
A Methodology for UML Models V&V
A. Baruzzo and M. Comini

Dipartimento di Matematica e Informatica (DIMI),
University of Udine,

Via delle Scienze 206, 33100 Udine, Italy.

Abstract—The introduction of UML models in the software life
cycle poses new issues and challenges that are not adequately sup-
ported by current state-of-the-art development tools, especially
concerning V&V activities. Indeed, every tool usually focuses on
a small set of specialized activities (such as design, coding or
testing), failing to provide a satisfactory (general purpose) V&V
framework.

In this paper we propose a methodology which allows a
seamless integration of V&V into a UML-based development
environment. The methodology exploits a set of supporting
tools designed to be integrated in a unified framework. We
believe that such proactive collaboration between tools can
reduce significantly both the effort and time required to tackle
consistency, correctness, quality and long-term maintainability of
UML models, increasing the development productivity and the
overall quality of the delivered software system.

Index Terms—Software engineering, UML models, Validation
and Verification, CASE Tools

With his book “Writing Solid Code”[9], Steve Maguire
popularized the concept of assertions in the vast community
of C/C++ programmers, and explicitly damped the technique
of defensive programming. The ideas expressed in the book
where not new but forced the attention on some aspects that
are very actual even nowadays. Indeed he encourages the
systematic use of assertion to check not only the outcome
computed by a program, but also the implicit and often
latent assumptions that constrain the implementation. This is
an important issue because software continues to grow in
complexity, both in terms of the number of lines of code and
in terms of the number of interacting technologies required
for implementation. One way of managing this complexity is
to raise the abstraction level of software development. This is
the approach followed in model-driven software development
(MDD), wherein models of software are the primary artifacts
of development, not just mere documentation. However, even
rising the level of abstraction from code to models, we are
faced to the same Maguire’s original questions:

• Are our models correct, consistent, and suited to their
purpose?

• Are they an expression of good design?
• Are they maintainable in the long term?

Answering to the first question means both validate (we have
built the right model) and verify (we have built the model
right) the specification. Answering to the last two questions
implies addressing issues pertaining to design quality. V&V
activities for UML models involve several tasks, which range
from simple syntactic and static semantic checking to dynamic
property verification and to design heuristic fulfilling. In order

to automatize the V&V process, these activities need to be
supported by different tools. In the following sections, we
propose a methodology divided in phases and workflows. For
each phase then we discuss the required tool support that
should be provided by the development environment.

I. OUR METHODOLOGY FOR UML MODEL V&V

The methodology we propose combines two existing pro-
cess models: the Unified Process (UP) [7] which is an
incarnation of the iterative and incremental life cycle that
characterizes almost all object-oriented methods, and the V-
Model [10], which is a variation of the waterfall model that
demonstrates how V&V activities are related to analysis and
design.

Similarly to the UP process, the methodology is organized
in the following four phases (see Figure 1):

1) Inception - which includes feasibility analysis, require-
ments elicitation, and the necessary development envi-
ronment setup;

2) Elaboration - which performs the traditional object-
oriented analysis and design activities;

3) Construction - which is heavily focused on coding, unit,
integration and system testing;

4) Transition - which includes acceptance testing, deploy-
ment and maintenance of the delivered system.

The workflows (the set of activities performed in each
phase) are grouped into two broad categories:

• Primary workflows - which includes business modeling,
requirement analysis, system analysis and design, coding,
testing, and deployment activities;

• Supporting workflows - which includes project manage-
ment, configuration and change management, develop-
ment environment setup.

For lack of space we do not describe in detail phases and
workflows as they are simply the standard activities of the UP
process. Instead, we discuss some aspects that characterize the
integration of the V-Model in our approach, differentiating it
from other process models.

As the left part of the “V” depicted in Figure 1 shows,
our methodology tries to work at the model level as much
as possible. Software models, especially those elaborated
during phase 2, are very far from being complete. This fact
emphasizes a peculiar feature of our approach: in order to
embrace the V&V activities at the model level right from the
start, the verification methods have to work with incomplete



Figure 1. Phases, workflows and supporting tool set for automatize UML Model V&V

specifications and without the code. This allows the designer
to fix possible design flaws when it is much more economic to
do. Obviously, this does not mean that, if code is available, all
relevant information cannot be extracted from it and exploited
properly. The key feature required by tools to have such
capabilities is a compositional definition of the task to be
performed.

Since a complete static V&V is not possible (it is undecid-
able), it is necessary to complement the static methods with
dynamic ones, such as testing, as shown in the right part of the
V-Model of Figure 1. However, the models previously devel-
oped can also be exploited here (using suitable model-based
testing tools), in order to partially automatize the generation
of test cases, and thus supporting a full-fledge model-driven
approach. Moreover, the information produced by the static
activities is used to limit the tests just to the parts which
have not been proved right. Hence, the integration of the two
approaches can alleviate the respective weaknesses.

Similarly to the original V-Model, the proposed methodol-
ogy makes more explicit some of the iterations and reworks
that are hidden in the development process. For example,
during the construction phase it is very likely that missing
requirements are discovered, and the analysis and design
models need to be modified accordingly. At the same time,
depending on the results from the testing activities, it is
possible that some redesign and programming tasks would
also be necessary. Hence, blending the V-Model in a “UP-like”
process has the effect that the focus is more on activities and
correctness, rather then in documents and artifacts. Moreover,
it allows a seamless integration of V&V into a model-based
development environment.

II. THE SUPPORTING TOOL SET: TOWARD A UNIFIED
DEVELOPMENT ENVIRONMENT

One of the major difficulties in building a set of supporting
tools for a methodology is that tool builders rarely address the

entire development life cycle. “Instead, they focus on a small
set of activities, such as design or testing, and it is up to the
user to integrate the selected tools into a complete development
environment” [11]. Obviously, it would be desirable to have a
unified development environment in which those tools collab-
orate to achieve the better result, without requiring designers
to learn new notations every time. But it is not sufficient to
just glue together existing modules. These modules have to be
designed since the beginning to collaborate. The foundation of
our tool set is based upon a standard notation and a well-suited
common representation of all the relevant aspects of a software
system that are amenable to automated analysis. As we briefly
discuss in Section II-B, we exploit UML as such notation
(even if we extend it a little), and we identify in the concept
of model abstraction the suitable common representation for
UML models shared by all tools.

A side-effect of this methodology is to propose UMLaid, a
tool set that pervasively supports the following activities:

• Validation of a UML model and its textual specification
during phase I through static checkers and model anima-
tors/simulators (SVtool and SIMtool);

• Verification for consistency and completeness of the
UML model with respect to the associated OCL spec-
ification during phases I-II (SVtool);

• Forward and reverse engineering capability in order to
keep models synchronized with code in phase III (FEtool
and REtool);

• Model-based testing in phase III (Ttool);
• Evaluation of the overall design quality (aimed to identify

potential design flaws), especially with respect to good
design principles such as design patterns, quality metrics
and design heuristics (Qtool). This activity is spread over
phases I-II-III.

All these aspects have been conceived to be integrated in
the overall life-cycle, as illustrated in Figure 1. We can

2



Figure 2. Our approach for V&V of UML models

use every single module independently, but better results are
achieved when they communicate together. For example, we
can imagine that while the designer is making some model
refactoring (perhaps suggested by a quality critique) all tools
silently check the changed structure against all the stated
software constraints. Similarly, we can figure out the situation
in which the verification tool highlights a bug in the model
and this event triggers at first the intervention of the designer
in charge to fix the bug, and subsequently the quality critique
tool in order to find possible design flaws introduced by these
changes. Here again, the compositionality is important as we
can recompute just the things relevant to the changed parts.

In the next sections we provide an overview of the tools
concerning the V&V and the quality critiquing activities.

A. Verification for correctness

In order to support the presented methodology for what
concerns correctness we need a scalable, model-based tool
set which integrates both static and dynamic verification tech-
niques and which can work even in absence of the source code
(See Figure 2). This tool set can also help further debugging
activities, becoming an important tool for model validation.

Concerning dynamic verification approaches, in literature
there are many tool proposals and prototypes that can fit in the
needed scenario. For example, we can support the traditional
testing approach providing both the UML model and the OCL
specification as input and relying to Octopus1 or similar tools
in order to generate the assertion-testing code corresponding
to OCL invariants, pre- and post-conditions. In this way,
we realize an automated instrumentation of the source code
supporting the test phase. Similarly, we can exploit the same
input to support the model-based testing approach, where a
set of test case is automatically generated by a tool such as
LEIRIOS LTG/UML2 in order to augment the test case base

1available at http://octopus.sourceforge.net/
2available at http://www.leirios.com/

available to the tester. However, the testing tools eventually
need the code in order to execute test cases, thus they cannot
be exploited in the early stages of a project.

On the contrary, suitable static (semantics-based) tools
would not need a complete system to work, but the static
approach is in general undecidable. Hence, it cannot be fully
automatized, making dynamic verification unavoidable if we
want to cover the entire system. This is the reason why we
are proposing a mixed approach that relies also on (dynamic)
testing techniques, but applies them only on those parts which
are not (successfully) covered by static methods. In this way
we can shrink significantly the search space for the test case
generation.

Unfortunately, there are few static tools compatible with
a model-based software development environment suitable
for UML. Many researchers have proposed static approaches
based on model checking techniques, but they suffer from the
state explosion problem and thus they cannot scale to real
software system sizes. “Indeed, in software design complexity
arises even in a single state machine, from the complex
structure of its state, and model checkers can’t handle this
structure” [6]. For this reason we have proposed in [2], [3] a
different approach to achieve the mutual consistency of UML
diagrams and OCL specifications, organized as follows.

• Check of class diagrams and statecharts: We check static
semantic issues such as existence, visibility, cardinality
constraints and dynamic semantic issues involving just
classes such as the Liskov Substitution Principle [8].

• Check of sequence diagrams with respect to class and
statechart diagrams: We integrate the information about
states (coming from the statecharts) in all suitable points
of a sequence diagram. Then we aim to guarantee that,
by following the control flow on a sequence diagram, the
state is strong enough to satisfy preconditions, postcon-
ditions, and class invariants of each method call.

We are well-aware of the manual effort required to provide
a complete OCL specification even for a medium-size real
system. However, in real-world situations this weakness can be
alleviated by using the static engine to automatically synthe-
size (generate) some missing OCL specifications, starting from
sequence diagrams, source code, and test case specifications,
when they are available.

B. Verification for quality and CASE tools aiding software
design

Software design should be regarded as an instrument for
reasoning about a system. With the increase of the design
complexity, we need tools that enable suitable reasoning and
support experimentation with the design decisions. As an
example of a typical issue which emerges in building a real-
world UML model, consider the class diagrams in Figure 3
which contain a cycle. Cyclic dependencies across multiple
diagrams are very difficult to catch quickly, but nonetheless
they are important because make impossible to test in isolation
each element involved in the cycle. The tool set should be
able to provide an abstract (simplified) view of the diagrams,

3



Figure 3. Cyclic dependency across multiple diagrams

Figure 4. Model abstraction which retains only the cyclical dependencies

in which many classes and relations are hidden, but the
components which form any pattern of interest (in this case,
circular dependencies) are retained, as illustrated in Figure 4.
This “reduced” diagram immediately communicates only the
information relevant for a specific user-goal (i.e.,the designer
that need to identify the order in which test subsystems). We
call the result of this operation of throwing away information
not related to a particular purpose a model abstraction, which
is a very valuable structure because can spot clearly a possibly
critical piece of the design.

One of the targets for model abstractions in our framework
are design patterns, because they can be viewed as general
laws to build a software quality model [5]. Nevertheless,
there is a lack of tools automatizing the use of patterns to
achieve well-designed pieces of software, to identify recurrent
architectural forms, and to maintain programs. In order to auto-
matically recognize a pattern structure from a UML model, we
have to describe such a structure in a formal and precise way.
UML is a semi-formal language so it is not always well suited
to express every aspect of a design unambiguously. However,
we do not want to invent a new formalism from the scratch.
Hence in [1] we have proposed a visual notation obtained by
adding to UML just three graphical elements which allow to
express patterns with the needed level of formality.

Incidentally, this notation can be used to express with the
needed formality also the antipatterns [4] and patterns like
circular dependencies 3.

Figure 5 summarizes our approach for design quality cri-
tiquing. The tool set builds model abstractions in order to:

• provide the user with design critiques (such as instances
of antipatterns or violated design heuristics);

3Technically, circular dependency is not an antipattern because it can
represent essential aspects of an application domain. In this case, following
the “code smells” terminology coined by Kent Beck, we will call this kind
of pattern smelly pattern

Figure 5. The most important quality-critiquing features of our framework

• automatically build alternative views of model diagrams
(model views), more suited to specific tasks usually
performed when the designer reasons about the software
architecture.

III. CURRENT DEVELOPMENTS AND FUTURE WORKS

Implementing an integrated set of tools which work together
in a complex framework is a huge task. We have almost
finished to develop a prototype for both SV tool and Qtool
based on these ideas. As a future work, we plan to complete
the Qtool with a module that works on the diagram’s layout
in order to automatically synthesize meaningful model views.
On the verification side, instead, we plan to integrate suitable
Ttool modules.

REFERENCES

[1] D. Ballis, A. Baruzzo, and M. Comini. A Minimalist Visual Notation for
Design Patterns and Antipatterns. Available on our homepage., 2007.

[2] A. Baruzzo and M. Comini. Static Verification of UML Model
Consistency. In D. Hearnden, J. G. Süß, B. Baudry, and N. Rapin,
editors, MoDeV2a: Model Development, Validation and Verification,
pages 111–126. University of Queensland, Le Commissariat à l’Energie
Atomique - CEA, October 2006.

[3] A. Baruzzo and M. Comini. A Framework for Computer Aided
Consistency Verification of UML Models. Available on our homepage.,
2007.

[4] W. J. Brown, R. C. Malveau, H. W. McCormick, III, and T. J. Mowbray.
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
John Wiley & Sons, New York, 1998.

[5] Y-G. Guhneuc, J.J. Guyomarc’h, K. Khosravi, and H. Sahraoui. Design
Patterns as Laws of Quality. Technical Report Technical Report, Depart-
ment of Informatics and Operations Research, University of Montreal,
Quebec, Canada, France, 2006.

[6] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, Cambridge, Mass., 2006.

[7] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software
Development Process, The (2nd Edition). Addison-Wesley Professional,
1999.

[8] B. Liskov and J. M. Wing. Family values: A behavioral notion of
subtyping. Technical report, Pittsburgh, PA, USA, 1993.

[9] S. Maguire. Writing Solid Code. Microsoft Press, 1993.
[10] German Ministry of Defense. V-model: Software lifecycle process

model, 1992.
[11] S.L. Pfleeger and J.M. Atlee. Software Engineering: Theory and Practice

3/E. Pearson, 2006.

4


