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Abstract

This paper is an overview of our results on the application of abstract interpretation
concepts to various problems related to the verification of logic programs. These
include the systematic design of semantics modeling various proof methods and the
characterization of assertions as abstract domains.

1 Abstract Interpretation and Verification

Abstract interpretation [14,15] is a general theory for approximating the se-
mantics of discrete dynamic systems, originally developed by Patrick and Rad-
hia Cousot, in the late 70’s, as a unifying framework for specifying and vali-
dating static program analyses. The abstract semantics is an approximation
of the concrete one, where exact (concrete) properties are replaced by ap-
proximated properties, modeled by an abstract domain. The framework of
abstract interpretation can be useful to study hierarchies of semantics and
to reconstruct data-flow analysis methods and type systems. It can be used
to prove the safety of an analysis algorithm. However, it can also be used
to systematically derive “optimal” abstract semantics from the abstract do-
main. The systematic design aspect can be pushed forward, by using suitable
abstract domain design methodologies (e.g. domain refinements) [23,25,27],
which allow us to systematically improve the precision of the domain.

Abstract interpretation was originally intended as a method for automat-
ically generating program invariants. Even more recently [16,17,13], it was
shown to be very useful to understand, organize and synthesize proof meth-
ods for program verification. In particular, we are interested in one specific
approach to the generation of abstract interpretation-based partial correctness
conditions, which is used also in abstract debugging [4,10,6].

The ideas behind this approach are the following:
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• The concrete semantics [[P ]] of a program P is defined as the least fixpoint
of a semantic evaluation function TP on the concrete domain (D,≤).

• As in standard abstract interpretation based program analysis, the class of
properties we want to verify is formalized as an abstract domain (A,v),
related to (D,≤) by the usual Galois connection α : D → A and γ : A →
D (abstraction and concretization functions). The corresponding abstract
semantic evaluation function T α

P is systematically derived from TP , α and γ.
The resulting abstract semantics is a correct approximation of the concrete
semantics by construction and no additional “correctness” theorems need
to be proved.

• An element S of the domain (A,v) is simply an abstract specification of
the intended concrete semantics.

• The partial correctness of a program P w.r.t. a specification S can be ex-
pressed as [[P ]] ≤ γ(S) or, equivalently, as

α([[P ]]) v S. (1)

• Since [[P ]] is defined as the least fixpoint of the operator TP , a sufficient
condition for (1) to hold is TP (γ(S)) ≤ γ(S) or, equivalently,

T α
P (S) v S. (2)

In fact T α
P (S) v S implies lfp(T α

P ) v S and, since α(lfp(TP )) v lfp(T α
P ),

the condition α([[P ]]) v S can be derived. Note that (2) means that the
specification S is a pre-fixpoint of the abstract semantic evaluation function
T α

P .

Following the above approach, verification techniques inherit the nice fea-
tures of abstract interpretation. Namely, we can define a verification frame-
work, parametric with respect to the (abstract) property we want to model.
Given a specific property, the corresponding verification conditions are sys-
tematically derived from the framework and guaranteed to be indeed sufficient
partial correctness conditions. As we will discuss in Section 2, the verification
method is guaranteed to be complete, if the abstraction is precise (complete
according to abstract interpretation theory).

The inductive verification method based on the sufficient condition (2) does
not require to compute fixpoints. In order to make it effectively applicable,
we need

• a concrete fixpoint (denotational) semantics, which allows us to observe the
property we want to verify.

• a finite representation of the intended abstract behavior (specification).

Abstract interpretation theory provides results and techniques which can
be used to tackle all the above problems. Namely, it can be used to
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• systematically design a semantics, which models suitable observable behav-
iors and which exhibits suitable properties related to precision and compo-
sitionality. This problem will be considered in Section 3 for behaviors which
are abstractions of successful derivations and in Section 6 for behaviors re-
lated to infinite derivations.

• reconstruct the existing notions of partial correctness and related verifica-
tion methods (for logic programs) simply in terms of different choices of
the concrete semantics (see Section 4). Here we can use another important
feature of abstract interpretation, namely its ability to compare different
semantics by reasoning in terms of abstraction.

• choose the appropriate abstract domain to model the property, so as to
allow specifications to be always finite, in order to make effective the veri-
fication method. The easy solution is to choose the usual abstract domains
developed for static program analysis (types, groundness, etc.). A more
interesting solution is to consider assertions in a suitable specification lan-
guage, as we will do in Section 5.

There exist other approaches to verification of logic programs, using ab-
stract interpretation techniques. For example, [12,31] define a verification
method for Prolog, which applies to specifications related to properties such
as termination, and size-cardinality relations between inputs and outputs.

2 The issue of completeness

In general, given an inductive proof method, if a program is correct with
respect to a specification S, the verification condition might not hold for S.
However, if the method is complete, then when our program is correct with
respect to specification S, there exists a property R, stronger than S, which
verifies the verification condition. We have proved [34,41] that, for verification
conditions which have the form of condition (2) for a suitable α, the derived
method is complete if and only if the abstraction is precise with respect to TP ,
that is if α(lfp(TP )) = lfp(T α

P ).

In fact, it is known from simple lattice theoretic facts (Park’s fixpoint
induction) that for a monotonic operator F on a complete lattice

lfp(F ) ≤ ϕ⇐⇒ ∃ψ ≤ ϕ : F (ψ) ≤ ψ. (3)

We can easily derive the following lemma.

Lemma 2.1 Let (C,A, α, γ) be a Galois connection between the complete lat-
tices C and A. Assume F : C → C is a monotonic operator on C and
Fα = α ◦ F ◦ γ : A → A satisfies the condition α ◦ F v Fα ◦ α. Then,
for each ϕ ∈ A, α(lfp(F )) v ϕ =⇒ ∃ψ v ϕ : Fα(ψ) v ψ if and only if
(C,A, α, γ) is precise with respect to F .
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Then, if the proof method is derived from condition (2) and the abstraction
is precise, if a program P is correct with respect to the property S (that is
α([[P ]]) v S) then there exists a property R stronger than S (that is R v S),
which verifies the verification condition of the method (that is T α

P (R) v R).
Note that precision of abstract interpretation can be quite difficult to prove. A
sufficient condition for precision, generally easier to check, is full precision, that
is α◦ TP = T α

P ◦α. [26] contains some methods which allow us to systematically
enrich a domain of properties so as to obtain an abstraction which is fully
precise with respect to a given function. These methods can be viewed as the
basis for the systematic development of complete proof methods.

3 Designing semantics by abstract interpretation

The aim of the approach to semantics, known as s-semantics [3,24], was the
definition of denotations modeling various operational properties (observables)
in a compositional way, to be used as the semantic basis of analysis, verifi-
cation and transformation methods. All the semantics proposed by this ap-
proach have been reconstructed (and systematically derived) as instances of
a framework based on abstract interpretation [9,8]. The framework is based
on a concrete semantics [11], which models SLD-trees and is formalized both
denotationally and operationally. Let us introduce some notation.

• B[[G in P ]] is the operational semantics of goal G in program P (roughly
speaking, the set of its SLD-derivations).

• TP is the (denotational) semantic evaluation function for a program P (set
of definite clauses).

• [[P ]] = lfp(TP ) is the denotational semantics of P .

• Q[[G in P ]] is the denotational derivation of the semantics of the goal G
from [[P ]].

The main properties of the concrete semantics are the equivalence between the
operational semantics and the denotational semantics, i.e. ∀G, P.B[[GinP ]] =
Q[[G in P ]] and the existence of a goal-independent denotation [[P ]], which is
AND-compositional, i.e. which allows us to precisely derive (by means of the
function Q) the behavior of every (conjunctive) goal.

An observable is a Galois insertion between the domain of SLD-trees and
an abstract domain describing the property to be modeled. The abstract de-
notational semantic functions T α

P and Qα, together with the abstract denota-
tional semantics [[P ]]α = lfp(T α

P ), are systematically derived from the concrete
ones, by replacing the concrete semantic operators by their optimal abstract
versions.

The next step is the definition of a taxonomy of classes of observables.
An observable belongs to a class if it satisfies a set of conditions relating the
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concrete semantic operators and the Galois insertion. Once we have shown
that an observable belongs to a given class, we know how to automatically
derive the “best” semantics and which are the properties of such a seman-
tics. The properties we consider include precision, relation between concrete
operational semantics and abstract denotational semantics, existence of a goal-
independent denotation for a set of definite clauses and compositionality w.r.t.
various syntactic operators.

The two classes of observables which are relevant to the present discussion
are the following.

Denotational observables, for which we can obtain the optimal abstract
semantics in a denotational way, by taking the optimal abstract version
T α

P of TP . Denotational observables have a precise abstract denotational
semantics ([[P ]]α = α([[P ]])) and the abstract (goal-independent) denotation
is AND-compositional. The class includes correct answers substitutions,
computed answer substitutions, call patterns and resultants.

Semi-denotational observables, which are intended to model the prop-
erties useful for static program analysis, where we give up precision to
achieve termination in the construction of the abstract semantics. The
semantic construction of semi-denotational observables is the same of deno-
tational observables. We just lose the precision of the abstract denotational
semantics, i.e. α([[P ]]) v [[P ]]α. Semi-denotational observables have also
an abstract operational semantics Bα. The (abstract) semantics for any
goal G computed denotationally is as precise as the operational one, i.e.
∀G, P.Bα[[G in P ]] = Qα[[G in P ]]. The class includes the domain depth(k),
the domain POS for groundness analysis, proved to be optimal [38], by
using the theory of refinement operators, and other optimal domains (such
as the type domain in [33], designed by using the same operators).

It is worth stressing the importance of the AND-compositionality prop-
erty, which guarantees that we can be as precise as possible (even in the case
of approximate semi-denotational observables), when using denotational defi-
nitions. Note also that denotational observables are precise and will therefore
lead to complete verification methods.

4 Verification methods

As already mentioned, the sufficient condition (2) (in the case of logic pro-
grams) was initially used in abstract diagnosis [10,8], a technique which ex-
tends declarative debugging [39,21] to a debugging framework, which is para-
metric w.r.t. the abstraction. Abstract diagnosis considers properties which
are abstractions of computed answers. The corresponding specifications can
then be viewed as postconditions. A similar approach is taken in [6], where
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different approximations (modeled by abstract interpretation) can be used in
the semantics and in the specification.

Example 4.1 Let us consider the following program which is a wrong 1 ver-
sion of an automaton which recognizes the language L = {(ab)n | n ≥ 0} ∪
{(ab)na | n ≥ 0}.
c1: accept([a|Xs]) :- acc(Xs).

c2: acc([a|Xs]) :- accept(Xs).

c3: accept([]).

and the following specification w.r.t. the depth(2) answer observable (denoted
by τ2).

Iτ2 :=

{
accept(X) 7→

{
{X = [ ]}, {X = [a]}, {X = [a, V̂ |Ŵ ]}

}
acc(X) 7→

{
{X = [ ]}, {X = [b]}, {X = [b, V̂ |Ŵ ]}

}
.

Intuitively an abstraction over depth(k) is obtained by cutting terms which
have a depth greater than k, i.e. by replacing each sub-term rooted at depth k
with a new variable taken from a set V̂ (disjoint from V , the set of variables
of the first order language L considered). A depth(k) term represents all the
concrete terms obtained by instantiating the variables of V̂ with terms built
over V .

By applying the T τ2
P operator we find out that the clause c2 is probably

wrong (as it is actually the case) and that the element acc(x) 7→ {x = [ ]} is
uncovered.

More general specifications (including pre and post conditions) are con-
sidered in [34,41], which defines a verification framework, where well known
verification methods can be reconstructed, by simply choosing different observ-
ables (semantics). It is worth noting that the existing verification methods
for logic programs have been defined by using ad-hoc constructions. Their
reconstruction in terms of abstract interpretation allows us to compare the
different techniques and to show the essential differences.

The approach can be explained in terms of two steps of abstraction, both
modeled by observables. The first step is concerned with the derivation of
the semantics which models the proof method. The second step performs the
abstraction needed to model a specific class of properties (so as to lead to a
finite specification). The methods which are considered are

Success-correctness. Here we consider post-conditions only. The right (de-
notational) observable is correct answers. The verification condition, ob-
tained by unfolding (2) with the correct answers T α

P , is essentially the same
as those defined by Clark [7] and by Deransart [18]. The method is complete,

1 The clause c2 has ‘a’ instead of ‘b’ and the clause accept([]). is missing.
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since the observable is precise.

I/O correctness. Specifications are pairs of pre- and post-conditions. We
prove that the post-condition holds whenever the pre-condition is satisfied.
The right (denotational) observable is computed answers (s-semantics). The
method is complete. It boils down to the previous method, whenever the
properties, considered in the second abstraction step, are closed under in-
stantiation (as, for example, in [19]).

I/O and call correctness. Specifications are still pairs of pre- and post-
conditions. However, we prove also that the pre-conditions are satisfied by
all the procedure calls. The right (denotational) observable is call patterns.
The method is complete. The verification condition, obtained by unfolding
(2) with the call patterns T α

P , is a slight generalization of the one defined
by the Drabent-Maluszynski method [20]. If we consider, in the second
abstraction step, properties closed under instantiation, we reconstruct the
Bossi-Cocco condition [2], and, by further abstractions (modes, types, etc.),
the hierarchy of verification conditions in [1].

As already mentioned, the second abstraction step is concerned with the
choice of an abstract domain to model the property. Here we can make avail-
able to program verification all the abstract domains designed for the static
analysis of properties such as modes, types, groundness dependencies, etc.
The reasoning on the domain of properties is performed by efficient abstract
computation steps and the sufficient condition can simply be proved by using
the operations on the abstract cpo. As is the case for static analysis, in gen-
eral we loose the precision (and therefore the completeness of the verification
method). However we succeed in getting finite specifications. Note that, if
we model the property by semi-denotational observables, even if the method
is not complete, the abstract T α

P , used in condition (2), introduces the same
amount of approximation of the “best” goal-dependent abstract operational
semantics.

Another possibility is to specify properties as assertions in a suitable spec-
ification language. This issue will be considered in the next section.

Example 4.2 Let us consider the append program

c1: append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

c2: append([], Xs, Xs).

and the corresponding intended specification w.r.t. the depth(2) answer observ-
able

Iτ2
Post := append(X, Y, Z) 7→

{
{X = [ ], Y = [ ], Z = [ ]},
{X = [R], Y = [ ], Z = [R]},
{X = [R, t̂|û], Y = [ ], Z = [R, v̂|ŵ]},
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{X = [ ], Y = [S], Z = [S]},
{X = [R], Y = [S], Z = [R, v̂|ŵ]},
{X = [R, t̂|û], Y = [S], Z = [R, v̂|ŵ]},
{X = [ ], Y = [S, t̂|û], Z = [S, v̂|ŵ]},
{X = [R], Y = [S, t̂|û], Z = [R, v̂|ŵ]},
{X = [R, t̂|û], Y = [S, p̂|q̂], Z = [R, v̂|ŵ]}

}
which is simply the depth(2) cut of the infinite set

{
{X = [X1, . . . , Xn], Y =

[Y1, . . . , Ym], Z = [X1, . . . , Xn, Y1, . . . , Ym] | n,m > 0
}
.

In presence of post-conditions only, the clause c2 wrong, since the variable
X can unify with any term. This does not hold in presence of a pre-condition
stating that the first and second argument of append should be lists. Thus with
such a specification the I/O correctness method is able to verify the correctness
of this program.

5 Assertions and specification languages

In program verification, a specification is usually given by means of assertions
(i.e. formulas in a suitable formal specification language), while in our case
a specification is (extensionally defined as) the intended abstract semantics.
On the other hand, assertions clearly define an abstract domain (as shown by
the Cousot’s in the early papers on abstract interpretation).

We will consider the case of success-correctness only, where the concrete
domain consists of sets of atoms. Similar constructions can be given for the
other notions of correctness.

Let us consider a first order language L = 〈Σ,Π, V 〉. Let F be a set of
formulas (assertions) of L, expressing properties of predicate arguments. We
assume the signature of L to include functions, constants and variables of the
programs we want to verify.

We need to define what it means for an atom p(t) to satisfy a property Φ
of F . This can be done either semantically or syntactically (in terms of deriv-
ability from a theory). We just show the semantic version. We choose a term-
interpretation I = 〈Terms(Σ, V ),ΣI ,ΠI〉 (the set of non-ground terms viewed
as an L structure). An atom p(T 1, . . . , T n) satisfies the formula Φ [x1, . . . , xn]
(of F), if and only if for each σ,

I |=σ[x1,...,xn\T 1,...,T n] Φ [x1, . . . , xn] .

Given the set of assertions {Θp}p∈Π, which associates an assertion Θp to
each predicate p, a program P is success-correct with respect to {Θp}p∈Π, if

and only if ∀p(t) ∈ Atoms , p(t)
θ
 2 implies that p(t)θ satisfies Θp.
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A natural pre-order is induced on F by implication under the interpretation
I, i.e.

Θ �I Φ iff I |= Θ⇒ Φ.

By abuse of notation, we still denote by � the induced partial order. Let us
now define the domain

AI = (Π→ F/≡I ,≤),

whose elements can be represented as sets {Θp}p∈Π, where each Θp is a formula
of F with free variables corresponding to arguments of p. The order is given
by the pointwise extension of the order between formulas of F .

Consider now the following function from AI to C:

γI(Θ) = λp(x).{p(t) ∈ Atoms | p(t) satisfies Θp}.

If F is a complete lattice, closed under conjunction, the function γI is meet-
additive. Then, by standard abstract interpretation results, it induces a Galois
connection between C and A.

Hence we can define the best abstraction of T CP on AI .

T IP (Θ) = λp(x).
∨

p(t)←p1(t1),...,pn(tn)∈P

∧
{Φ | I |=

n∧
i=1

Θpi
[xi\ti]⇒ Φ [x\t]}

It can be shown that P is success-correct with respect to {Θp}p∈Π, if and only if
αI(lfp(T CP )) ≤ Θ, where αI is the adjoint function of γI . A sufficient condition
for success correctness can then be obtained from the condition T IP (Θ) ≤ Θ.

Theorem 5.1 Let P be a logic program and {Φp}p∈Π be assertions of F . A
sufficient condition for P to be success-correct with respect to {Φp}p∈Π is that
for each clause p(t)← p1(t1), . . . , pn(tn) it is true that

I |=
n∧

i=1

Φpi
[xi\ti]⇒ Φp [x\t] (4)

This result is essentially the verification method proposed by Deransart [18].

If the relation |= is decidable, we have an effective test to check the con-
ditions. As an example, we can take the language of properties by Marchiori
[35,36], which allows us to express groundness, freeness and sharing of terms.
[35] contains also a decidable axiomatization for a fragment of the language.
A decidable extension of the same language, including polymorphic types,
is described in [40]. Another example of a decidable specification language,
oriented to the verification of functional programs (in a simple first order
language) can be found in [32].
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Example 5.2 Let us consider the following naive sort, where we assume the
procedure leq(X, Y ), which is successful if X and Y are numbers and X ≤ Y ,
and the procedure, perm(Xs ,Ys), which returns in Ys a permutation of the
list in Xs.

c1: sort(Xs,Ys) :- perm(Xs,Ys), ord(Ys).

c2: ord([]).

c3: ord([X,Y|Zs]) :- leq(X, Y), ord([Y|Zs]).

The programs is correct w.r.t. the following specification.

Iα :=


sort(X,Y ) 7→ glist(X)→ glist(Y )

perm(X, Y ) 7→ glist(X)→ glist(Y )

ord(X) 7→ glist(X)→ true

leq(X, Y ) 7→ ground(X) ∧ ground(Y )→ true,

where the predicates ground(X) and glist(X) specify ground terms and lists of
ground terms, respectively.

Let us consider now a small change in the program, obtained by inverting
the order of the predicates in the body of the clause c3, obtaining

c3’: sort(Xs,Ys) :- ord(Ys), perm(Xs,Ys).

In this case we have that the predicate ord may be called with a non ground
argument, even if the predicate sort is called correctly w.r.t. its pre-condition.
This possibly wrong situation is detected by observing that the verification con-
dition glist(Xs)⇒ glist(Ys) associated to the first clause is false.

Concerning the completeness of the axiomatic method, the same result of
extensional properties holds, namely the method is complete if the abstraction
is precise. In the case of assertions, this means that the strongest set of asser-
tions {ϕp}p∈Π, for which P is success-correct, verifies condition 4. Obviously
this strongly depends on the choice of the language and of the set of properties
F .

We have shown that assertions can indeed be handled as abstract domains.
The corresponding verification methods are practical only if we can effectively
derive, for a given assertion language, the abstraction function αI , which is
needed to design the optimal semantic operators. This would also lead to a
notion of abstract execution on the domain of assertions. Other open interest-
ing issues are the problem of defining more expressive (decidable) specification
languages, the problem of comparing (from the viewpoint of precision) stan-
dard “static analysis” abstract domains to assertions, and the problem of
applying refinement operators to domains defined by assertions.
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6 Finite failure and infinite derivations

All the observables which can be defined in the semantic framework of Sec-
tion 3 are abstractions of the set of successful derivations. Hence we cannot
handle properties such as finite failure. Finite failure was shown to have some
of the properties which are relevant to verification, e.g. AND-compositionality
[29]. However, a fixpoint semantics correctly modeling finite failure in an
AND-compositional way did not exist. Our approach is to derive such a se-
mantics, by starting from a concrete traces semantics [28], which extends with
infinite computations the traces semantics in [11], and by defining an abstract
domain Dff , chosen so as to model finite failure and to make the abstract
operator T ff

P precise. The corresponding abstract fixpoint semantics, lfp(T ff
P ),

is the Non-Ground Finite Failure set. It correctly models finite failure and is
AND-compositional.

Once we have a fixpoint semantics modeling finite failure, we can use the
standard condition (2) as a sufficient condition for the correctness w.r.t. finite
failure.

In [30], stronger verification conditions are generated, by using Ferrand’s
approach [22], based on two specifications. Ferrand uses the standard ground
immediate consequences operator TP , while the specifications are S, intended
lfp(TP ), and S ′, intended gfp(TP ). The standard sufficient condition for par-
tial correctness (TP (S) ⊆ S) allows us to reason about the ground success
set., while the new sufficient condition (S ′ ⊆ TP (S ′)) is somewhat related to
sufficiency or missing answers (using the declarative debugging terminology).

We adopt Ferrand’s approach by replacing gfp(TP ) by TP ↓ ω. T ff
P is in

fact not co-continuous (as is the case for Ferrand’s TP ). In the case of finite
failure, the complement of T ff

P ↓ ω has a very interesting characterization
as the set of (possibly non-ground) atoms which do not have a successful
derivation (called unsolvable in [5]) We can then provide a specification S ′ of
the complement of the set of atoms which are intended to succeed and derive
another meaningful sufficient condition S ′ ⊆ T ff

P (S ′), which guarantees that
the actual set of successful atoms is included in the intended one.

The above conditions are not effective because T ff
P is not finitary and

because both S and S ′ are infinite sets. However, the analysis and verification
of properties of finite failure, can be based on effective approximations of the
operator. Using two semantics and two specifications will allow us to use
two different (related) abstractions, an upward approximation (of the least
fixpoint semantics) and a downward approximation (of T ff

P ↓ ω), both related
to the depth(k) abstraction. The two abstractions give finite approximations
of the Non-Ground Finite Failure set and of the complement of the success set
respectively (see [30] for the technical construction of the two abstractions).
Note that the idea of considering upward and downward approximations for
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verification and debugging has also recently been proposed in [6].

As already mentioned, the upward abstraction αup is applied to the least
fixpoint of T ff

P , while the downward abstraction αdw is applied to T ff
P ↓ ω.

The two corresponding specifications are

• Sαup is the αup abstraction of the intended Non-Ground Finite Failure set.

• S ′
αdw is the αdw abstraction of the intended set of atoms which either finitely

fail or (universally) do not terminate. Alternatively, S ′
αdw can be viewed as

the complement of the set of atoms (of depth ≤ k) which have a successful
derivation.

A program P is correct w.r.t. the finitely failed atoms not deeper than k if

c1 αup(lfp(T ff
P )) ⊆ Sαup ,

c2 S ′αdw ⊆ αdw(T ff
P ↓ ω)).

If the above conditions are satisfied, the program is correct w.r.t. finitely failed
atoms not deeper than k and the set of depth(k) successful atoms is correct
w.r.t. the complement of S ′

αdw .

The following theorem gives us sufficient effectively computable conditions
for c1 and c2 to hold.

Theorem 6.1 Let P be a program. If the following conditions are satisfied

sc1 T ff up

P (Sαup) ⊆ Sαup ,

sc2 S ′αdw ⊆ TP
ffdw

(S ′
αdw ),

then P is correct w.r.t. finitely failed atoms not deeper than k and the w.r.t.the
set of successful atoms not deeper than k.

One may wonder whether there exist other abstract domains which can
be used to derive meaningful sufficient conditions for effective verification of
finite failure. One idea which we are currently pursuing is to use the abstract
domain of assertions as discussed in Section 5. Another problem, on which
we are currently working and which can be tackled starting from the “infi-
nite derivations” traces concrete semantics, is the problem of reasoning about
termination.

Example 6.2 Let us consider the following program meant to append lists of
integers where in the clause c4 instead of nat(s(X)) we have nat(s(0)).

c1: append([X|Xs], Ys, [X|Zs]) :- nat(X), append(Xs, Ys, Zs).

c2: append([], Xs, Xs).

c3: nat(0).

c4: nat(s(0)) :- nat(X).

Intuitively this error increments the set of atoms which have a finite failure
in the program w.r.t. the set of atom which should have a finite failure in the
intended program.
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If we consider as specification the upward approximation Sαup, on the
depth(k) domain, of the set of atoms which should have a finite failure, we
find that T ff up

P1
(Sαup) ⊆ Sαup. Hence (by Theorem 6.1) the program is not

correct w.r.t. the intended depth(k) finite failure set.

Note that for the correct intended program P conditions c1 and c2 are
verified. Thus we can conclude that P is correct w.r.t. finitely failed atoms not
deeper than k and also w.r.t. the successful atoms not deeper than k.

7 Future developments

One of the most interesting challenges for researchers in the fields of pro-
gramming languages semantics and formal methods is the verification of code
coming from untrusted sources. One promising solution to the above problem
is the approach known as Proof Carrying Code (PCC) [37]. According to the
PCC approach, mobile code is supplied with a formal proof that it satisfies
a specification defined by the host system, which will then simply check the
proof, to ensure that the code complies with its policy. One step forward
is the idea of extending compilers with proof-generation capabilities (certify-
ing compiler). In most current (experimental) implementations of the PCC
idea, properties expressed in specifications are essentially type properties and
certification boils down to type inference and verification.

We believe that abstract interpretation based verification techniques might
be very useful in the PCC approach. On one side, abstract interpretation
makes it possible to reconstruct in a unifying framework different type sys-
tems, proof methods, and dataflow analysis techniques. On the other side,
it makes available several systematic design techniques (systematic design of
the abstract semantics, systematic design of domains), which might improve
the reliability and flexibility of verifiers. Last but not least, abstract inter-
pretation based verification methods are scalable, since they are intrinsically
modular (since they are based on a compositional semantics).

There exist several semantics-based techniques which can be useful also
in the design of certifying compilers. One such a technique is the combina-
tion of abstract interpretation and partial evaluation. One experiment we are
currently performing (for an eager higher order functional language) might be
relevant. We have a standard interpreter (formally derived from a denotational
definition) and an abstract interpreter which computes on a suitable domain
of properties (a standard analysis abstract domain in the current experiment,
a domain of assertions in the future). We combine (by a sort of reduced prod-
uct operation) the two interpreters into a single interpreter. The specialization
(by partial evaluation) of the combined interpreter w.r.t. a program P returns
the compiled code for P , together with the code which computes the abstract
property. One can build on this idea to define a tool, which generates (to-
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gether with the compiled code) a proof that the inferred property satisfies the
specification.

Of course, mobile code is not currently written in declarative languages.
Our future plans include an attempt to apply our results to programming
languages which are closer to those which are used to program mobile code in
the current practice.
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