (D, �) be a complete lattice. A function α : WFS → D is a domain

abstraction if there exists γ such that 〈α, γ〉 : (WFS , ⊆) 
 (D, �) is a Galois

insertion. Given an abstract domain D we are generally interested in the abstract

behavior of the queries, which are elements of a domain of partial functions A ⊆
[Goals ⇀ D] (ordered by the trivial extension ≤ of �) and are called A-collections .

The insertion 〈α, γ〉 can be lifted to collections by defining1 ∀D ∈ C. α?(D) :=

λG. α(D(G)), A := α?(C) and ∀S ∈ A. γ?(S) := λG. wfG(γ(S(G))), where wfG(S)

is the greatest well-formed subset of any set of derivations S, restricted to the deriva-

tions starting fromG only. The pair 〈α?, γ?〉 : (C, v) 
 (A, ≤) is a Galois insertion.

From now on we will often abuse notation and denote α? by α. Furthermore, if there

exists a bijective Galois insertion between two domains, we identify them. As in the

concrete case, a pure A-collection is any element of X ∈ A which is defined for pure

atomic goals only. We denote by PA the sub-lattice of pure A-collections.

Definition 3.1.1 Let (A, ≤) be a complete lattice of A-collections. A function α :

C→ A is an observable if it maps finite elements of C to finite elements2 of A and

there exists γ such that

1. 〈α, γ〉 : (C, v) 
 (A, ≤) is a Galois insertion,

2. α(PC) = PA and γ(PA) ⊆ PC,

3. ∀D,D ′ ∈ PC. D ≡C D ′ =⇒ (γα)(D) ≡C (γα)(D ′).

Note that given a domain abstraction it is easy to obtain an observable by the above

mentioned lifting3.

1Remember that if D(G) is undefined then also α(D(G)) is undefined.
2Let A ⊆ [Goals ⇀ D]. We assume that the elements of the domain D can be represented by

means of a syntactic expression built over the (free) variables which appear in the corresponding
derivations in WFS . By finite element of D we mean any element which is finitely representable in
the domain D. Indeed the only relevant thing to our purposes is that a finite element has a finite
number of free variables.

3All the observables defined in the examples are indeed obtained by lifting a domain abstraction.
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We can define an abstract enhanced variance relation ≡A on A-collections as

follows: for any A-collections X,X ′, X ≡A X ′ ⇐⇒ γ(X) ≡C γ(X ′).

Definition 3.1.2 An A-interpretation is a pure A-collection modulo ≡A. We de-

note by (IA, ≤) the complete lattice of A-interpretations with the induced quotient

order.

Point 3 of Definition 3.1.1 states that the observation does not depend on the choice

of the variable names and on the choice of the mgus used in the derivations. Namely

D ≡C D ′ implies α(D) ≡A α(D ′). Hence, for any C-interpretation I, the A-inter-

pretation α(I) is well defined4.

Each observable α induces an observational equivalence ≈� on programs. Namely

P1 ≈� P2 if and only if, for all G ∈ Goals ,

α (BJG in P1K) = α (BJG in P2K) , (3.1.1)

i.e., if P1 and P2 cannot be distinguished by looking at the abstraction of their

concrete behaviors. Note that the abstract behavior of a query, as defined in Sec-

tion 3.2, will in general be less precise than the abstraction of the concrete behavior

α(BJG in PK), which is therefore sometimes referred to as the most precise abstract

behavior .

Note that whenever we have two equivalent observables, the induced equivalences

on programs are the same, but the converse does not hold. For example P1 ≈ P2 if

and only if P1 ≡ P2. Therefore, the equivalence on programs induced by the SLD-

tree semantics is the same as the syntactical equivalence on programs (variance).

However, we can syntactically observe many more properties in SLD-trees than in

programs themselves.

Example 3.1.3 (Computed Answer Substitutions)

If ξ denotes computed answer substitution abstraction we must consider the domain

(℘(Subst), ⊆) and define the domain abstraction ξ : WFS → ℘(Subst) as ξ(S) :=

{answer(d) | d ∈ S, last(d) = �}. This abstraction can be lifted to the abstract

domain Aca ⊆ [Goals ⇀ ℘(Subst)] by defining 〈ξ, ξ〉 : C 
 Aca as

ξ(D) := λG.
{

answer(d) | d ∈ D(G), last(d) = �}.
ξ(X) := λG.

{
d | first(d) = G, last(d) = �, answer(d) ∈ X(G)

}
∪{

d | first(d) = G, last(d) 6= �}.
ξ : C → Aca is an observable (the proof is in Section 3.9). Then we can define the

abstract enhanced variance relation ≡Aca on Aca as mentioned before. By using the

4We can take the abstraction, by means of α, of any representative of I. By Point 3 of Defini-
tion 3.1.1 it is a representative of the intended A-interpretation.
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same arguments of the proof that ξ is an observable, it is easy to check that X ≡Aca X
′

if and only if, for any p(x), there exists p(y) such that (if X(p(x)) is defined then

X ′(p(y)) is defined and), for any ϑ ∈ X(p(x)), there exists ϑ ′ ∈ X ′(p(y)) such that

p(x)ϑ ≡ p(y)ϑ ′ and vice versa. It is easy to see that P1 ≈� P2 if and only if for

any goal G, G has the same (modulo variance) computed answer substitutions in

P1 and in P2.
We show now the result of application of the ξ observable to some of the collec-

tions introduced in examples of Chapter 2.

Let D1, D2 be the collections of Example 2.1.1 (on page 39). Then

ξ(D1) =

{
p(x, y) 7→ {{x/g(a), y/b}

}
n(x) 7→ ∅

ξ(D2) =

{
q(x, y) 7→ {{x/a}

}
q(f(x), z) 7→ {{x/g(s), z/a}

}
Consider now the collection QJG in PK of Example 2.2.1 (on page 43), where P is

the append program and G := ap([a], [l], x), ap(x, [h], z). Then

ξ(QJG in PK) = ap([a], [l], x), ap(x, [h], z) 7→ {{x/[a, l], z/[a, l, h]}
}

Let D ′′′′ be the collection of Example 2.3.1 (on page 54). Its abstraction is

ξ(D ′′′′) = anc(x, y) 7→ {{x/jay, y/tim}, {x/joe, y/jay}, {x/joe, y/tim}
}

while the abstraction of the collection D1 .D2 of Example 2.2.5 (on page 49) is

ξ(D1 .D2) =

{
p(x, y) 7→ {{x/g(a), y/b}, {x/a}

}
n(x) 7→ ∅

Note that, since D1 v D1 .D2, the theory requires ξ(D1) ≤ ξ(D1 .D2), which is

actually the case since ξ(D1)(n(x)) = ξ(D1.D2)(n(x)) and ξ(D1)(p(x, y)) ⊂ ξ(D1.
D2)(p(x, y)).

3.2 From the Observables to the Abstract Seman-

tics

Once we have an observable α : C→ A, we want to derive systematically the abstract

semantics. The idea is to define the optimal abstract versions of the various semantic

operators and then check under which conditions (on the observable) we obtain the
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optimal abstract semantics. This will allow us to identify some interesting classes

of observables.

We will start by defining the optimal abstract counterparts of the basic operators

defined on C. Hence ∀X,X ′, Xi ∈ A

A ·̃ X := α(A · γ(X)), (3.2.1)

X ×̃ X ′ := α(γ(X)× γ(X ′)), (3.2.2)

X .̃ X ′ := α(γ(X) . γ(X ′)), (3.2.3)∑̃{
Xi}i∈I := α

(∑{
γ(Xi)}i∈I) . (3.2.4)

Once we have the optimal abstract operators, we can define the corresponding

abstract semantics, obtained from the denotational and operational semantics of

SLD-trees (of Chapter 2) by replacing the basic semantic operators by their optimal

abstract versions.

Unfoldings

su�(X) :=
∑̃{

(A ·̃ X) ×̃ α(IdC)
}
A∈Atoms

(3.2.5)

pu�(X) :=
∑̃{

G�JGKX}G∈Goals
(3.2.6)

unf kP;�(X) :=

{
unf k-1P;� (X) .̃ su�(α(tree(P))) if k > 0

X otherwise
(3.2.7)

Denotational Semantics

Q�JG in PK := G�JGKlfp P�JPK (3.2.8)

G�JA,GKX := A�JAKX ×̃ G�JGKX G�J�KX := α(φ�) (3.2.9)

A�JAKX := A ·̃ X (3.2.10)

P�J{c} ∪ PKX := C�JcKX +̃ P�JPKX P�J∅KX := α(Id I) (3.2.11)

C�JH← BKX := α(tree(H← B)) .̃ G�JBKX, (3.2.12)

F�JPK := lfp P�JPK. (3.2.13)

Operational Semantics

X ∈ A, X 6= X .̃ su�(α(tree(P)))

X
�7−→P X .̃ su�(α(tree(P)))

(3.2.14)

B�JG in PK :=
∑̃{

X | α(φG)
�7−→P ∗ X

}
(3.2.15)

O�JPK :=
∑̃{

B�Jp(x) in PK/≡A}p(x)∈Goals
. (3.2.16)
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Any A-interpretation X of IA is implicitly considered also as an arbitrary A-collection

obtained by choosing an arbitrary representative of X. By the following Lemma 3.2.1

and a straightforward structural induction, all the semantic operators that we have

just introduced on A-interpretations are independent from the choice of the repre-

sentative. This is the reason why we defined the operators on IA in terms of their

counterparts defined on A, independently from the choice of the representative.

Lemma 3.2.1 Let X,X ′ ∈ PA. If X ≡A X ′ then A ·̃ X = A ·̃ X ′.

Proof. X ≡A X ′ implies [by definition] γ(X) ≡C γ(X ′) and therefore [by (2.2.6)] A ·
γ(X) = A · γ(X ′). Now [by applying α] we obtain α(A · γ(X)) = α(A · γ(X ′)) which

is the thesis.

Note that, by definition of unf P;�, �7−→P and B�J·K,

B�JG in PK =
∑̃{

unf kP;�(α(φG))
}
k≥0 (3.2.17)

O�JPK =
∑̃{[∑̃{

unf kP;�(α(φp(x)))}k≥0] /≡A
}
p(x)∈Goals

. (3.2.18)

We are looking for conditions which guarantee that the abstract definitions of

the denotations ((3.2.8)–(3.2.16)) do not lead to a loss of precision. Depending on

these conditions we can characterize various classes of observables.

3.3 Perfect Observables

The first class of observables we consider is the one for which both the abstract

denotational and the abstract operational semantics are precise. As a consequence,

we can equivalently compute the abstract property in a top-down and in a bottom-up

way, by mimicking the concrete computations. First of all recall that any observable

is precise w.r.t. the sum operation, since for any Galois insertion,

α(
∑{

Di}i∈I) = α(
∑{

(γ ◦ α)(Di)}i∈I). (3.3.1)

Definition 3.3.1 Let α : C→ A be an observable. Then α is a perfect observable

if

α(A ·D) = α(A · (γ ◦ α)D), (3.3.2)

α(D1 ×D2) = α((γ ◦ α)D1 × (γ ◦ α)D2), (3.3.3)

α(D1 .D2) = α((γ ◦ α)D1 . (γ ◦ α)D2). (3.3.4)
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Example 3.3.2 (Computed Resultants)

Resultants are formulas of the formG← B, which represent the relation between the

initial goal and any intermediate goal in an SLD-derivation. Resultants have been

introduced to prove the correctness of SLD-resolution [3]. A semantics modeling

computed resultants was defined in [54]. Let Res be the set of resultants and consider

the domain Acr ⊆ [Goals ⇀ Res]. The computed resultants observable χ : C → Acr

is defined by

χ(D) := λG.
{
Gϑ← B | d ∈ D(G), B = last(d), ϑ = answer(d)

}
,

χ(X) := λG.wfG(
{
d | first(d) = G; Gϑ← last(d) ∈ X(G); ϑ = answer(d)

}
).5

The proof that χ : C → Acr is an observable is analogous to the one given for

computed answers in Example 3.1.3 and hence it is omitted. Moreover it can be

shown that χ and χ satisfy the conditions of Definition 3.3.1. Hence computed

resultants is a perfect observable.

Example 3.3.3 (Partial Proof Trees)

Another interesting observable which can be proved to be perfect is the partial proof

tree observable. Partial proof trees are used in the construction of the Heyting

semantics [66, 67]. We will give now a brief description of partial proof trees. We

refer to [67] for further details.

Partial proof trees are represented by equivalence classes of terms formed from

atoms and consequence functors, Σ ′ := {`,⊥, ′ , ′ }. ` is assumed to be binary non-as-

sociative, comma binary left-associative and ⊥ is a constant. To avoid parenthesis

` is assumed to bind tighter than comma. Let V∗ be a enumerable set of vari-

ables distinct from V which range over partial proof trees. The Heyting base Hg

is taken to be the lattice completion of the equivalence classes T(Σ ′, V∗ ∪ Atoms)

modulo variance. We denote by ∧ and ∨ the meet and join operations of the lattice.

Moreover represents an anonymous distinct variable of V∗.

Given a partial proof tree T , by open(T) we denote the list of open subtrees

of T , taken from left to right. Furthermore by repl(T, T ′, T ′′) we denote the tree

which is obtained by replacing the subtree T ′ of T by T ′′. For example, if T is the

partial proof tree (( `C, true `D, `E)`A, `B), open(T) = `C, `E, `B and

repl(T, `E, T ′ ` F) = ( `C, true `D, T ′ ` F)`A, `B.

In order to define the abstraction on the domain AHg ⊆ [Goals ⇀ ℘(Hg)] of

partial proof tree collections we need to define first the abstraction of goals and

clauses.

Ht(A1, . . . , An) := `A1, . . . , `An
5Recall that wfG(S) is the (greatest) well-formed subset (of derivations starting from G only)

of any set of derivations S.
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Ht(H← B) := Ht(B)`H

where Ht(H←) = true `H. Then we can define the abstraction Ht(d) of a derivation

d := G0 #
−−−−→c1;:::;cn Gn by an iterative process.6 First of all let T0 = Ht(G0). Then we

build any Ti by using Ti-1 and ci as follows, Ti := repl(Ti-1, car(open(Ti-1)),Ht(ci)),
where the car operator selects the first term of a list. The abstraction of the deriva-

tion d is then Ht(d) = Tnϑ.
The partial proof tree observable ζ : C→ AHg is

ζ(D) = λG.
{

Ht(d) | d ∈ D
}
.

The proof that ζ : C → AHg is an observable is analogous to the one given for

computed answers in Example 3.1.3 and hence it is omitted. Moreover it can be

shown that ζ and ζ satisfy the conditions of Definition 3.3.1. Hence partial proof

trees is a perfect observable.

Note that there exist observables which are not perfect. For example, the observable

ξ of Example 3.1.3 is not a perfect observable, since the axiom (3.3.4) does not hold.

The following theorem shows that the abstract transition relation of perfect

observables is precise.

Theorem 3.3.4 Let α : C → A be a perfect observable and P be a program. Then

∀D,D ′ ∈ C. D 7−→P ∗ D ′ =⇒ α(D)
�7−→P ∗ α(D ′). Moreover, ∀X ′ ∈ A. α(D)

�7−→P ∗

X ′ =⇒ ∃D ′ ∈ C such that X ′ = α(D ′) and D 7−→P ∗ D ′.

Proof. In the following the notation D̄ 7−→P n D ′ (X̄
�7−→P n X ′) means that the

collection D̄ (X̄) results in the collection D ′ (X ′) with at the most n transition steps

7−→P (
�7−→P ). We prove the thesis by induction on n.

Base case Straightforward since D 7−→P 0 D ′ if and only if D = D ′ and α(D)
�7−→P 0

X ′ if and only if X ′ = α(D).

Inductive case First of all observe that, since α is a perfect observable, for any

D ′′ ∈ C,

α(D ′′ . su(tree(P))) = α(D ′′) .̃ su�(α(tree(P))). (1)

6Partial roof trees are independent from the selection rule. However, since we obtain them by
abstracting SLD-trees via the leftmost selection rule, we will construct partial proof trees only
from left to right.
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Now we prove the implication ⇐=. The proof of the other implication is

analogous and hence it is omitted.

Assume that D 7−→P n D ′, with n > 0. Then, by definition of 7−→P n, there

exists D ′′ ∈ C, such that D 7−→P n-1 D ′′ 7−→P 1 D ′′ . su(tree(P)). By inductive

hypothesis α(D)
�7−→P n-1 α(D ′′). Therefore, by definition of

�7−→P 1 and (1),

α(D)
�7−→P n α(D ′′ . su(tree(P))).

We can now show that the operational semantics and the top-down denotation are

indeed precise.

Corollary 3.3.5 Let α : C → A be a perfect observable, G be a goal and P be a

program. Then

1. α(BJG in PK) = B�JG in PK,
2. α(OJPK) = O�JPK.

Proof. We prove the points separately.

Point 1

α(BJG in PK) = [ by definition of BJ·K and (3.3.1) ]

α(
∑

{γα(D) | φG 7−→P ∗ D}) = [ by Theorem 3.3.4 ]

α(
∑

{γ(X) | α(φG)
�7−→P ∗ X}) = [ by definition of

∑̃
and B�J·K ]

B�JG in PK.
Point 2

α(OJPK) =

[ by definition of OJ·K and (3.3.1) ]

α(
∑

{γα(BJp(x) in PK/≡C)}p(x)∈Goals) =

[ by Point 3 of Definition 3.1.1 ]

α(
∑

{(γα(BJp(x) in PK))/≡C}p(x)∈Goals) =

[ by definition of ≡A ]

α(
∑

{γ(α(BJp(x) in PK)/≡A)}p(x)∈Goals) =

[ by definition of
∑̃

and Point 1 ]∑̃
{B�Jp(x) in PK/≡A}p(x)∈Goals =

[ by definition of O�J·K ]
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O�JPK.

We show now that all the properties of SLD-trees stated in Chapter 2 hold for the

abstract top-down denotation for any perfect observable as well.

Corollary 3.3.6 Let α : C → A be a perfect observable, A be an atom, G, G ′ be

goals and P, P ′ be programs. Then

1. B�JA in PK = A ·̃ O�JPK,
2. B�J(G,G ′) in PK = B�JG in PK ×̃B�JG ′ in PK,
3. P ≈� P ′ ⇐⇒ O�JPK = O�JP ′K.

Proof. We prove the points separately.

Point 1

B�JA in PK = [ by Point 1 of Corollary 3.3.5 ]

α(BJA in PK) = [ by Point 1 of Theorem 2.5.4 and (3.3.2) ]

α(A · γα(OJPK)) = [ by Point 2 of Corollary 3.3.5 ]

α(A · γ(O�JPK)) = [ by definition of ·̃ ]
A ·̃ O�JPK.

Point 2 Analogous to the previous one and hence omitted.

Point 3 By (3.1.1) and Point 1 of Corollary 3.3.5,

P ≈� P ′ ⇐⇒ ∀G ∈ Goals. α (BJG in PK) = α (BJG in P ′K)⇐⇒
∀G ∈ Goals. B�JG in PK = B�JG in P ′K.

Now the proof is analogous to the one of Corollary 2.5.6 (on page 64). By definition

of O�J·K, the minimality is trivial. The proof of the converse is by contradiction,

by using Points 1 and 2 and by structural induction on the goal G, such that

B�JG in PK 6= B�JG in P ′K.
In order to express the abstract OR-compositionality we have to define the abstract

version ]̃ of the ] operator. Given X1, X2 ∈ PA,

X1 ]̃ X2 := [X1 +̃ X2]∗�, (3.3.5)

where [X]∗� is the least solution of the equation

[X]∗� = α(Id I) +̃ ([X]∗� .̃ su�(X)), (3.3.6)
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or (equivalently) the least fixpoint of the continuous operator

H̃X(X ′) := α(Id I) +̃ X ′ .̃ su�(X). (3.3.7)

Lemma 3.3.7 Let α : C → A be a perfect observable and let D ∈ PC. Then

[α(D)]∗� = α([D]∗).

Proof. Let X ∈ PA. Now we prove that H̃�(D) ◦ α = α ◦HD.

H̃�(D)(α(D ′)) =

[ by definition of H̃�(D) ]
α(Id I) +̃ α(D ′) .̃ su�(α(D)) =

[ by definition of +̃, .̃ and since su� = α ◦ su ◦γ ]

α(γα(Id I) + γα(γα(D ′) . γα(su(γα(D))))) =

[ by Definition 3.3.1 ]

α(Id I +D ′ . su(D)) =

[ by definition of HD ]

α(HD(D ′)).

Now, since ⊥A = α(⊥C) and by a straightforward inductive argument, for any n ≥ 0,
H̃�(D)↑n = α(HD↑n). Then [α(D)]∗� = lfpA H̃�(D) = α(lfpC HD) = α([D]∗).

Corollary 3.3.8 Let α : C → A be a perfect observable and P1, P2 be programs.

Then O�JP1 ∪ P2K = O�JP1K ]̃ O�JP2K.
Proof. The following equivalences hold.

O�JP1K ]̃ O�JP2K = [ by definition of ]̃ ]

[O�JP1K +̃ O�JP2K]∗� = [ by Corollary 3.3.5 and by (3.3.1) ]

[α(OJP1K+ OJP2K)]∗� = [ by Lemma 3.3.7 ]

α([OJP1K+ OJP2K]∗) = [ by definition of ] ]

α(OJP1K ] OJP2K) = [ by Theorem 2.5.9 ]

α(OJP1 ∪ P2K) = [ by Corollary 3.3.5 ]

O�JP1 ∪ P2K.

The following theorem shows that the abstract denotational semantics and the

bottom-up denotation are precise.
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Theorem 3.3.9 Let α : C → A be a perfect observable, c be a clause, A be an

atom, G be a goal and P be a program. Then

1. α(AJAKI) = A�JAK�(I),
2. α(GJGKI) = G�JGK�(I),
3. α(CJcKI) = C�JcK�(I),
4. α(PJPKI) = P�JPK�(I),
5. P�JPK is continuous on A and F�JPK = P�JPK↑!,

6. α(FJPK) = F�JPK,
7. α(QJG in PK) = Q�JG in PK.

Proof. We prove the points separately.

Point 1 By definition of AJ·K, ·̃, A�J·K and by (3.3.2), α(AJAKI) = α(A ·I) = α(A ·
γα(I)) = A ·̃ α(I) = A�JAK�(I).
Point 2 The proof is by induction on G. If G = �, by definition of GJ·K and G�J·K,
α(GJ�KI) = α(φ�) = G�J�K�(I).

Otherwise let G = (A,G ′). The following equivalences hold.

α(GJ(A,G ′)KI) = [ by definition of GJ·K ]

α(AJAKI × GJG ′KI) = [ by (3.3.3) ]

α(γα(AJAKI)× γα(GJG ′KI)) = [ by definition of ×̃ ]

α(AJAKI) ×̃ α(GJG ′KI) = [ by Point 1 and by inductive hypothesis ]

A�JAK�(I) ×̃ G�JG ′K�(I) = [ by definition of G�J·K ]

G�J(A,G ′)K�(I).
Point 3 Let c = H← B. Then

α(CJcKI) = [ by definition of CJ·K ]

α(tree(c) . GJBKI) = [ by (3.3.4) ]

α(γα(tree(c)) . γα(GJBKI)) = [ by definition of .̃ ]

α(tree(c)) .̃ α(GJBKI) = [ by Point 2 and by definition of C�J·K ]

C�JcK�(I).
Point 4 Immediate by definition of PJ·K, P�J·K and by Point 3.
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Point 5 Let {Xi}i∈I ⊆ A be a chain. Since
∑̃

is the lub operation on A, we have

to prove that
∑̃

{P�JPKXi}i∈I = P�JPKfPfXigi∈I .∑̃
{P�JPKXi}i∈I = [ by definition of

∑̃
]

α(
∑

{γ(P�JPKXi)}i∈I) = [ since Xi = αγ(Xi) and by Point 4 ]

α(
∑

{γα(PJPK(Xi))}i∈I) = [ by (3.3.1) ]

α(
∑

{PJPK(Xi)}i∈I) = [ since PJPK is continuous ]

α(PJPKPf(Xi)gi∈I) = [ by Point 4 and definition of
∑̃

]

P�JPKfPfXigi∈I.
Then apply Tarsky’s theorem.

Point 6 First of all note that, since (A, ≤) is a complete lattice, there exists the

bottom element ⊥A. Moreover, since α is monotonic and φ is the bottom element of

C, for any D ∈ C, α(φ) ≤ α(D) and then, since α is surjective, α(φ) = ⊥A. Then,

by Point 3 and a straightforward inductive argument, for any n ≥ 0, α(PJPK↑n) =

P�JPK↑n. Therefore, since
∑

is the lub operation on C and
∑̃

is the lub operation

on A,

α(FJPK) = [ by definition of FJ·K ]

α(PJPK↑!) = [ since PJPK is continuous ]

α(
∑

{PJPK↑n}n≥0) = [ by (3.3.1) and definition of
∑̃

]∑̃
{α(PJPK↑n)}n≥0 = [ by the previous observation ]∑̃
{P�JPK↑n}n≥0 = [ by Point 5 ]

F�JPK .
Point 7 By definition of QJ·K, Q�J·K and by Points 2 and 6, α(QJG in PK) =

α(GJGKlfp PJPK) = G�JGK�(lfp PJPK) = G�JGKlfp P�JPK = Q�JG in PK.
Finally, by using Theorem 3.3.9 and Corollaries 3.3.6 and 3.3.5, we can prove the

equivalences between the denotational and the operational semantics on one side,

and between the top-down and bottom-up denotations on the other side.

Corollary 3.3.10 Let α : C→ A be a perfect observable, G be a goal and P, P ′ be

programs. Then

1. O�JPK = F�JPK,
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2. Q�JG in PK = B�JG in PK,
3. P ≈� P ′ ⇐⇒ F�JPK = F�JP ′K.
There are several examples of interesting observables for which .̃ is not precise

(for example — as already mentioned — computed answers). Due to the imprecision

of the low level operations, we can still try to define a more precise semantics by

choosing the optimal abstractions for an upper level semantic operation. In the

denotational semantics, the operator . is used only to define the semantic function

CJ·K. In the Section 3.4 we obtain a new class of observables by taking its optimal

abstraction C̃J·K.

3.3.1 Computed Resultant Semantics

We show now how to reconstruct the semantics modeling computed resultants, de-

fined in [54], by means of the observable χ of Example 3.3.2.

In Section 3.9 we prove that, by applying (3.2.1), (3.2.2), (3.2.3) and (3.2.4), the

·̃, .̃ and ×̃ operations are

A ·̃ X = φ
[R/A] where R :=

{
(A← B ′)ϑ | 〈H, R ′〉 is a renamed

apart (from A) version of 〈A ′, X(A ′)〉, for some A ′ ≤ A,
H ′← B ′ ∈ R ′, there exists δ s.t. A = Hδ and ϑ = mgu(A,H ′)

}
,

X1 ×̃ X2 = λG.
{
((G1,G2)← B)ϑ | G = (G1,G2),∀i = 1, 2,G ′i ≡ Gi,

ri = G ′′i ← Bi is a renamed version of an element in Xi(G ′i), via a
renaming ρi s.t. G ′iρi = Gi, var(r1) ∩ var(r2) ⊆ var(G1) ∩
var(G2), G1ϑ1 = G ′′1 , and if B1 6= � then ϑ = ϑ1|G1 , B = (B1,G2)
else B = B2, ϑ = ϑ1|G1 ◦mgu(G2ϑ1,G ′′2 )},

X1 .̃ X2 = λG. X1(G) ∪
{
(G ′←G3)ϑ | r1 = G ′←G1 ∈ X1(G),

G1 ≡ G2, r2 = G ′2←G3 is a renamed version of an element in
X2(G2), via a renaming ρ s.t. G2ρ = G1,
var(r1) ∩ var(r2) ⊆ var(G1), G1ϑ = G ′2 and dom(ϑ) ⊆ var(G1)}.

while the optimal
∑̃

operation turns out to be point-wise union.

Example 3.3.11

Consider the following computed resultants collections.

X1 :=

{
p(x, y) 7→ {p(x, y)← p(x, y); p(x, y)← q(x, y); p(g(a), b)←�}
n(x) 7→ {n(x)← n(x); n(x)← p(x, x)

}
X2 :=

{
q(x, y) 7→W1
q(f(x), z) 7→W2
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where

W1 :=
{
q(x, y)← q(x, y); q(x, y)← n(f(s), x); q(a, y)←�}

W2 :=
{
q(f(x), z)← q(f(x), z); q(f(x), a)←m(g(s), f(x));

q(f(g(s)), a)←�}
The following hold.

q(f(g(z)), z) ·̃ X2 = q(f(g(z)), z) 7→W3
X1 .̃ X2 =

{
p(x, y) 7→ X1(p(x, y)) ∪W4
n(x) 7→ X1(n(x))

X1 ×̃ X2 =


p(x, y), q(x, y) 7→W5
p(x, y), q(f(x), y) 7→W6
n(x), q(x, y) 7→W7
n(x), q(f(x), y) 7→W8

where

W3 :=
{
q(f(g(z)), z)← q(f(g(z)), z); q(f(g(z)), z)← n(f(s), f(g(z)));

q(f(g(a)), a)←m(g(s), f(g(a))); q(f(g(a)), a)←�}
W4 :=

{
p(x, y)← n(f(s), x); p(a, y)←�}

W5 :=
{
p(x, y), q(x, y)← p(x, y), q(x, y); p(x, y), q(x, y)← q(x, y), q(x, y);

p(g(a), b), q(g(a), b)← q(g(a), b);

p(g(a), b), q(g(a), b)← n(f(s), g(a))
}

W6 :=
{
p(x, y), q(f(x), y)← p(x, y), q(f(x), y);

p(x, y), q(f(x), z)← q(x, y), q(f(x), z);

p(g(a), b), q(f(g(a)), z)← q(f(g(a)), z);

p(g(a), b), q(f(g(a)), a)←m(g(s), f(g(a)));

p(g(a), b), q(f(g(a)), a)←�}
W7 :=

{
n(x), q(x, y)← n(x), q(x, y); n(x), q(x, y)← p(x, x), q(x, y)

}
W8 :=

{
n(x), q(f(x), y)← n(x), q(f(x), y);

n(x), q(f(x), z)← p(x, x), q(f(x), z)
}

Note that collection X1 contains the resultant p(x, y)← q(x, y) and then the .̃ can

use the resultants for q(x, y) of X2 to extend X1(p(x, y)) with W4.
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The abstract semantic function is

C�Jp(t)← BKX = λp(x).
{
p(x)ϑ← (Bk,B ′′) | B = (B ′,B ′′), x are new

variables, ∃k s.t. ∀i < k.Ai←� ∈ X(pi(xi)),
Ak← Bk ∈ X(pk(xk)), X(pj(xj)) 6= ∅ is defined for any
pj ∈ preds(B ′′), ϑ := {x/t} ◦ ϑ ′,
ϑ ′ := mgu

(
B ′, (A1, . . . , Ak))}.

The abstract top-down denotation is

O�JPK = λp(x).
{
p(x)ϑ← B | p(x)

#
−−→P ∗ B

}/
≡Acr

and coincides with the abstract bottom-up denotation and the abstraction of the

top-down denotation, i.e., O�JPK = F�JPK = χ(OJPK).

3.3.2 The Partial Proof Tree Semantics

We show now how to obtain the semantics modeling partial proof trees, by means

of the observable ζ of Example 3.3.3.

We first need to introduce some notation to get a compact presentation of the

operations. Given a tree T , we denote by 〈T〉nm the tree obtained by adding n anony-

mous tree variables to the left of T and m anonymous tree variables to the right.

Moreover prfx (T) is the list (in the reverse order) of all trees which are obtained

starting from T and then by sequentially replacing a subtree by an anonymous tree

variable going form right to left w.r.t. comma and form left to right w.r.t. `. Intu-

itively, prfx gives the history of all the prefixes of T built in a left to right order.

For example, if T := ( `A`B, `C), prfx (T) = [( , ); ( `B, ); ( `A`B, ); T ].

By applying (3.2.1), (3.2.2), (3.2.3) and (3.2.4), the ·̃, .̃ and ×̃ operations are

A ·̃ X = φ
[S/A] where S :=

{
( `A) ∧ T | T ∈ X(H), H ≥ A

}
,

X1 ×̃ X2 = λG.
{
T | (G ′,G ′′) = G, T ′ ∈ X1(G ′), T ′′ ∈ X2(G ′′),

G ′ = A1, . . . , An, G ′′ = B1, . . . , Bm,
T1, . . . , Tk = (prfx (〈T ′〉0m), prfx (〈T ′′〉n0 )),
T =

∨
1≤i≤k

(
Ht(G) ∧

∧
1≤j≤i

Tj
)}

,

X1 .̃ X2 = λG. X1(G) ∪
{
T ∧

∧
1≤i≤n

repl(T, `Ai, Ti)) | T ∈ X1(G),

open(T) = `A1, . . . , `An, (T1, . . . , Tn) ∈ X2(A1, . . . , An)}.
while the optimal

∑̃
operation turns out to be point-wise union.



Denotational Observables 107

The abstract semantic function is

P�JPKX = λp(x).
{
( `p(x)) ∧ Ht(c)∧(T `p(t)) | c = p(t)← B1, . . . , Bn ∈ P,

T =
∨
1≤i≤k

(
Ht(B1, . . . , Bn) ∧

∧
1≤j≤i

Tj
)
, T1, . . . , Tk =

(prfx (〈X(B1)〉0n-1), prfx (〈X(B2)〉1n-2), . . . , prfx (〈X(Bn)〉n-10 ))
}
.

Since ζ is perfect, the abstract bottom-up denotation F�JPK, the abstract top-down

denotation O�JPK and the abstraction of the top-down denotation ζ(OJPK) coincide.

Let us finally note that the Heyting semantics [66, 67] can be obtained by col-

lecting from O�JPK all complete proof trees (trees which do not contain anonymous

tree variables). An observable α which model complete proof trees can be easily

defined using a construction analogous to this one, but it is not anymore perfect,

yet it is denotational (denotational observables are introduced in the next section).

It turns out that its P�JPK operator is isomorphic to the HgT P operator of [67] and

that the bottom-up denotation F�JPK models the Heyting semantics of P.

3.4 Denotational Observables

We relax the optimality condition of axiom (3.3.4) and admit a .̃ operator which is

not necessarily precise.

Definition 3.4.1 Let α : C → A be an observable. Then α is a denotational

observable if

α(A ·D) = α(A · (γ ◦ α)D), (3.4.1)

α(D×D ′) = α((γ ◦ α)D× (γ ◦ α)D ′), (3.4.2)

α(D .D ′) = α(D . (γ ◦ α)D ′). (3.4.3)

The following theorems show that, under these conditions, we can just replace C�J·K
by the optimal abstraction C̃J·K of CJ·K to make the semantic definition precise7.

C̃JcK := α ◦ CJcK ◦ γ. (3.4.4)

With this new semantic operator we can define a more precise denotational seman-

tics, simply by replacing equation (3.2.11) with

P�J{c} ∪ PKX := C̃JcKX +̃ P�JPKX. (3.4.5)

Then, if we replace C�J·K by C̃J·K in its statement, Theorem 3.3.9 also holds for

denotational observables.

7Note that if a denotational observable α is also perfect, then C̃J·K = CαJ·K.
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Theorem 3.4.2 Let α : C → A be a denotational observable, c be a clause, A be

an atom, G be a goal and P be a program. Then

1. α(AJAKI) = A�JAK�(I),
2. α(GJGKI) = G�JGK�(I),
3. α(CJcKI) = C̃JcK�(I),
4. α(PJPKI) = P�JPK�(I),
5. P�JPK is continuous on A and F�JPK = P�JPK↑!,

6. α(FJPK) = F�JPK and α(QJG in PK) = Q�JG in PK.
Proof. We prove only Point 3. The proof of the other statements is analogous to

those of Theorem 3.3.9 (by using Definition 3.4.1 and the definition of C̃J·K instead of

Definition 3.3.1 and the definition of C�J·K, respectively) and therefore it is omitted.

Let c be the clause H← B. Then

α(CJcKI) = [ by definition of CJ·K and by (3.4.3) ]

α(tree(c) . γα(GJBKI)) = [ by Point 2 ]

α(tree(c) . γ(G�JBK�(I))) = [ since I = αγ(I) and by Point 2 ]

α(tree(c) . γα(GJBK�(I))) = [ by (3.4.3) and by definition of C̃J·K ]

C̃JcK�(I).

As a consequence of the above theorem, the abstract denotational semantics and the

bottom-up denotation are precise. In particular, since F�JPK = α(FJPK), F�J·K is

correct and minimal w.r.t. α. Remember that the AND-compositionality property

of Q�J·K follows by construction.

Corollary 3.4.3 Let α : C→ A be a denotational observable and P, P ′ be programs.

Then P ≈� P ′ ⇐⇒ F�JPK = F�JP ′K.
Proof. By (3.1.1), Corollary 2.5.17 and Point 6 of Theorem 3.4.2,

P ≈� P ′ ⇐⇒ ∀G ∈ Goals. α (BJG in PK) = α (BJG in P ′K)⇐⇒
∀G ∈ Goals. α(QJG in PK) = α(QJG in P ′K)⇐⇒
∀G ∈ Goals. Q�JG in PK = Q�JG in P ′K.
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Now the proof is analogous to the one of Corollary 2.5.6, by using Q�J·K and F�J·K
instead of B�J·K and O�J·K, respectively. By definition of F�J·K, the minimality is

trivial. The proof of the converse is by contradiction, by using the AND-compo-

sitionality property of Q�J·K and by structural induction on the goal G, such that

Q�JG in PK 6= Q�JG in P ′K.
Theorem 3.4.4 Let α be a denotational observable. Then

1. F�JPK ≤ O�JPK
2. Q�JG in PK ≤ B�JG in PK.

Proof. We prove the points separately.

Point 1 First of all observe that, by Point 4 of Theorem 3.4.2, α(FJPK) = F�JPK
and, by Theorem 2.5.15, OJPK = FJPK. Then the proof follows by observing that,

since O�JPK is correct, α(OJPK) ≤ O�JPK.
Point 2 First of all observe that by Point 6 of Theorem 3.4.2, α(QJG in PK) =

Q�JG in PK and by Corollary 2.5.17, QJG in PK = BJG in PK. Then the proof follows

by observing that, since B�JG in PK is correct, α(BJG in PK) ≤ B�JG in PK.
Now we make an assumption to simplify the notation of examples. Consider a

goal A1, . . . , An, an (abstract) interpretation X ∈ IA and an expression involving

X(A1), . . . , X(An). In the following we assume that, for any occurrence of X(Ai),
all the variables in var(X(Ai)) \ var(Ai) are renamed apart from all the variables

in any other X(Aj) in the expression. This can always be obtained by choosing a

suitable representative of X.

3.4.1 The Computed Answer Observable and the s-seman-
tics

We show now how to reconstruct the s-semantics [45, 13] by means of the observable

ξ of Example 3.1.3. We can prove that ξ is indeed a denotational observable. By

using a slight simplification of the arguments of Example 3.3.2, it can be proved

that the abstract operation
∑̃

turns out to be point-wise union while ·̃ and ×̃ are

A ·̃ X = φ
[�/A] where Θ :=

{
ϑ | 〈H, Θ ′〉 is a renamed apart (from

A) version of 〈A ′, X(A ′)〉, for some A ′ ≤ A, ϑ ′ ∈ Θ ′

and ϑ = mgu(A,Hϑ ′)|A},
X1 ×̃ X2 = λG.

{
ϑ | G = (G1,G2), for i = 1, 2, G ′i ≡ Gi, ϑi is a renamed

version of an element in Xi(G ′i), via a renaming ρi s.t.
G ′iρi = Gi, var(ϑ1) ∩ var(ϑ2) ⊆ var(G1) ∩ var(G2)
and ϑ := (ϑ1 ◦mgu(G2ϑ1,G2ϑ2))|G}.
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Example 3.4.5

Consider the program P of Figure 3.1 and the collections

X1 :=

{
mul(v, y, x) 7→ {{v/0, x/0}}
sum(x, y, z) 7→ {{y/a, x/f(z)}}

X2 := sum(x, y, z) 7→ {{x/0, z/y}, . . . , {x/sn(0), z/sn(y)}, . . .}
By applying the abstract operations we obtain

mul(x, a, y) ·̃ X1 = mul(x, a, y) 7→ {{x/0, y/0}}
sum(x, y, s2(0)) ·̃ X2 = sum(x, y, s2(0)) 7→ {{x/0, y/s2(0)}, {x/s(0), y/s(0)},

{x/s2(0), y/0}}
sum(x, y, g(y)) ·̃ X1 = sum(x, y, g(y)) 7→ {{x/f(g(a)), y/a}

}
and

X1 ×̃ X2 =

{
mul(v, y, x), sum(x, y, z) 7→ {{v/0, x/0, z/y}}
sum(x, y, z), sum(x, y, z) 7→ ∅

Note that in the collection X1 ×̃ X2 we can not compute any solution for the goal

sum(x, y, z), sum(x, y, z) since the same variable x should be bound, at the same

time, to f(z) and to some sn(0).
The abstract semantic function is

C̃Jp(t)← BKX = λp(x).
{
ϑ | x are new variables, ϑi ∈ X(pi(xi)) and

ϑ := ({x/t} ◦mgu(B, (p1(x1)ϑ1, . . . , pn(xn)ϑn)))|x}.
The abstraction of the top-down denotation is

ξ(OJPK) = λp(x).
{
ϑ | p(x)

#
−−→P ∗ �}/≡Aca

= F�JPK
and is isomorphic to the top-down definition of the s-semantics OcaJPK (see Sec-

tion 1.3.4). Indeed it is easy to see that it is just a matter of representation. In the

s-semantics case, the substitution is simply applied to the pure atom, while in our

case, given the pure atom, the corresponding substitution is returned. The same

isomorphism holds between the abstract semantic function

P�JPKX = λp(x).
{
ϑ | p(t)← B1, . . . , Bn ∈ P, x are new variables,
ϑi ∈ X(pi(xi)) and ϑ = ({x/t} ◦mgu(B,
(p1(x1)ϑ1, . . . , pn(xn)ϑn)))|x}



Denotational Observables 111

mul(0,X,0).

mul(s(V),Y,Z) :- mul(V,Y,X),sum(X,Y,Z).

sum(0, X, X).

sum(s(X), Y, s(Z)) :- sum(X,Y,Z).

Figure 3.1: The program of Example 3.4.5

and the immediate consequence operator of the s-semantics T caP . From Theorem 3.4.2

we can derive the usual properties of the s-semantics, namely that F�JPK is correct

and minimal w.r.t. computed answers and that the answers computed for any goal

can be obtained from the answers computed for pure atomic goals.

Example 3.4.6

Consider again the program P of Figure 3.1. By repeatedly applying the definition

of P�J·K we obtain

P�JPK↑1 =

{
mul(x, y, z) 7→ {{x/0, z/0}}
sum(x, y, z) 7→ {{x/0, z/y}}

P�JPK↑2 =

{
mul(x, y, z) 7→ {{x/0, z/0}, {x/s(0), z/y}}
sum(x, y, z) 7→ {{x/0, z/y}, {x/s(0), z/s(y)}}

P�JPK↑3 =


mul(x, y, z) 7→ {{x/0, z/0}, {x/s(0), z/y}, {x/s2(0), y/0, z/0},

{x/s2(0), y/s(0), z/s2(0)}}
sum(x, y, z) 7→ {{x/0, z/y}, {x/s(0), z/s(y)}, {x/s2(0), z/s2(y)}}

. . .

The fixpoint F�JPK can be reached only at ω since the program computes infinite

(different) solutions.

3.4.2 The Correct Answer Observable

We show how to obtain a semantics which models correct answers and it is isomor-

phic to the atomic logical consequence semantics (c-semantics) [16, 45]. A similar

construction can be used to define ground correct answers leading to the least Her-

brand model semantics.

Correct answers are closed under instantiation. This property corresponds to

the downward closure of the corresponding substitution sets. These sets can be

(efficiently) handled with maximal substitution sets w.r.t. subsumption (≤).
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First of all let Θ be a substitution set modulo variance. Θ is non-redundant

(w.r.t. ≤) if and only if ∀ϑ, ϑ ′ ∈ Θ. ϑ 6= ϑ ′ =⇒ ϑ 6≤ ϑ ′. We denote by d·e the non-

redundancy operator, i.e., dΘe :=
{
ϑ | ϑ ∈ Θ,∀ϑ ′ ∈ Θ. ϑ 6= ϑ ′ =⇒ ϑ 6≤ ϑ ′

}
. Any

downward closed (correct answer) substitution set Θ can be (uniquely) represented

by the non-redundant substitution set dΘe. Furthermore, since any correct answer

is an instance of some computed answer, given a computed answer substitution set

Θ, dΘe is the representative of the corresponding correct answer substitution set.

The abstract domain is Alc ⊆ [Goals ⇀ ℘(Subst)] and the correct answer ob-

servable δ : C→ Alc can be obtained by further abstraction of ξ, i.e.,

δ(D) := λG. dξ(D(G))e.

By applying the definitions, the abstract operators are A ·̃X1 = λG. d(A ·caX1)(G)e,
X1 ×̃ X2 = λG. d(X1 ×ca X2)(G)e, X1 +̃ X2 = λG. d(X1 +ca X2)(G)e.
δ is a denotational observable and its immediate consequence operator is

P�JPKX = λp(x). dP�JPKX(p(x))e.
As was for the s-semantics (see Section 3.4.1), it can be proved that the abstract

denotation F�JPK is isomorphic to dOlcJPKe, where OlcJPK is the atomic logical con-

sequence semantics [16, 47].

3.4.3 The Call Pattern Observable

The call patterns (with state) of a program P for a goal G are the atoms selected in

any SLD-derivation of G in P. A call pattern semantics was defined in [53] and used

as a basis for call pattern analysis in [51]. We define the domain Acp ⊆ [Goals ⇀
℘(Atoms × Subst)]. For any X ∈ Acp the interpretation of 〈C, ϑ〉 ∈ X(G) is “the

execution of the goal G generates a procedure call C with state (partial computed

answer substitution) ϑ”. Note that C can be �. The call pattern observable η is

η(D) := λG.
{
〈C, answer(d)〉 | d ∈ D(G), last(d) = (C,B),

B 6= � =⇒ C 6= �}.
η(X) := λG. wfG(

{
d | first(d) = G, last(d) = (C,B),
〈C, answer(d)〉 ∈ X(G), B 6= � =⇒ C 6= �}).8

Example 3.4.7

Consider the collections D1, D2 of Example 2.1.1 (on page 39). Then

η(D1) =

{
p(x, y) 7→ {〈p(x, y), ε〉, 〈q(x, y), ε〉, 〈�, {x/g(a), y/b}〉

}
n(x) 7→ {〈n(x), ε〉, 〈p(x, x), ε〉

}
8Recall that wfG(S) is the (greatest) well-formed subset (of derivations starting from G only)

of any set of derivations S.
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η(D2) =


q(x, y) 7→ {〈q(x, y), ε〉, 〈n(f(s), x), ε〉, 〈�, {x/a}〉

}
q(f(x), z) 7→ {〈q(f(x), z), ε〉, 〈m(g(s), f(x)), {z/a}〉,

〈�, {z/a, x/g(s)}〉
}

Consider now the collection QJG in PK of Example 2.2.1 (on page 43), where P is

the append program and G := ap([a], [l], x), ap(x, [h], z).

η(QJG in PK) = ap([a], [l], x), ap(x, [h], z) 7→ {
〈ap([a], [l], x), ε〉, 〈ap([ ], [l], w), {x/[a|w]}〉,
〈ap([a, l], [h], z), {x/[a/l]}〉, 〈ap([l], [h], s), {x/[a|l], z/[a|s]}〉,
〈ap([ ], [h], s ′), {x/[a|l], z/[a, l/s ′]}〉,
〈�, {x/[a|l], z/[a, l, h]}〉

}
Consider the collection D1 .D2 of Example 2.2.5 (on page 49). Then

η(D1 .D2) =


p(x, y) 7→ {〈p(x, y), ε〉, 〈q(x, y), ε〉, 〈n(f(s), x), ε〉,

〈�, {x/a}〉, 〈�, {x/g(s), y/b}〉
}

n(x) 7→ {〈n(x), ε〉, 〈p(x, x), ε〉
}

Consider the collection D ′′′′ of Example 2.3.1 (on page 54). Then

η(D ′′′′) = anc(x, y) 7→ {〈anc(x, y), ε〉, 〈par(x, y), ε〉, 〈�, {x/joe, y/jay}〉,
〈�, {x/jay, y/tim}〉, 〈par(x, z), ε〉, 〈anc(jay, y), {x/joe}〉,
〈anc(tim, y), {x/jay}〉

}
Note that ξ can be obtained by further abstraction of η, by collecting only the

substitutions corresponding to the goal �, i.e., ξ(D)(G) = {ϑ | 〈ϑ, �〉 ∈ η(D)(G)}.

The axioms (3.4.1), (3.4.2), (3.4.3) are satisfied, hence η is a denotational ob-

servable. The operation
∑̃

turns out to be point-wise union while ·̃ and ×̃ are:

A ·̃ X = φ
[R/A] where R :=

{
〈Cϑ, ϑ|A〉 | 〈H, R ′〉 is a renamed apart

(from A) version of 〈A ′, X(A ′)〉, for some A ′ ≤ A,
〈C, ϑ ′〉 ∈ R ′ and ϑ := mgu(A,Hϑ ′)

}
,

X1 ×̃ X2 = λG.
{
〈C, ϑ〉 | G = (G1,G2), for i = 1, 2, G ′i ≡ Gi,

ri = 〈Ci, ϑi〉 is a renamed version of an element in Xi(G ′i)
via a renaming ρi s.t. G ′iρi = Gi,
var(r1) ∩ var(r2) ⊆ var(G1) ∩ var(G2) and if C1 6= � then
〈C, ϑ〉 := 〈C1, ϑ1〉
else ϑ := (ϑ1 ◦mgu(G2ϑ1,G2ϑ2))|G, C := C2ϑ}.
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Example 3.4.8

Consider the collections.

X1 :=

{
p(x, y) 7→ {〈p(x, y), ε〉, 〈q(x, y), ε〉, 〈�, {x/g(a), y/b}〉

}
n(x) 7→ {〈n(x), ε〉, 〈p(x, x), ε〉

}
X2 :=


q(x, y) 7→ {〈q(x, y), ε〉, 〈n(f(s), x), ε〉, 〈�, {x/a}〉

}
q(f(x), z) 7→ {〈q(f(x), z), ε〉, 〈m(g(s), f(x)), {z/a}〉,

〈�, {z/a, x/g(s)}〉
}

Then

X1 ×̃ X2 =



p(x, y), q(x, y) 7→ {〈p(x, y), ε〉, 〈q(x, y), ε〉,
〈n(f(s), g(a)), {x/g(a), y/b}〉

}
p(x, y), q(f(x), z) 7→ {〈p(x, y), ε〉, 〈q(x, y), ε〉,

〈m(g(s), f(g(a))), {x/g(a), y/b, z/a}〉,
〈�, {x/g(a), y/b, z/a}〉

}
n(x), q(x, y) 7→ {〈n(x), ε〉, 〈p(x, x), ε〉

}
n(x), q(f(x), z) 7→ {〈n(x), ε〉, 〈p(x, x), ε〉

}
p(a, x) ·̃ X1 = p(a, x) 7→ {〈p(a, x), ε〉, 〈q(a, x), ε〉

}
and

p(g(x), z) ·̃ X1 = p(g(x), z) 7→ {〈p(g(x), z), ε〉, 〈q(g(x), z), ε〉,
〈�, {x/a, z/b}〉

}
q(f(a), x) ·̃ X2 = q(f(a), x) 7→ {〈q(f(a), x), ε〉, 〈n(f(s), f(a)), ε〉,

〈m(g(s), f(a)), {x/a}〉
}

Maybe it is useful to recall that the ·̃ operation gives a collection which is defined

only on its first argument atom.

The abstract semantic function is

C̃Jp(t)← BKX = λp(x).
{
〈Cϑ ′, ϑ〉 | B = (B ′,B ′′), x are new variables,

∃k s.t. ∀i < k. 〈�, ϑi〉 ∈ X(pi(xi)), 〈C, ϑk〉 ∈ X(pk(xk)),
ϑ := ({x/t} ◦ ϑ ′) |x, ϑ

′ := mgu
(
B ′, (p1(x1)ϑ1, . . . , pk(xk)ϑk))

and B ′′ 6= � =⇒ C 6= �}.
The proof that η : C → Acp is an observable and that the operations are those

defined is analogous to that one given for the previous observables and therefore it

is omitted.
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3.5 Semi-denotational Observables

Semi-denotational observables are intended to model some of the properties useful

for static program analysis, where approximation plays a major role and we are

forced to give up precision (to get effectivity). Therefore, we relax the optimality

conditions of denotational observables axioms to admit non-precise ×̃ and .̃ op-

erators. However, we guarantee that weak9 (compositionality) properties are still

satisfied. Hence every denotational observable is a semi-denotational observable,

but the converse does not hold.

Definition 3.5.1 Let α : C → A be an observable. Then α is a semi-denotational

observable if, for any A ∈ Atoms, D ′, D ′′ ∈ C, D ∈ PC, G ∈ Goals and chain

{Dj}j∈J ⊆ PC the following properties hold.

·̃ and ×̃ distribute over
∑̃
, (3.5.1)

α(A · γα(Id I)) = α(A · Id I) = α(φA), (3.5.2)

α(γα(D ′) . γα(IdC)) = α(D ′ . IdC) = α(D ′), (3.5.3)

α(γα(D ′)× γα(φG)) = α(D ′ × φG), (3.5.4)

α(γα(D ′) . γα(su(γα(D)))) = α(γα(D ′) . su(γα(D))), (3.5.5)

α(D . pu(γα(
∑

{Dj}j∈J))) = α(D . pu(
∑

{γα(Dj)}j∈J)), (3.5.6)

α(γα(D ′)× γα(γα(D ′′) . su(γα(D)))) = (3.5.7)

α(γα(D ′)× (γα(D ′′) . su(γα(D)))),

α(A · γα(γα(D ′) . su(γα(D)))) = α(A · (γα(D ′) . su(γα(D)))), (3.5.8)

α(γα(D ′) . γα(γα(D ′′) . su(γα(D)))) = (3.5.9)

α(γα(D ′) . (γα(D ′′) . su(γα(D)))).

The following theorem shows that under these conditions (as in the denotational

case) we can just replace C�J·K by the optimal abstract version C̃J·K of CJ·K (see

(3.4.4)) to make the definition precise.

Theorem 3.5.2 Let α : C → A be a semi-denotational observable and X ∈ PA.

Then

1. P�JPKX = α(PJPK(X))
2. P�JPK is continuous on A and F�JPK = P�JPK↑!.

9By weak properties we mean that we cannot ensure the precise properties of Sections 3.3
and 3.4, but their approximated formulation, where we replace the equality symbol by inequality.
For example, α(FJPK) = FαJPK becomes α(FJPK) ≤ FαJPK.
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Proof. We prove the points separately.

Point 1 The proof is straightforward by definition of C̃J·K, by (3.3.1) and by defi-

nition of P�J·K and hence is omitted.

Point 2 Let {Xi}i∈I ⊆ PA be a chain. Since
∑̃

is the lub operation on PA, we have

to prove that
∑̃

{P�JPKXi}i∈I = P�JPKfPfXigi∈I . The following equalities hold.

∑̃
{P�JPKXi}i∈I =

[ by definition of
∑̃

and by Point 1 ]

α(
∑

{γα(PJPK(Xi))}i∈I) =

[ by (3.3.1) ]

α(
∑

{PJPK(Xi)}i∈I) =

[ since PJPK is continuous ]

α(PJPKPf(Xi)gi∈I) =

[ by (2.5.8) and (3.3.1) ]

α(Id I + γα(tree(P) . pu(
∑

{γ(Xi)}i∈I))) =

[ since αγ = Id and by (3.5.6) ]

α(Id I + γα(tree(P) . pu(γα(
∑

{γ(Xi)}i∈I))) =

[ by (3.3.1) and (2.5.8) ]

α(PJPK�(Pf(Xi)gi∈I)) =

[ by Point 1 ]

P�JPK�(Pf(Xi)gi∈I)) =

[ by definition of
∑̃

]

P�JPKfPfXigi∈I.

Lemma 3.5.3 Let α : C → A be a semi-denotational observable, X ∈ PA and

D ′ ∈ C.

1. α(γα(D ′)× γα(IdC)) = α(D ′ × IdC),

2. su�(X) = α(su(γ(X))),

3. α(su(γα(Id I))) ≤ α(Id I).

Proof. We prove the points separately.
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Point 1

α(γα(D ′)× γα(IdC)) = [ by definition of IdC and (3.3.1) ]

α(D ′) ×̃
∑̃

{α(φG)}G∈Goals = [ by (3.5.1) ]∑̃
{α(D ′) ×̃ α(φG)}G∈Goals = [ by definition of ×̃ and by (3.5.4) ]∑̃
{α(D ′ × φG)}G∈Goals = [ by definition of

∑̃
and by (3.3.1) ]

α(
∑

{D ′ × φG}G∈Goals) = [ by Lemma 2.2.7 ]

α(D ′ ×
∑

{φG}G∈Goals) = [ by definition of IdC ]

α(D ′ × IdC).

Point 2

su�(X) =

[ by definition of su� ]∑̃
{(A ·̃ X) ×̃ α(IdC)}A∈Atoms =

[ by definition of
∑̃

, ·̃ and ×̃ ]

α(
∑

{γα(γα(A · γ(X))× γα(IdC))}A∈Atoms) =

[ by Point 1 ]

α(
∑

{γα((A · γ(X))× IdC)}A∈Atoms) =

[ by (3.3.1) ]

α(
∑

{(A · γ(X))× IdC}A∈Atoms) =

[ by definition of su ]

α(su(γ(X))).

Point 3

α(su(γα(Id I))) =

[ by definition of su and by (3.3.1) ]

α(
∑

{γα((A · γα(Id I))× IdC)}A∈Atoms) =

[ by Point 1 and (3.5.2) ]

α(
∑

{γα(γα(A · Id I)× γα(IdC))}A∈Atoms) =

[ by Point 1 and (3.3.1) ]
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α(
∑

{(A · Id I)× IdC}A∈Atoms) =

[ by definition of su ]

α(su(Id I)) ≤
[ by definition of su and IdC ]

α(IdC).

Lemma 3.5.4 Let α : C→ A be a semi-denotational observable, X ∈ A and k, n ≥
0.

1. α(su(γ unf kP;�(α(Id I)))) ≤ unf kP;�(α(IdC)),

2. X .̃ unf kP;�(α(IdC)) ≤ unf kP;�(X),

3. sun(γ unf kP;�(α(Id I))) v γ(unf knP;�(α(IdC))).

Proof. We prove the points separately.

Point 1 The proof is by induction on k. For k = 0 the proof is immediate by

definition of unf 0P;� and by Point 3 of Lemma 3.5.3. For n > 0 the following facts

hold.

α(su(γ unf kP;�(α(Id I)))) =

[ by definition of unf kP;� ]

α(su(γ(unf k-1P;� (α(Id I)) .̃ su�(α(tree(P)))))) =

[ by definition of su ]

α(
∑

{(A · γ(unf k-1P;� (α(Id I)) .̃ su�(α(tree(P)))))× IdC}A∈Atoms) =

[ by definition of .̃, by Point 2 of Lemma 3.5.3 and by (3.5.5) ]

α(
∑

{(A · γα(γ unf k-1P;� (α(Id I)) . su(γα(tree(P)))))× IdC}A∈Atoms) =

[ by Point 1 of Lemma 3.5.3 and (3.3.1) ]

α(
∑

{γα(γα(A · γα(γ unf k-1P;� (α(Id I)).

su(γα(tree(P)))))× IdC)}A∈Atoms) =

[ by (3.5.8) ]

α(
∑

{γα(γα(A · (γ unf k-1P;� (α(Id I)) . su(γα(tree(P)))))× IdC)}A∈Atoms) =

[ by (3.3.1), Point 1 of Lemma 3.5.3 and by definition of su ]

α(su(γ(unf k-1P;� (α(Id I))) . su(γα(tree(P))))) ≤
[ by Lemma 2.5.7 and since α is monotonic ]
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α(su(γ(unf k-1P;� (α(Id I)))) . su(γα(tree(P)))) ≤
[ since γα is extensive and by inductive hypothesis ]

unf k-1P;� (α(IdC)) .̃ α(su(γα(tree(P)))) ≤
[ by Point 2 of Lemma 3.5.3 and definition of unf kP;� ]

unf kP;�(α(IdC)).

Point 2 The proof is by induction on k. For k = 0 the proof is immediate by

definition of unf 0P;� and by (3.5.3). For n > 0 the following facts hold.

X .̃ unf kP;�(α(IdC)) =

[ by definition of unf kP;� ]

X .̃ (unf k-1P;� (α(IdC)) .̃ su�(α(tree(P)))) =

[ by definition of .̃ and by Point 2 of Lemma 3.5.3 ]

α(γ(X) . γα(γ(unf k-1P;� (α(IdC))) . γα(su(γα(tree(P)))))) =

[ by (3.5.5) and (3.5.9) ]

α(γ(X) . (γ(unf k-1P;� (α(IdC))) . su(γα(tree(P))))) ≤
[ by the same argument of Lemma 2.2.6 proof and since α is monotonic ]

α((γ(X) . γ(unf k-1P;� (α(Id I)))) . su(γα(tree(P)))) ≤
[ by inductive hypothesis, by definition of .̃ and since γα is extensive ]

α(γ(unf k-1P;� (X)) . su(γα(tree(P)))) ≤
[ by definition of .̃ and by Point 2 of Lemma 3.5.3 ]

unf k-1P;� (X) .̃ su�(α(tree(P))) =

[ by definition of unf kP;� ]

unf kP;�(X).

Point 3 The proof is by induction on n. For n = 0 the proof is immediate by

definition of su0. For n > 0 the following facts hold.

sun(γ unf kP;�(α(Id I))) =

[ by definition of sun ]

sun-1(γ unf kP;�(α(Id I))) . su(γ unf kP;�(α(Id I))) v
[ by inductive hypothesis and since γα is extensive ]

γ(unf
k(n-1)P;� (α(IdC))) . γα(su(γ unf kP;�(α(Id I)))) v

[ by Point 1 and since γ is monotonic ]

γ(unf
k(n-1)P;� (α(IdC))) . γ(unf kP;�(α(IdC))) v

[ since γα is extensive and by definition of .̃ ]
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γ(unf
k(n-1)P;� (α(IdC)) .̃ unf kP;�(α(IdC))) v

[ by Point 2 and since γ is monotonic ]

γ(unf kP;�(unf
k(n-1)P;� (α(IdC)))) =

[ by definition of unf kP;� ]

γ(unf knP;�(α(IdC))).

The abstract denotational semantics and bottom-up denotation are more precise

than the operational counterparts.

Lemma 3.5.5 Let α : C→ A be a semi-denotational observable. Then

α(OJPK) ≤ F�JPK ≤ O�JPK.
Proof. The proof of the first inequality is straightforward by correctness of F�JPK
and by Theorem 2.5.15. For the second inequality we prove, by induction on n, that

∀n ≥ 0. P�JPK↑n ≤ O�JPK. Then the thesis follows by continuity of P�J·K and by

definition of F�J·K.
First of all observe that since .̃ is monotonic and

∑̃
is the lub operation on A,

for any Xi, X ∈ A,
∑̃

{Xi .̃X}i∈I ≤ ∑̃{Xi}i∈I .̃X. Then, by a straightforward inductive

argument and by (3.2.18),

O�JPK ≤
[∑̃

{unf kP;�(α(Id I))}k≥0
] /

≡A
. (1)

Now, we can prove that ∀n ≥ 0. P�JPK↑n ≤ O�JPK.
n = 0 Straightforward, since by definition of ·↑0, P�JPK↑0 = ⊥A.

n > 0 The following facts hold.

P�JPK↑n =

[ by definition of ·↑n ]

P�JPKP�JPK"n-1 =

[ by Point 1 of Theorem 3.5.2 and by (2.5.8) ]

α (Id I + tree(P) . pu(γ(P�JPK↑n-1))) ≤
[ by inductive hypothesis and by (1) ]

α

(
Id I + tree(P) . pu(γ

∑̃
{unf kP;�(α(Id I))}k≥0)

)
=

[ by definition of
∑̃

and by (3.5.6) ]
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α
(
Id I + tree(P) . pu(

∑
{γ(unf kP;�(α(Id I)))}k≥0)

)
=

[ by Lemma 2.2.7 ]

α
(∑

{Id I + tree(P) . pu(γ(unf kP;�(α(Id I))))}k≥0
)

=

[ by definition of . and Id I and since . is extensive ]

α
(∑

{(Id I . su(tree(P))) . pu(γ(unf kP;�(α(Id I))))}k≥0
)
≤

[ by Point 2 of Lemma 2.5.12 ]

α
(∑{

(Id I . su(tree(P))) .
(
IdC+∑

{sun(γ(unf kP;�(α(Id I))))}n≥0)}k≥0
)

=

[ by definition of . and Lemma 2.2.7 ]

α
(∑

{(Id I . su(tree(P))) . sun(γ(unf kP;�(α(Id I))))}n;k≥0
)
≤

[ by Point 3 of Lemma 3.5.4 and since α and . are monotonic ]

α
(∑

{(Id I . su(tree(P))) . γ(unf knP;�(α(IdC)))}k;n≥0
)
≤

[ by definition of Id I, Lemma 2.2.7 and set-theoretic properties ]

α
(∑

{(φp(x) . su(tree(P))) . γ(unf kP;�(α(IdC)))}k≥0;p(x)∈Goals

)
≤

[ by definition of .̃ and since γα is extensive ]

α
(∑

{γ(
(
α(φp(x)) .̃ su�(α(tree(P)))

)
.̃ unf kP;�(α(IdC)))}k≥0;p(x)∈Goals

)
≤

[ by Point 2 of Lemma 3.5.4 ]

α
(∑

{γ
(
unf kP;�(α(φp(x)) .̃ su�(α(tree(P))))

)
}k≥0;p(x)∈Goals

)
≤

[ by definition of unf kP;� and since γα is extensive ]

α
(∑

{γα
(∑

{γ(unf kP;�(α(φp(x))))}k≥0
)
}p(x)∈Goals

)
=

[ by definition of
∑̃

]∑̃{[∑̃
{unf kP;�(α(φp(x)))}k≥0

] /
≡A

}
p(x)∈Goals

=

[ by (3.2.18) ]

O�JPK

Proposition 3.5.6 Let α : C → A be a semi-denotational observable, X ∈ PA,

X ′, X ′′ ∈ A, A ∈ Atoms and G ∈ Goals. Then the following properties hold.
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1. A ·̃ (X ′ .̃ su�(X)) ≤ (A ·̃ X ′) .̃ su�(X),

2. (X ′ .̃ su�(X)) ×̃ α(φG) ≤ (X ′ ×̃ α(φG)) .̃ su�(X),

3. X ′ ×̃ (X ′′ .̃ su�(X)) ≤ (X ′ ×̃ X ′′) .̃ su�(X).

Proof. We prove only Point 3, essentially using Point 3 of Lemma 2.5.1 and (3.5.7).

The proof of the other points is analogous, by using Points 1 and 2 of the above

mentioned lemma and (3.5.8) and (3.5.4).

First of all note that in the proof of Point 3 of Lemma 2.5.1 (on page 77) the

hypothesis D ′ . su(D) = D ′ is not used to prove the inclusion D ′× (D ′′ . su(D)) v
(D ′ ×D ′′) . su(D) and hence we can conclude that

γ(X ′)× (γ(X ′′) . su(γ(X))) v (γ(X ′)× γ(X ′′)) . su(γ(X)). (1)

Moreover, by Point 2 of Lemma 3.5.3, by definition of .̃ and ×̃, by (3.5.7) and

(3.5.5),

su�(X) = α(su(γ(X))) and (2)

X ′ ×̃ (X ′′ .̃ su�(X)) = α(γ(X ′)× (γ(X ′′) . su(γ(X)))). (3)

Then the following facts hold.

X ′ ×̃ (X ′′ .̃ su�(X)) = [ by (3) ]

α(γ(X ′)× (γ(X ′′) . su(γ(X)))) ≤ [ by (1) and since α is monotonic ]

α((γ(X ′)× γ(X ′′)) . su(γ(X))) ≤ [ since γα is extensive ]

α(γα(γ(X ′)× γ(X ′′)) . γα(su(γ(X)))) = [ by (2) ]

α(γα(γ(X ′)× γ(X ′′)) . γ(su�(X))) = [ by definition of ×̃ and .̃ ]

(X ′ ×̃ X ′′) .̃ su�(X).

Theorem 3.5.7 Let α : C → A be a semi-denotational observable, A be an atom,

G1, G2 be goals and P be a program. Then

1. A ·̃ O�JPK ≤ B�JA in PK,
2. B�JG1 in PK ×̃B�JG2 in PK ≤ B�J(G1,G2) in PK.

Proof. We prove the points separately.
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Point 1 Analogously to Lemma 3.5.5,

O�JPK ≤
[∑̃{

unf kP;�(α(Id I))
}
k≥0
] /

≡A
. (1)

Then the following facts hold.

A ·̃ O�JPK ≤ [ by (1) ]

A ·̃
[∑̃

{unf kP;�(α(Id I))}k≥0
] /

≡A
= [ by (3.5.1) ]∑̃

{A ·̃ unf kP;�(α(Id I))}k≥0 ≤ [ by Point 1 of Proposition 3.5.6 ]∑̃
{unf kP;�(A ·̃ α(Id I))}k≥0 = [ by (3.5.2) and definition of ·̃ ]∑̃
{unf kP;�(α(φA))}k≥0 = [ by (3.2.17) ]

B�JA in PK.
Point 2

B�JG1 in PK ×̃B�JG2 in PK =

[ by (3.2.17) and by (3.5.1) ]∑̃
{unf kP;�(α(φG1)) ×̃ unf hP;�(α(φG2))}h;k≥0 ≤
[ by using repeatedly Point 3 of Proposition 3.5.6 ]∑̃

{unf hP;�(unf kP;�(α(φG1)) ×̃ α(φG2))}h;k≥0 ≤
[ by using repeatedly Point 2 of Proposition 3.5.6 ]∑̃

{unf hP;�(unf kP;�(α(φG1) ×̃ α(φG2)))}h;k≥0 =

[ by definition of unf P;� ]∑̃
{unf kP;�(α(φG1) ×̃ α(φG2))}k≥0 =

[ by definition of ×̃ and ×, by (3.5.4) and (3.2.17) ]

B�J(G1,G2) in PK.

Corollary 3.5.8 Let α be a semi-denotational observable. Then

α(BJG in PK) ≤ Q�JG in PK ≤ B�JG in PK.
Proof. The proof is by structural induction on G.
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G = � Q�J� in PK = G�J�KF�JPK = α(φ�) = B�J� in PK, by definition of Q�J·K,
G�J·K and B�J·K.

G = A,G 0
The following facts hold.

Q�JG in PK = [ by definition of Q�J·K and F�J·K ]

G�J(A,G ′)KF�JPK = [ by definition of G�J·K and Q�J·K ]

A�JAKF�JPK ×̃ Q�JG ′ in PK ≤ [ by inductive hypothesis ]

A�JAKF�JPK ×̃B�JG ′ in PK = [ by definition of A�J·K ]

(A ·̃ F�JPK) ×̃B�JG ′ in PK ≤ [ by Lemma 3.5.5 ]

(A ·̃ O�JPK) ×̃B�JG ′ in PK ≤ [ by Point 1 of Theorem 3.5.7 ]

B�JA in PK ×̃B�JG ′ in PK ≤ [ by Point 2 of Theorem 3.5.7 ]

B�JG in PK.

3.5.1 The Observable ψ for Groundness Analysis of Com-
puted Answers

We show now how to obtain Groundness analysis of computed answers for pure logic

programs [8, 79, 31] by applying our scheme. In order to define the abstract domain

we have to do several small steps. We will use propositional formulas to represent

the groundness dependencies of variables. In particular, we will use the domain

POS [8] of positive propositional formulas classes modulo logical equivalence, built

using ↔, ∧ and ∨, ordered by logical implication.

First of all we have to define the abstraction Γ(t) of a concrete term t. If var(t) =

{x1, . . . , xn} then Γ(t) := x1∧ · · ·∧xn, while if t is ground Γ(t) := true. The formula

intuitively suggests that in order for t to be ground, all its variables x1, . . . , xn must

be ground.

We can extend Γ to substitutions to obtain abstract substitutions as

Γ(ϑ) :=
∧
x=t∈#

(x↔ Γ(t))

where Γ(ε) := true. Abstract substitutions are propositional formulas which express

the groundness dependencies between the variables of the domain and the ones of

the range of the concrete substitution.
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We must define the abstract notion of restriction of an abstract substitution

w.r.t. a set of variables. Namely, by using Schröder’s elimination principle,

F|x :=

{
F if var(F) ⊆ {x}

(F[y 7→ true] ∨ F[y 7→ false])|x for some y ∈ var(F) \ {x}

where the formula F[y 7→ E] is obtained by replacing each occurrence of the variable

y in F by E.

Let Agr ⊆ [Goals ⇀ POS]. We can obtain the desired abstraction ψ by further

abstraction of computed answer substitutions. Namely τ� : Aca → Agr is defined as

τ� (X) := λG.
∨

#∈X(G)
Γ(ϑ)|var(G),

where
∨
∅ := false (hence τ� (φ[∅/G]) = φ

[
false
/
G
]
).

The groundness dependencies of computed answer observable ψ : C → Agr is ψ :=

τ� ◦ ξ.
Example 3.5.9

Consider the Aca-collections of Example 3.1.3 (on page 93). Since

Γ(
{
{x/g(a), y/b}

}
)̃|var(p(x;y)) = (x↔ true ∧ y↔ true )̃|x;y = x∧ y,

Γ(∅) = false,

then

ψ(D1) = τ� (ξ(D1)) =

{
p(x, y) 7→ x∧ y

r(x, y) 7→ false

Moreover, since Γ({x/g(s), z/a})̃|x;z = (x↔ s∧ z)̃|x;z = z,

ψ(D2) =

{
q(x, y) 7→ x

q(f(x), z) 7→ z

Going further, since Γ({x/[a, l], z/[a, l, h]})̃|x;z = (x↔ l∧ z↔ l∧ h)̃|x;z = (z↔ x∧

h)̃|x;z = z→ x, then

ψ(QJG in PK) = ap([a], [l], x), ap(x, [h], z) 7→ z→ x.

Moreover, since Γ({{x/g(a), y/b}, {x/a}})̃|x;y = ((x∧ y) ∨ x)̃|x;y = x,

ψ(D) =

{
p(x, y) 7→ x

n(x) 7→ false

To conclude, the abstraction of collection D ′′′′ is ψ(D ′′′′) = anc(x, y) 7→ x∧ y.
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By applying the definition10 the abstract operators are

A ·̃ X = φ
[F/A] | F :=

∨{
F ′′ | 〈H, F ′〉 is a renamed apart (w.r.t. A)

version of 〈A ′, X(A ′)〉, for some A ′ ≤ A, there exists δ s.t.
A = Hδ, dom(δ) ⊆ var(H) and F ′′ = (F ′ ∧ Γ(δ))|var(A)

}
X1 ×̃ X2 = λG.

∨{
X ′1(G1) ∧ X ′2(G2) | G = (G1,G2) and X ′1, X ′2 are

renamed versions of X1, X2 s.t. X ′1(G1) and X ′2(G2) are defined
}

∑̃{
Xi}i∈I = λG.

∨{
Xi(G)

}
i∈I.

Example 3.5.10

Consider the following collections in Agr.

X1 :=

{
s(y) 7→ y

p(x, y) 7→ true
X2 :=

{
q(x, y) 7→ x↔ y

s(y) 7→ false

Since s(a) = s(y){y/a} and (y∧ Γ({y/a}))̃|∅ = (y∧ y↔ true )̃|∅ = true,

s(a) ·̃ X1 = s(a) 7→ true

Moreover, since s(f(a, y) = s(x)){x/f(a, y)} and (x ∧ Γ({x/f(a, y)}))̃|y = (x ∧ x ↔
y)̃|y = (x∧ y)̃|y = y,

s(f(a, y)) ·̃ X1 = s(f(a, y)) 7→ y

Furthermore, the following hold.

X1 ×̃ X2 =


s(y), q(x, y) 7→ x∧ y

s(y), s(y) 7→ false

p(x, y), q(x, y) 7→ x↔ y

p(x, y), s(y) 7→ false

X1 +̃ X2 =


s(y) 7→ y

p(x, y) 7→ true

q(x, y) 7→ x↔ y

Note that supp(X1 +̃ X2) = supp(X1) ∪ supp(X2) and supp(X1 ×̃ X2) = {(G1,G2) |

G1 ∈ supp(X1),G2 ∈ supp(X2)}.
10In Section 3.9 we will show how the abstract operations of ψ can be defined in terms of τΓ

and the abstract operators of ξ.
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r(X,Y) :- p(X,Y), q(X,Y).

p(a,Y).

p(X,b).

q(X,X).

Figure 3.2: The program P of Example 3.5.10

In Section 3.9 we prove that ψ is semi-denotational and that the optimal operator

C̃J·K is

C̃Jp(t)← p1(t1), . . . , pn(tn)KX =

λp(x). (x ↔ Γ(t) ∧

n∧
i=1

(xi ↔ Γ(ti) ∧ X(pi(xi))))|x

where, ∀i ∈ [1, n], x, xi are new distinct variables, X(pi(xi)) is defined and the

formula x ↔ Γ(t) denotes
∧ni=1(xi ↔ Γ(ti)) (given that x = x1, . . . , xn and t =

t1, . . . , tn), which is equivalent to Γ({x/t}).

Example 3.5.11

Let P be the program of Figure 3.2, and Q the program of Figure 3.3. Consider the

collections

I :=


p(x, y) 7→ true

q(x, y) 7→ x↔ y

r(x, y) 7→ x↔ y

K :=


p(x) 7→ x

q(x) 7→ x

r(x) 7→ false

s(x, y) 7→ y

For the first clause of P we obtain

P Jr(x, y)← p(x, y), q(x, y)KI = r(x, y) 7→ I(p(x, y)) ∨ I(q(x, y))

= r(x, y) 7→ x↔ y

and

P JPKI =


p(x, y) 7→ x∨ y

q(x, y) 7→ x↔ y

r(x, y) 7→ x↔ y

P JQKK =


p(x) 7→ x

q(x) 7→ x

r(x) 7→ false

s(x, y) 7→ y
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p(f(X)) :- q(X).

q(a).

r(X) :- p(g(X)).

s(X,Y) :- r(X).

s(X,a).

Figure 3.3: The program Q of Example 3.5.10

We are guaranteed that we can finitely compute the fixpoint of P, since POS is

Noetherian. Indeed,

P JPK↑1 =


p(x, y) 7→ x∨ y

q(x, y) 7→ x↔ y

r(x, y) 7→ false

P JPK↑2 =


p(x, y) 7→ x∨ y

q(x, y) 7→ x↔ y

r(x, y) 7→ x∧ y

and P JPK↑3 = P JPK↑2 = F JPK. Moreover,

P JQK↑1 =


p(x) 7→ false

q(x) 7→ x

r(x) 7→ false

s(x, y) 7→ y

P JQK↑2 =


p(x) 7→ x

q(x) 7→ x

r(x) 7→ false

s(x, y) 7→ y

P JQK↑3 =


p(x) 7→ x

q(x) 7→ x

r(x) 7→ x

s(x, y) 7→ y

P JQK↑4 =


p(x) 7→ x

q(x) 7→ x

r(x) 7→ x

s(x, y) 7→ x∨ y

and P JQK↑5 = P JQK↑4 = F JQK, while

ψ(FJQK) =


p(x) 7→ x

q(x) 7→ x

r(x) 7→ false

s(x, y) 7→ y

This shows the loss of information due to ψ, since there is no concrete computation

for r(x), while we derive an abstract computed answer for it.

A Noetherian domain which looses less information than POS is shown in the next

section.
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3.5.2 The depth(k) Observable

Now we show how to approximate an infinite set of computed answers by means

of a depth(k) cut [95], i.e., by cutting terms which have a depth greater than k.

Terms are cut by replacing each sub-term rooted at depth k with a new variable

taken from a set V̂ (disjoint from V). depth(k) terms represent each term obtained

by instantiating the variables of V̂ with terms built over V .

First of all we have to define the abstraction t k as the depth(k) reduction of the

concrete term t.

We can extend  k to substitutions to obtain abstract substitutions as ϑ k := {x/t k |

x/t ∈ ϑ}. We assume that for any binding in ϑ any cut is performed by using distinct

variables of V̂ . We denote by Subst k the set of substitutions V → T k, where T k
is the set of depth(k) terms.

Let A k ⊆ [Goals ⇀ ℘(Subst k)]. As in Section 3.5.1 we can obtain the depth(k)

observable κ by further abstraction of computed answer substitutions. Namely

µk : Aca → A k is defined as

µk(X) := λG.
{
ϑ k | ϑ ∈ X(G)

}
.

The depth(k) computed answer observable κ : C→ A k is κ := µk◦ξ. For simplicity,

in the following we assume that for any syntactic expression we rename variables

in V and V̂ respectively with variables still in V and V̂ . Then, by applying the

definition11, the abstract operators turn out to be

A ·̃ X = φ
[�/A] where Θ :=

{
ϑ k | 〈H, Θ ′〉 is a renamed apart

(from A) version of 〈A ′, X(A ′)〉, for some A ′ ≤ A, ϑ ′ ∈ Θ ′ and
ϑ = mgu(A,Hϑ ′)|A},

X1 ×̃ X2 = λG.
{
ϑ k | G = (G1,G2), for i = 1, 2, G ′i ≡ Gi, ϑi is a

renamed version of an element in Xi(G ′i), via a renaming ρi s.t.
G ′iρi = Gi, var(ϑ1) ∩ var(ϑ2) ⊆ var(G1) ∩ var(G2) and
ϑ = (ϑ1 ◦mgu(G2ϑ1,G2ϑ2))|G}.

In Section 3.9 we prove that κ is semi-denotational and that the abstract semantic

function is

C̃Jp(t)← BKX = λp(x).
{
ϑ k | x are new variables, ϑi ∈ X(pi(xi)) and

ϑ = ({x/t} ◦mgu(B, (p1(x1)ϑ1, . . . , pn(xn)ϑn)))|x}.
11In Section 3.9 we will show how the abstract operations of κ can be defined in terms of µk and

the abstract operators of ξ.
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3.6 Semi-perfect Observables

The relation between operational and denotational definitions that we have noticed

for precise (perfect and denotational) observables, holds for non-precise observables

too. However, since for non-precise observables we only have a good denotational

definition (semi-denotational observables), we should introduce a further class (semi-

perfect observables). Semi-perfect observables have all the properties of perfect

observables apart from precision. In particular, they have equivalent operational

and denotational semantics, and the (top-down and bottom-up) goal-independent

denotations are AND-compositional and OR-compositional. Let us just note that

semi-perfect observables are essentially the observables which model top-down ab-

stract interpretation frameworks (see, for example, [15]).

We relax the optimality conditions of perfect observables axioms to admit non-

precise ·̃ ×̃ and .̃ operators. However, we guarantee that weak12 (compositionality)

properties are still satisfied. Hence every perfect observable is a semi-perfect ob-

servable, but the converse does not hold.

Definition 3.6.1 Let α : C → A be an observable. Then α is a semi-perfect

observable if, for any A ∈ Atoms, D ′, D ′′ ∈ C, D ∈ PC and G ∈ Goals the

following properties hold.

·̃, ×̃ and .̃ distribute over
∑̃
, (3.6.1)

α(A · γα(Id I)) = α(A · Id I) = α(φA), (3.6.2)

α(γα(D ′) . γα(IdC)) = α(D ′ . IdC) = α(D ′), (3.6.3)

α(γα(D ′)× γα(φG)) = α(D ′ × φG), (3.6.4)

α(γα(D ′) . γα(su(γα(D)))) = α(D ′ . su(γα(D))), (3.6.5)

α(γα(D ′) . γα(GJGK�(D))) = α(D ′ . GJGK�(D)), (3.6.6)

α(γα(A · γα(D ′))× γα(GJGK�(D))) = (3.6.7)

α((A · γα(D ′))× GJGK�(D)),
α(γα(D ′)× γα(γα(D ′′) . su(γα(D)))) = (3.6.8)

α(γα(D ′)× (γα(D ′′) . su(γα(D)))),

α(γα(D ′) . γα(γα(D ′′) . su(γα(D)))) = (3.6.9)

α(γα(D ′) . (γα(D ′′) . su(γα(D)))),

α(A · γα(γα(D ′) . su(γα(D)))) = α(A · (γα(D ′) . su(γα(D)))). (3.6.10)

12By weak properties we mean that we cannot ensure the precise properties of Sections 3.3
and 3.4, but their approximated formulation, where we replace the equality symbol by inequality.
For example, α(FJPK) = FαJPK becomes α(FJPK) ≤ FαJPK.
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First of all, we prove that every semi-perfect observable is also semi-denotational.

By Definitions 3.6.1 and 3.5.1, we have only to show that equation (3.5.6) holds,

namely α(D . pu(γα(
∑

{Dj}j∈J))) = α(D . pu(
∑

{γα(Dj)}j∈J)), for any D ∈ C and

every chain {Dj}j∈J ⊆ PC.

Theorem 3.6.2 Let α : C → A be a semi-perfect observable, X ∈ PA, D ′ ∈ C,

D ∈ PC, G be a goal, {Xi}i∈I ⊆ PA and {Dj}j∈J ⊆ PC be chains. Then

1. G�JGKX = α(GJGK(X)),
2. G�JGKfPfXigi∈I =

∑̃
{G�JGKXi}i∈I,

3. α(D ′ . pu(γα(
∑

{Dj}j∈J))) = α(D ′ . pu(
∑

{γα(Dj)}j∈J)),
4. α(D ′ . pu(γα(D))) = α(γα(D ′) . pu(γα(D))).

Proof. We prove the points separately.

Point 1 The proof is by induction on G. If G = �, by definition of GJ·K and G�J·K,
G�J�KX = α(φ�) = α(GJ�K(X)).

Otherwise let G = (A,G ′). The following facts hold.

G�J(A,G ′)KX =

[ by definition of G�J·K ]
A�JAKX ×̃ G�JG ′KX =

[ by definition of A�J·K and by inductive hypothesis ]

(A ·̃ X) ×̃ α(GJG ′K(X)) =

[ by definition of ·̃ and ×̃ ]

α(γα(A · γ(X))× γα(GJG ′K(X))) =

[ by (3.6.7) ]

α((A · γ(X))× GJG ′K(X)) =

[ by definition of GJ·K ]
α(GJ(A,G ′)K(X)).

Point 2 The proof is by induction on G. If G = �, by definition of G�J·K,
G�J�KfPfXigi∈I = α(φ�) =

∑̃
{G�J�KXi}i∈I.

Otherwise let G = (A,G ′). The following equivalences hold.

G�J(A,G ′)KfPfXigi∈I =

[ by definition of G�J·K ]
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A�JAKfPfXigi∈I ×̃ G�JG ′KfPfXigi∈I =

[ by definition of A�J·K and by inductive hypothesis ]

(A ·̃
∑̃

{Xi}i∈I) ×̃
∑̃

{G�JG ′KXi}i∈I =

[ by (3.6.1) ]∑̃
{(A ·̃ Xj) ×̃ G�JG ′KXi}i;j∈I =

[ since {Xi}i∈I is a chain ]∑̃
{(A ·̃ Xi) ×̃ G�JG ′KXi}i∈I =

[ by definition of A�J·K and G�J·K ]∑̃
{G�J(A,G ′)KXi}i∈I.

Point 3

α(D ′ . pu(γα(
∑

{Dj}j∈J))) =

[ by definition of pu and by Lemma 2.2.7 ]

α(
∑

{D ′ . GJGK�(PfDjgj∈J)}G∈Goals) =

[ by (3.3.1) and (3.6.6) ]

α(
∑

{γα(γα(D ′) . γα(GJGK�(Pf�(Dj)gj∈J)))}G∈Goals) =

[ by definition of the abstract operators ]∑̃
{α(D ′) .̃ α(GJGK(fPf�(Dj)gj∈J))}G∈Goals =

[ by Point 1 ]∑̃
{α(D ′) .̃ G�JGKfPf�(Dj)gj∈J}G∈Goals =

[ by Point 2 and by (3.6.1) ]∑̃
{
∑̃

{α(D ′) .̃ G�JGK�(Dj)}j∈J}G∈Goals =

[ by definition of the abstract operators and by Point 1 ]

α(
∑

{γα(
∑

{γα(γα(D ′) . γα(GJGK�(Dj)))}j∈J)}G∈Goals) =

[ by (3.6.6) and (3.3.1) ]

α(
∑

{
∑

{D ′ . GJGK�(Dj)}j∈J}G∈Goals) =

[ by Lemma 2.2.7 and since {Dj}j∈J is a chain ]

α(D ′ .
∑

{GJGKPf�(Dj)gj∈J}G∈Goals) =

[ by definition of pu ]
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α(D ′ . pu(
∑

{γα(Dj)}j∈J)).
Point 4 The proof is straightforward, by definition of pu , by Lemma 2.2.7 and by

(3.6.6).

Corollary 3.6.3 Let α : C → A be a semi-perfect observable. Then α is a semi-

denotational observable.

Lemma 3.6.4 Let α : C → A be a semi-perfect observable and let X ∈ PA and

{Xj}j∈J ⊆ PA be a chain.

1. su�(X) = α(su(γ(X))),

2. α(sun(γ(
∑̃

{Xj}j∈J))) = α(
∑

{sun(γ(Xj))}j∈J).
Proof. We prove the points separately.

Point 1 The proof follows by Corollary 3.6.3 and by Point 2 of Lemma 3.5.3.

Point 2 We prove the two inclusions separately.

≥ Straightforward, since ·, ×,
∑

and α are monotonic, γ(Xj) v γ(
∑̃

{Xj}j∈J), for

any j ∈ J, and
∑

is the lub operation on C.

≤ The proof is by induction on n. For n = 0 the proof is immediate, by definition

of su0. For n > 0 the following equivalences hold.

α(sun(γ(
∑̃

{Xj}j∈J))) =

[ by definition of sun ]

α(sun-1(γ(
∑̃

{Xj}j∈J)) . su(γ(
∑̃

{Xj}j∈J))) ≤
[ by inductive hypothesis and since γα is extensive ]

α(γα(
∑

{sun-1(γ(Xj))}j∈J) . γα(
∑

{su(γ(Xj))}j∈J)) ≤
[ by definition of

∑̃
and .̃ and since γα is extensive ]∑̃

{α(sun-1(γ(Xj)))}j∈J .̃
∑̃

{α(su(γ(Xj)))}j∈J =

[ by (3.6.1) and since {Xj}j∈J ⊆ PA is a chain ]∑̃
{α(sun-1(γ(Xj))) .̃ α(su(γ(Xj)))}j∈J =

[ by definition of the abstract operators ]

α(
∑

{γα(γα(sun-1(γ(Xj))) . γα(su(γ(Xj))))}j∈J) =

[ by (3.6.5) and (3.3.1) ]
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α(
∑

{sun-1(γ(Xj)) . su(γ(Xj))}j∈J) =

[ by definition of sun ]

α(
∑

{sun(γ(Xj))}j∈J).

Lemma 3.6.5 Let α : C → A be a semi-perfect observable, P be a program and G

be a goal. Then

1. B�JG in PK = α(φG .
∑

{sun(γα(tree(P)))}n≥0).
2. O�JPK = (α(Id I .

∑
{sun(γα(tree(P)))}n≥0))/≡A.

Proof. We prove the points separately.

Point 1 First of all, we prove that unf nP;�(α(φG)) = α(φG . sun(γα(tree(P)))).

The proof is by induction on n ≥ 0. For n = 0, by definition, unf 0P;�(α(φG)) =

α(φG) = α(φG . su0(γα(tree(P)))). For n > 0, the following equivalences hold.

unf nP;�(α(φG)) =

[ by definition of unf nP;� ]

unf n-1P;� (α(φG)) .̃ su�(α(tree(P))) =

[ by inductive hypothesis, definition of .̃ and Point 1 of Lemma 3.6.4 ]

α(γα(φG . sun-1(γα(tree(P)))) . γα(su(γα(tree(P))))) =

[ by (3.6.5) ]

α((φG . sun-1(γα(tree(P)))) . su(γα(tree(P)))) =

[ by Point 2 of Lemma 2.2.6 ]

α(φG . sun(γα(tree(P)))).

Therefore, the following equivalences hold.

B�JG in PK = [ by (3.2.17) ]∑̃
{unf kP;�(α(φG))}k≥0 = [ by the previous result and (3.3.1) ]

α(
∑

{φG . sun(γα(tree(P)))}n≥0) = [ by Lemma 2.2.7 ]

α(φG .
∑

{sun(γα(tree(P)))}n≥0).
Point 2 The following facts hold.

O�JPK =

[ by definition ]
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∑̃
{B�Jp(x) in PK/≡A}p(x)∈Goals =

[ since ≡A is a congruence w.r.t.
∑̃

](∑̃
{B�Jp(x) in PK}p(x)∈Goals

)/
≡A

=

[ by the previous result ](∑̃
{α(φp(x) .

∑
{sun(γα(tree(P)))}n≥0)}p(x)∈Goals

)/
≡A

=

[ by (3.3.1) and definition of
∑̃

](
α(
∑

{φp(x) .
∑

{sun(γα(tree(P)))}n≥0}p(x)∈Goals)
)/

≡A
=

[ by Lemma 2.2.7 ](
α(
∑

{φp(x)}p(x)∈Goals .
∑

{sun(γα(tree(P)))}n≥0)
)/

≡A
=

[ by definition of Id I ](
α(Id I .

∑
{sun(γα(tree(P)))}n≥0)

)/
≡A
.

We can always reconstruct the abstract behavior of a generic (non-pure and non-

atomic) goal from the abstract behavior of pure atoms. Therefore, all the properties

of SLD-trees stated in Chapter 2 hold for the abstract top-down denotation for any

semi-perfect observable as well.

Theorem 3.6.6 Let α : C→ A be a semi-perfect observable, A be an atom, G, G ′

be goals and P be a program. Then

1. B�JA in PK = A ·̃ O�JPK,
2. B�J(G,G ′) in PK = B�JG in PK ×̃B�JG ′ in PK.

Proof. We prove the points separately.

Point 1 We prove the two inclusions separately.

≤ By Lemma Lemma 3.6.5, by definition of ·̃ and since ≡A is a congruence w.r.t.

·̃, we have to prove that

α(φA .
∑

{sun(γα(tree(P)))}n≥0) ≤
α(A · γα(Id I .

∑
{sun(γα(tree(P)))}n≥0)).
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By using the same arguments of Point 1 of Theorem 2.5.4, we can prove that

A · (Id I .
∑

{sun(γα(tree(P)))}n≥0) = φA .
∑

{sun(γα(tree(P)))}n≥0.
Now the thesis follows by extensivity of γα and by monotonicity of α and of

·.

≥ The proof follows by Corollary 3.6.3 and Point 1 of Theorem 3.5.7.

Point 2 We prove the two inclusions separately.

≤ By Point 1 of Lemma 3.6.5,

B�J(G,G ′) in PK = α(φ(G;G ′) .
∑

{sun(γα(tree(P)))}n≥0).
Then, by using the same arguments of Point 2 of Theorem 2.5.4, we can prove

that

φ(G;G ′) .
∑

{sun(γα(tree(P)))}n≥0 =

(φG .
∑

{sun(γα(tree(P)))}n≥0)× (φG ′ .
∑

{sun(γα(tree(P)))}n≥0).
Now the thesis follows by observing that γα is extensive, by Point 1 of

Lemma 3.6.5 and by definition of ×̃.

≥ The proof follows by Corollary 3.6.3 and by Point 2 of Theorem 3.5.7.

From Theorem 3.6.6 we can immediately derive that, for any atom A, goal G and

program P,

B�J� in PK = φ�, (3.6.11)

B�J(A,G) in PK = (A ·̃ O�JPK) ×̃B�JG in PK. (3.6.12)

Now we prove the abstract OR-compositionality for semi-perfect observables.

First of all, by definition of ]̃, we have to prove that the function H̃X is continuous.

Then, by construction, the least fixpoint of the function H̃X is the least solution of

the equation [X]∗� = α(Id I) +̃ ([X]∗� .̃ su�(X)).

Lemma 3.6.7 Let X ∈ PA and let α be a semi-perfect observable.

1. H̃X ◦ α = α ◦ H(X),
2. H̃X is continuous,

3. [X]∗� = lfpA H̃X = α(lfpC H(X)) = α([γ(X)]∗).
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Proof. We prove the points separately.

Point 1 Let D ∈ C. The following equivalences hold.

H̃X(α(D)) = [ by definition of H̃X ]

α(Id I) +̃ (α(D) .̃ su�(X)) = [ by Point 1 of Lemma 3.6.4 ]

α(Id I) +̃ (α(D) .̃ α(su(γ(X)))) = [ by definition of .̃ and +̃ ]

α(γα(Id I) + γα(γα(D) . γα(su(γ(X))))) = [ by (3.6.5) and (3.3.1) ]

α(Id I + (D . su(γ(X)))) = [ by definition of H(X) ]
α(H(X)(D)).

Point 2 Let {Xi}i∈I ⊆ PA be a chain. Since
∑̃

is the lub operation on PA, we have

to prove that
∑̃

{H̃X(Xi)}i∈I = H̃X(∑̃{Xi}i∈I). The following equalities hold.

H̃X(
∑̃

{Xi}i∈I) = [ by definition of
∑̃

and Point 1 ]

α(Id I + (
∑

{γ(Xi)}i∈I . su(γ(X)))) = [ by Lemma 2.2.7 and by (3.3.1) ]

α(
∑

{γα(Id I + (γ(Xi) . su(γ(X))))}i∈I) = [ by Point 1 and since αγ = Id ]

α(
∑

{γ(H̃X(Xi))}i∈I) = [ by definition of
∑̃

]∑̃
{H̃X(Xi)}i∈I.

Point 3 First of all we prove that, for any n ≥ 0, H̃X↑n = α(H(X)↑n). The proof

is by induction on n. For n = 0 the proof is straightforward by observing that

H̃X↑0 = ⊥A = α(⊥C) = α(H(X)↑0). For n > 0 the following equivalences hold.

H̃X↑n = [ by definition of ·↑n ]

H̃X(H̃X↑n-1) = [ by inductive hypothesis ]

H̃X(α(H(X)↑n-1)) = [ by Point 1 ]

α(H(X)(H(X)↑n-1)) = [ by definition of ·↑n ]

α(H(X)↑n).
Finally

[X]∗� = [ by construction ]

lfpA H̃X = [ by Point 2 ]∑̃
{H̃X↑n}n≥0 = [ by the previous result ]∑̃
{α(H(X)↑n)}n≥0 = [ by (3.3.1) ]
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α(
∑

{H(X)↑n}n≥0) = [ by continuity of H(X) ]
α(lfpC H(X)) = [ by construction ]

α([γ(X)]∗).

Corollary 3.6.8 Let α : C → A be a semi-perfect observable and P1, P2 be pro-

grams. Then O�JP1 ∪ P2K = O�JP1K ]̃ O�JP2K.
Proof. First of all we prove that

O�JP1K ]̃ O�JP2K = α(Id I .
∑{

sun(γ(O�JP1K +̃ O�JP2K))}n≥0). (1)

The following equivalences hold.

O�JP1K ]̃ O�JP2K = [ by definition of ]̃ ]

[O�JP1K +̃ O�JP2K]∗� = [ by Point 3 of Lemma 3.6.7 ]

α([γ(O�JP1K +̃ O�JP2K)]∗) = [ by the proof of Theorem 2.5.9 ]

α(Id I .
∑

{sun(γ(O�JP1K +̃ O�JP2K))}n≥0).
Now, we can prove the two inclusions separately.

≤ By (1) and by Lemma 3.6.5, we have to prove that

α(Id I .
∑

{sun(γα(tree(P1 ∪ P2)))}n≥0) ≤
α(Id I .

∑
{sun(γ(O�JP1K +̃ O�JP2K))}n≥0).

We prove that, for any n ≥ 0, sun(γα(tree(P1 ∪ P2))) v sun(γ(O�JP1K +̃

O�JP2K)). Then the thesis follows by monotonicity of . and α. Observe that,

since (for any program P) tree(P) is a pure collection, γα(tree(P)) v Id I .

su(γα(tree(P))) v γ(O�JPK). Then, by definition of tree and +̃ and by (3.3.1),

γα(tree(P1 ∪ P2)) = γ(α(tree(P1)) +̃ α(tree(P2))) v γ(O�JP1K +̃ O�JP2K) and

therefore, since · and × are monotonic, su(γα(tree(P1∪P2))) v su(γ(O�JP1K+̃
O�JP2K)). Then, since . is also monotonic, for any n ≥ 0, sun(γα(tree(P1 ∪
P2))) v sun(γ(O�JP1K +̃ O�JP2K)).

≥ First of all, observe that for any i ∈ [1, 2], O�JPiK ≤ O�JP1∪P2K and therefore,

since +̃ is the lub operation on A, O�JP1K+̃O�JP2K ≤ O�JP1∪P2K. Then, since

γ, · and × are monotonic, for any n ≥ 0

sun(γ(O�JP1K +̃ O�JP2K)) v sun(γ(O�JP1 ∪ P2K)). (2)
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Now the following statements hold.

sun(γ(O�JP1 ∪ P2K)) =

[ by Lemma 3.6.5 ]

sun(γα(Id I .
∑

{sun(γα(tree(P1 ∪ P2)))}n≥0)) v
[ by definition of the abstract operators and by Lemma 2.2.7 ]

sun(γ(
∑̃

{unf kP1∪P2;�(α(Id I))}k≥0)) v
[ by Point 2 of Lemma 3.6.4 and since γα is extensive ]

γα(
∑

{sun(γ(unf kP1∪P2;�(α(Id I))))}k≥0) v
[ by Point 3 of Lemma 3.5.4 and Corollary 3.6.3 ]

γα(
∑

{γ(unf knP1∪P2;�(α(IdC)))}k≥0) =

[ by set-theoretic properties ]

γα(
∑

{γ(unf kP1∪P2;�(α(IdC)))}k≥0).

Moreover, by (3.2.18) and (3.6.1), O�JPK =
[∑̃

{unf kP;�(α(Id I))}k≥0
] /

≡A
. Thus,

O�JP1K ]̃ O�JP2K =

[ by (1) ]

α(Id I .
∑

{sun(γ(O�JP1K +̃ O�JP2K))}n≥0) =

[ by (2), the previous result and since α is monotonic ]

α(Id I . γα(
∑

{γ(unf kP1∪P2;�(α(IdC)))}k≥0)) ≤
[ by definition of the abstract operators and since γα is extensive ]

α(Id I) .̃
∑̃

{unf kP1∪P2;�(α(IdC))}k≥0 ≤
[ by (3.6.1) ]∑̃

{α(Id I) .̃ unf kP1∪P2;�(α(IdC))}k≥0 ≤
[ by Point 2 of Lemma 3.5.4 and Corollary 3.6.3 ]∑̃

{unf kP1∪P2;�(α(Id I))}k≥0 =

[ by the previous observation ]

O�JP1 ∪ P2K.

In Corollary 3.6.10 we will prove that the abstract top-down and the abstract
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bottom-up denotations are indeed equivalent, which implies (by Theorem 3.6.6)

the equivalence between the denotational and the operational semantics.

Theorem 3.6.9 Let α : C→ A be a semi-perfect observable, c be a clause, X ∈ PA
and P be a program. Then

1. C�JcKX = α(tree(c) . pu(γ(X))),

2. P�JPKX = α(PJPK(X)),
3. P�JPK is continuous on A and F�JPK = P�JPK↑!.

Proof. We prove the points separately.

Point 1 Let c = H← B. The following equalities hold.

C�JcKX = [ by definition of C�J·K ]

α(tree(c)) .̃ G�JBKX = [ by Point 1 of Theorem 3.6.2 ]

α(tree(c)) .̃ α(GJBK(X)) = [ by definition of .̃ ]

α(γα(tree(c)) . γα(GJBK(X))) = [ by (3.6.6) ]

α(tree(c) . GJBK(X)) = [ by definition of pu ]

α(tree(c) . pu(γ(X))).

Point 2 The proof is straightforward by Point 1, by (3.3.1) and by definition of

P�J·K and is omitted.

Point 3 Let {Xi}i∈I ⊆ PA be a chain. Since
∑̃

is the lub operation on PA, we have

to prove that
∑̃

{P�JPKXi}i∈I = P�JPKfPfXigi∈I . First of all, note that the following

equalities hold.

C�JcKfPfXigi∈I = [ by definition of C�J·K ]

α(tree(c)) .̃ G�JBKfPfXigi∈I = [ by Point 2 of Theorem 3.6.2 ]

α(tree(c)) .̃
∑̃

{G�JBKXi}i∈I = [ by (3.6.1) ]∑̃
{α(tree(c)) .̃ G�JBKXi}i∈I = [ by definition of C�J·K ]∑̃
{C�JcKXi}i∈I.

Now the proof is straightforward by definition of P�J·K.
Finally, by using Theorems 3.6.9 and 3.6.6, we can prove the equivalences be-

tween the denotational and the operational semantics on one side, and between the

top-down and bottom-up denotations on the other side.
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Corollary 3.6.10 Let α : C → A be a semi-perfect observable, G be a goal and P,

P ′ be programs. Then

1. O�JPK = F�JPK,
2. Q�JG in PK = B�JG in PK,

Proof. We prove the points separately.

Point 1 We prove the two inclusions separately

≤ First of all, we prove that, for any n ≥ 1, P�JPK↑n ≥ α((Id I + γα(tree(P))) .

pun-1(Id I + γα(tree(P)))). The proof is by induction on n. For n = 1 the

thesis is straightforward, since

P�JPK↑1 =

[ by definition of P�J·K and ·↑1 ]
α(Id I + (tree(P) . pu(γα(⊥A)))) ≥

[ since . is extensive ]

α(Id I + tree(P)) =

[ by (3.3.1) ]

α(Id I + γα(tree(P)))

[ by definition of pu0 ]
α((Id I + γα(tree(P))) . pu0(Id I + γα(tree(P)))).

For n > 1 the following statements hold.

P�JPK↑n =

[ by definition of ·↑n and since P�JPK↑n-1 ≤ P�JPK↑n ]

P�JPK(P�JPK↑n-1) +̃ P�JPK↑n-1 ≥
[ by Point 2 of Theorem 3.6.9 and (2.5.8) ]

α(Id I + (tree(P) . pu(γ(P�JPK↑n-1)))) +̃ P�JPK↑n-1 =

[ by (3.3.1) and Point 4 of Theorem 3.6.2 ]

α(Id I + γα(γα(tree(P)) . pu(γ(P�JPK↑n-1)))) +̃ P�JPK↑n-1 =

[ by definition of +̃ ]

α(γα(tree(P)) . pu(γ(P�JPK↑n-1))) +̃ (α(Id I) +̃ P�JPK↑n-1) ≥
[ since γα is extensive and by definition of +̃ ]

α((γα(tree(P)) . pu(γ(P�JPK↑n-1))) + (Id I + γ(P�JPK↑n-1))) =

[ since Id I +D = Id I . pu(D), for any D ∈ PC ]
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α((γα(tree(P)) . pu(γ(P�JPK↑n-1))) + (Id I . pu(γ(P�JPK↑n-1)))) =

[ by Lemma 2.2.7 ]

α((Id I + γα(tree(P))) . pu(γ(P�JPK↑n-1))) =

[ by inductive hypothesis ]

α((Id I + γα(tree(P))) . pu(γα((Id I + γα(tree(P))).

pun-2(Id I + γα(tree(P)))))) =

[ since γα is extensive and by definition of pun-1 ]
α((Id I + γα(tree(P))) . pun-1(Id I + γα(tree(P)))).

Now, since P�JPK is continuous on A, by Lemma 2.2.7 and by (3.3.1), F�JPK
=
∑̃

{P�JPK↑n}n≥0 ≥ ∑̃{α((Id I + γα(tree(P))) . pun(Id I + γα(tree(P))))}n≥0
≥ α(Id I .

∑
{pun(γα(tree(P)))}n≥0). Then, by Corollary 2.5.13, since α is

monotonic and by Lemma 3.6.5, F�JPK ≥ α(Id I .
∑

{sun(γα(tree(P)))}n≥0) =

O�JPK.
≥ Since (by Corollary 3.6.3) any semi-perfect observable is also semi-denota-

tional, the proof is the same of Lemma 3.5.5, by using Point 2 of Theorem 3.6.9

instead of Point 1 of Theorem 3.5.2.

Point 2 The proof is straightforward by Point 1 and by Theorem 3.6.6.

3.6.1 SLD-trees with POS
We show now how to obtain groundness analysis of SLD-trees by applying our

scheme. We will obtain abstract computations on the abstract domain POS by

extending the Γ abstraction of Section 3.5.1 to derivations. First of all we need to

define abstract versions of atoms, goals, clauses and programs.

Γ(t1, . . . , tn) := Γ(t1), . . . , Γ(tn)
Γ(p(t)) := p(Γ(t))

Γ(A1, . . . , An) := Γ(A1), . . . , Γ(An)
Γ(H← B) := Γ(H)← Γ(B)

Γ({c1, . . . , cn}) := {Γ(c1), . . . , Γ(cn)}
Now we can extend Γ to derivations. We call POS-derivation the result of this

abstraction, since it represents an abstract derivation on the domain POS.

Γ

(
G0 #1−→c1 · · · #n−→cn Gn

)
:= Γ(G0) �(#1)

−−−→�(c1) · · · �(#n)−−−→�(cn) Γ(Gn)
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Let WFSPOS be the set of well formed sets of POS-derivations and ASLDPOS ⊆
[Goals ⇀WFSPOS].

The groundness dependencies of SLD-tree observable Ψ : C→ ASLDPOS is

Ψ(D) := λG.
{
Γ(d) | d ∈ D(G)

}
.

It can be proved that the observable Ψ is a semi-perfect observable, hence the ab-

stract transition relation
	7−→P is precise. In order to present it in a compact form,

we introduce the following notation. Let A := p(F1, . . . , Fn) and B := q(E1, . . . , Em)

be abstract atoms. If p/n = q/m, then A↔ B denotes
∧1≤i≤n Fi ↔ Ei, otherwise

it denotes false. Thus, by applying the definition the abstract transition system,

if for some X ∈ ASLDPOS there exists an abstract goal Ḡ, an abstract derivation

A
F1−→c1 · · · Fn

−→cn (B,C) ∈ X(Ḡ) and an abstract clause H ← D ∈ Γ(P) such that

(B↔ H) 6= false, then we can do the derivation step

X
	7−→P λG. X(G) ∪

{
A

F1−→c1 · · · Fn−→cn (B,C)
Fn^B$H
−−−−−−→H D (D,C) | H←D ∈ Γ(P),

A
F1−→c1 · · · Fn−→cn (B,C) ∈ X(G), (B↔ H) 6= false

}
Since Ψ is semi-perfect, the abstract top-down denotation O	JPK and the abstract

bottom-up denotation F	JPK coincide and are less precise the abstraction of the

top-down denotation Ψ(OJPK).
Let us finally note that we can obtain the observable ψ (see Section 3.5.1) by

collecting the results of POS-refutations provided by Ψ. Namely, ψ = π ◦Ψ, where

π(X) := λG.
{
(F1 ∧ · · ·∧ Fn)|G | Γ(G)

F1−→c1 · · · Fn−→cn � ∈ X(G)
}
.

Thus, since ψ is semi-denotational and its transition system is not precise, we can

use that of Ψ and then collect abstract computer answers.

3.7 Discussion on the Results of the Abstraction

Framework

Our results allow us to derive in a systematic way several known semantics, together

with their properties. Perfect observables allow us to reconstruct the resultants se-

mantics in [54] and the Heyting semantics in [67]. The results on denotational

observables apply to the least Herbrand model, the atomic logical consequence se-

mantics [16], the s-semantics [45, 13], the partial answer semantics [43] and the

call pattern semantics [55]. The results on semi-denotational observables apply to
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bottom-up abstract interpretation frameworks, such as those whose collecting se-

mantics is the computed answer semantics [9, 17], the correct answer semantics [59]

and the call pattern semantics [51]. Finally, the results on semi-perfect observables

apply to top-down abstract interpretation frameworks [15].

There is something more we can learn from our theory of observables on the

relation between denotational and operational definitions and the relation between

goal-independence and goal-dependence. Denotational definitions are usually more

abstract than operational definitions. This is not a real need, since we have shown

that denotational definitions do exist for all sensible observables (see the discussion

below on operational observables). In particular, for those observables which have

a precise operational semantics (i.e., perfect observables, such as SLD-trees, resul-

tants and proof trees), there exists a fully equivalent denotational definition. The

difference between an operational and denotational definition is not a matter of level

of abstraction of the semantic domains (which can be “very operational” as in the

case of SLD-trees). It is rather a matter of style, namely the denotational definition

is compositional (and, in the case of procedure definition and procedure call, this

leads to goal-independence).

However, it is often the case that a denotational definition is compared to an

operational definition modeling a different observable. For example, when one is

concerned with computed answers (or their ground instances),

• the operational semantics is usually defined by SLD-resolution, i.e., by a transi-

tion system for the observable SLD-trees. Computed answers (or their ground

instances) are then obtained by abstracting the final result;

• the denotational semantics is defined directly on the abstract domain by taking

the least fixpoint of the s-semantics immediate consequence operator (or of the

standard ground TP operator).

This can easily be explained in our framework. In fact, computed answers and their

ground instances are denotational, and can therefore be computed operationally only

by taking a more concrete (perfect) observable. As a consequence, the operational

semantics is “more expressive” and yet contains more information. For example,

from this operational semantics designed for computed answers, we can obtain in-

formation about call patterns, since both computed answers and call patterns are

abstractions of the observable we are indeed modeling.

It is worth noting that in principle there might exist observables which can only

be computed operationally. We just need to define another class, which satisfies

axioms (3.4.1) and (3.4.2) and an axiom on the extension operator symmetric w.r.t.
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Axiom (3.4.3), i.e.,

α(D .D ′) = α((γ ◦ α)D .D ′).

This class (operational observables) has been studied in [2] and seems to include no

interesting observables.

The relation between operational and denotational definitions that we have no-

ticed for precise observables, holds for non-precise observables too. Consider now

the case of groundness analysis, based on the abstract domain POS. As in the case

of precise observables, the operational and denotational definitions, use different

observables. Namely,

• the (top-down) abstract operational semantics models a semi-perfect observ-

able (the one of Section 3.6.1). Observations (i.e., groundness dependencies

for computed answers) are then obtained by abstracting the result;

• the (bottom-up) abstract denotational semantics models directly a semi-deno-

tational observable (the one of Section 3.5.1).

As in the case of precise observables, the two definitions are equivalent from the

viewpoint of precision. However, since the top-down abstract semantics is more

concrete, it allows to derive more information (e.g., groundness dependencies of call

patterns).

It is worth noting that all the observables we have considered are AND-compo-

sitional. AND-compositionality implies goal-independence, i.e., there is no loss of

precision in deriving the behavior of a specific goal from the goal-independent deno-

tation (this property is sometimes called “condensing” in abstract interpretation).

However there exist abstract domains used in the static analysis of logic programs,

for which this property does not hold. One example is the domain DEF [8], which

is a domain of propositional formulas (less precise than POS) used for groundness

analysis. It is easy to realize that DEF is not semi-denotational since it does not

satisfy Axiom (3.5.1). In the case of non-AND-compositional observables, the de-

notational definition (which is AND-compositional by construction) will in general

deliver results which are less precise than those that could be obtained by goal-

dependent operational definitions (defined for the “corresponding” more concrete

observable). This is the only case where goal-dependent top-down abstract inter-

pretation is more precise than goal-independent bottom-up abstract interpretation.

Our final remark is about goal-independence. Goal-dependence is usually asso-

ciated to top-down operational definitions. One example is SLD-resolution, which

given a goal, returns the meaning of the goal. On the other side, goal-independence



146 The Abstraction Framework

is usually associated to bottom-up denotational definitions. For example, the fix-

point semantics gives a meaning to a set of procedure declarations. Our framework

shows that this is not always the case. In particular, one can get the meaning of a

goal in a denotational way (see definitions (2.2.1) and (3.2.8) for the four classes of

observables we have considered). However, the meaning of a goal is compositionally

derived from the (goal-independent) meaning of the clauses. As already noted, if the

observable is AND-compositional, the denotational semantics of a goal is precise.

On the other hand, goal-independent denotations can be defined also in terms of the

operational semantics, if the observable is perfect or semi-perfect, by taking the be-

haviors for pure atomic goals. This shows that top-down does not necessarily imply

goal-dependence and bottom-up does not necessarily imply goal-independence.

3.8 Applications and Future Developments

Our framework was explicitly defined as a tool for the reconstruction of existing

semantics, for the systematic design of new semantics and for static program analy-

sis. One additional application is abstract diagnosis [26, 24, 23], a generalization

of declarative debugging, which allows us to prove whether a program satisfies an

abstract specification and to locate the bugs, when the program is not correct. Ab-

stract diagnosis is extensively presented in Part II. Let us just note now, that the

diagnosis algorithms explicitly exploit the properties of denotational and semi-de-

notational observables.

Another application which is currently under study is the systematic design of

observables with specific semantic properties. The problem can be stated as follows.

We want to model the observable α, by a semantics which has some property (such

as being precise, AND-compositional, OR-compositional, goal-independent, or top-

down). If α belongs to a class which does not enjoy that property, we need to

determine another observable β which is more concrete than α (and therefore is

correct w.r.t. it) and which has the required property.

Consider, for example, the case where one wants to model computed answers by

an OR-compositional semantics (because one needs to reason in a modular way).

Computed answers are denotational and not perfect and therefore they are not OR-

compositional. An OR-compositional semantics, correct w.r.t. computed answers,

was defined in [14]. It turns out to be exactly the semantics for the observable

computed resultants, which is indeed perfect and therefore OR-compositional.

As another example, assume one wants to model groundness dependencies of

computed answers by an AND-compositional (goal-independent) semantics. The

simple “groundness” observable is not even semi-denotational. On the other hand,
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POS is correct w.r.t. groundness dependencies of computed answers and is semi-

denotational (and therefore AND-compositional).

The theory of abstract interpretation provides tools for the systematic construc-

tion of “more concrete” observables, i.e., refinement operators (see [50] for a recent

survey). Examples of refinement operators are reduced product, disjunctive com-

pletion, functional dependencies and Heyting completion. The above mentioned

examples can be handled by these techniques. In particular [60] shows that the

resultants semantics can be obtained by refining the domain of the s-semantics by

functional dependencies, while [62, 89] reconstruct POS from the “groundness” ob-

servable by Heyting completion. Within our framework, one can handle the problem

of establishing general results about the properties of a class of observables and those

of their refinements. Initial results for precise observables can be found in [2].

As a final remark, we want to point out that our approach can be generalized to

other paradigms. We just need to define a denotational and operational semantics

on the same semantic domain. The compositionality properties will be of course

different and related to the language syntactic operators.

3.9 Proofs of Examples

We present here the proofs of the properties stated in the examples. We first need

some technical results on properties of resultants and derivations. To simplify the

notation, by res(d) := G0ϑ←Gn we will denote the resultant associated to the

derivation d.

Lemma 3.9.1 Let d := G
# ′

−−−−−→c1;:::;cm G ′m be a derivation and δ be an idempotent

substitution such that var(Gδ)∩ var(clauses(d)) = ∅. Then there exists ϑ such that

∂�(d) = Gδ
#

−−−−−→c1;:::;cm Gm, if and only if there exists δ ′ = mgu(Gδ,Gϑ ′), such that

res(∂�(d)) = res(d)δ ′.

Proof. First of all observe that by definition of derivation and of the ∂ operation,

var(clauses(d))∩(var(Gδ)∪var(G)) = ∅ and δ is an idempotent substitution. Then,

by Lemma 1.3.8 and by observing that ϑ ′δ ′ = δ|Gϑ, Gδϑ←Gm = (Gϑ ′←G ′m)δ ′

and therefore res(∂�(d)) = res(d)δ ′.

Lemma 3.9.2 Let d1 := G1 #
−−−−→c1;:::;cn B1 and d2 := G2 �

−−−−−−−−→cn+1;:::;cn+m B2 be derivations

such that var(d1) ∩ var(d2) = var(G1) ∩ var(G2). Then the following facts hold

1. If B1 6= � then d1 ∧ d2 = (G1,G2) #
−−−−→c1;:::;cn (B1,G2ϑ) and res(d1 ∧ d2) =

((G1,G2)← (B1,G2))ϑ.
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2. If B1 = � then there exists ϑ ′ such that d1 ∧ d2 = (G1,G2) ## ′
−−−−−−→c1;:::;cn+m B

if and only if there exists δ ′ = mgu(G2ϑ,G2σ) such that res(d1 ∧ d2) =

((G1,G2)← B2)ϑδ ′.
Proof. We prove the points separately.

Point 1 The proof follows by definition of ∂, by a straightforward inductive argu-

ment and by observing that (since we use only idempotent mgus) B1ϑ = B1.
Point 2 By definition of ∧, d1 ∧ d2 = d1 ∧ G2 :: ∂#(d2), where d1 ∧ G2 =

(G1,G2) #
−−−−→c1;:::;cn G2ϑ. By Lemma 3.9.1 there exists ϑ ′ such that

∂#(d2) = G2ϑ # ′
−−−−−−−−→cn+1;:::;cn+m B

if and only if there exists δ ′ = mgu(G2ϑ,G2σ), such that

G2ϑϑ ′← B = (G2σ← B2)δ ′ = (G2ϑ← B2)δ ′,
where the last equality follows since δ ′ = mgu(G2ϑ,G2σ). Since res(d1 ∧ d2) =

(G1,G2)ϑϑ ′← B we are left to prove the following.

G1ϑϑ
0 = G1ϑδ

0
It suffices to prove that, for any x ∈ var(G1), xϑϑ ′ = xϑδ ′. Let

y ∈ var(xϑ). We have two possibilities.

y ∈ var(G2ϑ) In this case, since G2ϑϑ ′ = G2ϑδ ′, yϑ ′ = yδ ′.

y 6∈ var(G2ϑ) First of all observe that, since ϑ is idempotent and y ∈
var(xϑ), y 6∈ dom(ϑ) and therefore y 6∈ var(G2), since y 6∈ var(G2ϑ).
Moreover, by hypothesis, var(d1) ∩ var(clauses(d2)) = ∅. Then, by de-

finition of derivation, y 6∈ var(σ) (since y 6∈ var(G2)) and y 6∈ var(ϑ ′)

(since y 6∈ var(G2ϑ)). Then, since δ ′ = mgu(G2ϑ,G2σ) and (by the

previous observations) y 6∈ var(G2ϑ) ∪ var(G2σ), y 6∈ var(δ ′). Then

yϑ ′ = y = yδ ′.

B2ϑδ
0 = B2δ

0
First of all recall that in a derivation only idempotent mgus and

renamed apart clauses are used. Then it is easy to check, by a straightforward

inductive argument, that σ is idempotent and B2σ = B2. It suffices to prove

that, for any x ∈ var(B2), xϑδ ′ = xδ ′. We have two cases.

x ∈ var(G2) In this case, since δ ′ = mgu(G2ϑ,G2σ) and by the previous

observation, we have that xϑδ ′ = xσδ ′ = xδ ′.
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x 6∈ var(G2) In this case, since by hypothesis var(d1) ∩ var(d2) ⊆ var(G2)
and var(ϑ) ⊆ var(d1), we have that x 6∈ dom(ϑ) and therefore xϑδ ′ = xδ ′.

Now we can prove the properties stated in the examples.

Proof of Example 3.1.3. By definition, ξ maps finite elements to finite elements

and 〈ξ, ξ〉 satisfies Points 1 and 2 of Definition 3.1.1. We have to prove Point 3 of

Definition 3.1.1.

Let D,D ′ ∈ PC and D ≡C D ′. First of all note that by definition of ξ and since

D is a pure collection, ξξ(D) is also a pure collection. Then we have only to prove

that, for any goal p(x) such that ξξ(D)(p(x)) is defined, there exists a renaming

ρ such that ξξ(D ′)(p(x)ρ) is defined and, for any d ∈ ξξ(D)(p(x)), there exists

d ′ ∈ ξξ(D ′)(p(x)ρ) such that clauses(d) ≡ clauses(d ′). Then the thesis follows by

symmetry.

Assume that ξξ(D)(p(x)) is defined. By definition of ξ, D(p(x)) is also de-

fined. Then, since (by hypothesis) D ≡C D ′, there exists a renaming ρ such that

D ′(p(x)ρ) is defined and for any d̄ ∈ D(p(x)) there exists d̄ ′ ∈ D ′(p(x)ρ) such

that clauses(d̄) ≡ clauses(d̄ ′). Moreover, by definition of ξ and since D ′(p(x)ρ) is

defined, ξξ(D ′)(p(x)ρ) is also defined. Now let d ∈ ξξ(D)(p(x)). We are left

to prove that there exists d ′ ∈ ξξ(D ′)(p(x)ρ) such that clauses(d) ≡ clauses(d ′).

Two cases arise.

last(d) 6= � Note that last(dρ) 6= �. Then, by definition of ξ and since D ′(p(x)ρ)

is defined, dρ ∈ ξξ(D ′)(p(x)ρ) and, by definition of renaming, clauses(d) ≡
clauses(dρ).

last(d) = � By definition of ξ, there exists d̄ ∈ D(p(x)) such that answer(d) =

answer(d̄). Then, since (by hypothesis) D ≡C D ′, there exists d̄ ′ ∈ D ′(p(x)ρ)

such that clauses(d̄) ≡ clauses(d̄ ′). By Lemma 1.3.15 there exists an equa-

tional derivation p(x)
eq

−−−−→c̄1;:::;c̄n Ē,� corresponding to d̄ such that ϑ̄ = mgu(Ē)

and answer(d) = answer(d̄) = ϑ̄|x. Moreover, by Lemma 1.3.15 again, there

exists an equational derivation p(x)ρ
eq

−−−−−−→c̄1�;:::;c̄n� Ēρ,� corresponding to d̄ ′ such

that ϑ̄ ′ = mgu(Ēρ) and answer(d̄ ′) = ϑ̄ ′|x�.
Since x is a sequence of distinct variables, there exists a solved form of Ē, Ē|x∪
Ē|-x, where Ē|x ≈e {x =e t} and by Lemma 1.3.3 there exist δ̄ = mgu(Ē|x) and

σ̄ = mgu(Ē|-xδ̄) such that ϑ̄ = δ̄σ̄. Moreover, since Ē|x∪ Ē|-x is a solved form,

we have that Ē|-xδ̄ = Ē|-x, {x} ⊆ var(δ̄) and dom(σ̄) ∩ var(δ̄) = ∅. Therefore

ϑ̄|x = δ̄|x.
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Analogously, there exists a solved form of Ēρ, Ēρ|x� ∪ Ēρ|-x�, where Ēρ|x� ≈e
{xρ =e tρ} and by Lemma 1.3.3 there exist δ̄ ′ = mgu(Ēρ|x�) and σ̄ ′ =

mgu(Ēρ|-x�δ̄ ′) such that ϑ̄ ′ = δ̄ ′σ̄ ′, Ēρ|-x�δ̄ ′ = Ēρ|-x�, {xρ} ⊆ var(δ̄ ′),

dom(σ̄ ′) ∩ var(δ̄ ′) = ∅ and, therefore,

answer(d̄ ′) = ϑ̄ ′|x� = δ̄ ′|x�. (1)

Now, since d ∈ ξξ(D)(p(x)), by Lemma 1.3.15 there exists an equational

derivation p(x)
eq

−−−−→c1;:::;ck E,� corresponding to d such that ϑ = mgu(E) and,

since answer(d) = answer(d̄), ϑ|x = ϑ̄|x.

Then, analogously to the previous cases, since x is a sequence of distinct

variables, there exists a solved form of E, E|x ∪ E|-x, where E|x ≈e {x =e t ′}
and t ′ is a renamed version of t. Moreover, since the clauses are renamed

apart, there exists a renaming ρ ′ such that t ′ρρ ′ = tρ and xρρ ′ = xρ.

Then, by definition of equational derivation, it is easy to check that there

exists an equational derivation

p(x)ρ
eq

−−−−−−−−→c1�� ′;:::;ck�� ′ Eρρ
′,� (2)

and, analogously to the previous cases, there exists a solved form Ēρ|x�∪Ẽ such

that δ̄ ′ = mgu(Ēρ|x�), σ ′ = mgu(Ẽ), ϑ ′ = mgu(Eρρ ′) = δ̄ ′σ ′, {xρ} ⊆ var(δ̄ ′),

dom(σ ′) ∩ var(δ̄ ′) = ∅ and, therefore,

ϑ ′|x� = δ̄ ′|x�. (3)

By Lemma 1.3.15 and by (2), there exists a derivation

d ′ = p(xρ)
# ′

−−−−−−−−→c1�� ′;:::;ck�� ′ �. (4)

Moreover, since d̄ ′ ∈ D ′(p(x)ρ), by (1) and (3) and by definition of ξ, d ′ ∈
ξξ(D ′)(p(x)ρ). Finally, by construction, clauses(d) ≡ clauses(d ′) and then

the thesis.

Proof of Section 3.3.1. We prove that the three abstract operations are correctly

defined.

·̃ operation By definition of ∂, given a derivation d and an idempotent substi-

tution δ such that ∂�(d) is defined, length(∂�(d)) ≤ length(d). Then there

exists a derivation d ′ which is a prefix of d such that ∂�(d) = ∂�(d ′) and

length(∂�(d ′)) = length(d ′).
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Now observe that by definition of collection, for any D ∈ C and for any

G ∈ Goals , if D(G) is defined, then D(G) is a well-formed set of derivations

and therefore, for any d ∈ D(G), if d ′ is a prefix of d, then d ′ ∈ D(G). By the

previous observations, given an atom A and a collection D,

A ·D = φ
[S/A] where S = {∂�(d ′) | S ′ is renamed apart (from A)

version of D(A ′), for some A ′ ≤ A, d ′ ∈ S ′, there exists δ s.t.
A = first(d ′)δ, ∂�(d ′) is defined and length(∂�(d ′)) = length(d ′)}.

Then, by Lemma 3.9.1, there exists d ∈ (A ·D)(A) if and only if d = ∂�(d ′),
S ′ is renamed apart (from A) version of D(A ′), for some A ′ ≤ A, d ′ ∈ S ′,
H = first(d ′), res(d ′) = H ′← B ′, there exists δ such that A = Hδ, there exists

ϑ = mgu(A,H ′) and res(d) = res(d ′)ϑ. Then the following equivalences hold.

A ·̃ X
= [ by definition of ·̃ and χ ]

λG. {res(d) | d ∈ (A · χ(X))(G)}

= [ by the previous result ]

φ
[R/A] where R = { (H ′← B ′)ϑ | S ′ is renamed apart (from A)

version of χ(X)(A ′), for some A ′ ≤ A, d ′ ∈ S ′, H = first(d ′),
res(d ′) = H ′← B ′ there exists δ s.t. A = Hδ and ϑ = mgu(A,H ′)}

= [ by definition of χ and since ϑ = mgu(A,H ′) ]

φ
[R/A] where R = {(A← B ′)ϑ | 〈H, R ′〉 is a renamed apart (from A)

version of 〈A ′, X(A ′)〉, for some A ′ ≤ A, H ′← B ′ ∈ R ′, there
exists δ s.t. A = Hδ and ϑ = mgu(A,H ′)}.

×̃ operation By definition of ∧, if d1, d2 are derivations and d1∧d2 is defined then

length(d1 ∧ d2) ≤ length(d1) + length(d2). Therefore, by definition of ∧, there

exists d ′2 which is a prefix of d2 such that d1 ∧ d2 = d1 ∧ d ′2 and length(d1 ∧

d ′2) = length(d1) + length(d ′2).
Then, analogously to the previous operation, by properties of collections,

D1 ×D2 = λG. {d1 ∧ d2 | (G1,G2) = G and for i = 1, 2, Gi ≡ G ′i, di
is a renamed version of an element in Di(G ′i) s.t.
Gi = first(di), d1 ∧ d2 is defined and
length(d1 ∧ d2) = length(d1) + length(d2)}.

Then, by Lemma 3.9.2, there exists d ∈ (D1 ×D2)(G) if and only if d = d1 ∧

d2, (G1,G2) = G and for i = 1, 2, Gi ≡ G ′i, di is a renamed version of an

element in Di(G ′i) such that Gi = first(di), Bi = last(di), ϑi = answer(di),
var(d1) ∩ var(d2) = var(G1) ∩ var(G2) and the following equivalences hold
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• either B1 6= � and res(d) = ((G1,G2)← (B1,G2))ϑ1 or

• B1 = � and there exists σ = mgu(G2ϑ1,G2ϑ2) such that res(d) =

((G1,G2)← B2)ϑ1σ.

Then the following equivalences hold.

X1 ×̃ X2
= [ by definition of ×̃ and χ ]

λG. {res(d) | d ∈ (χ(X1)× χ(X2))(G)}

= [ by the previous result ]

λG. {((G1,G2)← B)ϑ | (G1,G2) = G, ∀i = 1, 2, Gi ≡ G ′i, di is a

renamed version of an element in χ(Xi)(G ′i) s.t. Gi = first(di),
ϑi = answer(di), Bi = last(di),
var(d1) ∩ var(d2) = var(G1) ∩ var(G2) and
if B1 6= � then ϑ = ϑ1 and B = (B1,G2)
else ϑ = ϑ1 ◦mgu(G2ϑ1,G2ϑ2) and B = B2}

= [ by definition of χ ]

λG. {((G1,G2)← B)ϑ | G = (G1,G2), ∀i = 1, 2, Gi ≡ G ′i,
ri = G ′′i ← Bi is a renamed version of an element in Xi(G ′i), via a
renaming ρi s.t. G ′iρi = Gi,
var(r1) ∩ var(r2) ⊆ var(G1) ∩ var(G2), G1ϑ1 = G ′′1 and
if B1 6= � then ϑ = ϑ1|G1 , B = (B1,G2)
else B = B2, ϑ = ϑ1|G1 ◦mgu(G2ϑ1|G1,G

′′2 )}.
.̃ operation Let d1, d2 be derivations such that d1 :: d2 is defined, G := first(d1),

B := last(d2) and (for i = 1, 2) ϑi := answer(di). By definition of ::, res(d1 ::

d2) = Gϑ1ϑ2← B.

Now observe that, by definition of ::, all the clauses used in the derivation d2
are renamed apart w.r.t. G and first(d2). Moreover we assumed that only

idempotent mgus are used. Then ϑ1 and ϑ2 are idempotent substitutions

and, by definition of derivation and by a straightforward inductive argument,

Bϑ1ϑ2 = Bϑ2 = B.

Then, by definition of ., there exists d ∈ (D1 . D2)(G) if and only if either

d ∈ D1(G) or d = d1 :: d2, d1 ∈ D1(G), G2 ≡ last(d1) and d2 is a renamed

version of an element in D2(G2) such that last(d1) = first(d2), var(d1) ∩
var(d2) = var(first(d2)), B = last(d2), for i = 1, 2, ϑi = answer(di) and

res(d) = (G← B2)ϑ1ϑ2. Then the following equivalences hold.

X1 .̃ X2
= [ by definition of .̃ and χ ]
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λG. {res(d) | d ∈ (χ(X1) . χ(X2))(G)}

= [ by the previous result ]

λG. {(G← B)ϑ | either d ∈ χ(X1)(G), answer(d) = ϑ and last(d) = B

or d = d1 :: d2, where d1 ∈ χ(X1)(G), G2 ≡ last(d1) and d2 is a
renamed version of an element in χ(X2)(G2) s.t.
last(d1) = first(d2), var(d1) ∩ var(d2) = var(first(d2)),
ϑ = answer(d1) ◦ answer(d2) and B = last(d2)}

= [ by definition of χ ]

λG. X1(G) ∪ {(G ′←G3)ϑ | r1 = G ′←G1 ∈ X1(G), G1 ≡ G2,
r2 = G ′2←G3 is a renamed version of an element in X2(G2), via a
renaming ρ s.t. G2ρ = G1, var(r1) ∩ var(r2) ⊆ var(G1),
G1ϑ = G ′2 and dom(ϑ) ⊆ var(G1)}.

We need now a technical result on the substitution abstraction Γ .

Lemma 3.9.3 Let G be a goal and ϑ, ϑ ′ be idempotent substitutions such that Gϑ ≡
Gϑ ′. Then (Γ(ϑ))|var(G) = (Γ(ϑ ′))|var(G).

Proof. First of all observe that, for any idempotent substitution ϑ and sequence of

variables x, (Γ(ϑ))|x = (Γ(ϑ|x))|x. Then we can assume that (dom(ϑ) ∪ dom(ϑ ′)) ⊆
var(G).

Now the proof is by induction on n = card(dom(ϑ) \ dom(ϑ ′)) + card(dom(ϑ ′) \

dom(ϑ)).

n = 0 Assume that ϑ 6= ϑ ′. Then there exists x ∈ var(G) such that xϑ 6= xϑ ′.

Since (by hypothesis) Gϑ ≡ Gϑ ′, xϑ is a variant of xϑ ′ and therefore we can

assume that xϑ = f(y, t2, . . . , tk), xϑ ′ = f(y ′, t ′2, . . . , t ′k) and y 6= y ′. The

extension to the general case is obvious. We have to distinguish the following

cases.

y ∈ var(G) and y 0 6∈ var(G) In this case we have a contradiction. In fact

since ϑ is idempotent and (by hypothesis) y ∈ range(ϑ), y 6∈ dom(ϑ) and

therefore, since dom(ϑ) = dom(ϑ ′), y 6∈ dom(ϑ ′). Then it is easy to

check that Gϑ 6≡ Gϑ ′.
y 6∈ var(G) and y 0 ∈ var(G) The proof is exactly the same as the proof

of the previous case.

y ∈ var(G) and y 0 ∈ var(G) In this case, analogously to the first case,

y, y ′ 6∈ dom(ϑ) ∪ dom(ϑ ′). Then we prove by contradiction that Gϑ 6≡
Gϑ ′. By definition of variance, there exists a renaming ρ such that

Gϑρ = Gϑ ′. (1)
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By our hypothesis on ϑ and ϑ ′, {y/y ′} ⊆ ρ and then, since y ′ 6∈ dom(ϑ)

and y ∈ var(G), {y/y ′} ⊆ (ϑρ)|G = ϑ ′, where the last equality follows by

(1). This contradicts the fact that y 6∈ dom(ϑ ′).

y 6∈ var(G) and y 0 6∈ var(G) Note that the name of the variables not

in var(G) is irrelevant, since if y 6∈ var(G) and y ′ 6∈ var(G) then

(Γ(ϑ))|var(G) = (Γ(ϑ{y/y ′, y ′/y}))|var(G). Therefore

(Γ(ϑ))|var(G) = (Γ(ϑ ′))|var(G).

n > 0 Without loss of generality, we can assume that there exists x ∈ dom(ϑ) \

dom(ϑ ′). Since (by hypothesis) dom(ϑ) ⊆ var(G), x ∈ var(G) and, since

Gϑ ≡ Gϑ ′, there exists a variable y such that {x/y} ⊆ ϑ. Then we have two

possibilities.

y 6∈ var(G) In this case, by definition of Γ , (Γ(ϑ))|var(G) = ((x ↔ y) ∧

Γ(ϑ|dom(#)nfxg))|var(G) and then, by definition of logical equivalence,

(Γ(ϑ))|var(G) = ((x↔ y)∧

((Γ(ϑ|dom(#)nfxg))[y 7→ x]))|var(G).
(2)

Now observe that (Γ(ϑ|dom(#)nfxg))[y 7→ x] is the formula Γ(ϑ ′′), associated

to the idempotent substitution ϑ ′′, obtained by replacing the occurrences

of the variable y with x in the substitution ϑ|dom(#)nfxg. Moreover, by (2),

(Γ(ϑ))|var(G) = (((x↔ true) ∧ Γ(ϑ ′′)) ∨ ((x↔ false)

∧ Γ(ϑ ′′)))|var(G) = (Γ(ϑ ′′))|var(G).
(3)

By construction Gϑ ≡ Gϑ ′′ and therefore Gϑ ′′ ≡ Gϑ ′. Moreover, since

x 6∈ dom(ϑ ′) ∪ dom(ϑ ′′) and dom(ϑ ′′) = dom(ϑ) \ {x}, card(dom(ϑ ′) \

dom(ϑ ′′))+card(dom(ϑ ′′)\dom(ϑ ′)) = n−1. Then, by inductive hypoth-

esis, (Γ(ϑ ′))|var(G) = (Γ(ϑ ′′))|var(G) and therefore, by (3), (Γ(ϑ))|var(G) =

(Γ(ϑ ′))|var(G).
y ∈ var(G) Since Gϑ ≡ Gϑ ′, there exists a renaming ρ such that Gϑρ =

Gϑ ′ and, since ϑ ′ is idempotent, (ϑρ)|G is also idempotent. Now observe

that, since x ∈ dom(ϑ) \ dom(ϑ ′), (ϑρ)|G = ϑ ′ and by definition of

composition, {y/x} ⊆ (ϑρ)|G = ϑ ′.

Let ϑ ′′ := {y/x}ϑ̄, where ϑ̄ is obtained by replacing any occurrence of y

with x in the substitution ϑ|dom(#)nfxg. By definition of Γ ,

Γ(ϑ) = (x↔ y) ∧ Γ(ϑ|dom(#)nfxg)
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= (x↔ y) ∧ ((Γ(ϑ|dom(#)nfxg))[y 7→ x])

= (x↔ y) ∧ Γ(ϑ̄).

Hence

Γ(ϑ) = Γ(ϑ ′′). (4)

By construction Gϑ ≡ Gϑ ′′ and then Gϑ ′′ ≡ Gϑ ′. Moreover, by defi-

nition of ϑ ′′, dom(ϑ ′′) = (dom(ϑ) ∪ {y}) \ {x} and then card(dom(ϑ ′) \

dom(ϑ ′′))+card(dom(ϑ ′′)\dom(ϑ ′)) = n−2. Then, by inductive hypoth-

esis, (Γ(ϑ ′))|var(G) = (Γ(ϑ ′′))|var(G) and therefore, by (4), (Γ(ϑ))|var(G) =

(Γ(ϑ ′))|var(G).

Proof of Section 3.5.1. We have to prove several facts.

ψ is an observable The proof that there exists τ� such that 〈τ� , τ� 〉 : Aca 
 Agr

is a Galois insertion, is straightforward by definition of τ� . Then, we can define

ψ : Agr → C as ψ = ξ ◦ τ� . It is easy to check that ψ maps finite elements

to finite elements and that 〈ψ, ψ〉 satisfies Points 1 and 2 of Definition 3.1.1.

Now, let D,D ′ ∈ PC and D ≡C D ′. By definition, ψ = τ�ξ and, by the

proof that ξ satisfies Point 1 of Definition 3.1.1 (see proof of Example 3.1.3),

ξξ(D) ≡C ξξ(D ′), which (by definition of ≡Aca ) is equivalent to ξ(D) ≡Aca

ξ(D ′). Then it suffices (by taking X = ξ(D) and X ′ = ξ(D ′)) to prove that,

for any pair of pure A-collections X,X ′ ∈ Aca , X ≡Aca X
′ =⇒ τ

� τ� (X) ≡Aca

τ
� τ� (X ′).

First of all observe that the following equivalences hold.

1. By definition of τ� , for any goal G and for any idempotent substitution

ϑ such that dom(ϑ) ⊆ var(G),

ϑ ∈ τ� τ� (X)(G)⇐⇒ (Γ(ϑ))|var(G) → τ� (X)(G), (1)

where → denotes the logical implication.

2. By Corollary 1.3.5, for any substitution ϑ such that dom(ϑ) ⊆ x and for

any renaming ρ, ρ-1ϑρ = {xρ/tρ | x/t ∈ ϑ}. Then Γ(ρ-1ϑρ) = Γ(ϑ)ρ and

therefore

(Γ(ρ-1ϑρ))|x� = ((Γ(ϑ))|x)ρ. (2)

3. By using the same arguments of the proof of Example 3.1.3, for any pair

of pure A-collections X,X ′ ∈ Aca , X ≡Aca X
′ if and only if for any p(x) ∈
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Goals , there exists a renaming ρ such that, if X(p(x)) is defined, then

X ′(p(x)ρ) is defined and, for any ϑ̄ ∈ X(p(x)), there exists ϑ̄ ′ ∈ X ′(p(x)ρ)

such that p(x)ϑ̄ ≡ p(x)ρϑ̄ ′ and vice versa. Then, by definition of renam-

ing, there exists a renaming ρ ′, such that p(x)ρρ-1ϑ̄ρρ ′ = p(x)ρϑ̄ ′ and

therefore, by Lemma 3.9.3 and by (2), (Γ(ϑ̄ ′))|x� = (Γ(ρ-1ϑ̄ρρ ′))|x� =

(Γ(ρ-1ϑ̄ρ))|x� = ((Γ(ϑ̄))|x)ρ. Then, by definition of τ� , X ≡Aca X
′ implies

that, for any p(x) ∈ Goals , there exists a renaming ρ such that, if X(p(x))

is defined, then X ′(p(x)ρ) is defined and τ� (X ′)(p(x)ρ) = (τ� (X)(p(x)))ρ.

Now let X,X ′ ∈ Aca two pure A-collections such that X ≡Aca X
′. By definition

of ≡Aca and by Point 3, we have only to prove that, for any goal p(x) such that

τ
� τ� (X)(p(x)) is defined, there exists a renaming ρ such that τ� τ� (X ′)(p(x)ρ)

is defined and, for any ϑ ∈ τ� τ� (X)(p(x)), there exists ϑ ′ ∈ τ� τ� (X ′)(p(x)ρ)

such that p(x)ϑ ≡ p(x)ρϑ ′. Then the thesis follows by symmetry.

Let p(x) ∈ Goals such that τ� τ� (X)(p(x)) is defined. By definition of τ� ,
X(p(x)) is also defined. Then, by Point 3 and since (by hypothesis) X ≡Aca X

′,

there exists a renaming ρ such that X ′(p(x)ρ) is defined and

τ� (X ′)(p(x)ρ) = (τ� (X)(p(x)))ρ. (3)

By definition of τ� and since X ′(p(x)ρ) is defined, τ� τ� (X ′)(p(x)ρ) is also

defined. Let ϑ ∈ τ� τ� (X)(p(x)). By Corollary 1.3.5, ρ-1ϑρ is idempotent and,

since ϑ ∈ τ
� τ� (X)(p(x)), dom(ρ-1ϑρ) = dom(ϑ)ρ ⊆ var(p(x)ρ). Then to

prove the thesis it is sufficient to prove that ρ-1ϑρ ∈ τ� τ� (X ′)(p(x)ρ).

By Point 1 and since ϑ ∈ τ� τ� (X)(p(x)), (Γ(ϑ))|x → τ� (X)(p(x)) and there-

fore, by Point 2 and (3), (Γ(ρ-1ϑρ))|x� = ((Γ(ϑ))|x)ρ → (τ� (X)(p(x)))ρ =

τ� (X ′)(p(x)ρ). Then, by Point 1, ρ-1ϑρ ∈ τ
� τ� (X ′)(p(x)ρ) and then the

thesis.

abstract operations Let ·� be the abstract instantiation operation corresponding

to the ξ observable. The abstract instantiation w.r.t. ψ can be defined in terms

of τ� and ·� since A ·̃ X = ψ(A ·ψ(X)) = τ�ξ(A · ξτ� (X)) = τ� (A ·� τ� (X)).

Hence the definition of the abstract operation can be computed in terms of

the corresponding operations on Aca , which have been already computed in

Section 3.4.1. The same holds for
∑̃

, ×̃ and .̃.

We prove only the correctness of ·̃. The proof of the correctness of ×̃ is

analogous, while the proof of the correctness of
∑̃

is straightforward.

First of all note that the following facts hold.
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1. By definition of τ� , a substitution σ ∈ τ� (X)(A ′) if and only if dom(σ) ⊆
var(A ′) and (Γ(σ))|var(A ′) → X(A ′). Then, since (by definition of τ� )
var(X(A ′)) ⊆ var(A ′), 〈H, Θ ′〉 is a renamed version of 〈A ′, τ

� (X)(A ′)〉
if and only if 〈H, F ′〉 is a renamed version of 〈A ′, X(A ′)〉 and ϑ ′ ∈ Θ ′

if and only if dom(ϑ ′) ⊆ var(H) and (Γ(ϑ ′))|var(H) → F ′. Moreover, if

F1 → F ′ and var(F1) ⊆ var(H), then there exists a substitution ϑ ′ such

that (Γ(ϑ ′))|var(H) = F1 and therefore, by definition of τ� , ϑ ′ ∈ Θ ′.

2. Let H be an atom and δ, ϑ ′ be idempotent substitutions such that there

exists ϑ = (mgu(Hδ,Hϑ ′))|H� and var(Hδ) ∩ var(Hϑ ′) = ∅, dom(δ) ⊆
var(H). Then, by definition of Γ ,

(Γ(ϑ))|var(H�) = ((Γ(ϑ ′))|var(H) ∧ Γ(δ))|var(H�).
3. Let x be variables and {Fi}i∈I be a set of formulas such that

⋃i∈I(var(Fi))
is a finite set of variables. Then, by a straightforward inductive argument

on card(
⋃i∈I(var(Fi)) \ {x}),

∨i∈I(Fi|x) = (
∨i∈I Fi)|x.

Now we can prove that the ·̃ operation is correctly defined.

A ·̃ X
= [ by the first observation and by definition of τ� ]
φ
[F/A] where F =

∨
{(Γ(ϑ))|var(A) | 〈H, Θ ′〉 is renamed apart (from A)

version of 〈A ′, τ
� (X)(A ′)〉, for some A ′ ≤ A, ϑ ′ ∈ Θ ′, there exists

δ s.t. A = Hδ and ϑ = (mgu(A,Hϑ ′))|var(A)}
= [ by Points 1 and 2 and since A = Hδ ]

φ
[F/A] where F =

∨
{F ′′ | 〈H, F ′〉 is renamed apart (from A) version of

〈A ′, X(A ′)〉, for some A ′ ≤ A, Fi → F ′, var(Fi) ⊆ var(H), there
exists δ s.t. A = Hδ, dom(δ) ⊆ var(H) and F ′′ = (Fi ∧ Γ(δ))|var(A)}

= [ by logic properties ]

φ
[F/A] where F =

∨
{F ′′ | 〈H, F ′〉 is renamed apart (from A) version of

〈A ′, X(A ′)〉, for some A ′ ≤ A, there exists δ s.t. A = Hδ,
dom(δ) ⊆ var(H) and F ′′ =

∨Fi!F ′;var(Fi)⊆var(H) (Fi ∧ Γ(δ))|var(A)}

= [ by Point 3 and since ∧ is distributive on ∨ ]

φ
[F/A] where F =

∨
{F ′′ | 〈H, F ′〉 is renamed apart (from A) version of

〈A ′, X(A ′)〉, for some A ′ ≤ A, there exists δ s.t. A = Hδ,
dom(δ) ⊆ var(H) and
F ′′ = ((

∨Fi!F ′;var(Fi)⊆var(H) Fi) ∧ Γ(δ))|var(A)}

= [ since var(F ′) ⊆ var(H) and by logical properties ]
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φ
[F/A] where F =

∨
{F ′′ | 〈H, F ′〉 is renamed apart (from A) version of

〈A ′, X(A ′)〉, for some A ′ ≤ A, there exists δ s.t. A = Hδ,
dom(δ) ⊆ var(H) and F ′′ = (F ′ ∧ Γ(δ))|var(A)}

ψ is a semi-denotational observable Let A ∈ Atoms , D ′, D ′′ ∈ C, D ∈ PC,

G ∈ Goals and let {Dj}j∈J ⊆ PC be a chain. First of all note that, for any goal

G,

ψ(Id I) = λp(x). false and ψ(φG) = φ
[

false
/
G
]
. (4)

Then the following equivalences hold.

Axiom (3.5.1) The proof is straightforward by observing that ∧ is left/right

distributive on ∨.

Axiom (3.5.2) By (4) and by definition of abstract operators,

ψ(A ·ψψ(Id I)) = A ·̃ψ(Id I) = ψ(φA) = ψ(A · Id I).

Axioms (3.5.3), (3.5.5) and (3.5.9) We prove that

ψ(ψψ(D ′) .ψψ(D ′′)) = ψ(ψψ(D ′) .D ′′).

We have two cases.

∃B ∈ Goals, d 00 ∈ D 00(B). B 6= � and last(d 00) = � First of all ob-

serve that for any goal G, ψ(ψψ(D ′) . ψψ(D ′′))(G) is defined

if and only if ψ(ψψ(D ′) .D ′′)(G) is defined if and only if D ′(G) is

defined.

Now, let us consider a goal G = p1(t1), . . . , pn(tn) such that D ′(G)

is defined. By definition of ψ, the derivation

d = G
fx1=t1g
−−−−→p1(x1) · · · fxn=tng

−−−−−−−→pn(xn) B ′
B ′ ∈ ψψ(D ′),

where B ′ is a renamed version of B, such that var(B ′)∩ var(G) = ∅.
Then, by definition of ., the derivation d :: d ′ ∈ (ψψ(D ′) .D ′′)(G),

where d ′ is a renamed apart (w.r.t. d) version of d ′′, and it is easy to

check that last(d :: d ′) = � and answer(d :: d ′) = ε. Moreover, since

D ′′ v ψψ(D ′′), d :: d ′ ∈ (ψψ(D ′) .ψψ(D ′′))(G).

Then, by definition of ψ, for any G ∈ Goals such that D ′(G) is

defined, ψ(ψψ(D ′).ψψ(D ′′))(G) = true = ψ(ψψ(D ′).D ′′)(G)

and then the thesis.
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∀B ∈ Goals. 6 ∃d 00 ∈ D 00(B). B 6= � and last(d 00) = � By definition

of ψ, for any B ∈ Goals there is no d ′ ∈ ψψ(D ′′)(B) such that

last(d ′) = �. Then, by definition of ψ, ψ(ψψ(D ′) . ψψ(D ′′)) =

ψ(D ′) = ψ(ψψ(D ′) .D ′′).

Axiom (3.5.4) By (4) and by definition of ψ, ψ(ψψ(D ′) × ψψ(φG)) =

ψ(D ′) ×̃ ψ(φG) = λG ′. false where G ′ = (G1,G2) and X ′ is a renamed

version of ψ(D ′) such that X ′(G1) is defined and G2 ≡ G. Now, the

proof is straightforward by definition of ×, ψ and ×̃.

Axiom (3.5.6) We prove that ψψ(
∑

{Dj}j∈J) =
∑

{ψψ(Dj)}j∈J.
The proof of the inequality ψψ(

∑
{Dj}j∈J) w∑{ψψ(Dj)}j∈J is straight-

forward by (3.3.1) and since ψψ is extensive. Now, we prove the other

inequality. Let G be a goal such that ψψ(
∑

{Dj}j∈J)(G) is defined. By

definition of ψ, by definition of
∑̃

and by (3.3.1)

ψ(
∑

{Dj}j∈J)(G) =
∨

{ψ(Dj)(G)}j∈J.
Now, observe that, by definition of ψ, for any j ∈ J, var(ψ(Dj)(G)) ⊆
var(G) and therefore ψ(Dj)(G) is (equivalent to) a finite formula. More-

over, since {Dj}j∈J is a chain, we have that {ψ(Dj)(G)}j∈J is also a chain

(ordered by logical implication). Since for any j ∈ J, var(ψ(Dj)(G)) ⊆
var(G), the chain {ψ(Dj)(G)}j∈J is finite and therefore, there exists i ∈ J
such that ψ(Di)(G) =

∨
{ψ(Dj)(G)}j∈J. Since the previous result holds

for any G ∈ Goals , the thesis follows by definition of
∑

and ψ.
Other Axioms The proof that ψ satisfies Axioms (3.5.7) and (3.5.8) is anal-

ogous to the proof of Axioms (3.5.3), (3.5.5) and (3.5.9).

By using the same argument, we have that ψ(ψψ(D ′′).su(ψψ(D))) =

ψ(ψψ(D ′′) . ψψ(su(ψψ(D)))) = ψ(D ′′) .̃ ψ(su(ψψ(D))), where

the last equality follows by definition of abstract operators. Now, by

definition of ψ, ψ(D ′′) .̃ψ(su(ψψ(D))) ={
λG. true |D ′′(G) def if ∃G ′, d ′ ∈ su(ψψ(D))(G ′). last(d ′) = �
ψ(D ′′) otherwise

where λG. true |X(G) def denotes the function which, on input G, assumes

the value true if X(G) is defined and is otherwise undefined. Moreover

ψψ(D ′′) . su(ψψ(D)) ={
λG. SG|D ′′(G) def if ∃G ′, d ′ ∈ su(ψψ(D))(G ′). last(d ′) = �
ψψ(D ′′) otherwise
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where, for any G, there exists d ∈ SG, such that last(d) = � and

answer(d) = ε.

Now, the proof follows by definition of abstract operators and of ψ.

Proof of Section 3.5.2. We have to prove several facts.

κ is an observable The proof that there exists

µ
k(X) := λG. {(ϑσ)|G | ϑ ∈ X(G), σ ∈ Subst(V̂ → T)}

such that 〈µk, µk〉 : Aca 
 A k is a Galois insertion, is straightforward by

definition of µk. Then, we can define κ : A k → C as κ = ξ ◦ µk. It is

easy to check that κ maps finite elements to finite elements and that 〈κ, κ〉
satisfies Points 1 and 2 of Definition 3.1.1.

As was the case for Section 3.5.1 we have only to prove that, for any pair of pure

A-collections X,X ′ ∈ Aca , X ≡Aca X
′ =⇒ µ

kµk(X) ≡Aca µ
kµk(X ′), i.e., that, for

any ϑ ∈ µkµk(X)(p(x)), there exists ϑ ′ ∈ µkµk(X ′)(p(y)) such that p(x)ϑ ≡
p(y)ϑ ′. By µk, µk definition there must be a substitution ϑ̄ ∈ X(p(x)) identical

to ϑ except for any sub-term rooted at depth k. Moreover (by hypotheses)

there must be a substitution ϑ̄ ′ ∈ X ′(p(y)) such that p(x)ϑ̄ ≡ p(y)ϑ̄ ′. Now

we can easily build a substitution ϑ ′ ∈ µkµk(X ′)(p(y)), identical to ϑ̄ ′ except

for any sub-term rooted at depth k, such that p(x)ϑ ≡ p(y)ϑ ′.

abstract operations As was the case for Section 3.5.1 the definition of the ab-

stract operations can be computed in terms of the corresponding operations

on Aca , which have been already computed in Section 3.4.1.

Consider the ·̃ operation and let X ′ := φ
[�/A], where Θ := {ϑ k | 〈H, Θ ′〉 is

a renamed apart (from A) version of 〈A ′, X(A ′)〉, for some A ′ ≤ A, ϑ ′ ∈ Θ ′,

ϑ = mgu(A,Hϑ ′)|A}. It suffices to prove that X ′ = µk(A ·� µk(X)), since A ·̃
X = µk(A ·� µk(X)) = κ(A · κ(X)).

The inclusion X ′ ⊆ µk(A ·� µk(X)) is straightforward, since we can map each

depth(k) substitution to a concrete one by mapping each variable of V̂ with a

fresh variable of V . To prove the other inclusion, let 〈H, Θ ′′〉 be a renamed

apart (from A) version of 〈A ′, µ
k(X)(A ′)〉 and ϑ ′′ ∈ Θ ′′ such that there exists

mgu(A,Hϑ ′′). Then there exists 〈H, Θ ′′′〉, renamed apart (from A) version

of 〈A ′, X(A ′)〉, ϑ ′′′ ∈ Θ ′′′ and σ : V̂ → T such that ϑ ′′ = (ϑ ′′′σ)|A and

there exists mgu(A,Hϑ ′′′). By the properties of  k, (mgu(A,Hϑ ′′′)|A) k =

(mgu(A,Hϑ ′′′σ)|A) k = (mgu(A,Hϑ ′′)|A) k. Hence (mgu(A,Hϑ ′′′)|A) k ∈
X ′, because the mgu construction can build substitutions with domain in V ∪
V̂ , but the restriction on the variables of A confines dom(ϑ) in V .
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An analogous argumentation holds for the ×̃ operation and the substitution

ϑ = (ϑ1 ◦mgu(G2ϑ1,G2ϑ2))|G.

κ is a semi-denotational observable Let A ∈ Atoms , D ′, D ′′ ∈ C, D ∈ PC,

G ∈ Goals and let {Dj}j∈J ⊆ PC be a chain. In the following we denote by

Θ|G ⊆ Subst (Θ|G k ⊆ Subst k) the set of all the substitution ϑ, such that

dom(ϑ) ⊆ var(G).

First of all note that, for any goal G,

κ(Id I) = λp(x). ∅ and κ(φG) = φ
[∅/

G
]
. (1)

Then the following equivalences hold.

Axiom (3.5.1) Immediate.

Axiom (3.5.2) By (1) and by definition of abstract operators,

κ(A · κκ(Id I)) = A ·̃ κ(Id I) = κ(φA) = κ(A · Id I).

Axioms (3.5.3), (3.5.5) and (3.5.9) We prove that κ(κκ(D ′) . κκ(D ′′)) =

κ(κκ(D ′) .D ′′). We have two cases.

∃B ∈ Goals, d 00 ∈ D 00(B). B 6= � and last(d 00) = � First of all ob-

serve that for any goal G, κ(κκ(D ′) . κκ(D ′′))(G) is defined if

and only if κ(κκ(D ′) . D ′′)(G) is defined if and only if D ′(G) is

defined.

Now, let us consider a goal G such that D ′(G) is defined. By def-

inition of κ, for any substitution ϑ ∈ Θ|G, there exists a derivation

d ∈ κκ(D ′), such that last(d) = B ′, answer(d) = ϑ and B ′ is a

renamed version of B, such that var(B ′) ∩ var(G) = ∅. Then, by

definition of ., for any substitution ϑ ∈ Θ|G, there exists a derivation

d :: d ′ ∈ (κκ(D ′) .D ′′)(G), where d ′ is a renamed apart (w.r.t. d)

version of d ′′, such that answer(d :: d ′) = ϑ and last(d :: d ′) = �.

Moreover, since D ′′ v κκ(D ′′), d :: d ′ ∈ (κκ(D ′) . κκ(D ′′))(G).

Then, by definition of κ, we have that for any G ∈ Goals such that

D ′(G) is defined, κ(κκ(D ′) . κκ(D ′′))(G) = Θ|G k = κ(κκ(D ′) .

D ′′) and then the thesis.

∀B ∈ Goals. 6 ∃d 00 ∈ D 00(B). B 6= � and last(d 00) = � By definition

of κ, for any B ∈ Goals there is no d ′ ∈ κκ(D ′′)(B) such that

last(d ′) = �. Then, by definition of κ, κ(κκ(D ′) . κκ(D ′′)) =

κ(D ′) = κ(κκ(D ′) .D ′′).
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Axiom (3.5.4) By (1) and by definition of κ,

κ(κκ(D ′)× κκ(φG)) = κ(D ′) ×̃ κ(φG) = λG ′. ∅

where G ′ = (G1,G2) and X ′ is a renamed version of κ(D ′) such that

X ′(G1) is defined and G2 ≡ G. Now, the proof is straightforward by

definition of ×, κ and ×̃.

Axiom (3.5.6) We prove that κκ(∑{Dj}j∈J) =
∑

{κκ(Dj)}j∈J.
The proof of the inequality κκ(∑{Dj}j∈J) w ∑{κκ(Dj)}j∈J is straight-

forward by (3.3.1) and since κκ is extensive. Now, we prove the other

inequality. Let G be a goal such that κκ(∑{Dj}j∈J)(G) is defined. By

definition of κ and of
∑̃

and by (3.3.1)

κ(
∑

{Dj}j∈J)(G) =
⋃

{κ(Dj)(G)}j∈J.
Now, observe that, by definition of

⋃
, for any ϑ ∈ κ(

∑
{Dj}j∈J)(G) there

exists i ∈ J such that ϑ ∈ κ(Di)(G). Since the previous result holds for

any G ∈ Goals , the thesis follows by definition of
∑

and κ.
Other Axioms The proof that κ satisfies Axioms (3.5.7) and (3.5.8) is anal-

ogous to the proof of Axioms (3.5.3), (3.5.5) and (3.5.9). By using the

same argument, we have that κ(κκ(D ′′) . su(κκ(D))) = κ(κ(D ′′) .

κκ(su(κκ(D)))) = κ(D ′′) .̃ κ(su(κκ(D))), where the last equality fol-

lows by definition of abstract operators. Now, by definition of κ, κ(D ′′) .̃

κ(su(κκ(D))) ={
λG. Θ|G k|D ′′(G) def if ∃G ′, d ′ ∈ su(κκ(D))(G ′). last(d ′) = �
κ(D ′′) otherwise

where λG. S|X(G) def denotes the function which, on input G, assumes the

value S if X(G) is defined and is otherwise undefined. Moreover κκ(D ′′).

su(κκ(D)) ={
λG. Θ|G|D ′′(G) def if ∃G ′, d ′ ∈ su(κκ(D))(G ′). last(d ′) = �
κκ(D ′′) otherwise.

Now, the proof follows by definition of abstract operators and of κ.
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Abstract Diagnosis





Chapter 4

Semantic Framework for
Applications

As already pointed out in Section 3.7, in practical applications it is often the case

that a denotational definition is compared to an operational definition modeling a

different observable. For example, when one is concerned with computed answers

(or their ground instances),

• the operational semantics is usually defined by SLD-resolution, i.e., by a transi-

tion system for the observable SLD-trees. Computed answers (or their ground

instances) are then obtained by abstracting the final result;

• the denotational semantics is defined directly on the abstract domain by taking

the least fixpoint of the s-semantics immediate consequence operator (or of the

standard ground TP operator).

As a consequence, the operational semantics is “more expressive” and yet contains

more information. For example, from this operational semantics designed for com-

puted answers, we can obtain information about call patterns, since both computed

answers and call patterns are abstractions of the observable we are indeed modeling.

The relation between operational and denotational definitions that we have just

noticed for precise observables, holds for non-precise observables too. Consider now

the case of groundness analysis, based on the abstract domain POS. As in the case

of precise observables, the operational and denotational definitions use different

observables. Namely,

• the (top-down) abstract operational semantics models a semi-perfect observ-

able (the one of Section 3.6.1). Observations (i.e., groundness dependencies

for computed answers) are then obtained by abstracting the result;
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• the (bottom-up) abstract denotational semantics models directly a semi-deno-

tational observable (the one of Section 3.5.1).

As in the case of precise observables, the two definitions are equivalent from the

viewpoint of precision. However, since the top-down abstract semantics is more

concrete, it allows to derive more information (e.g., groundness dependencies of call

patterns).

The problem can be formulated in a formal setting. In both cases

• the abstract denotational semantics essentially models an abstraction τ of the

computed answers observable ξ.

• the abstract operational semantics is obtained by computing SLD-trees on

a domain of abstract terms and then collecting all the (abstract) computed

answers.

Hence, the computation on the abstract domain are essentially computations w.r.t.

a semi-perfect observable τ ′ which, when applied to a refutation d, gives the same re-

sults as τ applied to answer(d). The final collecting phase of the abstract computed

answers is then the application of (the abstract version ξ ′ of) ξ to the abstract deriva-

tions. The reason why we need to do this, instead of using the abstract operational

semantics O�◦�J·K of the observable τ◦ξ, is that this observable is semi-denotational

and then its operational semantics is too imprecise. However, both denotations are

obtained by applying a standard construction to the term abstraction τ. Indeed, for

any program P, the bottom-up semantics is F�◦�JPK while the top-down semantics

is ξ ′(O� ′JPK).
It would be useful, from the practical point of view, to systematically build such

denotations starting from the term abstraction τ (which, by abuse of language, will

be called observable) without the need to define the two different observables. This

is even more important for the theory of abstract diagnosis since in the diagnosis

case we are only concerned with observables which are abstractions of the computed

answer observable. The original formulation of abstract diagnosis [25, 27], which

used the axioms of the framework of Part I to classify the observables, can be

reformulated in terms of simpler axioms on τ. We would choose to specialize the

constructions of the two observables within this formal setting to obtain the new

axioms on τ. However, in order for this part of the thesis to be self-contained, we

prefer to introduce the new framework from scratch, using the ideas coming from

the original one.

The new ingredients are a (different) concrete semantics and an abstraction τ of

computed answers. The concrete denotational semantics models computed answers

and the concrete operational semantics is obtained by computing SLD-trees and
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then collecting all the computed answers. The two semantics are condensing and

equivalent. For technical reasons that will become evident in the following, we

represent computed answers by normalized equation sets.

The abstract transition system and the abstract denotational definition are sys-

tematically derived from the collecting semantics. In particular,

• the abstract denotational semantics models the abstract computed answers

(according to the observable τ),

• the abstract operational semantics is obtained by computing SLD-trees on a

domain of abstract terms (by using the abstract transition system) and then

collecting all the abstract computed answers.

In the resulting taxonomy only two classes of observables can arise, depending on

the precision degree.

The first class we consider is the one of complete observables (Section 4.3). This

class corresponds to precise term abstractions (the two corresponding observables

are denotational and perfect). We prove that complete observables satisfy all the

properties of the concrete semantics. In particular, they are condensing and the

abstract top-down and bottom-up semantics are equivalent. The class of complete

observables includes the observables correct answers and ground instances of com-

puted answers, whose semantics are the atomic logical consequence semantics (c-se-

mantics) and the least Herbrand model, respectively.

The second class is the one of approximate observables (Section 4.4). This class

correspond to non-precise term abstractions (the two corresponding observables are

semi-denotational and semi-perfect). We prove that approximate observables are

condensing and that the abstract top-down and bottom-up semantics are equiv-

alent. The class of approximate observables includes the observables groundness

dependencies of computed answers and depth(k)-answers. Let us just note that ap-

proximate observables are exactly the observables which model top-down abstract

interpretation frameworks (for example, [15, 69]).

Condensing is a compositionality property which tells us that the abstract seman-

tics of a procedure call can be derived (without losing precision) from the abstract

semantics of the procedure declaration. This property is needed to reconstruct

goal-dependent behaviors by using a (goal-independent) property of a set of pro-

cedure declarations. It is worth noting that the observables corresponding to the

declarative semantics are condensing and that the declarative semantics do indeed

characterize procedure declarations. Note also that several observables used in pro-

gram analysis (for mode, type and groundness analysis) are also condensing and

that a non-condensing observable can systematically be transformed into a (more
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concrete) condensing observable, by using domain refinement operators (see, for ex-

ample, how the condensing domain POS for groundness analysis can be derived [89]

from the non-condensing domain DEF).

Even if up to now the reformulation of the framework seems futile, it will be clear

in Chapter 5 that it is not the case. The work on abstract diagnosis in [25, 27], which

was based on the full semantic framework of Part I, showed that this reformulation is

really best suited for these semantic-based applications which use only abstractions

of computed answers.

The results of this chapter are from [23].

4.1 The Concrete Collecting Semantics

Recall that an equational goal is an object of the form E ,B where B is a pure goal

and E is a finite set of solved form equation sets such that elim(E) ⊆ var(B). {∅},B
will be denoted simply by B. An equational clause is a formula of the form H←E,B,

where (H,B) is a pure goal and E is a solved form equation set such that elim(E) ⊆
var(H,B). In the following, given any program clause p(t)← p1(t1), . . . , pn(tn)
we will always consider its equational form p(x)←E, p1(x1), . . . , pn(xn) where E =

{x = t, x1 = t1, . . . , xn = tn} (x, x1, . . . , xn are new distinct variables).

We denote by E the complete lattice of sets of finite solved form equation sets,

partially ordered by ⊆. We define a variance equivalence on E as follows. For any

E , E ′ ∈ E and for any tuple of variables x, E ≡x E ′ if and only if, for each E ∈ E ,

there exists E ′ ∈ E ′ such that xmgu(E) ≡ xmgu(E ′) and vice versa1. A collection

C is a partial function Goals ⇀ E such that, for every G ∈ Goals , if C(G) is

defined, then it is a relevant set of equation sets, i.e., ∀E ∈ C(G). elim(E) ⊆ var(G).

C is the domain of all the collections ordered by v, where C v C ′ if and only

if ∀G. C(G) ⊆ C ′(G). The partial order on C formalizes the evolution of the

computation process. (C, v) is a complete lattice. u and t will denote the glb and

lub of C. A pure collection is a collection defined for pure atomic goals only.

We define the equivalence modulo enhanced variance ≡C on collections as follows.

C ≡C C ′ if and only if, for any G, there exists a renaming ρ such that (if C(G) is

defined then C ′(Gρ) is defined and) C(G) ≡var(G) (C ′(Gρ))ρ-1 and vice versa. A

C-interpretation I is a pure collection modulo enhanced variance. We denote by

IC the set of C-interpretations. (IC, v) is a complete lattice. We denote the equiv-

alence class (modulo enhanced variance) of a collection σ by σ itself. Moreover,

any interpretation I of IC is implicitly considered also as a collection obtained by

1Note that, for any solved form equation set E, mgu(E) can be “trivially” computed. Moreover,
the definition of ≡x is independent from the choice of the mgu, since this is unique up to renaming.
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choosing an arbitrary representative of I. All the operators that we use on inter-

pretations are independent from the choice of the representative. Therefore, we can

define any operator on IC in terms of its counterpart defined on C, independently

from the choice of the representative. All the definitions are independent from the

choice of the syntactic object. To simplify the notation, we denote the corresponding

operators on IC and C by the same name.

Our semantic definitions use two basic operations on equation sets.

1. Let E1, E2 ∈ E. Then E1 ⊗x
y E2 denotes the set{

E | E1 ∈ E1, E ′2 is a renamed version of E2 ∈ E2, obtained by
renaming apart (from E1, x and y) all the variables in
(var(E1) ∪ {x}) \ {y}, E1 ∪ E ′2 is solvable and E is a solved form
of E1 ∪ E ′2}.

We assume ⊗x
y to be left-associative. In the following to simplify the notation,

for any E1, E2, we denote E1 ⊗xV E2 simply by E1 ⊗ E2.
2. Let E be an equation set. E|x denotes the set {x = t ∈ E | x occurs in x}. The

|x operation can be trivially extended to any E ∈ E in the following way.

E |x :=
{
E|x | E is a solved form of E ′ ∈ E

}
.

Finally note that, for any choice of solved form, the results are equivalent modulo

variance.

All the proofs of the results of this chapter can be found in Section 4.6.

4.1.1 Denotational Semantics

The denotational semantics FJPK of a program P is defined as the least fixpoint

of the following monotonic immediate consequence operator PJPK : IC → IC, i.e.,

FJPK := lfp PJPK.
PJPK(I) := λp(x).

⋃{
E | c = p(x)← E,A1, . . . , An is a renamed

clause of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
E = ({E}⊗z

y1
I(A1)⊗z

y2
· · · ⊗z

yn
I(An))|x}.

This operator is isomorphic to the immediate consequence operator of the s-seman-

tics. Indeed it is easy to see that it is just a matter of representation. In the

s-semantics case, the substitution is simply applied to the pure atom, while in our

case, given the pure atom, the corresponding equational version of the substitution

is returned.
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Example 4.1.1

Consider the program P of Figure 4.1, which is the well-known sum program. Its

denotational semantics is

FJPK = sum(x, y, z) 7→ {{x = 0, z = y}, {x = s(0), z = s(y)}, . . . ,

{x = sn(0), z = sn(y)}, . . .}.
Note that the fixpoint FJPK can be reached only at ω since the program computes

infinite (different) solutions.

4.1.2 Operational Semantics

Definite clauses have a natural computational reading based on the resolution pro-

cedure. The specific resolution strategy, called (equational) SLD-derivation2, is de-

scribed in the following. For the sake of simplicity we present it using the leftmost

selection rule, but all the results hold for any selection rule, since computed answers

are independent from the selection rule. Let G := E , p(x),B be an (equational) goal

and c := p(x)←E,B ′ be a clause, such that var(c)∩var(G) = x and E⊗
{
E
}
6= ⊥E.

Then we have an (equational) derivation step

G
eq
−→c E ⊗

{
E
}
,B ′,B.

A derivation of a goal G in a program P, G
eq
−→P ∗ G ′ is a finite sequence of derivation

steps G
eq
−→c1 · · · eq

−→ck G ′, where c1, . . . , ck are renamed clauses of P such that ∀i, j ∈
[1, k], j < i. ci = p(xi)←Gi and var(ci) ∩ (var(G) ∪ var(cj)) = xi.

The behavior (set of computed answers) of the query E ,B in P is

BJE ,B in PK :=
⋃{

E ′|var(B) | E ,B eq
−→P ∗ E ′,�}.

The top-down (goal-independent) denotation of a program P is the interpretation

obtained by collecting the behaviors for all pure atomic goals, i.e.,

OJPK := (λp(x). BJp(x) in PK)/≡C.
The main properties of the concrete semantics are summarized by the following

theorem.

Theorem 4.1.2 Let P be a program, G := E , A1, . . . , An be a goal, yi := var(Ai)
(for i ∈ [1, n]) and z := var(A1, . . . , An). Then

2This equational SLD-derivation is an extension of the equational version of an SLD-derivation
introduced in Section 1.3.3.
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c1: sum(0,X,X).

c2: sum(s(X),Y,s(Z)) :- sum(X,Y,Z).

Figure 4.1: The sum program of Examples 4.1.1 and 5.5.4

1. BJG in PK = (E ⊗z
y1

OJPK(A1)⊗z
y2
· · · ⊗z

yn
OJPK(An))|z,

2. PJPK is continuous on IC (and therefore FJPK = PJPK↑!),

3. FJPK = OJPK.
The property expressed in Point 1 is usually called AND-compositionality and is

sometimes referred to as condensing in the program analysis field. It essentially

shows that the behavior of any (conjunctive) goal can be derived from the goal-

independent denotation OJPK, i.e., from the behaviors of (finitely many) pure atomic

goals. It is the property which allows us to take OJPK as the semantics of a program,

without being concerned with the behaviors for all possible goals. The validity

of the condensing property is relevant to diagnosis, since it allows us to compare

the expected and actual goal-independent behaviors, i.e., the specification is the

intended OJPK.
The properties expressed in Points 2 and 3 show that the goal-independent de-

notation can equivalently be computed in a bottom-up way as least fixpoint of the

immediate consequence operator. This is again very important for the diagnosis

problem, since the basic diagnosis algorithm requires the existence of an immediate

consequence operator (see Section 5.3). Moreover, the equivalence of the top-down

and the bottom-up definitions of the denotation will allow us to define (see Sec-

tion 5.2.2) equivalent top-down diagnosis algorithms, based on oracle simulation.

Example 4.1.3

We show now an example to stress the differences between this collecting semantics

and the one of Chapter 2. Thus we would like to consider again the ancestor program

of Figure 2.10, but now we have to take into account its equational version P in

Figure 4.2.

Let us consider the goal G := anc(x, y) (which is a shorthand for {∅}, anc(x, y))
and the clause c := anc(x, y)← {u = x, z = y, v = w}, par(u, v), anc(w, z). Since

var(c) ∩ var(G) = {x, y} and ∅ ⊗ {u = x, z = y, v = w} = {u = x, z = y, v = w} we

can do the derivation step

anc(x, y)
eq
−→c {u = x, z = y, v = w}, par(u, v), anc(w, z).
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anc(X, Y)← {X = V, Y = Z}, par(V,Z)

anc(X, Y)← {X = V, Y = Z,U = W}, par(V,W), anc(U,Z)

par(X, Y)← {X = joe, Y = jay},

par(X, Y)← {X = jay, Y = tim},

Figure 4.2: The (equational version of the) ancestor program (see also Figure 2.10)

Going further with all the possible computations (which are a finite number) we

obtain the refutations

d1 := par(u, v)
eq

−−−−−−−−−−−−−−−−−→par(u;v) fu=jay;v=timg;� {u = jay, v = tim},�
d2 := par(u, v)

eq
−→c1 {u = joe, v = jay},�

d3 := anc(x, y)
eq
−→c2 {u = x, v = y}, par(u, v)

eq
−→c1

{u = joe, v = jay, x = joe, y = jay},�
d4 := anc(x, y)

eq
−→c2 {u = x, v = y}, par(u, v)

eq
−→c3

{u = jay, v = tim, x = jay, y = tim},�
d5 := anc(x, y)

eq
−→c {u = x, z = y, v = w}, par(u, v), anc(w, z)

eq
−→c1

{x = joe, z = y,w = jay, u = joe, v = jay}, anc(w, z)
eq
−→c4

{x = joe, z = y,w = jay, u = joe, v = jay, v ′ = jay,w ′ = z}, par(v ′, w ′)
eq
−→c5 {x = joe, y = tim,w = jay, u = joe, v = jay, v ′ = jay, z = tim,

w ′ = tim},�
where

c1 := par(u, v)← {u = joe, v = jay},�
c2 := anc(x, y)← {u = x, v = y}, par(u, v)

c3 := par(u, v)← {u = jay, v = tim},�
c4 := anc(w, z)← {v ′ = w,w ′ = z}, par(v ′, w ′)

c5 := par(v ′, w ′)← {v ′ = jay,w ′ = tim},�
which are graphically represented in Figure 4.3. Then, by its definition, we obtain

OJPK =


anc(x, y) 7→ {{x = joe, y = tim}, {x = jay, y = tim},

{x = joe, y = jay}
}

par(x, y) 7→ {{x = jay, y = tim}, {x = joe, y = jay}
}
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{u = x, v = y}, par(u, v)

{u = jay, v = tim, x = jay, y = tim},�?

par(u, v)← {u = joe, v = jay},�

@
@

@
@

@R

par(u, v)← {u = jay, v = tim},�

anc(x, y)← {u = x, v = y}, par(u, v)

... {x = joe, z = y,w = jay, u = joe, v = jay}, anc(w, z)

anc(x, y)
�

�
�

�
�

�
�

�
�

�
�

�+

H
HHH

HHH
HHH

HHH
Hj

{u = x, z = y, v = w}, par(u, v), anc(w, z)

...

par(u, v)← {u = joe, v = jay},�

�
�

�
�

�
�	

@
@R...

anc(x, y)←{u = x, z = y, v = w},

par(u, v), anc(w, z)

Figure 4.3: The refutations of Example 4.1.3

Moreover, by simply applying PJPK to the undefined collection, we obtain

PJPK↑1 = par(x, y) 7→ {{x = jay, y = tim}, {x = joe, y = jay}
}

and then, by applying PJPK again, we obtain

PJPK↑2 =


anc(x, y) 7→ {{x = joe, y = tim}, {x = jay, y = tim},

{x = joe, y = jay}
}

par(x, y) 7→ {{x = jay, y = tim}, {x = joe, y = jay}
}

which is indeed equal to PJPK↑3 (and OJPK) and then it is the least fixpoint of PJPK.

4.2 The Observables and the Abstract Semantics

We model the abstractions by using abstract interpretation theory [32, 34]. As al-

ready mentioned, the resulting semantic framework is a simplification of the frame-

work in Chapter 3.

An observable property domain is a set of properties of computed answers with

an ordering relation which can be viewed as an approximation structure. An obser-

vation consists in looking at a computed answer (a relevant solved form equation

set), and then extracting some property (abstraction).
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Definition 4.2.1 Let (D, ≤) be a complete lattice. A function α : E → D is an

observable if it maps finite elements of E into finite elements of D3 and there exists

γ such that

1. 〈α, γ〉 : (E, ⊆) 
 (D, ≤) is a Galois insertion,

2. ∀E , E ′ ∈ E, ∀ finite x such that elim(E) ∪ elim(E ′) ⊆ x ⊆ var(E) ∪ var(E ′),
E ≡x E ′ =⇒ γ(α(E)) ≡x γ(α(E ′)),

3. ∀E ∈ E, ∀D ∈ D and for any renaming4 ρ, α(Eρ) = (α(E))ρ and γ(Dρ) =

(γ(D))ρ.

Once we have an observable α : E→ D, we want to systematically derive the abstract

semantics. The idea is to define the optimal abstract versions of the various semantic

operators and then check under which conditions (on the observable) we obtain the

optimal abstract semantics. This will allow us to identify some interesting classes

of observables.

We start by defining the optimal abstract counterparts of the basic operators

defined on E. Then, for any D,D ′, Di ∈ D,

1. D ⊗̃y
x D

′ := α(γ(D)⊗y
x γ(D ′)), (D ⊗̃D ′ := α(γ(D)⊗ γ(D ′))),

2. D̃|x := α((γ(D))|x),

3.
⋃̃{

Di}i∈I := α
(⋃{

γ(Di)}i∈I).
For all C ∈ C and G ∈ Goals , let5 α?(C) := λG. α(C(G))̃|var(G). A := α?(C) ⊆

[Goals ⇀ D] is a complete lattice of partial functions from Goals to the abstract

domain D, ordered by the trivial extension to functions of ≤, which, by abuse of

notation, is denoted also by ≤. In the following we denote by
⊔̃

and
d̃

the lub and

glb of A respectively. Moreover we call A-collection any element of A.

The insertion 〈α, γ〉 can be lifted to 〈α?, γ?〉 : C 
 A by defining, for all S ∈ A
and G ∈ Goals , γ?(S) := λG. (γ(S(G)))|var(G). From now on we will often abuse

notation and denote α? by α (and γ? by γ). Note that in the following if there

exists a bijective Galois insertion between two domains, we identify them. A pure

A-collection is an element S ∈ A which is undefined for every non-pure atom.

3We assume that the elements of the domain D can be represented by means of a syntactic
expression built over the (free) variables which appear in the corresponding equations in E. By
finite element of D we mean any element which is finitely representable in the domain D. Indeed
the only relevant thing to our purposes is that a finite element has a finite number of free variables.

4Note that the renaming operation has to be applied to the syntactic representation of the
abstract object.

5Remember that if C(G) is undefined then also α(C(G)) is undefined.
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Point 2 of Definition 4.2.1 states that the observation does not depend on the

choice of the hidden variable names and on the choice of the solved form of the

equations used in the computation. Hence, we can define an abstract enhanced

variance relation ≡A on pure A-collections as follows: for any pure A-collection S, S ′,

S ≡A S ′ ⇐⇒ γ(S) ≡C γ(S ′). An A-interpretation is a pure A-collection modulo

≡A. Since (by Point 2 of Definition 4.2.1) D ≡C D ′ implies α(D) ≡A α(D ′), then

the A-interpretation α(I) is well defined, for any C-interpretation I. Furthermore,

Point 3 of Definition 4.2.1 states that the observation does not depend upon a

particular choice of variable names. We denote by (IA, ≤) the complete lattice of

A-interpretations. Any A-interpretation I� of IA is implicitly considered also as an

arbitrary A-collection obtained by choosing an arbitrary representative of I�. All

the semantic operators that we use on A-interpretations are independent from the

choice of the representative. Therefore, we can define any operator on IA in terms

of its counterpart defined on A, independently from the choice of the representative.

Once we have the optimal abstract operators, we can define the corresponding

abstract semantics, obtained from the denotational and operational semantics of

computed answers, by replacing the concrete semantic operators by their optimal

abstract versions.

4.2.1 Abstract Denotational Semantics

An abstract goal is an object of the form D,B where B is a pure goal and D ∈ D
is a finite abstract constraint, such that D ≤ D̃|var(B) (i.e., D is relevant for B).

α({∅}),B will be simply denoted by B.

The abstract denotational semantics of a program P is defined as the least

fixpoint of the following monotonic “abstract immediate consequence” operator

P�JPK : IA → IA, i.e., F�JPK := lfp P�JPK.

P�JPK(I�) := λp(x).
⋃̃{

D | c = p(x)← E,A1, . . . , An is a renamed

clause of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
D = (α({E}) ⊗̃z

y1
I�(A1) ⊗̃z

y2
· · · ⊗̃z

yn
I�(An))̃|x}.

4.2.2 Abstract Operational Semantics

Let G := D,p(x),B be an abstract goal and c := p(x)← E,B ′ be a clause, such

that var(c)∩ var(G) = x and D ⊗̃α({E}) is a finite element of D different from ⊥D.
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Then we have an abstract derivation step6

G
�-eq
−−−→c D ⊗̃ α(

{
E
}
),B ′,B.

An abstract derivation of a goal G in a program P, G
�-eq
−−−→P ∗ G ′ is a finite sequence

of derivation steps G
�-eq
−−−→c1 · · · �-eq

−−−→ck G ′, where c1, . . . , ck are renamed clauses of P

such that ∀i, j ∈ [1, k], j < i. ci = p(xi)←Gi and var(ci)∩ (var(G)∪ var(cj)) = xi.
The abstract behavior of the abstract query D,B in P is

B�JD,B in PK :=
⋃̃{

D ′̃|var(B) | D,B
�-eq
−−−→P ∗ D ′,�}

and the abstract top-down denotation of a program P is the A-interpretation

O�JPK := (λp(x). B�Jp(x) in PK)/≡A.
As already discussed at the end of Section 4.1, the semantic properties which are

relevant to the diagnosis problem are the condensing property and the equivalence

between the top-down and the bottom-up definitions of the denotation. An addi-

tional relevant issue is precision, i.e., the relation between the abstract semantics

and the abstraction of the concrete semantics. We will then identify two interest-

ing classes of observables (complete and approximate). All the observables in both

classes are condensing and lead to equivalent top-down and bottom-up definitions.

Complete observables are also precise, i.e., α(FJPK) = F�JPK, while approximate ob-

servables (intended to be used for program analysis) lead to approximated abstract

semantics, i.e., α(FJPK) ≤ F�JPK. Note that there exist observables, which are in-

teresting for program analysis and which are not even approximate (for example,

the domain of groundness dependencies DEF [8] is not condensing). However, as

already mentioned in the introduction, there is evidence that non-condensing ob-

servables can systematically be transformed into condensing observables, by using

domain refinement operators.

4.3 Complete Observables

First of all recall that any observable is precise w.r.t. the union operation since, for

any Galois insertion,

α(
⋃
i∈I
Ei) = α(

⋃
i∈I

(γ ◦ α)(Ei)) =
⋃̃
i∈I
α(Ei). (4.3.1)

6Note that in the following we will guarantee that the ⊗̃ operation will map finite arguments
to finite results. For complete observables (Section 4.3) this will be consequence of the precision,
while for approximate observables this will be consequence of the Noetherianity of the domain.
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Definition 4.3.1 Let α : E→ D be an observable. Then α is a complete observable

if

1. α(E1 ⊗y
x E2) = α((γ ◦ α)E1 ⊗y

x (γ ◦ α)E2),
2. α(E |x) = α(((γ ◦ α)E)|x).

Note that, for any finite D,D ′ ∈ D, D ⊗̃D ′ is finite since (by additivity of α) there

exist two finite elements E , E ′ ∈ E such that D,D ′ = α(E), α(E ′) and then (by

Point 1 of Definition 4.3.1) α(γα(E)⊗ γα(E ′)) is finite.

Theorem 4.3.2 Let α : E → D be a complete observable, G := D,A1, . . . , An be

an abstract goal, P be a program, z := var(A1, . . . , An) and yi := var(Ai) (for

i ∈ [1, n]). Then

1. α(OJPK) = O�JPK,
2. B�JG in PK = (D ⊗̃z

y1
O�JPK(A1) ⊗̃z

y2
· · · ⊗̃z

yn
O�JPK(An))̃|z,

3. α(PJPK(I)) = P�JPK(α(I)),

4. P�JPK is continuous on IA (and therefore F�JPK = P�JPK↑!),

5. α(FJPK) = F�JPK,
6. F�JPK = O�JPK.

Theorem 4.3.2 shows that complete observables satisfy all the properties of the

concrete semantics. In particular, they are condensing (Point 2) and the abstract

top-down and bottom-up semantics are equivalent (Point 6). In addition, com-

plete observables are precise (Points 1 and 5). The class of complete observables

includes computed answers (the Id observable) and the observables correct answers

and ground instances of computed answers, whose semantics are the atomic logical

consequence semantics (c-semantics) and the least Herbrand model, respectively.

4.3.1 The Correct Answer Observable

We show how to obtain a semantics which models correct answers and is isomorphic

to the atomic logical consequence semantics (c-semantics) [16, 45]. A similar con-

struction can be used to define ground correct answers leading to the least Herbrand

model semantics.

Correct answers are closed under instantiation. This property corresponds to the

downward closure of the corresponding equation sets. These sets can be (efficiently)

handled with maximal equation sets w.r.t. ≤e.
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First of all consider equation sets modulo ≈e. Any E ∈ E/≈e is non-redundant

(w.r.t. ≤e) if and only if ∀E, E ′ ∈ E . E 6= E ′ =⇒ E 6≤e E ′. We denote by d·e the

non-redundancy operator, i.e., dEe :=
{
E | E ∈ E ,∀E ′ ∈ E . E 6= E ′ =⇒ E 6≤e E ′}.

Any downward closed equation set (correct answer set) E ∈ E can be (uniquely)

represented by the non-redundant equation set dEe. Furthermore, since a correct

answer is an instance of some computed answer, given an equation set E of com-

puted answers, dEe is the representative of the corresponding equation set of correct

answers.

Let D� := (dE/≈ee,⊆ /≈e) denote the complete lattice of non-redundant sets of

(equivalence classes of) finite solved form equation sets, partially ordered by ⊆ /≈e .
Hence the correct answer observable ν : E→ D� is

ν(E) := dEe.

By applying the definitions, the abstract operators are E1 ⊗̃ E2 = dE1 ⊗ E2e, E1 ⊗̃y
x

E2 = dE1⊗y
x E2e, E1 ∪̃ E2 = dE1 ∪E2e and E |̃x = dE |xe. Note that ⊗̃ and ∪̃ are the glb

and lub of D�.
ν is a complete observable and its immediate consequence operator is

P�JPK(I�) = λp(x). dPJPK(I�)(p(x))e.
A similar construction can be used to define ground correct answers leading to the

least Herbrand model semantics.

4.4 Approximate Observables

Approximate observables are intended to model domains where we cannot require

the precision property. We therefore relax the axioms of complete observables to

admit non-precise ⊗̃ and |̃ operators. However, as already argued in the introduc-

tion, we still want to guarantee that the condensing and equivalence properties are

satisfied. This can be achieved by imposing the following abstract versions of the

basic properties used in Theorem 4.1.2 to guarantee condensing and equivalence in

the concrete case.

Definition 4.4.1 Let α : E → D be an observable. Then α is an approximate

observable if D is Noetherian and

1. α(γα(E)⊗y
x E ′) = α(E ⊗y

x γα(E ′)) = α(γα(E)⊗y
x γα(E ′)),

2. |̃ is additive on (D, ≤),

3. var(α(
{
∅
}
)) = ∅,
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4. for any x,y, z such that x,y ⊆ z, (D1 ⊗̃z
yD2)̃|z = (D1̃|z ⊗̃z

yD2)̃|z and (D1 ⊗̃z
y

D2)̃|x = (D1 ⊗̃z
y D2̃|y)̃|x,

5. let x ⊆ z and n ≥ 1. If, for any i ∈ [1, n], var(Di) ∩ (var(D) ∪ z) ⊆ x then

D ⊗̃ (D1 ⊗̃ · · · ⊗̃Dn) = D ⊗̃z
x (D1 ⊗̃ · · · ⊗̃Dn),

6. let x ⊆ z and n ≥ 1. If, for any i ∈ [1, n], var(D) ∩ (var(Di) ∪ z) ⊆ x then

(D1 ⊗̃ · · · ⊗̃Dn) ⊗̃D = (D1 ⊗̃ · · · ⊗̃Dn) ⊗̃z
x D.

7. α(E )̃|x = α(E |x)̃|x,

The Noetherianity of D is used to ensure the finiteness of ⊗̃.

Note that, differently from the case of complete observables, the class of approx-

imate observables is also characterized in terms of some properties of the abstract

operators. An equivalent characterization, given in terms of α, γ and the concrete

operators, is possible, but would be harder to understand.

Theorem 4.4.2 Let α : E → D be an approximate observable, P be a program,

G := D,A1, . . . , An be an abstract goal, z := var(A1, . . . , An) and yi := var(Ai)
(for i ∈ [1, n]). Then

1. α(OJPK) ≤ O�JPK,

2. B�JG in PK = (D ⊗̃z
y1

O�JPK(A1) ⊗̃z
y2
· · · ⊗̃z

yn
O�JPK(An))̃|z,

3. P�JPK is continuous on IA (and therefore F�JPK = P�JPK↑!),

4. P�JPK = α ◦ PJPK ◦ γ,

5. α(FJPK) ≤ F�JPK,

6. F�JPK = O�JPK.

Theorem 4.4.2 shows that approximate observables are condensing (Point 2) and that

the abstract top-down and bottom-up semantics are equivalent (Point 6). However,

the denotations are just correct approximations, yet they are not precise (Points 1

and 5). Note that the above characterization of approximate observables guarantees

the optimality of the abstract immediate consequence operator (see Point 4).
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Figure 4.4: The domain POS for two variables x, y

4.4.1 The POS Observable for Groundness Dependencies of
Computed Answers

We show now how to model the domain POS, designed for the groundness analysis

of logic programs [31, 79, 8]. POS is a domain of equivalence classes of proposi-

tional formulas, built using the logical connectives ↔, ∧ and ∨, and ordered by

implication. The propositional formulas represent groundness dependencies among

variables. The domain POS for two variables is shown in Figure 4.4.

First of all we have to define the abstraction Γ(t) of a concrete term t. If var(t) =

{x1, . . . , xn} then Γ(t) := x1 ∧ · · · ∧ xn. The intuition is that, in order for t to be

ground, all its variables x1, . . . , xn must be ground.

We can extend Γ to solved form equation sets to obtain abstract formulas as follows.

Γ(E) :=
∧x=t∈E(x↔ Γ(t)), where Γ(∅) := true. Abstract formulas are propositional

formulas which express the groundness dependencies among the eliminable variables

and the other variables of the concrete solved form equation set.

The groundness dependencies of computed answer observable Υ : E→ POS is

Υ(E) :=
∨
E∈E
Γ(E),

where Υ(∅) := false. By applying the definition, the abstract operators turn out to
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be

F1 ⊗̃ F2 = F1 ∧ F2⋃̃{
Fi}i∈I =

∨
i∈I
Fi

F̃|x =

{
F if var(F) ⊆ {x}

(F[y 7→ true] ∨ F[y 7→ false])̃|x for some y ∈ var(F) \ {x}

where F[y 7→ E] is obtained by replacing each occurrence of the variable y in F by

E. Note that the abstract notion of restriction of an abstract formula corresponds

to Schröder’s elimination principle.

The ⊗̃y
x is performed by first renaming the second argument and then computing

the conjunction. We omit its formal definition because it is not needed to define the

semantics, since, in any expression we use, it collapses to ⊗̃.

Υ is an approximate observable. The abstract immediate consequence operator

P�JPK is

P�JPK(I�) = λp(x).
∨

p(x) E;A1;:::;An
renamed clause of P

(Υ(
{
E
}
) ∧

n∧
i=1
I�(Ai))̃|x

Note that P�JPK is defined only in terms of abstract restriction |̃ and of the lub and

glb operators on POS (∧ and ∨ respectively).

Example 4.4.3

Consider the program P of Figure 4.5 and the groundness dependencies of computed

answer observable. The abstract denotation of P is

F�JPK =


p(x, y) 7→ x∨ y

q(x, y) 7→ x↔ y

r(x, y) 7→ x∧ y

which turns out to be precise since F�JPK = Υ(FJPK). Note that, if we choose to

represent groundness dependencies using the domain DEF , which does not contain

disjunctive formulas (and whose corresponding observable is not approximate), we

would obtain a less precise abstract semantics, where the semantics of p(x, y) would

be true and the semantics of r(x, y) would be x↔ y.

As one might expect, we followed the same guiding line of the definition of the

groundness dependencies of computed answer observable of Section 3.5.1. Note that,



182 Semantic Framework for Applications

r(X,Y) :- p(X,Y), q(X,Y).

p(a,Y).

p(X,b).

q(X,X).

Figure 4.5: The program of Examples 4.4.3, 5.5.2 and 5.5.8 (see also Figure 3.2)

due to the closer relationship between the application framework and the general one,

the τ� : Aca → Agr abstraction and the abstraction λX. λG. Υ(X(G)) are isomorphic,

in the sense that, for any collection X ∈ Aca, τ� (X) = Υ ◦ eqn ◦X. If we lift eqn to

Aca as eqn(X) := λG. eqn(X(G)), then τ� = Υ ◦ eqn. An analogous relationship

holds for the denotational semantics.

4.4.2 The depth(k)-answer Observable

We will show now how to approximate an infinite set of computed answers by means

of a depth(k) cut, i.e., by cutting terms which have a depth greater than k. Terms

are cut by replacing each sub-term rooted at depth k with a new variable taken

from a set V̂ (disjoint from V). A depth(k) term represents all the terms obtained

by instantiating the variables of V̂ with terms built over V .

First of all we have to define the abstraction t k as the depth(k) reduction of the

concrete term t.

We can extend  k to solved form equation sets to obtain abstract formulas as follows.

E k := {x = t k | x = t ∈ E}. We assume that, for any equation in E, any cut is

performed by using distinct variables of V̂ . We denote by E k the set of solved form

equation sets with depth(k) terms and eliminable variables in V .

The depth(k) computed answer observable τk : E→ E k is

τk(E) :=
{
E k | E ∈ E

}
.

In the following we assume that, for any expression F ⊗̃y
x F ′, we rename variables in

V and V̂ with variables still in V and V̂ respectively. Furthermore, we consider only

solved forms with eliminable variables in V . Under these assumptions, by applying

the definition, the abstract operators turn out to be

F1 ⊗̃ F2 = (F1 ⊗F2) k, (F1 ⊗̃y
x F2 = (F1 ⊗y

x F2) k),⋃̃{
Fi}i∈I =

⋃
i∈I
Fi,
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F |̃x = F |x.

τk is an approximate observable. The abstract immediate consequence operator

P�kJPK is

P�kJPK(I�k) = λp(x).
⋃{

F | c = p(x)← E,A1, . . . , An is a renamed

clause of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
F = (({E} k ⊗z

y1
I�k(A1)⊗z

y2
· · · ⊗z

yn
I�k(An)) k)|x

}
.

Example 4.4.4

Consider the program P of Figure 4.6 and the depth(2) observable. The abstract

denotation of P is

F�kJPK = r(x) 7→ {∅, {x = f(z)}, {x = f(f(x̂))}
}
.

Note that since τ2 is approximate, the denotation of P is finite and can be computed

in finite time.

Analogously to the case of POS (Section 4.4.1), a relation between this abstraction

and the one of the general framework in Section 3.5.2 holds. Namely, for each

X ∈ Aca, eqn(µk(X)(G)) = τk(eqn(X(G))). An analogous relationship holds for the

denotational semantics.

4.5 Discussion on the Results of the Framework

for Applications

As already mentioned at the beginning of the chapter, this semantic framework

was defined as the basic framework for abstract diagnosis, presented in Chapter 5.

In abstract diagnosis the program properties we are interested in are operational

properties and not necessarily declarative properties. This means that we cannot

base it on the declarative semantics, since this semantics is too abstract to allow us

to reason about some operational properties, such as variable groundness.

The main novelty of this framework is in the formulation of the observable τ

(which is an abstraction of computed answers) and that the axioms to classify the

observables are reformulated in terms of simpler axioms on τ. Moreover the abstract

operational semantics and the abstract denotational semantics are equivalent also for

approximate observables. Some preliminary versions of abstract diagnosis [25, 27]

were based on the semantic framework of Part I. However in abstract diagnosis we

are only concerned with properties which are abstractions of the computed answer
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r(X).

r(f(X)) :- r(X).

Figure 4.6: The program of Example 4.4.4

semantics. Furthermore we are interested in equivalent top-down and bottom-up

semantics, since this will allow us to define equivalent top-down and bottom-up

diagnosis algorithms. Hence this framework is best suited for the needs of abstract

diagnosis.

The equivalence of the abstract operational semantics and the abstract denota-

tional semantics requires the observable to be condensing. This property is needed

in abstract diagnosis where the specification is a post-condition describing a (goal-

independent) property of a set of procedure declarations. It is worth noting that the

observables corresponding to the declarative semantics are condensing and that the

declarative semantics do indeed characterize procedure declarations. Note also that

several observables used in program analysis (for mode, type and groundness analy-

sis) are also condensing and that a non-condensing observable can systematically be

transformed into a (more concrete) condensing observable, by using domain refine-

ment operators (see, for example, how the condensing domain POS for groundness

analysis can be derived [89] from the non-condensing domain DEF).

As expected from their definitions, the difference between complete and approx-

imate observables is related to precision. Namely, the abstract semantics coincides

with the abstraction of the collecting semantics, in the case of complete observables,

while it is just a correct approximation, in the case of approximate observables. On

the other side, approximate observables correspond to Noetherian domains. Hence

their abstract semantics is finite. Several useful properties are modeled by ap-

proximate observables or by observables which can be systematically refined to ap-

proximate observables. This is interesting because finite specifications lead to the

systematic derivation of the diagnosis algorithms from the underlying theory with

no need for symptom detection.

4.6 Proofs of the Chapter

First of all observe that the operations ⊗, ⊗x
y and | satisfy the following proper-

ties. These properties are the ones we use to define approximate observables, and

will allow us to reuse the proof of the theorems for complete observables in the
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corresponding theorems for approximate observables. Let E , Ei ∈ E.

var(
{
∅
}
) = ∅. (4.6.1)

⊗, ⊗x
y and | are additive on E. ⊗ is associative, while ⊗x

y is associative in the

following sense. If {y} ⊆ {z ′} ⊆ {z} then

(E1 ⊗z
z ′ E2)⊗z

y E3 = E1 ⊗z
z ′ (E2 ⊗z ′

y E3). (4.6.2)

For any x,y, z and v,

(E1 ⊗y
x {∅})⊗v

z E2 = E1 ⊗v
z E2, ({∅}⊗ E1)|x = E1|x, (4.6.3)

({∅}⊗ E1)⊗v
z E2 = (E1 ⊗ {∅})⊗v

z E2 = E1 ⊗v
z E2. (4.6.4)

For any x,y, z such that x,y ⊆ z,
(E1 ⊗z

y E2)|z = (E1|z ⊗z
y E2)|z and

(E1 ⊗z
y E2)|x = (E1 ⊗z

y E2|y)|x. (4.6.5)

Let x ⊆ z and n ≥ 1. If for any i ∈ [1, n]. var(Ei) ∩ (var(E) ∪ z) ⊆ x then

E ⊗ (E1 ⊗ · · · ⊗ En) = E ⊗z
x (E1 ⊗ · · · ⊗ En) (4.6.6)

and if for any i ∈ [1, n]. var(E) ∩ (var(Ei) ∪ z) ⊆ x then

(E1 ⊗ · · · ⊗ En)⊗ E = (E1 ⊗ · · · ⊗ En)⊗z
x E . (4.6.7)

Now, we can prove the theorems.

Proof of Theorem 4.1.2.

Point 1 We prove the two inclusions separately.

⊆ The proof is by induction on the number n of atoms in E , A1, . . . , An.
n = 1 Assume that E ∈ BJE , p(x) in PK. Then, by definition of BJ·K, there

exists a derivation of length k

E , p(x) eq
−→P E ⊗ E1,B1 eq

−→P · · · eq
−→P ((E ⊗ E1) · · · )⊗ Ek,�

such that E ∈ (((E⊗E1) · · · )⊗Ek)|x. By associativity of ⊗ and by (4.6.4),

E ∈ (E ⊗ E ′)|x = (E ⊗ ({∅}⊗ E ′))|x, where E ′ = E1 ⊗ · · · ⊗ Ek. Moreover,

by definition of derivation, for any i ∈ [1, k]. var(Ei) ∩ var(E) ⊆ {x} and

therefore by (4.6.6), E⊗({∅}⊗E ′) = E⊗x
x ({∅}⊗E ′). Then, by the previous

results and by (4.6.5), E ∈ (E ⊗x
x ({∅}⊗E ′)|x)|x. Moreover, by definition of

derivation, by (4.6.1) and by associativity of ⊗, {∅}, p(x) eq
−→P ∗ {∅}⊗ E ′,�

and therefore, by definition of OJ·K, ({∅}⊗ E ′)|x ∈ OJPK(p(x)).
These results, together with the additivity of ⊗x

x, imply that E ∈ (E ⊗x
x

OJPK(p(x)))|x and complete the proof of the base case.
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n > 1 To simplify the notation, let us denote by z, z ′ and yi, for i ∈ [1, n], the

variables var(A1, . . . , An), var(A1, . . . , An-1) and var(Ai), respectively.

Assume that E ∈ BJE , A1, . . . , An in PK. By definition of BJ·K, there

exists a derivation E , A1, . . . , An eq
−→P ∗ Ē ,� such that E ∈ Ē |z. Then, by

definition of derivation, by (4.6.1), (4.6.4) and by associativity of ⊗, there

exist two derivations {∅}, A1, . . . , An-1 eq
−→P ∗ {∅} ⊗ E ′,� and {∅}, An eq

−→P ∗

{∅}⊗ E ′′,� such that

Ē = E ⊗ E ′ ⊗ E ′′ = E ⊗ ({∅}⊗ E ′)⊗ ({∅}⊗ E ′′), (1)

where the last equality follows by (4.6.4). Then, by definition of BJ·K,
({∅}⊗ E ′)|z ′ ⊆ BJA1, . . . , An-1 in PK and therefore, by inductive hypoth-

esis,

({∅}⊗ E ′)|z ′ ⊆
({∅}⊗z ′

y1
OJPK(A1)⊗z ′

y2
· · · ⊗z ′

yn-1
OJPK(An-1))|z ′. (2)

Moreover, by definition of OJ·K,
({∅}⊗ E ′′)|yn ⊆ OJPK(An). (3)

Now observe that, by definition of derivation, by associativity of ⊗ and

by (4.6.6), E ⊗ ({∅} ⊗ E ′) ⊗ ({∅} ⊗ E ′′) = (E ⊗ ({∅} ⊗ E ′)) ⊗z
yn

({∅} ⊗ E ′′)
and E ⊗ ({∅} ⊗ E ′) = E ⊗z

z ′ ({∅} ⊗ E ′). Then by (1), (2), (3), by using

repeatedly (4.6.5) and by additivity of ⊗,

Ē |z = (E ⊗z
z ′ ({∅}⊗ E ′)|z ′ ⊗z

yn
({∅}⊗ E ′′)|yn)|z

⊆ (E ⊗z
z ′ ({∅}⊗z ′

y1
OJPK(A1) · · · )|z ′ ⊗z

yn
OJPK(An))|z

= (E ⊗z
z ′ {∅}⊗z ′

y1
OJPK(A1)⊗z

y2
· · · ⊗z

yn
OJPK(An))|z.

Then, by using repeatedly (4.6.2),

Ē |z ⊆ (E ⊗z
z ′ {∅}⊗z

y1
OJPK(A1)⊗z

y2
· · · ⊗z

yn
OJPK(An))|z

and therefore, by (4.6.3),

Ē |z ⊆ (E ⊗z
y1

OJPK(A1)⊗z
y2
· · · ⊗z

yn
OJPK(An))|z.

This completes the proof of the first inclusion.

⊇ Let us denote by z and yi the variables var(A1, . . . , An) and var(Ai), for i ∈
[1, n], respectively. Assume that E ∈ (E⊗z

y1
OJPK(A1)⊗z

y2
· · ·⊗z

yn
OJPK(An))|z.
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Then, by additivity of ⊗, for any i ∈ [1, n], there exists Ei ∈ OJPK(Ai) such

that

E ∈ (E ⊗z
y1

{E1}⊗z
y2
· · · ⊗z

yn
{En})|z. (4)

By definition of OJ·K, by (4.6.1) and by associativity of ⊗ this means that,

for any i ∈ [1, n], there exists a derivation {∅}⊗Ai eq
−→P ∗ {∅}⊗ Ei,�, such that

Ei ∈ ({∅}⊗ Ei)|yi and therefore by additivity of ⊗ and by (4),

E ∈ (E ⊗z
y1

({∅}⊗ E1)|y1 ⊗z
y2
· · · ⊗z

yn
({∅}⊗ En)|yn)|z

= (E ⊗z
y1
E1|y1 ⊗z

y2
· · · ⊗z

yn
En|yn)|z,

(5)

where the last equality follows by (4.6.3). Now observe that, by definition of

⊗z
yi

, we can assume that for any i, j ∈ [1, n], i 6= j. var(E)∩var(Ei) ⊆ var(Ai)
and var(Ei) ∩ var(Ej) = ∅. Then, by definition of derivation and since ⊗ is

associative,

E , A1, . . . , An eq
−→P ∗ E ⊗ E1, A2, . . . , An eq

−→P ∗ E ⊗ E1 ⊗ · · · ⊗ En,�
and therefore

(E ⊗ E1 ⊗ · · · ⊗ En)|z ⊆ BJE , A1, . . . , An in PK. (6)

By the previous observation on variables and by properties (4.6.5) and (4.6.7)

we have that (E ⊗ E1 ⊗ · · · ⊗ En)|z = (E ⊗z
y1
E1|y1 ⊗z

y2
· · · ⊗z

yn
En|yn)|z. This,

together with (6) and (5), implies that E ∈ BJE , A1, . . . , AninPK and completes

the proof.

Point 2 The proof that PJPK is continuous on IC is straightforward by observing

that ⊗z
y and | are additive on (E, ⊆).

Point 3 We prove the two inclusions separately.

v By definition of FJ·K and by continuity of PJ·K, for any atom p(x), FJPK(p(x)) =⋃h≥0(PJPK↑h)(p(x)). Then we have only to show that, for any h, PJPK↑h v
OJPK. The proof is by induction on h.

h = 0 Straightforward, since PJPK↑0 = ⊥C v OJPK.
h > 0 Assume that E ′ ∈ (PJPK↑h)(p(x)). By definition of PJ·K, there exists a

renamed clause of P, c = p(x)← E,A1, . . . , An, such that E ′ ∈ ({E} ⊗z
y1

(PJPK↑h-1)(A1)⊗z
y2
· · ·⊗z

yn
(PJPK↑h-1)(An))|x, where z = var(c) and for
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i ∈ [1, n], yi = var(Ai). By additivity of ⊗z
yi

and |, for any i ∈ [1, n],

there exists Ei ∈ (PJPK↑h-1)(Ai) such that

E ′ ∈ ({E}⊗z
y1

{E1}⊗z
y2
· · · ⊗z

yn
{En})|x. (7)

Now observe that, by definition of⊗z
yi

, we can assume, for any i, j ∈ [1, n],

i 6= j. var(E) ∩ var(Ei) ⊆ yi and var(Ei) ∩ var(Ej) = ∅.
By inductive hypothesis, for any i ∈ [1, n]. Ei ∈ OJPK(Ai). Then, by

Point 1, there exists a derivation {∅}, A1, . . . , An eq
−→P ∗ {E ′′},�, such that

{E ′′}|z ′ = ({∅} ⊗z ′
y1

{E1} ⊗z ′
y2
· · · ⊗z ′

yn
{En})|z ′ , where z ′ = var(A1, . . . , An).

Thus, by using the renamed clause c, {∅}, p(x) eq
−→P {∅} ⊗ {E}, A1, . . . , An.

Then, by using the previous two derivations, by our hypothesis on vari-

ables, by (4.6.4) and by associativity of ⊗, we obtain the derivation

{∅}, p(x) eq
−→P {∅}⊗ {E}, A1, . . . , An eq

−→P ∗ {E}⊗ {E ′′},�
and, by definition of OJ·K,

({E}⊗ {E ′′})|x ⊆ OJPK(p(x)). (8)

Moreover, by definition of derivation, by (4.6.6) and by (4.6.5)

({E}⊗ {E ′′})|x = ({E}⊗z
z ′ {E

′′})|x = ({E}⊗z
z ′ {E

′′}|z ′)|x.

Then, by definition of E ′′, by (4.6.2) and (4.6.3), ({E}⊗ {E ′′})|x = ({E}⊗z
y1

{E1} ⊗z
y2
· · · ⊗z

yn
{En})|x and therefore, by (7) and (8), E ′ ∈ OJPK(p(x))

and then the thesis.

w Assume that E ∈ OJPK(p(x)). By definition of OJ·K there exists a derivation

{∅}, p(x) eq
−→P ∗ E ,� of length h > 0 such that E ∈ E |x. We prove by induction

on h that E ∈ (PJPK↑h)(p(x)).
h = 1 If there exists a derivation {∅}, p(x) eq

−→P ∗ {∅} ⊗ {E ′},� of length 1 then

p(x)←E ′,� is a renamed clause of P and hence, by definition of PJ·K and

by (4.6.3), ({∅}⊗ {E ′})|x = {E ′}|x ∈ (PJPK↑1)(p(x)) and then the thesis.

h > 1 Assume that there exists a derivation

{∅}, p(x) eq
−→P {∅}⊗ {E ′}, A1, . . . , An eq

−→P ∗ E ,�
of length h > 1 and let yi = var(Ai), for any i ∈ [1, n].
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By definition, since ⊗ is associative and by (4.6.1), there exists a deriva-

tion {∅}, A1, . . . , An eq
−→P ∗ {∅} ⊗ E ′,� whose length is h − 1. Then, by

associativity of ⊗ and by (4.6.4),

E = {E ′}⊗ E ′ = {E ′}⊗ {∅}⊗ E ′. (9)

Moreover, since the length of the derivation {∅}, A1, . . . , An eq
−→P ∗ {∅} ⊗

E ′,� is h−1, the same argument used in the proof of Point 1 shows that

for any j ∈ [1, n], there exists a derivation {∅}, Aj eq
−→P ∗ {∅} ⊗ Ej,�, whose

length is lj ≤ h− 1, such that

{∅}⊗ E ′ = {∅}⊗ E1 ⊗ · · · ⊗ En (10)

and for any i, j ∈ [1, n], i 6= j

(var({E ′}) ∪ {x}) ∩ var(Ei) ⊆ yi and

(var(Ei) ∪ {x}) ∩ var(Ej) = ∅.

The definition of OJ·K, (4.6.3), the inductive hypothesis and the monotonic-

ity of PJPK imply that Ei|yi ⊆ (PJPK↑h-1)(Ai), for any i ∈ [1, n]. More-

over, since by hypothesis there exists the derivation (of length 1) p(x)
eq
−→P

{E ′}, A1, . . . , An, there exists a renamed clause of P, c = p(x)←E ′′, A1, . . . , An,
such that {E ′} = {∅}⊗ {E ′′}.

Then, by (4.6.4), by definition of PJ·K↑h and by the additivity of ⊗,

({E ′′}⊗z
y1
E1|y1⊗z

y2
· · ·⊗z

yn
En|yn)|x = ({E ′}⊗z

y1
E1|y1⊗z

y2
· · ·⊗z

yn
En|yn)|x ⊆

(PJPK↑h)(p(x)), where z = var(c). Now, analogously to the proof of

Point 1, by our hypothesis on variables,

({E ′}⊗z
y1
E1|y1 ⊗z

y2
· · · ⊗z

yn
En|yn)|x = ({E ′}⊗ E1 ⊗ · · · ⊗ En)|x.

By these results, together with (9) and (10), E |x ⊆ (PJPK↑h)(p(x)).
Proof of Theorem 4.3.2. First of all observe that by Definition 4.3.1 and by defi-

nition of ⊗̃ and |̃, ⊗̃ is associative, ⊗̃ and |̃ are additive and for any E , E1, . . . , En ∈ E
the following facts hold.

α(Ei|x) = (α(Ei))̃|x and (1)

α(E1 ⊗ · · · ⊗ En) = α(E1) ⊗̃ · · · ⊗̃ α(En). (2)

Now observe that, by definition of BJ·K, and since | is additive and idempotent, for

any goal E ,G,

BJE ,G in PK = (BJE ,G in PK)|var(G). (3)
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Analogously, for any I ∈ IC,

(PJPK(I)(p(x)))|x = PJPK(I)(p(x)). (4)

Moreover, by (1), for any C ∈ C,

α(C) = λG. (α(C(G)))̃|var(G) = λG. α((C(G))|var(G)). (5)

Then, by definition of ⊗ and since for any C ∈ C and for any goal G. C(G) ⊆
(C(G))|var(G) and (C(G))|var(G) is the set of all solved forms of all the elements in

C(G) (restricted to var(G)), for any E ∈ E

E ⊗x
y (C(G))|var(G) = E ⊗x

y C(G). (6)

Then, by using (2), we can prove

D ⊗̃x
y (α(C)(G)) = D ⊗̃x

y α(C(G)). (7)

Moreover, by definition of Galois insertion, for any Ci ∈ C,

α(
⊔
i∈I
Ci) = α(

⊔
i∈I

((γ ◦ α)(Ci))) =
⊔̃
i∈I
α(Ci). (8)

Now we can prove the theorem.

Point 1 First of all observe that, since α : E → D is a complete observable, then

it is a congruence w.r.t. renaming. Then (by using an inductive argument), from

any derivation E ,G eq
−→P E ′,� we can build (a variant of) an abstract derivation

α(E),G
�-eq
−−−→P α(E ′),� which uses suitable variants of all the clauses in the concrete

derivation. Similarly for any D ′ ∈ D there exists E ′ ∈ E such that D ′ = α(E ′) and

from α(E),G
�-eq
−−−→P D ′,B we can build (a variant of) the derivation E ,G eq

−→P E ′,B.

Since BJ·K (and B�J·K) collects any variant of the (abstract) derivations then the

following facts hold.

α(BJE ,G in PK) = [ by definition of BJ·K ]

α(
⋃

{E ′|var(G) | E ,G eq
−→P ∗ E ′,�}) = [ by (4.3.1) ]

α(
⋃

{γα(E ′|var(G)) | E ,G eq
−→P ∗ E ′,�}) = [ by (1) ]

α(
⋃

{γ((α(E ′))̃|var(G)) | E ,G eq
−→P ∗ E ′,�}) = [ by the previous observation ]

α(
⋃

{γ(D̃|var(G)) | α(E),G
�-eq
−−−→P ∗ D,�}) = [ by definition of

⋃̃
]
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⋃̃
{D̃|var(G) | α(E),G

�-eq
−−−→P ∗ D,�} = [ by definition of B�J·K ]

B�Jα(E),G in PK
and therefore

α(OJPK) = [ by definition of OJ·K ]

α((λp(x). BJp(x) in PK)/≡C) = [ by definition of ≡A ]

(α(λp(x). BJp(x) in PK))/≡A = [ by (5) and (3) ]

(λp(x). α(BJp(x) in PK))/≡A = [ by the previous result ]

(λp(x). B�Jp(x) in PK)/≡A = [ by definition of O�J·K ]

O�JPK.
Point 2 Let z and yi be the variables var(A1, . . . , An) and var(Ai) for i ∈ [1, n],

respectively. First of all note that since D is finite and relevant w.r.t. z (by α

additivity) there must be a finite and relevant (w.r.t. z) element E ∈ E such that

α(E) = D. Hence E , A1, . . . , An is an equational goal and then the following facts

hold.

B�JD,A1, . . . , An in PK =

[ by Point 1 ]

α(BJE , A1, . . . , An in PK) =

[ by Point 1 of Theorem 4.1.2 ]

α((E ⊗z
y1

OJPK(A1)⊗z
y2
· · · ⊗z

yn
OJPK(An))|z) =

[ by (1) and (2) ]

(D ⊗̃z
y1
α(OJPK(A1)) ⊗̃z

y2
· · · ⊗̃z

yn
α(OJPK(An)))̃|z =

[ by (7) ]

(D ⊗̃z
y1

(α(OJPK)(A1)) ⊗̃z
y2
· · · ⊗̃z

yn
(α(OJPK)(An)))̃|z =

[ by Point 1 ]

(D ⊗̃z
y1

O�JPK(A1) ⊗̃z
y2
· · · ⊗̃z

yn
O�JPK(An))̃|z.

Point 3 The following facts hold.

α(PJPK(I))

= [ by definition of PJ·K ]
α(λp(x).

⋃
{E | c = p(x)← E,A1, . . . , An is a renamed clause of P,

z = var(c), for i ∈ [1, n], yi = var(Ai),
E = ({E}⊗z

y1
I(A1)⊗z

y2
· · · ⊗z

yn
I(An))|x})

= [ by (4) ]
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λp(x). α(
⋃

{E | c = p(x)← E,A1, . . . , An is a renamed clause of P,

z = var(c), for i ∈ [1, n], yi = var(Ai),
E = ({E}⊗z

y1
I(A1)⊗z

y2
· · · ⊗z

yn
I(An))|x})

= [ by (4.3.1) ]

λp(x). α(
⋃

{γ(D) | c = p(x)← E,A1, . . . , An is a renamed clause of P,

z = var(c), for i ∈ [1, n], yi = var(Ai),
D = α(({E}⊗z

y1
I(A1)⊗z

y2
· · · ⊗z

yn
I(An))|x)})

= [ by (1) and (2) ]

λp(x). α(
⋃

{γ(D) | c = p(x)← E,A1, . . . , An is a renamed clause of P,

z = var(c), for i ∈ [1, n], yi = var(Ai),
D = (α({E}) ⊗̃z

y1
α(I(A1)) ⊗̃z

y2
· · · ⊗̃z

yn
α(I(An)))̃|x})

= [ by (7) ]

λp(x). α(
⋃

{γ(D) | c = p(x)← E,A1, . . . , An is a renamed clause of P,

z = var(c), for i ∈ [1, n], yi = var(Ai),
D = (α({E}) ⊗̃z

y1
(α(I)(A1)) ⊗̃z

y2
· · · ⊗̃z

yn

(α(I)(An)))̃|x})
= [ by definition of

⋃̃
]

λp(x).
⋃̃

{D | c = p(x)← E,A1, . . . , An is a renamed clause of P,

z = var(c), for i ∈ [1, n], yi = var(Ai),
D = (α({E}) ⊗̃z

y1
(α(I)(A1)) ⊗̃z

y2
· · · ⊗̃z

yn
(α(I)(An)))̃|x}

= [ by definition of PJ·K ]
P�JPK(α(I)).

Point 4 Let {I�i}i∈I ⊆ IA be a chain. We prove that⊔̃
{P�JPK(I�i)}i∈I = P�JPK(

⊔̃
{I�i}i∈I).

The following hold.⊔̃
{P�JPK(I�i)}i∈I = [ by definition of t̃ ]

α(t{γ(P�JPK(I�i))}i∈I) = [ by Point 3 and since αγ = Id ]

α(t{γα(PJPK(γ(I�i)))}i∈I) = [ by (8) ]

α(t{PJPK(γ(I�i))}i∈I) = [ since PJPK is continuous ]

α(PJPK(t{γ(I�i)}i∈I)) = [ by Point 3 ]

P�JPK(α(t{γ(I�i)}i∈I)) = [ by definition of t̃ ]
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P�JPK(
⊔̃

{I�i}i∈I).
Point 5 First of all observe that by Point 4 and a straightforward inductive argu-

ment, ∀n ≥ 0. α(PJPK↑n) = P�JPK↑n. Therefore, the following equalities hold.

α(FJPK) = [ by definition of FJ·K ]

α(PJPK↑!) = [PJPK is continuous ]

α(t{PJPK↑n}n≥0) = [ by (8) ]

α(t{γα(PJPK↑n)}n≥0) = [ by definition of t̃ ]⊔̃
{α(PJPK↑n)}n≥0 = [ by the previous observation ]⊔̃
{P�JPK↑n}n≥0 = [P�JPK is continuous ]

P�JPK↑! = [ by definition of F�J·K ]

F�JPK .
Point 6 Straightforward by Point 3 of Theorem 4.1.2 and by Points 1 and 5.

Proof of Theorem 4.4.2. First of all note that a more general property of (4.6.5)

holds. Namely, for any x,y, z such that x ∪ y ⊆ z,

(E1 ⊗z
y E2)|x = (E1|z ⊗z

y E2)|x. (1)

We prove Point 4.

α(PJPK(γ(I�)))
= [ by definition of α ]

λp(x). (α(PJPK(γ(I�))))̃|x
= [ by definition of PJ·K ]
λp(x). (α(

⋃{
E | c = p(x)← E,A1, . . . , An is a renamed

clause of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
E = ({E}⊗z

y1
γ(I�)(A1)⊗z

y2
· · · ⊗z

yn
γ(I�)(An))|x}))̃|x

= [ by definition of γ ]

λp(x). (α(
⋃{

E | c = p(x)← E,A1, . . . , An is a renamed

clause of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
E = ({E}⊗z

y1
γ(I�(A1))|y1 ⊗z

y2
· · · ⊗z

yn
γ(I�(An))|yn)|x

}
))̃|x

= [ since yi ∪ x ⊆ z, by (1) and (4.6.5) ]
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λp(x). (α(
⋃{

E | c = p(x)← E,A1, . . . , An is a renamed

clause of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
E = ({E}⊗z

y1
γ(I�(A1))⊗z

y2
· · · ⊗z

yn
γ(I�(An)))|x}))̃|x

= [ by (4.3.1) and by definition of ∪̃ ]

λp(x).
⋃̃{

D | c = p(x)← E,A1, . . . , An is a renamed

clause of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
D = α(({E}⊗z

y1
γ(I�(A1))⊗z

y2
· · · ⊗z

yn
γ(I�(An)))|x)}̃|x

= [ since |̃x distributes over sums ]

λp(x).
⋃̃{

D | c = p(x)← E,A1, . . . , An is a renamed

clause of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
D = (α(({E}⊗z

y1
γ(I�(A1))⊗z

y2
· · · ⊗z

yn
γ(I�(An)))|x))̃|x}

= [ by Point 7 of Definition 4.4.1 ]

λp(x).
⋃̃{

D | c = p(x)← E,A1, . . . , An is a renamed

clause of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
D = (α({E}⊗z

y1
γ(I�(A1))⊗z

y2
· · · ⊗z

yn
γ(I�(An))))̃|x}

= [ using repeatedly Point 1 of Definition 4.4.1 and ⊗̃ definition ]

λp(x).
⋃̃{

D | c = p(x)← E,A1, . . . , An is a renamed

clause of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
D = (α({E}) ⊗̃z

y1
I�(A1) ⊗̃z

y2
· · · ⊗̃z

yn
I�(An))̃|x}

= [ by P�J·K definition ]

P�JPK(I�).
Points 1 and 5 are a straightforward consequence of correctness (extensivity) of

the insertion α : E→ D.

For the other points, first of all note that Point 1 of Definition 4.4.1 implies ⊗̃,

⊗̃y
x additivity, ⊗̃ associativity and the abstract counterparts of equations (4.6.2),

(4.6.3) and (4.6.4) of the proof of Theorem 4.1.2. Point 2 of Definition 4.4.1 ensures

abstract additivity of |̃.

Furthermore note that, by Point 1 of Definition 4.4.1 (taking x = V) and by

definition of the abstract operation,

(α(
{
∅
}
) ⊗̃D)̃|x = D̃|x. (2)

Points 3, 4, 5 and 6 (of Definition 4.4.1) and (2) are the abstract versions of equations

(4.6.1), (4.6.5), (4.6.6), (4.6.7) and (4.6.3) respectively. Moreover, α and γ are
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congruences w.r.t. renaming. Hence the proof of this theorem is the same as the

proof of Theorem 4.1.2.



196 Semantic Framework for Applications



Chapter 5

Abstract Diagnosis

5.1 Introduction

5.1.1 Declarative Debugging, Program Verification and Ab-
stract Diagnosis

Declarative debugging [91, 74, 48] is a technique which, given a program P and a

specification I of the intended declarative semantics of P, allows one to determine

program bugs, when the actual semantics FJPK and the specification I are different.

Declarative debugging algorithms are based on a theory which requires I to be

specified extensionally. However, since I is in general infinite, practical debugging

algorithms are driven by symptoms (atoms on which FJPK and I do not agree),

which are determined by using testing techniques. Oracles are used to model the

acquisition (from the user) of the subset of I which is relevant to a symptom. Given

a symptom, the algorithms query the oracles to locate the actual sources of errors.

One stronger alternative to symptom-directed declarative debugging can be ob-

tained by extending the underlying theory to the case where the specification I is

a finite representation of the intended behavior. This is essentially the approach of

program verification [40, 12, 5, 4], where the specification is a finite (intensional)

representation of a program property. The property is any abstraction of the se-

mantics, including the semantics itself. The goal of program verification is proving

that the program is partially correct, i.e., that it satisfies the specification. It is

worth noting that in program verification a specification is usually a pair of pre-

and post-conditions. The property specified by the post-condition has to be sat-

isfied only by those goals which satisfy the pre-condition. In addition the partial

correctness criteria might require all the procedure calls (call patterns) to satisfy

their pre-conditions.

The aim of abstract diagnosis is to extend declarative debugging to the case where
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specifications are finite and define a program property rather than its semantics.

In order to be consistent with traditional declarative debugging, specifications are

assumed to consist of post-conditions only. However the results can be generalized

to the case of pre- and post-conditions (see Section 5.7). Finite specifications lead

to the systematic derivation of the diagnosis algorithms from the underlying theory

with no need for symptom detection. Moreover, the theoretical results on partial

correctness, completeness and bug derivation are valid for the diagnosis algorithms

too. The approach of abstract diagnosis is strongly related to the idea of using

assertions as finite specifications of an approximation of the intended declarative

semantics in [41] and to the concept of an abstract oracle, introduced in [73] to

specify a superset of the intended program behavior, in the case of concurrent logic

programs.

5.1.2 Program Properties and Abstract Interpretation

Program properties are formulas in a logical theory. They can be viewed as ab-

stractions of a suitable semantics. Their relation to the semantics can be formalized

within abstract interpretation theory [32, 34]. However, abstract interpretation sug-

gests another way of looking at program properties, where the logical theory is

replaced by a finite (or Noetherian) model (the abstract domain). The relevant

feature of abstract interpretation is that, once the property has been modeled by

an abstract domain, we have a methodology to systematically derive an abstract

semantics, which in turn allows us to effectively compute a (correct) approximation

of the property. By using this approach, most of the theorem-proving, in the logical

theory involved in program verification, boils down to computing on the abstract

domain. This is obtained in general at the expense of precision.

In program analysis, abstract interpretation theory is often used to establish

the correctness of specific analysis algorithms and abstract domains. We are more

concerned instead in its application to the systematic derivation of the (optimal)

abstract semantics from the abstract domain. Recent results on domain refinement

operators (see, for example, [50, 62, 89]) show that (optimal) abstract domains can

systematically be derived from the property to be proved.

5.1.3 The Semantic Framework

Program properties we are interested in are operational properties and not necessar-

ily declarative properties. The aim of the resulting method is therefore closer to the

goal of rational debugging [85] than to the goal of declarative debugging. This also

means that we cannot base the abstraction framework on the declarative semantics,
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since it is too abstract to allow us to reason about some operational properties, such

as variable groundness.

Some preliminary versions of abstract diagnosis [25, 27] were based on the se-

mantic framework of Part I. In this chapter we are only concerned with properties

which are abstractions of the computed answer semantics. Furthermore we are in-

terested in equivalent top-down and bottom-up semantics, since this will allow us to

define equivalent top-down and bottom-up diagnosis algorithms. We will therefore

use the applicative semantic framework of Chapter 4.

Program properties are observables , i.e., Galois insertions between the concrete

domain (the semantic domain of the collecting semantics) and the abstract domain

chosen to model the property. The abstract semantics (abstract transition system

and abstract denotational semantics) are systematically derived from the collecting

semantics and the observable. We consider two classes of observables, complete and

approximate. For every complete or approximate observable, the abstract opera-

tional semantics and the abstract denotational semantics are equivalent. This will

allow us to define equivalent top-down and bottom-up diagnosis algorithms. The

above equivalence property requires the observable to be condensing . Condensing

is a compositionality property which tells us that the abstract semantics of a pro-

cedure call can be derived (without losing precision) from the abstract semantics of

the procedure declaration. This property is needed in abstract diagnosis where the

specification is a post-condition describing a (goal-independent) property of a set

of procedure declarations. It is worth noting that the observables corresponding to

the declarative semantics are condensing and that the declarative semantics do in-

deed characterize procedure declarations. Note also that several observables used in

program analysis (for mode, type and groundness analysis) are also condensing and

that a non-condensing observable can systematically be transformed into a (more

concrete) condensing observable, by using domain refinement operators (see, for ex-

ample, how the condensing domain POS for groundness analysis can be derived [89]

from the non-condensing domain DEF).

As expected from their definitions in Chapter 4, the difference between complete

and approximate observables is related to precision. Namely, the abstract semantics

coincides with the abstraction of the collecting semantics, in the case of complete

observables, while it is just a correct approximation, in the case of approximate

observables. On the other side, approximate observables correspond to Noetherian

domains. Hence their abstract semantics is finite, while (in general) it is infinite

for complete observables. The class of complete observables includes the observ-

ables ground instances of computed answers and correct answers which allow us to

reconstruct the declarative semantics used in declarative debugging, i.e., the least

Herbrand model used in [91] and the least term model (atomic logical consequences
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or c-semantics) used in [48]. On the other hand, the class of approximate observables

includes depth(k) [88] and several domains proposed for type, mode and groundness

analysis (we will just consider the domain POS [8] for groundness analysis).

5.1.4 Abstract Diagnosis

In Section 5.2 we give the basic definitions of abstract diagnosis, which are a straight-

forward adaptation of those given for declarative debugging. A preliminary version

(without proofs) of abstract diagnosis can be found in [25, 27, 24]. Partial correctness

and completeness of P w.r.t. the observable property α are defined by comparing the

abstract specification of the intended behavior (of P w.r.t. α) I� and the abstrac-

tion α(FJPK) of the concrete semantics FJPK. It is worth noting that α(FJPK) is in

general more precise than the abstract semantics F�JPK, in the case of approximate

observables.

The diagnosis is based on the detection of incorrect clauses and uncovered el-

ements , which have both a bottom-up definition (in terms of one application of

the “abstract immediate consequence operator” to the abstract specification, see

Section 5.2.1) and a top-down definition (in terms of “oracle simulation”, see Sec-

tion 5.2.2). It is worth noting that both the definitions use the (possibly approx-

imate) computation on the abstract domain, and that no fixpoint computation is

required, since the abstract semantics does not need to be computed.

An implementation of the diagnosis algorithms (parametric w.r.t. the observable)

by means of PROLOG meta-programs is described in Section 5.2.3.

In Section 5.3 we give the diagnosis theorems for complete observables, which

provide rather strong results. Namely,

• absence of incorrect clauses implies partial correctness,

• absence of uncovered elements implies completeness, for a large class of pro-

grams (acceptable programs),

• incorrect clauses and uncovered elements always correspond to a bug in the

program.

The results for the complete observable generalize the ones stated in the literature

for declarative debugging and allow us to reconstruct the theory of declarative de-

bugging as an instance of abstract diagnosis. In addition we have some new stronger

results on the diagnosis of completeness. However, since abstract specifications are

often infinite in the case of complete observables, these results have a purely theoret-

ical interest and can be viewed as a foundation for the effective diagnosis methods

considered in the following sections.

The first effective diagnosis method (partial diagnosis) is described in Section 5.4.

Partial diagnosis (originally introduced in [26]) can be applied to make the diagnosis
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effective in the case of complete observables. A specification consists of a finite set

of elements which are in the intended behavior and a finite set of elements which

are not in the intended behavior. The diagnosis is based on the detection of p-

incorrect clauses and p-uncovered elements. The results we obtain are of course

weaker. Namely,

• p-incorrect clauses always correspond to bugs in the program,

• absence of p-uncovered elements implies completeness (w.r.t. the positive spec-

ification) for a large class of programs,

• a p-uncovered element is a warning about a possible incompleteness bug.

We show that partial diagnosis can be viewed as a theoretical foundation of the

symptom-directed oracle-based debugging algorithms used in declarative debugging.

The second effective diagnosis method can be applied if the property can be mod-

eled by approximate observables. For example, one can choose to approximate the

complete observable computed answers by the (approximate) observable depth(k)

answers, which leads to finite abstract specifications. Using abstract diagnosis w.r.t.

approximate observables one can effectively prove properties related to modes, types

and groundness dependencies. The results for approximate observables are given in

Section 5.5. Again, the results are weaker than those for complete observables (be-

cause of approximation). Namely,

• absence of incorrect clauses implies partial correctness,

• an uncovered element always corresponds to a bug in the program,

• all the incorrectness bugs are captured by incorrect clauses

• an incorrect clause is a warning about a possible incorrectness bug.

It is worth noting that there exists a duality between the results for partial diag-

nosis and those for approximate observables. This is due to the fact that a partial

specification is a subset of the full specification, while an abstract specification

corresponding to an approximate observable represents (through the concretization

function) a superset of the concrete full specification.

In Section 5.6 we consider the problem of modular diagnosis and we formally

prove that the diagnosis method does not need to be extended to perform the di-

agnosis in a modular way. This is due to the fact that both the top-down and the

bottom-up diagnosis algorithms are essentially based on the application of the “ab-

stract immediate consequence operator” which is intrinsically compositional. This

property shows that we can verify and debug incomplete programs, once we have

the specifications for the missing program components.

Finally in Section 5.7 we compare the results of abstract diagnosis w.r.t. ap-

proximate observables to those of program verification (with post-conditions only).
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It turns out that the results are similar for partial correctness and completeness.

Abstract diagnosis is more useful for debugging purposes, since it provides useful

information on program bugs.

The results of this chapter are from [23, 29, 24, 26, 28, 27].

5.2 Abstract Diagnosis

In the following, the observable α will always be assumed to be at least approximate,

since we know that for these observables the actual and the intended behaviors for

all the goals of a program are uniquely determined by the behaviors for pure atomic

goals. The following Definition 5.2.1 extends to abstract diagnosis the definitions

given in [91, 48, 74] for declarative debugging. In the following I� is the specification

of the intended behavior of a program for pure atoms w.r.t. the observable α.

Definition 5.2.1 Let P be a program and α be an observable.

1. P is partially correct w.r.t. I� if α(FJPK) ≤ I�.
2. P is complete w.r.t. I� if I� ≤ α(FJPK).
3. P is totally correct w.r.t. I�, if α(FJPK) = I�.

It is worth noting that the above definition is given in terms of the abstraction

of the concrete semantics α(FJPK) and not in terms of the (possibly less precise)

abstract semantics F�JPK. This means that I� is the abstraction of the intended

concrete semantics of P. In other words, the specifier can only reason in terms

of the properties of the expected concrete semantics and cannot be concerned with

(approximate) abstract computations. Note also that our notion of total correctness

does not concern termination. We cannot address termination issues here, since the

concrete semantics we use is too abstract.

If P is not totally correct, we are left with the problem of determining the errors,

which are related to the symptoms . Symptoms are A-elements, according to the

following definition.

Definition 5.2.2 An A-element σ is an A-interpretation defined for a pure atom

A only (and is otherwise undefined). Furthermore, if the images of the elements of

A (which are functions) are structured as a set, then σ(A) must also be a singleton.

By abuse of notation, in the following A 7→ {E} will be denoted simply by A 7→ E.

Definition 5.2.3 Let P be a program and α be an observable. Then
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1. An incorrectness symptom is an A-element σ such that σ ≤ α(FJPK) and

σ 6≤ I�.
2. An incompleteness symptom is an A-element σ such that σ ≤ I� and σ 6≤
α(FJPK).

Note that a totally correct program has no incorrectness and no incompleteness

symptoms. Our incompleteness symptoms are related to the insufficiency symptoms

in [48], which are defined by taking gfp PJPK instead of FJPK = lfp PJPK as program

semantics. The two definitions, even if different, turn out to be the same for the

class of acceptable programs (see Section 5.3.1). Ferrand’s choice is motivated by

the fact that gfp PJPK is related to finite failures. The approach of using two different

semantics for reasoning about incorrectness and incompleteness has been pursued in

[49], leading to an elegant uniform (yet non-effective) characterization of correctness

and completeness.

It is straightforward to realize that an A-element may sometimes be an incor-

rectness or incompleteness symptom, just because of another symptom.

Example 5.2.4

Consider the program P of Figure 5.1 w.r.t. the computed answer observable and

the specification

I :=

{
p(x) 7→ ∅
q(x) 7→ ∅.

The denotation of P is

FJPK =

{
p(x) 7→ {x = a}

q(x) 7→ {x = a}

Hence σ1 := p(x) 7→ {x = a} and σ2 := q(x) 7→ {x = a} are both incorrectness

symptoms but σ2 is just a consequence of σ1.
Consider now the specification I ′ := q(x) 7→ {x = a}. There exists only an

incorrectness symptom, i.e., σ := p(x) 7→ {x = a}. If we fix this bug (by removing the

second clause), we get an incompleteness symptom, since for the modified program

Q, FJQK(q(x)) = ∅.

The diagnosis determines the “basic” symptoms and, in the case of incorrectness,

the relevant clause in the program. This is captured by the definitions of incorrect

clause and uncovered A-element , which are related to incorrectness and incomplete-

ness symptoms, respectively. As we will show in the next two subsections, incorrect

clauses and uncovered A-elements can equivalently be characterized in a bottom-up

and top-down way.
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c1: q(X) :- p(X).

c2: p(a).

Figure 5.1: The program of Examples 5.2.4 and 5.2.7

5.2.1 Bottom-up Diagnosis

The bottom-up diagnosis is based on the application of the abstract immediate con-

sequence operator P�JPK.
Definition 5.2.5 Let P be a program. If there exists an A-element σ such that

σ 6≤ I� and σ ≤ P�J{c}K(I�)1, then the clause c ∈ P is incorrect on σ.

Informally, c is incorrect on σ if it derives a wrong A-element from the intended

semantics.

Definition 5.2.6 Let P be a program. An A-element σ is uncovered if σ ≤ I� and

σ 6≤ P�JPK(I�).
Informally, σ is uncovered if there are no clauses deriving it from the intended

semantics.

Example 5.2.7

Consider (again) the program of Figure 5.1 w.r.t. the observable computed answers

and the specification I of Example 5.2.4. It shows that σ1 := p(x) 7→ {x = a}

and σ2 := q(x) 7→ {x = a} are both incorrectness symptoms (even if σ2 is just a

consequence of σ1). By applying Definition 5.2.5 we obtain

PJ{c1}K(I) = q(x) 7→ ∅
PJ{c2}K(I) = p(x) 7→ {x = a}.

Hence we detect one bug only, i.e., that the clause c2 is incorrect on σ1.
Consider now the specification I ′ of Example 5.2.4. It shows one incorrectness

symptom only, i.e., σ := p(x) 7→ {x = a}. By applying Definitions 5.2.5 and 5.2.6 we

find out that the clause c2 is incorrect on σ and, in addition, that σ ′ := q(x) 7→ {x =

a} is uncovered. This is exactly what we would obtain once we fix the incorrectness

bug.

Note that (since I ′ ≤ FJPK) the program is complete (i.e., there are no incom-

pleteness symptoms) even if there is an uncovered A-element.

1Note that PαJ{c}K is the operator associated to the program {c}, consisting of the clause c only.
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It is worth noting that checking the conditions of Definitions 5.2.5 and 5.2.6

requires one application of P�JPK to I�, while the detection of symptoms (Defi-

nition 5.2.3) would require the construction of α(FJPK) and therefore a fixpoint

computation. The above examples suggest that bugs might be captured by incor-

rect clauses and uncovered A-elements much better than by symptoms. This will be

formally proved in Sections 5.3 and 5.5 for complete and approximate observables

separately. However, we will now first look at an alternative characterization of

incorrect clauses and uncovered A-elements.

5.2.2 Top-down Diagnosis

The “bottom-up” diagnosis is based on Definitions 5.2.5 and 5.2.6 and requires the

application of P�JPK to the specification I�. In the top-down diagnosis, I� can more

naturally be viewed as an abstract oracle, i.e., it can be implemented by querying the

user. Several oracles have been used in declarative debugging (see the discussion in

[81]). The abstract oracle implementation of I� can be modeled as a function which,

whenever applied to a pure atom (the query to the user), returns the abstraction of

the set of all the intended computed answers.

Once we have the oracle, we can define the abstract oracle simulation, following

[91]. The oracle simulation allows us to express in a compact way new top-down diag-

nosis conditions. The oracle simulation performs one step of abstract goal rewriting

by using the program clauses and then gets the abstract answers for the resulting

abstract goal from the oracle.

Definition 5.2.8 Let P be a program. Then the abstract oracle simulation OS�J·K
of P is2

OS�JPK := λp(x).
⋃̃{

D | p(x)
�-eq
−−−→c D ′, A1, . . . , An, c is a renamed clause

of P, z = var(c), for i ∈ [1, n], yi = var(Ai),
D = (α({E}) ⊗̃z

y1
I�(A1) ⊗̃z

y2
· · · ⊗̃z

yn
I�(An))̃|x}.

The following two theorems justify the top-down diagnosis.

Theorem 5.2.9 Let α be either a complete or an approximate observable. A clause

c ∈ P is incorrect on the A-element σ if and only if σ ≤ OS�J{c}K and σ 6≤ I�.
Proof. Let p(x) be the (only) goal on which σ is defined and let c be a clause.

2Note that the A-elements of the collections computed by OSαJPK are equivalence classes w.r.t.
variance, as was the case for the domain of our semantics.
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Then, by Definition 5.2.8,

OS�J{c}K(p(x)) =
⋃̃{

D | p(x)
�-eq
−−−→c ′ (α({∅}) ⊗̃ α({E})), A1, . . . , An,

c ′ = p(x)← E,A1, . . . , An is a renamed version of c,
z = var(c ′), for i ∈ [1, n], yi = var(Ai),
D = ((α({∅}) ⊗̃ α({E})) ⊗̃z

y1
I�(A1) ⊗̃z

y2
· · · ⊗̃z

yn

I�(An))̃|x}.
Note that, for any complete and approximate observable,3 (α(

{
∅
}
) ⊗̃ α(

{
E
}
)) ⊗̃z

y

D ′ = α(
{
E
}
) ⊗̃z

y D
′ and (α(

{
∅
}
) ⊗̃ D ′)̃|x = D̃|x. Hence, by definition of P�J·K,

P�J{c}K(I�)(p(x)) = OS�J{c}K(p(x)) and therefore σ ≤ OS�J{c}K if and only if σ ≤
P�J{c}K(I�).
Note that the proof of Theorem 5.2.9 is clearly based on the properties of our

semantics, which relate fixpoint bottom-up computations to top-down refutations

for pure atomic goals. By similar arguments we can prove the following theorem.

Theorem 5.2.10 An A-element σ is uncovered if and only if σ ≤ I� and σ 6≤
OS�JPK.
The top-down diagnosis definitions are particularly important, since they can natu-

rally be implemented by meta-interpreters.

5.2.3 The Diagnosis Meta-interpreters

Our meta-interpreters4 are shown in Figure 5.2. They are parametric w.r.t. the ob-

servable (the parameter Obs in the two main procedures), whose operations have to

be specified in a suitable module. Apart from being generic, the meta-interpreters

are very similar to those proposed for declarative debugging (see [81] for a compre-

hensive description). The main difference is that they do not need to start from

symptoms. In fact, as expected from the definitions in Section 5.2.2, the oracle sim-

ulation just needs to be applied to finitely many pure atomic goals (generated by the

call to userdefined/1). If the oracle returns finitely many answers to each query

(i.e., if I� is finite), the meta-interpreters systematically derive all the incorrect

clauses and uncovered A-elements.

Let us briefly explain the base meta-interpreter code.

incorrectClause/3. As specified by the oracle simulation (Definition 5.2.8) we

have to perform a top-down resolution step for every pure atomic goal. Hence

we generate an atom and choose a clause H←D,B unifying with it

3The theorem does indeed hold for any observable satisfying these property.
4The sources of the meta-interpreters can be found in [19].
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incorrectClause(Obs, RealElem, Clause) :-

userdefined(Atom),

observableClause(Obs, Atom, ClauseE, Body, Clause),

meetTheAnswers(Obs, Body, ClauseE, RealBodyEs),

domainProject(Obs, Atom, RealBodyEs, RealEs),

domainSingleton(Obs, RealE, RealEs),

not( (observableAnswers(Obs, Atom, IntendedEs),

domainSingleton(Obs, RealE, IntendedEs)) ),

showAelement(Obs, Atom, RealE, RealElem).

uncoveredE(Obs, IntendedElem) :-

userdefined(Atom),

observableAnswers(Obs, Atom, IntendedEs),

domainSingleton(Obs, IntendedE, IntendedEs),

not( ( findall( (R, ClauseE, Body),

(observableClause(Obs,Atom,ClauseE,Body,_),R=Atom), Bodies),

joinTheAnswers(Obs, Atom, Bodies, RealEs),

domainSingleton(Obs, IntendedE, RealEs) ) ),

showAelement(Obs, Atom, IntendedE, IntendedElem).

meetTheAnswers(Obs, true, E, E) :- !.

meetTheAnswers(Obs, (Atom,Atoms), E, E2) :- !,

observableAnswers(Obs, Atom, AtomEs),

domainMeet(Obs, E, AtomEs, E1),

meetTheAnswers(Obs, Atoms, E1, E2).

meetTheAnswers(Obs, Atom, E, E1) :-

observableAnswers(Obs, Atom, AtomEs),

domainMeet(Obs, E, AtomEs, E1).

joinTheAnswers(Obs, _, [], Bottom) :- domainBottom(Obs, Bottom).

joinTheAnswers(Obs, Atom, [(Atom, ClauseE, Body)|Bodies], Es):-

meetTheAnswers(Obs, Body, ClauseE, RealBodyEs),

domainProject(Obs, Atom, RealBodyEs, SingleEs),

joinTheAnswers(Obs, Atom, Bodies, PartialEs),

domainJoin(Obs,SingleEs,PartialEs,Es).

Figure 5.2: The main module of the diagnosis programs
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oracle(Obs, A, E) :- oracleMemory(Obs, A, E), E \== no_more_ans.

oracle(Obs, A, E) :- not( oracleMemory(Obs, A, no_more_ans) ),

oracleAsk(Obs, A, E).

oracleAsk(Obs, A, E) :- nl,write(’Any (other) answer for goal ’),

write(A),write(’ wrt obs. ’),write(Obs),write(’?’),nl,write(’>’),

readObs(Obs,A,E),(E \== no -> asserta( (oracleMemory(Obs,A,E)) );

assert( (oracleMemory(Obs, A, no_more_ans)) ), fail).

oracleAsk(Obs, A, E) :- not( oracleMemory(Obs, A, no_more_ans) ),

oracleAsk(Obs, A, E).

Figure 5.3: The common oracle interface of the observables modules

userdefined(Atom),

observableClause(Obs, Atom, ClauseE, Body, Clause),

then we (incrementally) get from the oracle a solution for (all the atoms in)

the body of the clause and we build (step by step) the meet of D and the

solutions. Then we project away all uninteresting variables from the abstract

resulting equation.

meetTheAnswers(Obs, Body, ClauseE, RealBodyEs),

domainProject(Obs, Atom, RealBodyEs, RealEs),

Then we test if the oracle can provide an equivalent answer, i.e., if there

exists any x such that x ≤ RealEs and x 6≤ IntendedEs (an incorrectness bug

generated by the selected clause).

domainSingleton(Obs, RealE, RealEs),

not(

(observableAnswers(Obs, Atom, IntendedEs),

domainSingleton(Obs, RealE, IntendedEs)) ).

uncoveredE/2. Dually to the previous case, we have to ask the oracle an answer

(IntendedE) for a pure atomic goal

userdefined(Atom),

observableAnswers(Obs, Atom, IntendedEs),

domainSingleton(Obs, IntendedE, IntendedEs),
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Then we test if the oracle simulation can provide an equivalent answer, i.e.,

if there exists any x such that x ≤ IntendedEs and x 6≤ RealEs (an incom-

pleteness bug). We perform another oracle simulation, but we have to use the

entire program instead of a single clause. Hence the (partial) results for all

the clauses must be joined, before we can check whether x ≤ RealEs.

not( (

findall(

(R, ClauseE, Body),

(observableClause(Obs, Atom, ClauseE, Body, _),R=Atom),

Bodies),

joinTheAnswers(Obs, Atom, Bodies, RealEs),

domainSingleton(Obs, IntendedE, RealEs) ) ).

It is worth noting that meta-interpreters work with the PROLOG representation

(rather than with the equational CLP representation) of the programs and (whenever

possible) of the specifications.

In Section 5.8 we show the implementation of the modules for the complete

observable computed answers and for the approximate observables depth(k) answers

(Section 4.4.2) and POS (Section 4.4.1).

5.2.4 Towards the Diagnosis Theorems

We have now a diagnosis method (detection of incorrect clauses and uncovered

A-elements), which can equivalently be implemented in a bottom-up and in a top-

down way. We are left with the problem of formally establishing the properties of

the diagnosis method, i.e., of proving which is the relation between incorrect clauses

and uncovered A-elements on one side, and correctness and completeness, on the

other side.

It is worth noting that correctness and completeness are defined in terms of

α(FJPK), i.e., in terms of abstraction of the concrete semantics. On the other hand,

incorrect clauses and uncovered A-elements are defined directly in terms of abstract

computations (the abstract immediate consequence operator P�JPK in the bottom-

up characterization and the abstract oracle simulation in the top-down characteriza-

tion). The issue of the precision of the abstract semantics becomes therefore relevant

in establishing the relation between the two concepts. This is why the results for

complete and approximate observables are different and will be shown separately.

In particular, we have weaker results for approximate observables, because of the

approximation of abstract computations.
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We will first consider the case of complete observables in Section 5.3. We will

later consider approximate observables in Section 5.5.

5.3 Abstract Diagnosis w.r.t. Complete Observ-

ables

Remember first that computed answers, correct answers and ground correct answers

are all complete observables. Hence, the results of this section apply to the diagnosis

w.r.t. computed answers [26] and to the declarative diagnoses in [91, 48]. In this

section α will always denote a complete observable.

The first theorem shows the relation between partial correctness (Point 1 of

Definition 5.2.1) and absence of incorrect clauses (Definition 5.2.5).

Theorem 5.3.1 If there are no incorrect clauses in P, then P is partially correct

w.r.t. α. The converse does not hold.

Proof. By hypothesis, ∀c ∈ P. P�J{c}K(I�) ≤ I�. Hence P�JPK(I�) ≤ I�, i.e., I�
is a pre-fixpoint of P�JPK. Since α(FJPK) = F�JPK = lfp P�JPK (see Section 4.2.1),

by Tarski’s theorem α(FJPK) ≤ I�.
Conversely, let P = {p(s(x), x)← r(x, x).} and let ν be the complete observable

“correct answers” (Section 4.3.1). Consider the specification

I� :=

{
p(x, y) 7→ ∅
r(x, y) 7→ {x = 0, y = 0}.

P is partially correct w.r.t. I� since ν(FJPK)(p(x, y)) = ν(FJPK)(r(x, y)) = ∅ ≤ I�.
However, the only clause in P is incorrect on the A-element σ = p(x, y) 7→ {x =

s(0), y = 0}, since σ ≤ P�JPK(I�) and σ 6≤ I�.
Note that the second part of Theorem 5.3.1 asserts that there might be incorrect

clauses even if there are no incorrectness symptoms. In other words, if we just

look at the semantics of the program, some incorrectness bugs can be “hidden”

(because of an incompleteness bug). However, if there are no incompleteness bugs,

all the incorrect clauses identify incorrectness symptoms, as shown by the following

theorem.

Theorem 5.3.2 Let P be complete w.r.t. I�. If there exists an incorrect clause in

P on the A-element σ, then σ is an incorrectness symptom (and therefore P is not

partially correct).
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Proof. By completeness of P and Theorem 4.3.2, I� ≤ α(FJPK) = F�JPK. Then,

by monotonicity of P�JPK, P�JPK(I�) ≤ P�JPK(F�JPK) = F�JPK. Thus, σ 6≤ I� and

σ ≤ P�J{c}K(I�) implies σ 6≤ I� and σ ≤ F�JPK = α(FJPK).
As in the case of declarative debugging, handling completeness turns out to be

more complex, since some incompletenesses cannot be detected by comparing I�
and P�JPK(I�). The following example shows that we cannot base the diagnosis of

incompleteness on the detection of uncovered A-elements.

Example 5.3.3

Consider the program P = {p :- p} and the specification I = p 7→ ε w.r.t. the

computed answer observable. Then PJPK(I) = I, while FJPK = λp(x). ∅. Hence

1. there are no uncovered A-elements in P,

2. P is not complete w.r.t. I (i.e., there exists an incompleteness symptom).

This shows that loops in the program can hide uncovered A-elements.

The problem shown by Example 5.3.3 is that I is a fixpoint of PJPK different from

the least fixpoint. The following theorem shows that the diagnosis of incompleteness

can be based on Definition 5.2.6, if the operator P�JPK has a unique fixpoint.

Theorem 5.3.4 Assume P�JPK has a unique fixpoint. If there are no uncovered

A-elements, then P is complete w.r.t. I�. The converse does not hold.

Proof. Absence of uncovered A-elements implies I� ≤ P�JPK(I�). Hence, I� is

a post-fixpoint of P�JPK and, by Tarski’s theorem, I� ≤ gfp(P�JPK). Since, by

Theorem 4.3.2, α(FJPK) = F�JPK = lfp P�JPK and, by hypothesis, gfp(P�JPK) =

lfp(P�JPK), the program P is complete.

The converse does not hold, as shown by Example 5.2.7.

Note that, if PJPK has a unique fixpoint, lfp PJPK = gfp PJPK. Hence, under this

hypothesis, our incompleteness symptoms are exactly the insufficiency symptoms in

[48].

Note that the second part of Theorem 5.3.4 asserts that there might be uncovered

A-elements even if there are no incompleteness symptoms. This is essentially due to

the fact that, if we just look at the semantics of the program, some incompleteness

bugs can be “hidden”, because of an incorrectness bug (note the symmetry w.r.t. the

case of incorrectness diagnosis). However, if there are no incorrectness bugs, all the

uncovered A-elements identify incompleteness symptoms. In such a case, uncovered

A-elements are meaningful, as shown by the following theorem.
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Theorem 5.3.5 Let P be partially correct w.r.t. I�. If there exists an uncovered A-

element σ, then σ is an incompleteness symptom (and therefore P is not complete).

Proof. By Theorem 4.3.2 and partial correctness of P, F�JPK = α(FJPK) ≤ I�. By

monotonicity of P�JPK, α(FJPK) = P�JPK(F�JPK) ≤ P�JPK(I�). Thus, σ ≤ I� and

σ 6≤ P�JPK(I�) implies σ ≤ I� and σ 6≤ α(FJPK).
By combining Theorems 5.3.1 and 5.3.4, we can characterize total correctness,

as shown by the following corollary.

Corollary 5.3.6 Assume P�JPK has a unique fixpoint. Then, P is totally correct

w.r.t. I� if and only if there are no incorrect clauses and no uncovered A-elements.

5.3.1 Acceptable Programs

The requirement on P�JPK in the hypotheses of Theorem 5.3.4 seems to be very

strong. However, this property holds for a large class of programs, i.e., for acceptable

programs as defined in [6]. Acceptable programs are the left-terminating programs,

i.e., those programs for which the SLD-derivations of ground goals (via the leftmost

selection rule) are finite.

Definition 5.3.7 [6] Let P be a program and BP be its Herbrand base. A level

mapping for P is a function |·| : BP → N from ground atoms to natural numbers.

Let |·| be a level mapping for P and I be a (not necessarily Herbrand) model of P. P

is acceptable w.r.t. |·| and I, if for every clause A← B1, . . . , Bn in Ground(P) the

following implication holds, for i ∈ [1, n]:

I |= ∧i-1j=1Bj =⇒ |A| > |Bi|. (5.3.1)

Most interesting programs are acceptable (all the pure PROLOG programs in

[94] are reported in [6] to be acceptable). The same property holds for the wrong

versions of acceptable programs provided that the errors do not affect the left-

termination property. One relevant technical property of acceptable programs is

that the ground immediate consequence operator has a unique fixpoint [6]. In the

following we show that the same property holds for all the immediate consequence

operators P�JPK, corresponding to complete observables. Before giving the formal

proof of the theorem, some additional definitions and lemmata are needed.

The following definition extends the original one to the case of the domain of

interpretations IC of our collecting semantics.
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Definition 5.3.8 A norm for a program P on IC is a function ‖·‖ : IC → N such

that for every n the set
{
C ∈ IC | ‖C‖ = n

}
is finite. A program P is IC-acceptable,

if there exists a norm such that, for every c ∈ P and all finite5 I ∈ IC,

‖PJ{c}K(I)‖ > ‖I‖. (5.3.2)

Lemma 5.3.9 Every acceptable program P is IC-acceptable.

Proof. We just need to define ‖C‖ := max
{∣∣{E},B∣∣∗ | E ∈ C(B)

}
, where, for any

G and relevant6 X, |X,G|∗ is defined as min {|Gϑ| | ϑ is a solution of X} and |·| is the

level mapping of P (Definition 5.3.7).

Note that the norm ‖·‖ for P is obtained by the level mapping |·|. We will use

implicitly this norm in the following. For any complete observable α and for each n

we can define a “projection” function π�n = α ◦ πn ◦ γ, where πn(C) =
⊔{

C ′ v C |

‖C ′‖ = n
}
. The functions π�n are precise if α is a complete observable.

Lemma 5.3.10 Let P be an acceptable program and α be a complete observable.

Then

π�n ◦ P�JPK = π�n ◦ P�JPK ◦ (
⊔̃
i<n
π�i ). (5.3.3)

Proof. For every n, every I and for all m ≥ n, the functions (πn ◦ PJPK ◦ πm)(I)

are undefined, because ‖PJPK(I)‖ > ‖I‖ by hypothesis. Thus

πn ◦ PJPK = πn ◦ PJPK ◦⊔
i<n
πi. (1)

Then the following equivalences hold.

π�n ◦ P�JPK = [ by definition of P�J·K ]

π�n ◦ α ◦ PJPK ◦ γ = [ by π�n precision ]

α ◦ πn ◦ PJPK ◦ γ = [ by (1) ]

α ◦ (πn ◦ PJPK ◦⊔
i<n
πi) ◦ γ = [ by π�n precision ]

π�n ◦ α ◦ PJPK ◦⊔
i<n

(πi ◦ γ) = [ by P�J·K precision ]

π�n ◦ P�JPK ◦ α ◦
⊔
i<n

(πi ◦ γ) = [ by α additivity ]

5Recall that I is finite if its support and image are finite.
6Recall that X is relevant for G if elim(X) ⊆ var(G).
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π�n ◦ P�JPK ◦
⊔̃
i<n

(α ◦ πi ◦ γ) = [ by π�n definition ]

π�n ◦ P�JPK ◦
⊔̃
i<n
π�i ,

which is the claim.

Theorem 5.3.11 Let P be an acceptable program and α be a complete observable.

Then lfp P�JPK is the unique fixpoint of P�JPK.
Proof. Clearly lfp P�JPK is a fixpoint. Now assume that X and Y are fixpoints. We

prove (by induction on n) that ∀n. π�n(X ) = π�n(Y).

n = 0 The following equalities hold.

π�0 (X ) = [ since X is a fixpoint ]

(π�0 ◦ P�JPK)(X ) = [ by properties of π�0 ]

(π�0 ◦ P�JPK)(⊥A) = [ by properties of π�0 ]

(π�0 ◦ P�JPK)(Y) = [ since Y is a fixpoint ]

π�0 (Y).

n > 0 The following equalities hold.

π�n(X ) = [ since X is a fixpoint ]

(π�n ◦ P�JPK)(X ) = [ by Lemma 5.3.10 ]

(π�n ◦ P�JPK ◦ (
⊔̃
i<n
π�i ))(X ) = [ by inductive hypothesis ]

(π�n ◦ P�JPK ◦ (
⊔̃
i<n
π�i ))(Y) = [ by Lemma 5.3.10 ]

(π�n ◦ P�JPK)(Y) = [ since Y is a fixpoint ]

π�n(Y).

Now we can conclude that there cannot be two different fixpoints, since X =

(
⊔̃n∈N π�n)(X ) = (

⊔̃n∈N π�n)(Y) = Y .

Note that this result applies to declarative debugging as well, since the least Her-

brand model and the atomic logical consequence semantics are based on observables

which are complete.
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c1: ancestor(X,Y) :- parent(Z,Y), ancestor(X,Z).

c2: ancestor(X,Y) :- parent(Y,X).

% c2 instead of ancestor(X,Y):-parent(X,Y).

% missing parent(terach,abraham).

% missing parent(abraham,isaac).

Figure 5.4: The wrong acceptable program of Example 5.3.12

Example 5.3.12

This example is intended to show the relation among the various concepts involved

in the diagnosis. Consider the acceptable program P of Figure 5.4, which is an

ancestor program with a wrong clause and missing database tuples.

The answers of the incorrectness meta-interpreter are

incorrectClause(subst, AE, C).

Any (other) answer for goal parent(_1655,_1656) wrt obs. subst ?

>parent(terach,abraham).

Any (other) answer for goal ancestor(_2060,_2061) wrt obs. subst ?

>ancestor(terach,abraham).

Any (other) answer for goal ancestor(_2060,_2061) wrt obs. subst ?

>ancestor(abraham,isaac).

Any (other) answer for goal ancestor(_2060,_2061) wrt obs. subst ?

>ancestor(terach,isaac).

Any (other) answer for goal ancestor(_2060,_2061) wrt obs. subst ?

>no.

AE = ancestor(abraham,terach)

C = ancestor(_1479,_1480):-parent(_1480,_1479) ;

Any (other) answer for goal parent(_1655,_1656) wrt obs. subst ?

>parent(abraham,isaac).

AE = ancestor(isaac,abraham)
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C = ancestor(_1479,_1480):-parent(_1480,_1479) ;

Any (other) answer for goal parent(_1655,_1656) wrt obs. subst ?

>no.

no

As resulting from the answers of the user, the intended interpretation w.r.t. the

computed answer observable is

I :=


ancestor(x, y) 7→ {{x = terach, y = abraham},

{x = terach, y = isaac},

{x = abraham, y = isaac}
}
,

parent(x, y) 7→ {{x = terach, y = abraham},

{x = abraham, y = isaac}
}

The diagnosis delivers the following result: the clause c2 is incorrect on

1. ancestor(x, y) 7→ {x = abraham, y = terach},

2. ancestor(x, y) 7→ {x = isaac, y = abraham}.

The answers of the incompleteness meta-interpreter are

uncoveredE(subst, AE).

AE = ancestor(abraham,isaac) ;

AE = ancestor(terach,abraham) ;

AE = parent(abraham,isaac) ;

AE = parent(terach,abraham) ;

no

The diagnosis delivers the following result: the following A-elements are uncovered.

1. parent(x, y) 7→ {x = terach, y = abraham},

2. parent(x, y) 7→ {x = abraham, y = isaac},

3. ancestor(x, y) 7→ {x = terach, y = abraham},

4. ancestor(x, y) 7→ {x = abraham, y = isaac}.

Note that FJPK = λp(x). ∅. Hence, there are no incorrectness symptoms, even if

there is an incorrect clause. Note also that the A-element ancestor(x, y) 7→ {x =

terach, y = isaac} is not uncovered, even if it is an incompleteness symptom.
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5.3.2 Discussion on Complete Observables

It is worth noting that the above diagnosis is not effective, unless the specification

of the intended behavior is finite. In fact, if this is not the case, the bottom-up

diagnosis is unfeasible, since I� is infinite, while the top-down diagnosis is unfeasible,

since the oracle may return infinite answers to some queries. Hence the results on

complete observables have no practical interest. However, they are the theoretical

foundation of the effective diagnosis methods, which will be discussed in Sections

5.4 and 5.5. In order to tackle the effectivity problem, we need to be able to handle

finite specifications. There exist three possible solutions.

Assertions. A specification can intentionally be defined by assertions, in the style

of program verification as first suggested by [41]. Due to time limitations, we

will not consider assertions in this thesis. Let us just mention that the results

in [72] can provide the basis for extending diagnosis to assertions.

Partial specifications. A specification is a finite subset I+ of the intended se-

mantics, plus a finite subset I- of the complement of the intended semantics.

The resulting diagnosis technique (partial diagnosis) is discussed in Section 5.4

and can be viewed as a formalization of symptom-based declarative debuggers.

Just think of I+ as the union of the (finite) set of incompleteness symptoms

and the (finite) set of “positive” answers of the oracle. And think of I- as

the union of the (finite) set of incorrectness symptoms and the (finite) set of

“negative” answers of the oracle.

Approximate observables. A specification is simply an abstraction of the in-

tended semantics. If the abstraction corresponds to an approximate observ-

able, the specification is finite and the diagnosis method is effective. The di-

agnosis w.r.t. approximate observables, described in Section 5.5, will allow us

to handle program properties such as modes, types, depth(k) approximations

and groundness dependencies, which can indeed be handled by approximate

observables.

It is worth noting that the intended semantics is approximated by a subset in partial

diagnosis, while it is approximated by a superset (the concretization of the abstract

specification) in diagnosis w.r.t. approximate observables. This will be reflected by

the diagnosis theorems of Sections 5.4 and 5.5.
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5.4 Partial Diagnosis

In this section we propose one solution to the effectiveness problem, by approx-

imating the intended behavior of a program (w.r.t. a complete observable) by a

(finite) partial specification. Given a complete observable α, the specification of

the intended behavior I� is approximated by a partial specification, which is a pair

(I+� , I-� ), where

• I+� is the (positive) partial specification of the intended behavior of P w.r.t. α

(all the A-elements in I+� should be computed by P),

• I-� is the (negative) partial specification of the intended behavior of P w.r.t.

α (none of the A-elements in I-� should be computed by P).

The (obvious) condition on (I+� , I-� ) is that I+� ũ I-� = ⊥A.

Definition 5.4.1 Let (I+� , I-� ) be a partial specification. A specification I� is con-

sistent with (I+� , I-� ) if I+� ≤ I� and I-� ũ I� = ⊥A.

The idea is that a partial specification (I+� , I-� ) stands for all possible specifications

I� which are consistent with (I+� , I-� ).

Remark 5.4.2 Positive and negative specifications have been used in [49], for the

correct answer observable ν, with the aim of separately modeling the behavior w.r.t.

incorrectness and incompleteness. However, I+� and I-� are not partial specifications,

rather they are specifications of the (complete) intended lfp(P�JPK) and of the (com-

plete) intended complement of gfp(P�JPK). The derived definitions and results are

completely different from ours. In particular, the complement of I-� is used for

completeness and I+� is used for correctness.

The following definitions, given in terms of the P�JPK operator, generalize the

definitions of incorrect clause and uncovered A-element to the case of partial speci-

fications.

Definition 5.4.3 Let P be a program. If there exists an A-element σ such that

σ ≤ I-� and σ ≤ P�J{c}K(I+� ), then the clause c ∈ P is p-incorrect on σ.

Definition 5.4.4 Let P be a program. An A-element σ is p-uncovered if σ ≤ I+�
and σ 6≤ P�JPK(I+� ).

The following lemma is a straightforward consequence of Definition 5.4.3. It asserts

that p-incorrect clauses are meaningful.

Lemma 5.4.5 If a clause c is p-incorrect on σ, then c is incorrect on σ w.r.t. any

specification consistent with (I+� , I-� ).
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From the previous lemma and Theorem 5.3.2 we have

Theorem 5.4.6 Let P be a program and (I+� , I-� ) be a partial specification w.r.t. a

complete observable α. Assume that P is complete w.r.t. a specification I� consistent

with (I+� , I-� ). If a clause c ∈ P is p-incorrect on σ, then σ is an incorrectness

symptom.

It is worth noting that the diagnosis of partial correctness w.r.t. any specification

I� consistent with (I+� , I-� ) cannot always be based on the detection of p-incorrect

clauses, as shown by the following example.

Example 5.4.7

Consider the program in Figure 5.4 and the computed answer observable. Assume

that the following partial specification is given

I+ :=


ancestor(x, y) 7→ {{x = terach, y = abraham},

{x = terach, y = isaac},

{x = abraham, y = isaac}
}

parent(x, y) 7→ {x = abraham, y = isaac}

I- := ancestor(x, y) 7→ {{x = abraham, y = terach},

{x = isaac, y = terach}
}
.

The clause c2 is incorrect on σ = ancestor(x, y) 7→ {x = abraham, y = terach}

w.r.t. the specification given in Example 5.3.12 (which is consistent with (I+, I-)),

but it is not p-incorrect on σ.

Let us consider now the diagnosis of completeness. The following lemma shows

that the diagnosis based on the detection of p-uncovered A-elements restricted to

the specification I+� is sound.

Lemma 5.4.8 Let P be a program and (I+� , I-� ) be its partial specification w.r.t. a

complete observable α. If there are no p-uncovered A-elements, then no A-element

in I+� is uncovered w.r.t. any specification I� consistent with (I+� , I-� ).

Proof. By hypothesis, I+� ≤ P�JPK(I+� ). Since I+� ≤ I� and by monotonicity of

P�J·K, I+� ≤ P�JPK(I�).
As was the case for complete specifications, the diagnosis of completeness can be

based on P�JPK, only if the operator P�JPK has a unique fixpoint. The following

theorem is a direct consequence of Lemma 5.4.8 and Theorem 5.3.4.
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Theorem 5.4.9 Let P be a program and (I+� , I-� ) be its partial specification w.r.t.

a complete observable α. Assume P�JPK has a unique fixpoint. If there are no

p-uncovered A-elements, then P is complete w.r.t. I+� .

It is worth noting that the existence of a p-uncovered A-element does not necessarily

mean that there is something missing from the program. As expected, if an A-

element is uncovered w.r.t. the partial specification, it might be covered w.r.t. a

consistent complete specification. In fact, an A-element in I+� might not be in

P�JPK(I+� ) just because I+� is partial, i.e., it cannot be derived by P�JPK because

some of the correct premises are missing from I+� . This is shown by the following

example.

Example 5.4.10

Consider the program in Figure 5.4, the computed answer observable and the fol-

lowing partial specification

I+ :=


ancestor(x, y) 7→ {{x = terach, y = abraham},

{x = terach, y = isaac},

{x = abraham, y = isaac}
}

parent(x, y) 7→ {x = terach, y = abraham}

I- := ancestor(x, y) 7→ {{x = abraham, y = terach},

{x = isaac, y = terach}
}
.

The A-element σ = ancestor(x, y) 7→ {x = terach, y = isaac} is p-uncovered, but

it is not uncovered w.r.t. the complete specification given in Example 5.3.12 (which

is consistent with (I+, I-)).

The meta-interpreters for partial diagnosis (Figure 5.5) can be obtained from

those of Section 5.2.3, by replacing the calls to the oracle in (the definitions of the

predicates) incorrectClause/3 and uncoveredE/2 by A-elements of I+ (incom-

pleteness symptoms and positive oracle answers in symptom-driven diagnosis) and

instead of testing if the (positive) oracle can not provide an equivalent answer, we

query the negative oracle I- (incorrectness symptoms in symptom-driven diagnosis)

to check whether it can provide an equivalent answer.

Example 5.4.11

Consider the program P of Figure 5.6, which is a “reverse” program, where the

clause c4 is wrong, w.r.t. the computed answer observable. The answers of the

meta-interpreters are
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incorrectClause(partial(Obs), RealElem, Clause) :-

userdefined(partial(Obs), Atom),

observableClause(Obs, Atom, ClauseE, Body, Clause),

meetThePosAnswers(Obs, Body, ClauseE, RealBodyEs),

domainProject(Obs, Atom, RealBodyEs, RealEs),

domainSingleton(Obs, RealE, RealEs),

observableNegAnswers(Obs, Atom, IntendedNegEs),

domainSingleton(Obs, RealE, IntendedNegEs),

showAelement(Obs, Atom, RealE, RealElem).

uncoveredE(partial(Obs), Mod, IntendedElem) :-

userdefined(partial(Obs), Atom),

observablePosAnswers(Obs, Atom, IntendedPosEs),

domainSingleton(Obs, IntendedE, IntendedPosEs),

not( (

findall((Remember, ClauseE, Body),

(observableClause(Obs, Atom, ClauseE, Body, _),

Remember=Atom), Bodies),

joinThePosAnswers(Obs, Atom, Bodies, RealEs),

domainSingleton(Obs, IntendedE, RealEs) ) ),

showAelement(Obs, Atom, IntendedE, IntendedElem).

meetThePosAnswers(Obs, Body, ClauseE, RealBodyEs) :-

meetTheAnswers(Obs, Body, ClauseE, RealBodyEs).

observableNegAnswers(Obs, Atom, NegEs) :-

observableAnswers(Obs, negative(Atom), Es),Es=negative(NegEs).

observablePosAnswers(Obs, Atom, Es) :-

observableAnswers(Obs, Atom, Es).

joinThePosAnswers(Obs, Atom, Bodies, RealEs) :-

joinTheAnswers(Obs, Atom, Bodies, RealEs).

Figure 5.5: The main module of the partial diagnosis program



222 Abstract Diagnosis

c1: rev([],[]).

c2: rev([X|Xs],Ys) :- rev(Xs,Zs), append(Zs,[X],Ys).

c3: append([],Xs,Xs).

c4: append([X|Xs],Ys,Zs) :- append(Xs,Ys,Zs).

% c4 instead of append([X|Xs],Ys,[X|Zs]):-append(Xs,Ys,Zs).

Figure 5.6: The wrong reverse program of Example 5.4.11

incorrectClause(partial(subst), AE, C).

Any (other) answer for goal negative(rev(_2721,_2722)) wrt obs.

subst ?

>no.

Any (other) answer for goal rev(_3047,_3048) wrt obs. subst ?

>rev([V],[V]).

Any (other) answer for goal app(_3721,_3722,_3723) wrt obs. subst ?

>app([],X,X).

Any (other) answer for goal app(_3721,_3722,_3723) wrt obs. subst ?

>no.

Any (other) answer for goal rev(_3047,_3048) wrt obs. subst ?

>rev([],[]).

Any (other) answer for goal rev(_3047,_3048) wrt obs. subst ?

>no.

Any (other) answer for goal negative(app(_2772,_2773,_2774)) wrt obs.

subst ?

>negative(app([V],X,X)).

Any (other) answer for goal negative(app(_2772,_2773,_2774)) wrt obs.

subst ?

>no.
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AE = app([_3106],_3026,_3026)

C = app([_2643|_2644],_2611,_2612):-app(_2644,_2611,_2612) ;

no

uncoveredE(partial(subst), AE).

no

As resulting from the answers of the user, the partial specification is

I+ :=

{
rev(x, y) 7→ {{x = [ ], y = [ ]}, {x = [v], y = [v]}

}
append(x, y, z) 7→ {x = [ ], y = z}

I- := append(x, y, z) 7→ {x = [v], y = z}.

The diagnosis delivers the following results. There are no p-uncovered A-elements,

hence the program is complete w.r.t. I+� . The clause c4 is p-incorrect (and then

incorrect) on append(x, y, z) 7→ {x = [v], y = z}.

It is easy to prove that if the partial specification is indeed complete, we obtain

exactly the results of Section 5.3.

5.4.1 Discussion on Partial Diagnosis

The overall results for partial diagnosis are:

• p-incorrect clauses always correspond to errors, w.r.t. any I� consistent with

(I+� , I-� ),

• if there are no p-uncovered A-elements (and if P�JPK has a unique fixpoint)

no A-element of I+� is an incompleteness symptom.

The results are weaker than those of Section 5.3, because absence of p-incor-

rect clauses does not imply partial correctness and p-uncovered A-elements do not

necessarily correspond to incompleteness errors.

As already mentioned, these results can be applied to practical declarative de-

buggers, where (some) errors are detected starting from a finite set of incorrectness

and incompleteness symptoms. The first result justifies the process of determining

incorrect clauses from incorrectness symptoms and tells us that incorrect clauses do

always correspond to errors. Symptom-directed debuggers are of course not con-

cerned with the problem of deciding partial correctness.
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On the other side, symptom-directed debuggers derive p-uncovered A-elements

starting from an incompleteness symptom. Our negative result on p-uncovered A-

elements shows that the uncovered A-element does not always correspond to an

incompleteness error, unless the oracle can return infinite answers.

5.5 Abstract Diagnosis w.r.t. Approximate Ob-

servables

We finally turn to the case of approximate observables, which can be used both to

make the diagnosis effective, as in the case of depth(k)-answers, and for performing

the diagnosis w.r.t. abstract properties, such as groundness dependencies.

Theorem 5.5.1 Let α be an approximate observable. If there are no incorrect

clauses in P, then P is partially correct w.r.t. α. The converse does not hold.

Proof. Since α is an approximate observable (by Theorem 4.4.2) α(FJPK) ≤ F�JPK.
From the first part of Theorem 5.3.1 it follows that, if there are no incorrect clauses

in P, then F�JPK ≤ I�. Hence P turns out to be partially correct.

Conversely, let P := {p(s(x), x)←r(x, x)} and consider the following specification

w.r.t. the Υ approximate observable.

I� :=

{
p(x, y) 7→ false

r(x, y) 7→ x∧ y.

Since Υ(FJPK)(p(x, y)) = Υ(FJPK)(r(x, y)) = false ≤ I�, P is partially correct w.r.t.

I�. However, the only clause in P is incorrect on the A-element σ = p(x, y) 7→ x∧

y, since σ ≤ P�JPK(I�) and σ 6≤ I�.

Example 5.5.2

Consider the program of Figure 4.5 w.r.t. the Υ observable. The answers of the

incorrectness meta-interpreter are

incorrectClause(pos(subst), AE, C).

Any (other) answer for goal p(_2499,_2500) wrt obs. pos(subst) ?

>p(X,Y),true.

Any (other) answer for goal q(_2499,_2500) wrt obs. pos(subst) ?

>q(X,Y),iff(X,Y).
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Any (other) answer for goal r(_2499,_2500) wrt obs. pos(subst) ?

>r(X,Y),iff(X,Y).

Any (other) answer for goal q(_2621,_2622) wrt obs. pos(subst) ?

>no.

Any (other) answer for goal p(_2624,_2625) wrt obs. pos(subst) ?

>no.

no

As resulting from the answers of the user, the specification is

I� :=


p(x, y) 7→ true

q(x, y) 7→ x↔ y

r(x, y) 7→ x↔ y.

There are no incorrect clauses. Then (by applying Theorem 5.5.1) P turns out to

be partially correct w.r.t. I�.

In the case of complete observables, Theorem 5.3.2 tells us that if the program is

complete, then all the incorrect clauses do indeed identify incorrectness bugs. This

result does not hold for approximate observables, because the abstract immediate

consequence operator is in general not precise. This is shown by the following

example.

Example 5.5.3

Consider the program P of Figure 5.7 and the following abstract specification w.r.t.

the Υ observable. The answers of the diagnosis meta-interpreter are

incorrectClause(pos(subst), AE, C).

Any (other) answer for goal q(_1583) wrt obs. pos(subst) ?

>q(X),X.

Any (other) answer for goal p(_1503) wrt obs. pos(subst) ?

>p(X),X.

Any (other) answer for goal r(_1503) wrt obs. pos(subst) ?

>r(X),false.
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c1: p(f(X)) :- q(X).

c2: q(a).

c3: r(X) :- p(g(X)).

c4: s(X,Y) :- r(X).

c5: s(X,a).

Figure 5.7: The program of Example 5.5.3 (see also Figure 3.3)

Any (other) answer for goal r(_1503) wrt obs. pos(subst) ?

>no.

AE = r(_1503),and([_1503])

C = r(_1629):-p(g(_1629)) ;

Any (other) answer for goal s(_1503,_1504) wrt obs. pos(subst) ?

>s(X,Y),Y.

no

uncoveredE(pos(subst), AE).

no

As resulting from the answers of the user, the specification is

I� :=


s(x, y) 7→ y

q(x) 7→ x

r(x) 7→ false

p(x) 7→ x.

The abstract semantics is

F�JPK =


s(x, y) 7→ x∨ y

q(x) 7→ x

r(x) 7→ x

p(x) 7→ x,
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while the abstraction of the concrete denotational semantics is

Υ(FJPK) =


s(x, y) 7→ y

q(x) 7→ x

r(x) 7→ false

p(x) 7→ x.

The abstract semantics is not precise, i.e., F�JPK 6= Υ(FJPK). The program P turns

out to be totally correct w.r.t. I�. However the clause c3 turns out to be incorrect

on the A-element σ = r(x) 7→ x, since P�J{c3}K(I�)(r(x)) = x. This is due to the

approximation introduced by the P�J·K operator.

The above example shows that incorrect clauses are in general just a hint about a

possible source of errors.

Once an incorrect clause is detected, one has to check on the abstraction of the

concrete semantics if there is indeed a bug. This is often the case as shown by the

following example.

Example 5.5.4

Consider the program P of Figure 4.1 (on page 171) and the specification I� :=

sum(x, y, z) 7→ x ∧ y ∧ z w.r.t. the Υ observable. We expect all the arguments of

the sum relation to be ground. The abstraction of the concrete denotation of P is

Υ(FJPK) = sum(x, y, z) 7→ x∧ y↔ z.

The answers of the incorrectness meta-interpreter are

incorrectClause(pos(subst), AE, C).

Any (other) answer for goal sum(_1981,_1982,_1983) wrt obs.

pos(subst) ?

>sum(X,Y,Z),and(X,and(Y,Z)).

Any (other) answer for goal sum(_1981,_1982,_1983) wrt obs.

pos(subst) ?

>no.

AE = sum(_1981,_1982,_1983),and([-_1983,-_1982,_1981])

C = sum(0,_2160,_2160):-true ;

no
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uncoveredE(pos(subst), AE).

no

The abstract diagnosis shows that c1 is an incorrect clause and that, therefore, there

might be a bug, as it is actually the case, since the second and the third argument

are not necessarily ground.

The relevant fact, however, is that all the clauses in the program which are

actually wrong, turn out to be incorrect clauses. This can easily be proved by using

the following definition of actually-incorrect clause. Actually-incorrect clauses are

defined by using the abstraction of the concrete immediate consequence operator.

As a consequence, the relation between actually-incorrect clauses and symptoms, is

exactly the one between incorrect clauses and symptoms for complete observables.

Namely, actually-incorrect clauses always correspond to incorrectness errors.

Definition 5.5.5 Let P be a program, I be a concrete specification and I� be the

corresponding abstract specification (i.e., I� = α(I)). If there exists an A-element σ

such that σ 6≤ I� and σ ≤ α(PJ{c}K(I)), then the clause c ∈ P is actually-incorrect

on σ.

The following theorem shows that if the program has an actually-incorrect clause it

is also an incorrect clause.

Theorem 5.5.6 Any actually-incorrect clause is an incorrect clause.

Proof. The following hold.

α(PJ{c}K(I)) ≤ [ since I ≤ γ(I�) ]

α(PJ{c}K(γ(I�))) ≤ [ by Point 4 of Theorem 4.4.2 ]

P�J{c}K(I�).
Now, if c is actually-incorrect on σ (i.e., σ 6≤ I� and σ ≤ α(PJ{c}K(I))), then c is

incorrect on σ (since σ 6≤ I� and σ ≤ P�J{c}K(I�)).
In the case of approximate observables we can no longer base the diagnosis of

incompleteness on the detection of uncovered A-elements. In fact, the absence of

uncovered A-elements, even under the unique fixpoint assumption, does not imply

program completeness. Incompleteness bugs might be hidden by the approximation

of the abstract semantics.

Uncovered A-elements within a partially correct program are instead meaningful

even in the case of approximate observables, as shown by the following theorem.
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Theorem 5.5.7 Let α be an approximate observable and P be partially correct w.r.t.

I�. If there exists an uncovered A-element σ, then σ is an incompleteness symptom

(and therefore P is not complete).

Proof. The following facts hold.

α(FJPK) =

[ since FJPK is a fixpoint ]

α(PJPK(FJPK)) ≤
[ by P�J·K correctness ]

P�JPK(α(FJPK)) ≤
[ by monotonicity of P�JPK and by partial correctess of P ]

P�JPK(I�).
Now, if σ is an uncovered A-element (i.e., σ ≤ I� and σ 6≤ P�JPK(I�)), then

σ 6≤ α(FJPK), i.e., it is an incompleteness symptom.

Example 5.5.8

Consider the program of Figure 4.5 and the intended specification of Example 5.5.2

w.r.t. the Υ observable. The answers of the incompleteness meta-interpreter are

uncoveredE(pos(subst), AE).

Any (other) answer for goal p(_1491,_1492) wrt obs. pos(subst) ?

>p(X,Y),true.

AE = p(_1491,_1492),and([]) ;

Any (other) answer for goal p(_1491,_1492) wrt obs. pos(subst) ?

>no.

Any (other) answer for goal q(_1491,_1492) wrt obs. pos(subst) ?

>q(X,Y),iff(X,Y).

Any (other) answer for goal q(_1491,_1492) wrt obs. pos(subst) ?

>no.

Any (other) answer for goal r(_1491,_1492) wrt obs. pos(subst) ?

>r(X,Y),iff(X,Y).
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Any (other) answer for goal r(_1491,_1492) wrt obs. pos(subst) ?

>no.

no

The incompleteness diagnosis delivers the following results.

1. The A-element σ1 = p(x, y) 7→ true is uncovered and therefore it is an incom-

pleteness symptom.

2. The A-element σ2 = r(x, y) 7→ x↔ y is also an incompleteness symptom but

it is not uncovered.

The incorrectness diagnosis is shown in Example 5.5.2.

We will now show an example of how the diagnosis w.r.t. depth(k) answers can be

used to approximate the (unfeasible) diagnosis w.r.t. computed answers.

Example 5.5.9

The program in Figure 5.8 is a wrong version of an automaton which recognizes

the language L = {(ab)n | n ≥ 0} ∪ {(ab)na | n ≥ 0}. Let us consider it w.r.t. the

depth(2)-answer observable (τ2). The answers of the meta-interpreters are

uncoveredE(depth(2), AE).

Any (other) answer for goal acc(_2631) wrt obs. depth(2) ?

>acc([]).

Any (other) answer for goal accept(_2881) wrt obs. depth(2) ?

>accept([]).

Any (other) answer for goal accept(_2881) wrt obs. depth(2) ?

>accept([a]).

Any (other) answer for goal accept(_2881) wrt obs. depth(2) ?

>accept([a,B|J]).

Any (other) answer for goal accept(_2881) wrt obs. depth(2) ?

>no.

AE = acc([]) ;
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c1: accept([a|Xs]) :- acc(Xs).

c2: acc([b|Xs]) :- accept(Xs).

c3: accept([]).

% missing acc([]).

Figure 5.8: The program of Example 5.5.9

Any (other) answer for goal acc(_2631) wrt obs. depth(2) ?

>acc([b]).

Any (other) answer for goal acc(_2631) wrt obs. depth(2) ?

>acc([b,A|J]).

Any (other) answer for goal acc(_2631) wrt obs. depth(2) ?

>no.

no

incorrectClause(depth(2), AE, C).

no

As resulting from the answers of the user, the specification is

I�2 :=

{
accept(X) 7→ {{X = [ ]}, {X = [a]}, {X = [a, β̂|X̂]}

}
acc(X) 7→ {{X = [ ]}, {X = [b]}, {X = [b, α̂|X̂]}

}
.

Hence we find out that the A-element acc(x) 7→ {x = [ ]} is uncovered and that P is

partially correct.

Let us finally note that several interesting abstract program properties, such as

modes and various notions of types (including polymorphic types) can be handled

by approximate observables.

5.5.1 Discussion on Approximate Observables

The diagnosis w.r.t. approximate observables is always effective, because the abstract

specification is finite. As expected, the results are weaker than those of complete
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observables, just because of approximation. Namely,

• absence of incorrect clauses implies partial correctness,

• every incorrectness error is identified by an incorrect clause. However an in-

correct clause does not always correspond to a bug,

• uncovered A-elements always correspond to incompleteness bugs.

• there exists no sufficient condition for completeness.

The results, even if weaker, are useful and comparable to those obtained by verifi-

cation techniques (see, for example, [5, 4]). In fact, if we consider the case where

specifications consist of post-conditions only, both abstract diagnosis and verifica-

tion provide a sufficient condition for partial correctness, which is well-assertedness

in the case of verification and absence of incorrect clauses in abstract diagnosis. For

both techniques there is no sufficient condition for completeness. In order to verify

completeness, we have to rely on a fixpoint (the model of a transformed program or

the abstraction of the concrete semantics), which, in general, cannot be computed in

a finite number of steps. As expected, abstract diagnosis (whose aim is locating bugs

rather than just proving correctness) gives us also information useful for debugging,

by means of incorrect clauses and uncovered A-elements.

Let us finally note that approximate observables can have all the properties of

compete observables, for suitable classes of programs. A characterization of these

classes of programs, would make the stronger results for complete observables ap-

plicable (in an effective way). Namely, we would obtain a sufficient condition for

completeness and all the incorrect clauses would indeed correspond to incorrectness

bugs.

As already mentioned, the approximation given by approximate observables is

somewhat dual of the one given by partial diagnosis. This is reflected by the du-

ality of the results. In fact, in partial diagnosis we have a sufficient condition for

completeness instead of a sufficient condition for partial correctness. Moreover, p-in-

correct clauses always correspond to bugs, while this is not the case for p-uncovered

A-elements.

This suggests that we might improve our results on completeness by taking an

under-approximation as abstraction. Of course, if we want to preserve the results

on partial correctness, we need to keep also the standard over-approximation. This

would lead us to a theory of abstract diagnosis, where two different abstractions are

used at the same time. This would in turn require a specification consisting of a pair

of abstractions of the intended concrete semantics. This is an interesting idea for

further research that might build upon the already mentioned approach by Ferrand

[49], which works with pairs of specifications.
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5.6 Modular Abstract Diagnosis

In modular abstract diagnosis we are concerned with programs composed of sep-

arate modules. The idea is that of performing the diagnosis in a modular way,

i.e., module by module. Modular analysis is usually based on an OR-compositional

semantics. For example, the modular analysis framework in [18] is based on the

OR-compositional version of the s-semantics [14]. Our concrete semantics is not

OR-compositional and this is obviously true for all its abstractions. However, we

can note that abstract diagnosis does not require to actually compute the abstract

semantics, since it is simply based on one application of the abstract immediate

consequence operator to the specification. The s-semantics immediate consequence

operator is known to be OR-compositional (see for example [76]). The same result

holds (by definition) for all the abstract immediate consequence operator correspond-

ing to complete and approximate observables. The conclusion is that our theory of

abstract diagnosis can directly be applied to modular diagnosis, as we will formally

show in the following.

We assume a program P to be partitioned into predicate-disjoint modules [18],

such that each predicate symbol is completely defined by a single module. Namely,

Definition 5.6.1 A program partitioning P1, . . . , Pn is predicate-disjoint if ∀i 6=
j. PredsDef (Pi) ∩ PredsDef (Pj) = ∅, where PredsDef (P) := {p | p(t)← B ∈ P}.

Specifications I1�, . . . , In� are associated to modules P1, . . . , Pn. Since the partition

is predicate-disjoint, any Ii� is undefined for all the pure atoms with predicate not in

PredsDef (Pi) and then ∀i 6= j. dom(Ii�)∩ dom(I j�) = ∅. It is worth noting that our

definition of partitioning does not require a hierarchical decomposition, since mutual

recursion between modules is possible.

The overall specification is I� = I1� t̃ . . . t̃ In� . A module Pi does not necessarily

need to use all the other modules. Hence we introduce the operator use which gives

those specifications which are relevant to a module Pi, i.e., use(Pi) =
{
I j� | module

Pi uses (i.e., clause bodies contain) predicates which are defined by Pj}7. Pi is a

basic module if it does not use other modules, i.e., if use(Pi) = ∅.
The decomposition into modules allows us to define incorrect clauses and uncov-

ered A-elements in a (more efficient) modular way.

Definition 5.6.2 Let P1, . . . , Pn be a program partitioning and let c be a clause in

Pi, for some 1 ≤ i ≤ n. If there exists an A-element σ such that σ 6≤ Ii� and

σ ≤ P�J{c}K(Ii� t̃ ⊔̃ use(Pi)), then the clause c ∈ P is m-incorrect on σ.

7Note that
⊔̃

use(Pi) ≤ Iα and that dom(
⊔̃

use(Pi)) ∩ dom(Ii
α) = ∅.
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c is m-incorrect on σ if it derives, from the (relevant part of the) intended semantics,

an A-element which is not in the module’s intended semantics. Note that P�JPiK(Ii�t̃⊔̃
use(Pi)) = P�JPiK(I�).

Definition 5.6.3 Let P1, . . . , Pn be a program partitioning and let σ = p(x) 7→ D

be an A-element such that p ∈ PredsDef (Pi), for some 1 ≤ i ≤ n. σ is m-uncovered

if σ ≤ Ii� and σ 6≤ P�JPiK(Ii� t̃ ⊔̃ use(Pi)).
An A-element in the intended semantics of a module is m-uncovered if there are no

clauses in the module deriving it from the (relevant part of the) intended semantics.

It is worth noting that, in the above definitions of m-incorrect clauses and m-

uncovered A-elements, we compare two denotations which give a meaning only to

those predicates which are defined inside the module and that we are only concerned

with the specifications used by the module.

The meta-interpreter implementation of the algorithms to determine m-incorrect

clauses and m-uncovered A-elements is shown in Figure 5.9. As usual, it is paramet-

ric w.r.t. the observable modules, which are exactly the ones of Section 5.2.3 (see

Section 5.8).

The following theorems show that the general results on complete and approxi-

mate observables of abstract diagnosis do apply to modular abstract diagnosis.

Theorem 5.6.4 Let P = P1 ∪ · · · ∪ Pn. If there are no m-incorrect clauses in any

module Pi, then P is partially correct w.r.t. α.

Proof. By hypothesis, for any i, ∀c ∈ Pi. P�J{c}K(Ii� t̃ ⊔̃ use(Pi)) ≤ Ii�. Hence

∀i. P�JPiK(I�) ≤ Ii�. Now, by definition of P�J·K, P�J∪PiK(I�) ≤
⊔̃
Ii� = I�.

Hence I� is a pre-fixpoint of P�JPK and then, since α(FJPK) ≤ F�JPK = lfp P�JPK,
by Tarski’s theorem α(FJPK) ≤ I�.
Theorem 5.6.5 Let α be a complete observable and P = P1∪· · ·∪Pn be a complete

program w.r.t. I�. If, for some i, there exists an m-incorrect clause in Pi, then P is

not partially correct.

Proof. By completeness of P and Theorem 4.3.2, I� ≤ α(FJPK) = F�JPK. Then, by

monotonicity of P�J·K, P�JPK(I�) ≤ P�JPK(F�JPK) = F�JPK. Thus, σ 6≤ Ii� and σ ≤
P�J{c}K(I�) = P�J{c}K(Ii� t̃ ⊔̃ use(Pi)) implies σ 6≤ Ii� and σ ≤ F�JPK = α(FJPK),
which means that P is not partially correct.

Theorem 5.6.6 Let P = P1 ∪ · · · ∪ Pn be partially correct w.r.t. I�. If there exists

an m-uncovered A-element, then P is not complete.
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incorrectClause(Obs, Mod, RealElem, Clause) :-

userdefined(Mod, Atom),

observableClause(Obs, Atom, ClauseE, Body, Clause),

meetTheAnswers(Obs, Body, ClauseE, RealBodyEs),

domainProject(Obs, Atom, RealBodyEs, RealEs),

domainSingleton(Obs, RealE, RealEs),

not(

(observableAnswers(Obs, Atom, IntendedEs),

domainSingleton(Obs, RealE, IntendedEs)) ),

showAelement(Obs, Atom, RealE, RealElem).

uncoveredE(Obs, Mod, IntendedElem) :-

userdefined(Mod, Atom),

observableAnswers(Obs, Atom, IntendedEs),

domainSingleton(Obs, IntendedE, IntendedEs),

not( (

findall(

(R, ClauseE, Body),

(observableClause(Obs, Atom, ClauseE, Body, _),R=Atom),

Bodies),

joinTheAnswers(Obs, Atom, Bodies, RealEs),

domainSingleton(Obs, IntendedE, RealEs) ) ),

showAelement(Obs, Atom, IntendedE, IntendedElem).

Figure 5.9: The main module of the modular diagnosis program
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Proof. Let σ = p(x) 7→ D with p ∈ PredsDef (Pi), for some 1 ≤ i ≤ n. By Theo-

rem 4.3.2 and partial correctness of P, F�JPK = α(FJPK) ≤ I�. By monotonicity of

P�JPK,
α(FJPK) = P�JPK(F�JPK) ≤ P�JPK(I�). (1)

Now, σ ≤ Ii� and σ 6≤ P�JPiK(I�) = P�JPiK(Ii� t̃ ⊔̃ use(Pi)) implies (since the other

modules cannot define predicate p) σ ≤ Ii� and σ 6≤ P�JPK(I�). Thus σ ≤ Ii� ≤ I�
and, by (1), σ 6≤ α(FJPK), which means that P is not complete.

Theorem 5.6.7 Let α be a complete observable, P = P1∪· · ·∪Pn be a program and

assume P�JPK has a unique fixpoint. If there are no m-uncovered A-elements, then

P is complete w.r.t. I�.
Proof. Absence of m-uncovered A-elements implies, for all i, Ii� ≤ P�JPiK(I�) =

P�JPiK(Ii� t̃ ⊔̃ use(Pi)). Hence, I� ≤ P�JPK(I�), i.e., I� is a post-fixpoint of P�JPK.
Then, by Tarski’s theorem, I� ≤ gfp(P�JPK). Since, by Theorem 4.3.2, α(FJPK) =

F�JPK = lfp P�JPK and, by hypothesis, gfp(P�JPK) = lfp(P�JPK), the program P is

complete.

Example 5.6.8

The program in Figure 5.10 is a wrong version of a program verifying satisfiability of

boolean formulas (built with or and neg) which has a missing clause. We consider

the approximate observable depth(2)-answers (τ2) where we replace all the subterms

at depth greater than 2 by a fresh variable (see Section 4.4.2). The answers of the

diagnosis meta-interpreters are

incorrectClause(depth(2), modSat, AE, C).

Any (other) answer for goal sat(_1710) wrt obs. depth(2) ?

>sat(or(X,true)).

Any (other) answer for goal sat(_1710) wrt obs. depth(2) ?

>sat(true).

Any (other) answer for goal sat(_2173) wrt obs. depth(2) ?

>sat(neg(false)).

Any (other) answer for goal sat(_2173) wrt obs. depth(2) ?

>sat(neg(neg(J))).
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Module “satisfiable”

sat(true).

sat(or(X,Y)) :- sat(X).

sat(neg(X)) :- inv(X).

%the clause sat(or(X,Y)) :- sat(Y). is missing

Module “invalid”, this module is not supplied to the diagnoser.

inv(false).

inv(neg(X)) :- sat(X).

inv(or(X,Y)) :- inv(X),inv(Y).

Figure 5.10: The program of Example 5.6.8

Any (other) answer for goal sat(_2173) wrt obs. depth(2) ?

>sat(or(true,Y)).

Any (other) answer for goal sat(_2197) wrt obs. depth(2) ?

>sat(neg(or(J,K))).

Any (other) answer for goal sat(_2197) wrt obs. depth(2) ?

>sat(or(Y,neg(J))).

Any (other) answer for goal sat(_2197) wrt obs. depth(2) ?

>sat(or(Y,or(J,K))).

Any (other) answer for goal sat(_2197) wrt obs. depth(2) ?

>sat(or(neg(J),Y)).

Any (other) answer for goal sat(_2197) wrt obs. depth(2) ?

>sat(or(or(J,K),Y)).

Any (other) answer for goal sat(_1830) wrt obs. depth(2) ?

>no.

Any (other) answer for goal inv(_1780) wrt obs. depth(2) ?

>inv(false).
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Any (other) answer for goal inv(_1780) wrt obs. depth(2) ?

>inv(neg(neg(J))).

Any (other) answer for goal inv(_1780) wrt obs. depth(2) ?

>inv(neg(or(J,K))).

Any (other) answer for goal inv(_1780) wrt obs. depth(2) ?

>inv(neg(true)).

Any (other) answer for goal inv(_1780) wrt obs. depth(2) ?

>inv(or(false,neg(J))).

Any (other) answer for goal inv(_1780) wrt obs. depth(2) ?

>inv(or(false,or(J,K))).

Any (other) answer for goal inv(_1780) wrt obs. depth(2) ?

>inv(or(neg(J),false)).

Any (other) answer for goal inv(_1780) wrt obs. depth(2) ?

>inv(or(or(J,K),false)).

Any (other) answer for goal inv(_1780) wrt obs. depth(2) ?

>inv(or(false,false)).

Any (other) answer for goal inv(_1780) wrt obs. depth(2) ?

>no.

no

uncoveredE(depth(2), modSat, AE).

AE = sat(or(_1620,or(_1621,_1622))) ;

AE = sat(or(_1620,neg(_1621))) ;

AE = sat(or(_1620,true)) ;

no
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As resulting from the answers of the user, the specification of the module “sat” is

I�2 := sat(x) 7→ {{x = true}, {x = or(Y, true)}, {x = or(true, Y)},

{x = or(neg(x̂), Y)}, {x = or(Y, neg(x̂))},

{x = neg(false)}, {x = neg(neg(x̂))},

{x = neg(or(x̂, ŷ))}, {x = or(Y, or(x̂, ŷ))},

{x = or(or(x̂, ŷ), Y)}
}

while the specification of the module “invalid” is

K�2 := inv(x) 7→ {{x = false}, {x = or(false, false)}, {x = neg(true)},

{x = neg(neg(x̂))}, {x = neg(or(x̂, ŷ))},

{x = or(false, neg(x̂))}, {x = or(neg(x̂), false)},

{x = or(false, or(x̂, ŷ))}, {x = or(or(x̂, ŷ), false)}
}

Hence we find out that there are no m-incorrect clauses and then (by Theorem 5.6.4)

the program is partially correct. Furthermore, the following A-element are m-un-

covered.

1. sat(x) 7→ {x = or(y, or(v,w))},

2. sat(x) 7→ {x = or(y, neg(z))},

3. sat(x) 7→ {x = or(y, true)}.

Then (by Theorem 5.6.6) the (entire) program is not complete.

The above results show that, if we split the program and the specification into

modules, we can determine incorrect clauses and uncovered A-elements by means of

(more efficient) modular algorithms. We will now turn to the (more interesting) case

where we consider a single module (all the other modules may be not implemented

yet), and we want to debug it, under the assumption that all the other missing

modules do satisfy their specifications (i.e., are totally correct). The diagnosis will

still be based on Definitions 5.6.2 and 5.6.3. However we have to introduce a new

definition of partial correctness and completeness for a single module.

The new definitions are of course given in terms of the concrete semantics of

a module Pi, which can be determined from the clauses in Pi and from the con-

crete semantics of the (missing) modules used by Pi. Since these modules have

not been implemented yet, their concrete semantics is simply the concretization of

the abstract specifications. This is achieved by first defining the following concrete

(I�-augmented) immediate consequence operator:

P
I�JPiK(K) := PJPiK(K t

⊔
γ(use(Pi))).
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This operator is continuous. The concrete semantics of a program module Pi can be

then defined as

FI�JPiK := P
I�JPiK↑! .

This leads to the new notions of partial correctness and completeness of a module

w.r.t. the intended abstract semantics of the whole program.

Definition 5.6.9 Let P1, . . . , Pn be a program partitioning, α be an observable, and

I1�, . . . , In� be an intended module semantics. A module Pi is

1. m-partially correct w.r.t. I1�, . . . , In� if α(FI�JPiK) ≤ Ii�.
2. m-complete w.r.t. I1�, . . . , In� if Ii� ≤ α(FI�JPiK)
3. P is m-totally correct w.r.t. I1�, . . . , In� , if α(FI�JPiK) = Ii�

The proof of the theorems uses the following (continuous) abstract (I�-augmented)

immediate consequence operator and its fixpoint.

P
I�� JPiK(K�) := P�JPiK(K� t̃

⊔̃
use(Pi)), FI�� JPiK := lfp(P

I�� JPiK),

Theorem 5.6.10 If there are no m-incorrect clauses in Pi, then Pi is m-partially

correct w.r.t. I1�, . . . , In� .

Proof. By hypothesis, for any clause c in Pi, P�J{c}K(Ii� t̃ ⊔̃ use(Pi)) ≤ Ii�. Hence

P�JPiK(I�) ≤ Ii�. Now, by definition, P�JPiK(I�) = PI�� JPiK(Ii�) and then Ii� is a

pre-fixpoint of PI�� JPiK. Then, since α(FI�JPiK) ≤ FI�� JPiK = lfp(PI�� JPiK) ≤ Ii�, Pi
is m-partially correct w.r.t. I1�, . . . , In� .

Theorem 5.6.11 Let α be a complete observable and Pi be an m-complete module

w.r.t. I1�, . . . , In� , for some 1 ≤ i ≤ n. If there exists an m-incorrect clause in Pi,
then Pi is not m-partially correct.

Proof. By m-completeness of Pi and since α is complete, Ii� ≤ α(FI�JPiK) =

FI�� JPiK. By monotonicity of PI�� JPiK, PI�� JPiK(Ii�) ≤ PI�� JPiK(FI�� JPiK) = FI�� JPiK.
On the other hand, by definition, PI�� JPiK(Ii�) = P�JPiK(I�). Thus, σ 6≤ Ii� and

σ ≤ P�J{c}K(I�) implies σ 6≤ Ii� and σ ≤ α(FI�JPiK), i.e., Pi is not m-partially

correct.

Theorem 5.6.12 Let Pi be m-partially correct w.r.t. I1�, . . . , In� , for some 1 ≤ i ≤
n. If there exists an m-uncovered A-element in Pi, then Pi is not m-complete.
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Proof. The operator PI�� JPiK is correct. Indeed,

(P
I�� JPiK ◦ α)(K) = [ by PI�� JPiK definition ]

P�JPiK(α(K) t̃
⊔̃

use(Pi)) = [ since α is additive and αγ = Id ]

(P�JPiK ◦ α)(K t
⊔
γ use(Pi)) ≥ [ since P�JPiK is correct ]

(α ◦ PJPiK)(K t
⊔
γ use(Pi)) = [ by PI�JPiK definition ]

(α ◦ P
I�JPiK)(K).

Hence,

α(FI�JPiK) =

[ since FI�JPiK is a fixpoint of PI�JPiK ]
α(P

I�JPiK(FI�JPiK)) ≤
[ by the previous result ]

P
I�� JPiK(α(FI�JPiK)) ≤

[ by monotonicity of PI�� JPiK and m-partial correctness of Pi ]
P
I�� JPiK(Ii�) =

[ by definition ]

P�JPiK(I�).
Now, if σ is an m-uncovered A-element (i.e., σ ≤ Ii� and σ 6≤ PI�� JPiK(Ii�)), then

σ ≤ Ii� and σ 6≤ α(FI�JPiK), i.e., Pi is not m-complete.

Theorem 5.6.13 Let α be a complete observable and assume that PI�� JPiK has a

unique fixpoint (for some 1 ≤ i ≤ n). If there are no m-uncovered A-elements in

Pi, then Pi is m-complete w.r.t. I1�, . . . , In� .

Proof. Absence of m-uncovered A-elements in Pi implies Ii� ≤ P�JPiK(I�). Since,

by definition, PI�� JPiK(Ii�) = P�JPiK(I�), Ii� ≤ PI�� JPiK(Ii�), i.e., Ii� is a post-fixpoint

of PI�� JPiK and, by Tarski’s theorem, Ii� ≤ gfp(PI�� JPiK).
Now, by hypothesis, gfp(PI�� JPiK) = lfp(PI�� JPiK) = FI�� JPiK = α(FI�JPiK).

Thus, Ii� ≤ α(FI�JPiK), i.e., Pi is m-complete w.r.t. I1�, . . . , In� .

Let us now consider again Example 5.5.9 with this modular perspective.

Example 5.6.14

The program Pacc in Figure 5.11 is a wrong version of a module of an automaton

which recognizes the language L = {(ab)n | n ≥ 0} ∪ {(ab)na | n ≥ 0}. The

complete program is in Figure 5.8, and the complete diagnosis is in Example 5.5.9.

The answers of the meta-interpreters are
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acc([b|Xs]) :- accept(Xs).

%the clause acc([]). is missing

Figure 5.11: The program of Example 5.6.14

uncoveredE(depth(2), modAcc, AE).

Any (other) answer for goal acc(_3430) wrt obs. depth(2) ?

>acc([]).

Any (other) answer for goal accept(_3680) wrt obs. depth(2) ?

>accept([]).

Any (other) answer for goal accept(_3680) wrt obs. depth(2) ?

>accept([a]).

Any (other) answer for goal accept(_3680) wrt obs. depth(2) ?

>accept([a,B|J]).

Any (other) answer for goal accept(_3680) wrt obs. depth(2) ?

>no.

AE = acc([]) ;

Any (other) answer for goal acc(_3430) wrt obs. depth(2) ?

>acc([b]).

Any (other) answer for goal acc(_3430) wrt obs. depth(2) ?

>acc([b,A|J]).

Any (other) answer for goal acc(_3430) wrt obs. depth(2) ?

>no.

no

incorrectClause(depth(2), modAcc, AE, C).
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no

As resulting from the answers of the user, the specification of the diagnosed module

w.r.t. the depth(2)-answer observable (τ2) is

I�2 := acc(X) 7→ {{X = [ ]}, {X = [b]}, {X = [b, â|x̂]}
}
.

while the specification of the other module is

K�2 := accept(X) 7→ {{X = [ ]}, {X = [a]}, {X = [a, b̂|x̂]}
}

Hence we find out that Pacc is m-partially correct (without actually computing

FI�JPaccK) and that the A-element acc(x) 7→ {x = [ ]} is m-uncovered. Then (by

Theorem 5.6.12) the module is not m-complete (and the entire program is not com-

plete).

Theorem 5.6.15 Let P = P1∪· · ·∪Pn. If all the modules Pi are m-partially correct

w.r.t. I1�, . . . , In� , then P is partially correct w.r.t. I�. Moreover, if P has a unique

fixpoint and all the modules Pi are m-complete w.r.t. I1�, . . . , In� , then P is complete

w.r.t. I�.
Proof. We prove the two points separately.

partial correctness Let K =
⊔iKi. For any i,

P
I�JPiK(Ki) = PJPiK(Ki t

⊔
γ use(Pi)) ≥ PJPiK(Ki)

Thus
⊔i PI�JPiK(Ki) ≥ PJPK(K) and the following facts hold.

α(FJPK) ≤ [ by the previous result ]

α(
⊔
i

FI�JPiK) = [ by additivity ]

⊔̃
i
α(FI�JPiK) ≤ [ by m-partial correctness ]

⊔̃
i
Ii� = I�

completeness The following facts hold.

I� =
⊔̃
i
Ii� ≥ [ by m-partial correctness ]
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⊔̃
i
α(FI�JPiK) = [ by additivity ]

α(
⊔
i

FI�JPiK) ≥ [ by the fixpoint uniqueness of P ]

α(FJPK)

5.7 Discussion on the Results of Abstract Diag-

nosis

We have introduced several effective techniques to perform the diagnosis of pure

logic programs.

Partial diagnosis can be used whenever we have a (finite) partial knowledge about

the intended behavior. This knowledge can be derived from symptom detection

(performed using testing techniques) and symptom-directed queries to the user, as

in the symptom-directed debuggers. One might think of other partial knowledge

acquisition techniques.

Diagnosis w.r.t. approximate observables is instead useful when one wants to

perform the diagnosis w.r.t. properties which can be modeled by abstractions over

Noetherian domains. This is interesting because several useful properties are mod-

eled by approximate observables or by observables which can be systematically re-

fined to approximate observables.

More general properties (such as those used in program verification) can only

be handled through assertions in a suitable formal language. We are currently

looking into the problem of modeling these properties using abstract interpretation

techniques, with the goal of handling them as approximate observables. This would

make our results applicable to the more general case.

Abstract diagnosis can be turned into a more practical tool by extending it to

the case of real-life logic languages, e.g., PROLOG. It is worth noting that this

can easily be done, once we have a semantic framework for PROLOG similar to

the one we have used here for pure logic programs. Such a framework has indeed

already been defined [71]. It handles almost all the impure features of PROLOG

(including cut). The collecting semantics has all the properties which are relevant to

diagnosis, namely the condensing property and the equivalence between operational

and denotational denotations.

Another relevant issue is related to the abstract operations associated to an

observable. In this thesis we have considered the case where the abstract operations
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are systematically derived from the concrete ones and are optimal. Our results are

still valid if the optimal abstract operations are replaced by (correct) non-optimal

operations, as one does in most practical abstract interpretation frameworks. Since

this leads to a further loss of precision, the accuracy of the diagnosis method will

of course be affected. The same arguments apply to the case of non-condensing

observables.

Finally, let us mention that some recent results on the reconstruction of verifica-

tion techniques by abstract interpretation [72] show that it is quite easy to extend

abstract diagnosis to specifications consisting of pre- and post-conditions. Handling

pre-conditions simply requires the choice of a more concrete collecting semantics,

modeling call patterns in addition to computed answers.

5.8 The Implementation of the Observable Mod-

ules

5.8.1 The Computed Answer Observable (Id)

observableAnswers(subst, A, E) :-

copy_term(A, A1), oracle(subst, A1, E).

observableClause(subst, A, E, B, C) :-

copy_term(A,A2), clause(A2,B2), freecopy(B2,B),

E = (A2:-B2), copy_term(E,C).

domainBottom(subst, emptyset).

domainMeet(subst, E, E1, (A1 :- Bs)) :-

copy_term(E,(A1:-(B1,Bs))), B1 = E1.

domainMeet(subst, E, E1, (A1 :- true)) :-

copy_term(E,(A1:-B1)), B1 = E1.

domainProject(subst, _A, (A1:- _), A1).

domainJoin(subst, emptyset,Xs,Xs) :- !.

domainJoin(subst, Xs,emptyset,Xs) :- !.

domainJoin(subst, Xs,Ys,Xs).

domainJoin(subst, Xs,Ys,Ys).
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domainSingleton(subst,E,Es) :- var(E), E=Es.

domainSingleton(subst,E,Es) :- nonvar(E), variant(E,Es).

readObs(subst,A,E) :- read(E).

showAelement(subst,A,E,E).

freecopy((A,As),(B,Bs)) :-

!, freecopy(As,Bs), functor(A,F,N), functor(B,F,N).

freecopy(A,B) :- !,functor(A,F,N), functor(B,F,N).

variant(T1,T2) :-

copy_term(T2,T3),

not not ( (numbervars(T1,0,N), numbervars(T3,0,N), T1 = T3)).

5.8.2 The depth(k) Observable (τk)

observableAnswers(depth(K), A, E) :-

copy_term(A, A1), oracle(depth(K), A1, E).

observableClause(depth(K), A, E, B, C) :-

observableClause(subst, A, E1, B, C),

K1 is K+2, depth(K1, E1, E).

domainBottom(depth(_K), Bottom) :- domainBottom(subst, Bottom).

domainProject(depth(_K), A, E, Esub) :-

domainProject(subst, A, E, Esub).

domainMeet(depth(K), E, E1, EdepK) :-

domainMeet(subst, E, E1, Esub),

K1 is K+2, depth(K1, Esub, EdepK).

domainJoin(depth(_K), E, E1s, E2s) :- domainJoin(subst,E,E1s,E2s).

domainSingleton(depth(_K), E, E1) :- domainSingleton(subst,E,E1).

readObs(depth(K),A,EdepK) :- readObs(subst,A,Esub),K1 is K+1,

depth(K1, Esub, EdepK).

showAelement(depth(K),A,E,Ae) :- showAelement(subst,A,E,Ae).
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depth(0, _T, X):-!.

depth(K, T, T1) :- K>0, compound(T), !, functor(T,F,N),

functor(T1,F,N), K1 is K-1, depth(N, K1, T, T1).

depth(K, T, T).

depth(0, _K, _, _).

depth(N, K, T, T1) :-

N >0, arg(N, T, A), depth(K, A, A1), arg(N, T1, A1),

N1 is N-1, depth(N1, K, T, T1).

5.8.3 The POS Observable (Υ)

The implementation of POS is clearly much more complex than the previous ones.

The following programs are essentially an interface plus the POS implementation

adapted from an original abstract interpretation framework for PROLOG [93].

observableAnswers(pos(subst), A, Epos) :-

oracle(pos(subst), A, F), posubToPos(F,Epos).

observableClause(pos(subst), A, Epos, B, C) :-

observableClause(subst, A, E, B, C), posubEqua((A:-B), E, F),

posubToPos(F,Ebig), varsOf((A,B),Vars),

posProj(Ebig, Vars, Epos).

domainBottom(pos(subst), X) :- posBottom(X).

domainJoin(pos(subst), F1, F2, F) :- posJoin(F1, F2, F).

domainMeet(pos(subst), F1, F2, F) :- posMeet(F1, F2, F).

domainProject(pos(subst), A, F, Fr) :-

varsOf(A,Vars), posProj(F, Vars, Fr).

domainSingleton(pos(subst), F, Fs) :- posImplicant(F, Fs).

readObs(pos(subst),A,E) :- read(X), (X \== no -> X=(A,E); X=E),

assert( (oracleMemory(Obs, A, no_more_answers)) ).

showAelement(pos(subst),A,or([E]),(A,E)):-!.
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showAelement(pos(subst),A,E,(A,E)).

varsOf(T,Xs) :- varsof(T,Ys),removeReps([],_SeenOut,Ys,Xs).

varsof(X,[X]) :- var(X),!.

varsof(A,Vars) :- A =.. [_|L], varsof(L,[],Vars).

varsof([],L,L).

varsof([A|As],L,Vs) :- varsof(A,AL),append(AL,L,G),

varsof(As,G,Vs).

posubEqua((A:-(B,C)),(EA:-(EB,EC)),and(F1,F2)) :-

!,posubEqua((A:-B),(EA:-EB),F1),posubEqua(C,EC,F2).

posubEqua((A:-B),(EA:-EB),and(F1,F2)) :-

!,posubEqua(A,EA,F1),posubEqua(B,EB,F2).

posubEqua(true,true,true):-!.

posubEqua(A, E, F):-

functor(A,Fun,N),functor(E,Fun,N), posubEqua(N, A, E, F).

posubEqua(1, A, E, Fiff) :- arg(1,A,V), arg(1,E,T),

posubEquaIff(V, T, Fiff).

posubEqua(N, A, E, and(Fiff,F2)) :-

N >1, arg(N,A,V), arg(N,E,T), posubEquaIff(V, T, Fiff),

N1 is N-1, posubEqua(N1, A, E, F2).

posubEquaIff(V, T, V) :- posubTerm(T, true),!.

posubEquaIff(V, T, iff(V,F)) :- posubTerm(T, F).

posubTerm(T,true) :- atomic(T),!.

posubTerm(T,T) :- var(T),!.

posubTerm(T, F) :- compound(T),functor(T,_Name,N),

posubTerm(N, T, F).

posubTerm(1, T, F):- arg(1, T, A), posubTerm(A, F).

posubTerm(N, T, F) :- N >1, arg(N, T, A), posubTerm(A, true), !,

N1 is N-1, posubTerm(N1, T, F).

posubTerm(N, T, F) :- N >1, N1 is N-1, posubTerm(N1, T, true), !,

arg(N, T, A), posubTerm(A, F).

posubTerm(N, T, and(F1,F2)) :- N >1, arg(N, T, A),

posubTerm(A, F1), N1 is N-1, posubTerm(N1, T, F2).
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posubToPos(X,F):- var(X),!,posVar(X,F).

posubToPos(true,X) :- posTop(X).

posubToPos(false,X) :- posBottom(X).

posubToPos(and(F1,F2),V) :-

posubToPos(F1,V1), posubToPos(F2,V2), posMeet(V1,V2,V).

posubToPos(or(F1,F2),V) :-

posubToPos(F1,V1), posubToPos(F2,V2), posJoin(V1,V2,V).

posubToPos(iff(Var,F),R) :- posubToPos(F,V), posIff(Var,V,R).

/* POS domain */

posTop(or([and([])])).

posBottom(or([])).

posVar(X,or([and([X])])).

/* posIff */

posIff(Var,or([and(T)]),or([ and([Var|T]) |Cs])) :-

onlyIf(T,Var,or(Cs)).

onlyIf([],_Var,or([])).

onlyIf([Hneg|T],Var,or([ and([-Var,H]) |Cs])) :-

nonvar(Hneg), Hneg = -H, !, onlyIf(T,Var,or(Cs)).

onlyIf([H|T],Var,or([ and([-Var,-H]) |Cs])) :- onlyIf(T,Var,or(Cs)).

/* posJoin */

posJoin(or(L1),or(L2),C) :- append(L1,L2,L), simplify2(or(L),C1),

simplify3(C1,C2),simplify2(C2,C).

simplify2(C,CS) :- powersOfTwo(P), compNums(C,P,Nums,[],_),

selectEntailed([],1,Nums,Ent), sort(Ent,OrdEnt),

removeEntailed(1,C,OrdEnt,CS).

powersOfTwo([1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,

32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,

16777216,33554432,67108864,134217728]).
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compNums(or([]),_Table,[],_Seen, []).

compNums(or([H|T]),Table,[NH|NT],Seen,Lout) :-

compNums(H,NH,Table,TableOut,Seen,SeenOut,Lin,Lout),

compNums(or(T),TableOut,NT,SeenOut,Lin).

compNums(and([]),0,Table,Table,Seen,Seen,Lin,Lin).

compNums(and([X]),Num,Table,Table,Seen,Seen,Lin,Lin) :-

funnyMember((X,Num),Seen),!.

compNums(and([X]),Num,[Num|TT],TT,Seen,[(X,Num)|Seen],Lin,Lout) :-

!, update(X,Num,Seen,Lin,Lout).

compNums(and([X|T]),Num,Table,TableOut,Seen,SeenOut,Lin,Lout) :-

funnyMember((X,Num1),Seen), !,

compNums(and(T),Num2,Table,TableOut,Seen,SeenOut,Lin,Lout),

Num is Num1+Num2.

compNums(and([X|T]),Num,[Num1|TT],TableOut,Seen,SeenOut,Lin,Lout) :-

update(X,Num1,Seen,Lin,L1),

compNums(and(T),Num2,TT,TableOut,[(X,Num1)|Seen],SeenOut,L1,

Lout),

Num is Num1+Num2.

update(X, Num1, Seen, L, [(X,Num1,Num2)|L]) :- var(X),

funnyMember((-X,Num2),Seen),!.

update(-X, Num1, Seen, L, [(X,Num1,Num2)|L]) :- var(X),

funnyMember((X,Num2),Seen),!.

update(_, _, _, L, L).

funnyMember((Var,Num),[(Var1,Num)|_T]) :- Var==Var1,!.

funnyMember(X,[_H|T]) :- funnyMember(X,T).

selectEntailed(_Seen,_K,[],[]).

selectEntailed(Seen,K,[H|T],[K|T1]) :-

isEntailed(H,Seen), !, K1 is K+1, selectEntailed(Seen,K1,T,T1).

selectEntailed(Seen,K,[H|T],Result) :- entailed(H,Seen,E), K1 is K+1,

append(E,T1,Result), selectEntailed([(H,K)|Seen],K1,T,T1).

isEntailed(N,[(M,_Pos)|_T]) :- entails(M,N), !.

isEntailed(N,[_H|T]) :- isEntailed(N,T).
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entailed(_N,[],[]).

entailed(N,[(M,Pos)|T],[Pos|T1]) :- entails(N,M), !,

entailed(N,T,T1).

entailed(N,[_H|T],T1) :- entailed(N,T,T1).

entails(N,NEntailed) :- Tmp is N /\ NEntailed,Tmp=N.

removeEntailed(_K,or([]),[],or([])).

removeEntailed(K,or([_H|T]),[K|TE],or(T1)) :-

!, K1 is K+1, removeEntailed(K1,or(T),TE,or(T1)).

removeEntailed(K,or([H|T]),Entailed,or([H|T1])) :-

K1 is K+1, removeEntailed(K1,or(T),Entailed,or(T1)).

simplify3(or(L),or(LS)) :- powersOfTwo(P),

compNums(or(L),P,Nums,[],Sus), joinNumsC(Sus,Nums,L,_,LS).

joinNumsC([],Ns,As,Ns,As).

joinNumsC([_|_],[],[],[],[]).

joinNumsC([(X,P1,P2)|Ds],[N|Ns],[A|As],N3s,A3s) :-

joinNumsC(X,P1,P2,N,Ns,A,As,N2,N1s,A2,A1s),

joinNumsC([(X,P1,P2)|Ds],N1s,A1s,N2s,A2s),

joinNumsC(Ds,[N2|N2s],[A2|A2s],N3s,A3s).

joinNumsC(_,_,_,N,[],A,[],N,[],A,[]).

joinNumsC(X,P1,P2,N1,[N2|Ns],and(L1),[_A2|As],N3,Ns,and(L2),As) :-

canjoin(N1,N2,P1,P2), !, N3 is (N1 /\ \(P1)) /\ \(P2),

softDelete(X, L1, L2).

joinNumsC(X,P1,P2,N1,[N|Ns],A1,[A|As],N2,[N|N2s],A2,[A|A2s]) :-

joinNumsC(X,P1,P2,N1,Ns,A1,As,N2,N2s,A2,A2s).

canjoin(N1,N2,P1,P2) :- P is P1+P2,

N is (N1 /\ \(N2)) \/ (N2 /\ \(N1)), P=N,

(X is N1 /\ P, X=P1, Y is N2 /\ P, Y=P2 ;

X is N1 /\ P, X=P2, Y is N2 /\ P, Y=P1).

softDelete(X, [Y|Ys], Ys) :- X==Y, !.

softDelete(X, [Y|Ys], [Y|Zs]) :- softDelete(X,Ys,Zs).

/* posMeet */
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posMeet(or([]),_,or([])).

posMeet(or([H|T]),L,Result) :- product(H,L,or(H1)),

append(H1,T1,Res), posMeet(or(T),L,or(T1)),

simplify1(or(Res),Resu), simplify2(Resu,Resul),

simplify3(Resul,Result).

product(and(_L),or([]),or([])).

product(and(L),or([and(H)|T]),or([and(H1)|T1])) :-

append(L,H,H1), product(and(L),or(T),or(T1)).

simplify1(or([]),or([])).

simplify1(or([H|T]),or(Result)):-simplify1Aux([],H,H1,Flag),

(Flag=yes -> Result=T1 ;Result=[H1|T1]),

simplify1(or(T),or(T1)).

simplify1Aux(_Seen,and([]),and([]),no).

simplify1Aux(Seen,and([H|T]),and(T1),Flag) :- memberVar(H,Seen,How),

(How=pos -> simplify1Aux([H|Seen],and(T),and(T1),Flag) ;

(How=neg -> Flag=yes ;

(simplify1Aux([H|Seen],and(T),and(T2),Flag),T1=[H|T2]))).

memberVar(_Var,[],no).

memberVar(Var,[H|_T],pos) :- Var==H,!.

memberVar(-Var,[H|_T],neg) :- Var==H,!.

memberVar(Var,[-H|_T],neg) :- Var==H,!.

memberVar(Var,[_H|T],How) :- memberVar(Var,T,How).

/* posProj */

posProj(Const,Vars,Result) :- constVars(Const,LV),

diff(LV,Vars,Diff), posRestrict(Const,Diff,Res),

simplify3(Res,Result).

constVars(or(List),Xs):-

constVarsWRep(List,Ys),removeReps([],_SeenOut,Ys,Xs).

constVarsWRep([],[]).

constVarsWRep([and(C)|Cs],Rs) :- constVarsWRep(Cs,Ds),
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constVarsWRep(C,Ds,Rs).

constVarsWRep([],Ds,Ds).

constVarsWRep([Hneg|Cs],Ds,[H|Rs]) :-

nonvar(Hneg), Hneg = -H, !, constVarsWRep(Cs,Ds,Rs).

constVarsWRep([H|Cs],Ds,[H|Rs]) :- constVarsWRep(Cs,Ds,Rs).

removeReps(Seen,Seen,[],[]).

removeReps(SeenIn,SeenOut,[H|T],T1) :-

softMember(H,SeenIn),!, removeReps(SeenIn,SeenOut,T,T1).

removeReps(SeenIn,SeenOut,[H|T],[H|T1]) :-

removeReps([H|SeenIn],SeenOut,T,T1).

softMember(X,[Y|_L]) :- X==Y,!.

softMember(X,[_Y|L]) :- softMember(X,L).

diff([],_L,[]).

diff([H|T],L,T1) :- softMember(H,L), !, diff(T,L,T1).

diff([H|T],L,[H|T1]) :- diff(T,L,T1).

posRestrict(C,[],C).

posRestrict(C,[H|T],CR):-

schroder(C,H,CS1), simplify1(CS1,CS2), simplify2(CS2,CS),

posRestrict(CS,T,CR).

schroder(or([]),_V,or([])).

schroder(or([ and(A) | O]),V,or([ and(AwoV) | OwoV])) :-

kill(V,A,AwoV), schroder(or(O),V,or(OwoV)).

kill(_V,[],[]).

kill(V,[X|Xs],Xs) :- X == V.

kill(V,[X|Xs],Xs) :- X == -V.

kill(V,[X|Xs],[X|Ys]) :- X \== V, X \== -V, kill(V,Xs,Ys).

/* posImplicant */

posImplicant(or([F]),or(Fs)) :- var(F), member(F,Fs).

posImplicant(or([F]),or(Fs)) :- nonvar(F), powersOfTwo(P),

compNums(or([F|Fs]),P,[N|Ns],[],_), memberEntails(N,Ns).
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memberEntails(V,[N|_Ns]) :- entails(N,V),!.

memberEntails(V,[_N|Ns]) :- memberEntails(V,Ns).



Part III

Epilogue





Concluding Remarks

In Part I we introduced a uniform framework for the reconstruction of existing

semantics and for the systematic design of new semantics able to deal also with

the approximation typical of static program analysis. Our technical tools are that

of abstract interpretation. The idea of using abstract interpretation techniques as

unifying framework for various semantics is well-known [36]. However the originality

of this thesis is that we fully exploit this idea and provide a real flexible framework

which provides useful theoretical bases for new semantic-based applications.

Our results allow us to derive in a systematic way several known semantics,

together with their properties. Perfect observables allow us to reconstruct the resul-

tants semantics in [54] and the Heyting semantics in [67]. The results on denotational

observables apply to the least Herbrand model, the atomic logical consequence se-

mantics [16], the s-semantics [45, 13], the partial answer semantics [43] and the

call pattern semantics [55]. The results on semi-denotational observables apply to

bottom-up abstract interpretation frameworks, such as those whose collecting se-

mantics is the computed answer semantics [9, 17], the correct answer semantics [59]

and the call pattern semantics [51]. Finally, the results on semi-perfect observables

apply to top-down abstract interpretation frameworks [15].

Furthermore, our taxonomy of observables can be useful to design a new seman-

tics with some a priori given properties. One need only to define an observable

and check if it belongs to the right class, since the axioms for a class are sufficient

conditions for the derived semantics to have the required properties. The advan-

tage of this approach is that we can choose the appropriate level of abstraction for

specializing the semantics operators of the framework.

We discussed how our results can be useful in practical applications and showed

how our results give some new insights into some classical controversial issues, such

as top-down analysis versus bottom-up analysis and goal-dependence versus goal-

independence.

An application which is currently under study is the systematic design of ob-

servables with specific semantic properties. The problem can be stated as follows.

We want to model the observable α, by a semantics which has some property (such
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as being precise, AND-compositional, OR-compositional, goal-independent, or top-

down). If α belongs to a class which does not enjoy that property, we need to

determine another observable β which is more concrete than α (and therefore is

correct w.r.t. it) and which has the required property.

Consider, for example, the case where one wants to model computed answers

by an OR-compositional semantics (because needs to reason in a modular way).

Computed answers are denotational and not perfect and therefore they are not OR-

compositional. An OR-compositional semantics, correct w.r.t. computed answers,

was defined in [14]. It turns out to be exactly the semantics for the observable

computed resultants, which is indeed perfect and therefore OR-compositional.

As another example, assume one wants to model groundness dependencies of

computed answers by an AND-compositional (goal-independent) semantics. The

simple “groundness” observable is not even semi-denotational. On the other hand,

POS is correct w.r.t. groundness dependencies of computed answers and is semi-

denotational (and therefore AND-compositional).

The theory of abstract interpretation provides tools for the systematic construc-

tion of “more concrete” observables, i.e., refinement operators. Examples of refine-

ment operators are reduced product, disjunctive completion, functional dependen-

cies and Heyting completion. The above mentioned examples can be handled by

these techniques. In particular [60] shows that the resultants semantics can be ob-

tained by refining the domain of the s-semantics by functional dependencies, while

[62, 89] reconstruct POS from the “groundness” observable by Heyting completion.

Within our framework, one can handle the problem of establishing general results

about the properties of a class of observables and those of their refinements. Up to

now, if the observable does not belong to the right class, by focusing on the axioms

which are not satisfied, the “observable designer” can find useful suggestions on how

to transform an unsatisfactory abstraction into a good observable, by using this re-

finement techniques. However, we believe that the framework can be extended, by

using refinement techniques, to systematically derive the observable with the desired

properties from one which does not enjoy them.

In Part II we have introduced several effective techniques to perform the diagnosis

of pure logic programs.

Partial diagnosis can be used whenever we have a (finite) partial knowledge

about the intended behavior. This knowledge can be derived from symptoms detec-

tion (performed using testing techniques) and symptom-directed queries to the user,

as in the practical symptom-directed debuggers. Our results justifies the process of

determining incorrect clauses from incorrectness symptoms and tells us that incor-

rect clauses do always correspond to errors. Symptom-directed debuggers are of

course not concerned with the problem of deciding partial correctness. On the other
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side, symptom-directed debuggers derive p-uncovered A-elements starting from an

incompleteness symptom. Our negative result on p-uncovered A-elements shows

that the uncovered A-element does not always correspond to an incompleteness er-

ror, unless the oracle can return infinite answers. One might also think of other

partial knowledge acquisition techniques.

Diagnosis w.r.t. approximate observables is instead useful when one wants to

perform the diagnosis w.r.t. properties which can be modeled by abstractions over

Noetherian domains. This is interesting because several useful properties are mod-

eled by approximate observables or by observables which can be systematically re-

fined to approximate observables. The results are useful and comparable to those

obtained by verification techniques. In fact, if we consider the case where spec-

ifications consist of post-conditions only, both abstract diagnosis and verification

provide a sufficient condition for partial correctness and for both techniques there is

no sufficient condition for completeness. In order to verify completeness, we have to

rely on a fixpoint which, in general, cannot be computed in a finite number of steps.

As expected, abstract diagnosis (whose aim is locating bugs rather than just proving

correctness) gives us also information useful for debugging, by means of incorrect

clauses and uncovered elements.

As already mentioned, the approximation given by approximate observables is

somewhat dual of the one given by partial diagnosis. This is reflected by the duality

of the results. In fact, in partial diagnosis we have a sufficient condition for complete-

ness instead of a sufficient condition for partial correctness. Moreover, p-incorrect

clauses always correspond to bugs, while this is not the case for p-uncovered ele-

ments. This suggests that we might improve our results on completeness by taking

an under-approximation as abstraction. Of course, if we want to preserve the results

on partial correctness, we need to keep also the standard over-approximation. This

would lead us to a theory of abstract diagnosis, where two different abstractions are

used at the same time. This would in turn require a specification consisting of a pair

of abstractions of the intended concrete semantics. This is an interesting idea for

further research that might build upon the already mentioned approach by Ferrand,

which works with pairs of specifications.

More general properties (such as those used in program verification) can only

be handled through assertions in a suitable formal language. We are currently

looking into the problem of modeling these properties using abstract interpretation

techniques, with the goal of handling them as approximate observables. This would

make our results applicable to the more general case.

Let us note that Abstract Diagnosis can be turned into a more practical tool

by extending it to the case of real-life logic languages, e.g., PROLOG. It is worth

noting that this can easily be done, once we have a semantic framework for PROLOG
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similar to the one we have used here for pure logic programs. Such a framework

has indeed already been defined [71]. It handles almost all the impure features of

PROLOG (including cut). The collecting semantics has all the properties which are

relevant to diagnosis, namely the condensing property and the equivalence between

operational and denotational semantics.

Another relevant issue is related to the abstract operations associated to an

observable. In this thesis we have considered the case where the abstract operations

are systematically derived from the concrete ones and are optimal. Our results are

still valid if the optimal abstract operations are replaced by (correct) non-optimal

operations, as one does in most practical abstract interpretation frameworks. Since

this leads to a further loss of precision, the accuracy of the diagnosis method will

of course be affected. The same arguments apply to the case of non-condensing

observables.

Let us simply mention that some recent results on the reconstruction of verifica-

tion techniques by abstract interpretation [72] show that it is quite easy to extend

abstract diagnosis to specifications consisting of pre- and post-conditions. Handling

pre-conditions simply requires the choice of a more concrete collecting semantics,

modeling call patterns in addition to computed answers.

As a final remark, we want to point out that, since it is based on standard op-

erational and denotational semantics definitions, our approach can be generalized

to other programming languages. We just need to define a concrete denotational

and operational semantics on the same concrete semantic domain. The composi-

tionality properties will be of course different and related to the language syntactic

operators. Looking at the axioms of observables in Chapter 3 and the ones in Chap-

ter 4 one would expect a kind of general operator-independent definition capturing

the phenomenon, since the nature of both sets of axioms is similar, the difference

is only in the semantic operators used. Going further in that direction could we

give an operator-independent characterization for other classes of observables. We

believe that our semantic framework will allow us to look at the design of the ab-

stract operators as a process where, in most cases, we just choose among the best

approximations of semantic operations ad different levels of definition. The choice

will eventually be made as usual as a trade-off between efficiency and precision.
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Schröder’s elimination principle . . 125,

181

search space . . . . . . . . . . . . . . . . . . . . . . . 21

selected atom . . . . . . . . . . . . . . . . . . 18, 20

selection rule . . . . . . . . . . . . . . . . . . . . . . 20

semi-denotational observables . 91, 115

semi-perfect observables . . . . . . . . . . 130

sequential unfolding . . . . . . . . . . . . . . . 54

signature of a first order language . 15

SLD-derivations . . . . . . . . . . . . . . . . . . . 18

SLD-refutations . . . . . . . . . . . . . . . . . . . 19

SLD-resolution . . . . . . . . . . . . . . . . . . . . 18

SLD-trees . . . . . . . . . . . . . . . . . . . . . . . . . 21

solution of an equation set . . . . . . . . . 14

solved form equation sets . . . . . . . . . . 14

strict binary relations . . . . . . . . . . . . . . . 6

substitutions . . . . . . . . . . . . . . . . . . . . . . 12

subsumption . . . . . . . . . . . . . . . . . . . . . . 13

success set. . . . . . . . . . . . . . . . . . . . . . . . .22

successful SLD-trees . . . . . . . . . . . . . . . 21

sum operation
∑

, + . . . . . . . . . . . . . . .49

support of a partial function . . . . . . . . 3

surjective functions . . . . . . . . . . . . . . . . . 4

symptoms . . . . . . . . . . . . . . . . . . . . . . . . 202

T

terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

top element. . . . . . . . . . . . . . . . . . . . . . . . .7

top-down denotation . . . . . . . . . . 59, 170

totally correct programs . . . . . . . . . . 202

totally ordered sets . . . . . . . . . . . . . . . . . 6

transition system T for concrete oper-

ational semantics . . . . . . . . . . 54

transitive and reflexive closure of a re-

lation . . . . . . . . . . . . . . . . . . . . . . . 5

tree operator tree . . . . . . . . . . . . . . . . . . 49

U

uncovered A-elements. . . . . . . .203, 204

uncovered elements . . . . . . . . . . . . . . . 200

unification algorithm . . . . . . . . . . . . . . 13

unifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

unit clauses . . . . . . . . . . . . . . . . . . . . . . . 15

unsatisfiable set of formulas . . . . . . . 17

upper bound. . . . . . . . . . . . . . . . . . . . . . . .7

V

valuation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

variable assignment . . . . . . . . . . . . . . . .16

variables . . . . . . . . . . . . . . . . . . . . . . . . . . 15

variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

void collection, φ . . . . . . . . . . . . . . . . . . 48

W

well-formed sets . . . . . . . . . . . . . . . . . . . 39


	Preface
	Introduction
	Computation Properties and Semantics
	Abstract Interpretation and Program Analysis
	Program Debugging
	The Thesis Approach
	Thesis Overview

	Preliminaries
	Basic Set Theory
	Sets
	Relations and Functions

	Domain Theory
	Complete Lattices and Continuous Functions
	Fixpoint Theory

	Logic Programming
	Basic Logical Definitions
	Unification Theory
	Logic Programs and their Classical Semantics
	The s-semantics Approach

	Abstract Interpretation
	Closures on Complete Lattices
	Galois Insertions and Abstract Interpretation
	Correctness and Precision of Abstract Semantic Functions

	Quick Reference: Notation, Terminology and Basic Assumptions

	I A Theory of Observables for Logic Programs
	The Collecting Semantics of the Framework
	Semantic Domain
	Denotational Semantics of SLD-derivations
	Basic Operators on Derivations
	Basic Operators on Collections

	Operational Semantics
	The Program Denotation
	Semantic Properties of SLD-derivations
	Discussions on the Results
	Technical Proofs of the Chapter

	The Abstraction Framework
	The Observables
	From the Observables to the Abstract Semantics
	Perfect Observables
	Computed Resultant Semantics
	The Partial Proof Tree Semantics

	Denotational Observables
	The Computed Answer Observable and the s-semantics
	The Correct Answer Observable
	The Call Pattern Observable

	Semi-denotational Observables
	The Observable  for Groundness Analysis of Computed Answers
	The depth(k) Observable

	Semi-perfect Observables
	SLD-trees with POS

	Discussion on the Results of the Abstraction Framework
	Applications and Future Developments
	Proofs of Examples


	II Abstract Diagnosis
	Semantic Framework for Applications
	The Concrete Collecting Semantics
	Denotational Semantics
	Operational Semantics

	The Observables and the Abstract Semantics
	Abstract Denotational Semantics
	Abstract Operational Semantics

	Complete Observables
	The Correct Answer Observable

	Approximate Observables
	The POS Observable for Groundness Dependencies of Computed Answers
	The depth(k)-answer Observable

	Discussion on the Results of the Framework for Applications
	Proofs of the Chapter

	Abstract Diagnosis
	Introduction
	Declarative Debugging, Program Verification and Abstract Diagnosis
	Program Properties and Abstract Interpretation
	The Semantic Framework
	Abstract Diagnosis

	Abstract Diagnosis
	Bottom-up Diagnosis
	Top-down Diagnosis
	The Diagnosis Meta-interpreters
	Towards the Diagnosis Theorems

	Abstract Diagnosis w.r.t. Complete Observables
	Acceptable Programs
	Discussion on Complete Observables

	Partial Diagnosis
	Discussion on Partial Diagnosis

	Abstract Diagnosis w.r.t. Approximate Observables
	Discussion on Approximate Observables

	Modular Abstract Diagnosis
	Discussion on the Results of Abstract Diagnosis
	The Implementation of the Observable Modules
	The Computed Answer Observable (Id)
	The depth(k) Observable (k)
	The POS Observable ()



	III Epilogue
	Concluding Remarks
	Bibliography
	Index


