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SYMBOLIC MODEL CHECKING
Tackling the state-space explosion problem



• Classical algorithms for model checking belong to the class of explicit-state
model checking algorithms:

• the Kripke Structure M is represented as a set of memory locations, pointers
ecc...

• states are considered individually

• MC suffers from the state-space explosion problem: the number of states of

M = M1 × M2 × · · · × Mn

: Cartesian product

is exponential in n.
• The exploration of such a a huge state space may be prohibitive even for an

algorithm running in linear time in the size of the model.
• the size of system that could be verified by explicit model checkers was

restricted to ≈ 106 states. Solution: Symbolic Model Checking
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Citation for the 2007 Turing Award

Although the 1981 paper demonstrated that the model checking was possible in
principle, its application to practical systems was severely limited. The most
pressing limitation was the number of states to search. Early model checkers
required explicitly computing every possible configuration of values the program
might assume. For example, if a program counts the millimeters of rain at a
weather station each day of the week, it will need 7 storage locations. Each
location will have to be big enough to hold the largest rain level expected in a
single day. If the highest rain level in a day is 1 meter, this simple program will
have 1021 possible states, slightly less than the number of stars in the observable
universe. Early model checkers would have to verify that the required property
was true for every one of those states.

https://amturing.acm.org/award_winners/clarke_1167964.cfm

State-space explosion problem
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Symbolic model checking has been proposed by McMillan (1993).

Reference:
Kenneth L McMillan (1993). “Symbolic model checking”. In: Symbolic Model
Checking. Springer, pp. 25–60

It replaces fixed-point computations over individual states by manipulations of
definitions of state sets. It allows an exhaustive implicit enumeration of a huge
number of states
Main definition: symbolic transition system.

Symbolic Model Checking
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Consider a (explicit) Kripke structure M = (S, I,T,L). We can give a Boolean
encoding of it:

• let x := {x0, . . . , xn−1} be a set of state (Boolean) variables;
• S = {0, 1}n, i.e., a state is an assignment to all the state variables;

• a state is a bit vector, e.g., ⟨0, 1, 1, . . . , 0⟩
• with n variables we represent 2n states

• m |= fI(x) is true iff m ∈ I
• m,m′ |= fT(x, x′) is true iff (m,m′) ∈ T
• m |= fp(x) is true iff p ∈ L(m), for all labels p ∈ RANGE(L)

The corresponding symbolic Kripke structure is the tuple (x, fI, fT, {fp1 , . . . , fpk}).

Symbolic Transition Systems
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• we will write simply M = (S, I,T,L), meaning a symbolic transition system
• a path (or trace) π = m0,m1, . . . is an infinite sequence of assignment to the

state variables such that:
• m0 |= I(x);
• mi,m′

i+1 |= T(x, x′) holds, for all i ≥ 0.

where x′ := {x′0, . . . , x
′
n−1}.

Symbolic Transition Systems
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Three main techniques have been proposed:
• partial order reduction
• BDD-based symbolic model checking

• kind of compressed truth tables
• SAT-based symbolic model checking, aka Bounded Model Checking.

They allowed for the verification of systems with > 10120 states.
• substantially larger than the number of atoms in the observable universe

(around 1080)

Symbolic Transition Systems
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¬x0 x0

1 MODULE main
2 VAR
3 x0 : boolean ;
4 INIT
5 ! x0 ;
6 TRANS
7 x0 < -> next ( ! x0 ) ;

Example 1 - SMV
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¬x1
¬x0

¬x1
x0

x1
¬x0

x1
x0

1 MODULE main
2 VAR
3 x0 : boolean ;
4 x1 : boolean ;
5 INIT
6 ! x0 & ! x1 ;
7 TRANS
8 ( next ( x0 ) < -> ! x0 )
9 &

10 ( next ( x1 ) < -> ( ( x0 & ! x1 ) | ( ! x0
& x1 ) ) ) ;

Example 2 - SMV
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1 whi le t rue do
2 i f x < 200 then
3 x := x + 1
4 od
5

6 whi le t rue do
7 i f x > 0 then
8 x := x -1
9 od

10

11 whi le t rue do
12 i f x = 200 then
13 x := 0
14 od
15

1 MODULE main
2 VAR
3 x : 0 . . 200 ;
4 INIT
5 x = 199 ;
6 TRANS
7 (x<200 & next ( x )=x+1) |
8 (x>0 & next ( x )=x+( -1) ) |
9 ( x=200 & next ( x ) =0) ;

Example 3 - SMV
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• Let S = {0, 1}3 and let the target be defined by the function x0 ∧ x1 ∧ ¬x2. Let
R be defined by:

(

2∧
i=0

(xi → x′i)) ∧ (x0 ↔ x′0 ∨ x1 ↔ x′1)

• Compute the Boolean formula which defines the set of states in the system in
which the formula EF(target) holds, written as [EF(target)].

• [target] is defined by x0 ∧ x1 ∧ ¬x2.
• [target] ∪ [EX(target)] is defined by

(x0 ∧ x1 ∧ ¬x2) ∨ (¬x0 ∧ x1 ∧ ¬x2) ∨ (x0 ∧ ¬x1 ∧ ¬x2)

• [target] ∪ [EX(target)] ∪ [EXEX(target)] is defined by:

(x0 ∧ x1 ∧ ¬x2) ∨ (¬x0 ∧ x1 ∧ ¬x2) ∨ (x0 ∧ ¬x1 ∧ ¬x2) ∨ (¬x0 ∧ ¬x1 ∧ ¬x2)

≡ ¬x2

An example of Symbolic Model Checking
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Key step:
• proceed from a set of states T to the set of its predecessors:

{s ∈ S | ∃(s, s′) ∈ R, s′ ∈ T}

• proceed from a formula βT(x) to:

β′(x) = ∃y(fR(x, y) ∧ βT(y))

Problem:

what is a good normal form for the representation of Boolean functions which allows
efficient application of ¬, ∧, ∨, and ∃?

An example of Symbolic Model Checking

13/39 L. Geatti, A. Montanari Symbolic Model Checking and BMC



Ordered Binary Decision Diagrams (OBDDs) are based on work by Akers (1978)
and Bryant (1986). They are reduced versions of decision trees for Boolean
functions.
Example: x1 ∧ (x2 ∨ x3)
Decision tree vs. OBDD

Ordered Binary Decision Diagrams (OBDDs)
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1 Using the two reduction rules:
• identify isomorphic “subgraphs”
• for x ∈ {0, 1}, replace the paths x0 and x1 by the arc x, whenever x0 and x1 lead

to the same value (cf. previous example)
• one obtains a canonical (unique) OBDD for a given Boolean function and a

given order of variables

2 The operations ¬,∧,∨,∃ can be performed efficiently on OBDDs

Basic Results on OBDDs
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Partial order reduction can be used to reduce the size of the state space making
use of the following observation:

computations that differ in the ordering of independently executed events are usually
indistinguishable by the specification and thus they can be considered equivalent

It suffices to check a reduced state space, which contains (at least) one
representative computation for each class of equivalent computations.

Partial Order Reduction
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• Bounded model checking: SAT solvers + symbolic model checking +
bounded models

• Satisfiability Modulo Theories (SMT solvers): satisfiability of logical formulas
with respect to one or more background theories formulated in first-order
logic with equality (integers, real numbers, ..)

• K-Liveness: a simple but effective technique for LTL verification; it checks the
absence of lasso-shaped counterexamples by trying to prove that bad states
are visited at most k times, for increasing values of k (liveness checking as a
sequence of safety checks)

• IC3: a very successful SAT-based model checking algorithm based on
induction

Advanced Techniques
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BOUNDED MODEL CHECKING



Reference:
Armin Biere et al. (1999). “Symbolic model checking without BDDs”. In:
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer, pp. 193–207

(a) A. Biere (b) A. Cimatti (c) E. Clarke (d) Y. Zhu

Bounded Model Checking
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• given a Boolean formula f , establish if f is satisfiable;

• f is normally given in CNF:

f := (L1,1 ∨ · · · ∨ L1,k) ∧ · · · ∧ (Ln,1 ∨ · · · ∨ Ln,m)

where each literal Li,j is either a variable or a negation of a variable.
• why not in DNF?

f := (L1,1 ∧ · · · ∧ L1,k) ∨ · · · ∨ (Ln,1 ∧ · · · ∧ Ln,m)

The SAT problem
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• first NP-complete problem, but ...

• there are several efficient algorithms for solving SAT (e.g., DPLL, CDCL...)
along with many heuristics (e.g., 2 watching literals, glue clauses...)

• some numbers:
• > 100·000 variables;
• > 1·000·000 clauses;

The SAT problem
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In order to decide if M, s |= ϕ:

• build the Büchi automaton AM that accepts all and only the words
corresponding to computations of M;

• build the Büchi automaton A¬ϕ that accepts all and only the words
corresponding to models of ¬ϕ;

• check the (non-)emptiness of the product automaton AM ×A¬ϕ.
MC=universal problem, EMPTINESS= existential problem

• if L(AM ×A¬ϕ) ̸= ∅, then M, s
?

|= ϕ.

M, s ̸|= ϕ

Classical Approach to LTL MC
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• the universal problem M, s |= Aψ is reduced to the existential problem
M, s |= Eϕ, where ϕ := ¬ψ;

Bounded Model Checking (BMC) solves the problem M, s |= Eϕ by proceeding
incrementally:

• we start with k = 0;
• check if there exists and execution π of M of length k that satisfies ϕ; encode

this problem into a SAT instance and call a SAT-solver;
• if so, we have found a counterexample to ψ; if not, k++.

Bounded Model Checking
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• BMC checks only bounded/finite traces of the system;
• ...but LTL formulas are defined over infinite state sequences;

Crucial observation:
• a finite trace can still represent an infinite state sequence, if it contains a

loop-back.

kl

Loop-backs
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Definition (k-loop)

A path π is a (k, l)-loop, with l ≤ k, if T(π(k), π(l)) holds and π = u · vω, where:
• u = π(1) . . . π(l − 1);
• v = π(l) . . . π(k).

We call π a k-loop if there exists l ≤ k for which π is a (k, l)-loop.

k-loop, aka Lasso-Shaped Models
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Given a finite trace π of the system M, BMC distinguishes between two cases:
• either π contains a loop-back (π is lasso-shaped):

⇒ apply standard LTL semantics to check if π |= ϕ;
• or π is loop-free:

⇒ apply bounded semantics
⇒ if a path is a model of ϕ under bounded semantics then

any extension of the path is a model of ϕ under standard semantics
(conservative semantics)

BMC
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If π is not a k-loop, we introduce bounded semantics for LTL.

Definition (Bounded semantics for LTL)

Let k ≥ 0 and π a path that is not a k-loop. An LTL formula ϕ is valid along π with
bound k, written π |=0

k ϕ, iff:
• π |=i

k p iff p ∈ L(π(i))
• π |=i

k ¬p iff p ̸∈ L(π(i))

Bounded Semantics for LTL
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Let k ≥ 0 and π a path that is not a k-loop. An LTL formula ϕ is valid along π with
bound k, written π |=0

k ϕ, iff:
• π |=i

k ϕ1 ∨ ϕ2 iff π |=i
k ϕ1 or π |=i

k ϕ2

• π |=i
k ϕ1 ∧ ϕ2 iff π |=i

k ϕ1 and π |=i
k ϕ2
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If π is not a k-loop, we introduce bounded semantics for LTL.

Definition (Bounded semantics for LTL)

Let k ≥ 0 and π a path that is not a k-loop. An LTL formula ϕ is valid along π with
bound k, written π |=0

k ϕ, iff:

• π |=i
k Xϕ1 iff i < k and π |=i+1

k ϕ1

• π |=i
k ϕ1 U ϕ2 iff ∃i ≤ j ≤ k such that π |=j

k ϕ2 and
∀i ≤ n < j it holds that π |=n

k ϕ1
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If π is not a k-loop, we introduce bounded semantics for LTL.

Definition (Bounded semantics for LTL)

Let k ≥ 0 and π a path that is not a k-loop. An LTL formula ϕ is valid along π with
bound k, written π |=0

k ϕ, iff:
• π |=i

k Gϕ1 is always false

• π |=i
k Fϕ1 iff ∃i ≤ j ≤ k such that π |=j

k ϕ1

Bounded Semantics for LTL
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Now we see how to reduce BMC to SAT.
• the first thing to do is to define a Boolean formula that encodes all the paths of
M of length k.

Definition (Unfolding of the Transition Relation)

For a Kripke structure M and k ≥ 0, we define:

JMKk := I(x0) ∧
k−1∧
i=0

T(xi, xi+1)

N.B.: For each i ≥ 0, with xi we represent the ith-stepped version of the set of
variables x. For example, x1 := x′.

SAT-based encoding of BMC
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So far, we have seen how to encode paths of length k of the model M.

• intuitively, this corresponds to the left-hand side of the automaton AM ×A¬ψ
• now we see how to encode the right-hand side.

We have seen that BMC distinguishes between lasso-shaped (k-loop) and loop-free
paths:

• we start with the encoding in case of k-loops.

Encoding of the LTL formula
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Definition (Loop Encoding)

Let l ≤ k. We define:

lLk := T(xk, xl) Lk :=

k∨
l=0

lLk

Definition (Successor in a Loop)

Let l, i ≤ k and π be a (k, l)-loop. We define the successor succ(i) of i in π as:
• succ(i) := i + 1 if i < k;
• succ(i) := l if i = k.

Encoding of a loop
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kli i

Definition (Encoding of an LTL formula for a (k, l)-loop)

Let ϕ be an LTL formula and l, i, k ≥ 0 such that l, i ≤ k. We define lJϕKi
k recursively

as follows:
• lJpKi

k := p(xi)

• lJ¬pKi
k := ¬p(xi)

Encoding in case of Loop

31/39 L. Geatti, A. Montanari Symbolic Model Checking and BMC



kli i

Definition (Encoding of an LTL formula for a (k, l)-loop)

Let ϕ be an LTL formula and l, i, k ≥ 0 such that l, i ≤ k. We define lJϕKi
k recursively

as follows:
• lJϕ1 ∨ ϕ2Ki

k := lJϕ1Ki
k ∨ lJϕ2Ki

k
• lJϕ1 ∧ ϕ2Ki

k := lJϕ1Ki
k ∧ lJϕ2Ki

k
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kli i

Definition (Encoding of an LTL formula for a (k, l)-loop)

Let ϕ be an LTL formula and l, i, k ≥ 0 such that l, i ≤ k. We define lJϕKi
k recursively

as follows:
• lJXϕ1Ki

k := lJϕ1K
succ(i)
k

• lJϕ1 U ϕ2Ki
k := lJϕ2Ki

k ∨ (lJϕ1Ki
k ∧ lJϕ1 U ϕ2K

succ(i)
k )
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kli i

Definition (Encoding of an LTL formula for a (k, l)-loop)

Let ϕ be an LTL formula and l, i, k ≥ 0 such that l, i ≤ k. We define lJϕKi
k recursively

as follows:
• lJGϕ1Ki

k := lJϕ1Ki
k ∧ lJGϕ1K

succ(i)
k

• lJFϕ1Ki
k := lJϕ1Ki

k ∨ lJFϕ1K
succ(i)
k
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Definition (Encoding of an LTL formula for a loop-free path)

Let ϕ be an LTL formula and i, k ≥ 0. We define JϕKi
k recursively as follows:

• JϕKk+1
k := ⊥

with i ≤ k

Encoding in case of NO Loops
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Definition (Encoding of an LTL formula for a loop-free path)

Let ϕ be an LTL formula and i, k ≥ 0. We define JϕKi
k recursively as follows:

• JpKi
k := p(xi)

• J¬pKi
k := ¬p(xi)
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Definition (Encoding of an LTL formula for a loop-free path)

Let ϕ be an LTL formula and i, k ≥ 0. We define JϕKi
k recursively as follows:

• lJGϕ1Ki
k := lJϕ1Ki

k ∧ lJGϕ1Ki+1
k

• lJFϕ1Ki
k := lJϕ1Ki

k ∨ lJFϕ1Ki+1
k

with i ≤ k
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Definition (Overall encoding)

Let ϕ be an LTL formula, M be a Kripke structure and k ≥ 0:

JM, ϕKk := JMKk︸ ︷︷ ︸
encoding of
the machine

∧
(
(¬Lk ∧ JϕK0

k︸ ︷︷ ︸
loop-free
models

) ∨
k∨

l=0

(lLk ∧ lJϕK0
k)︸ ︷︷ ︸

lasso-shaped
models

)

Theorem (Soundness)

JM, ϕKk is satisfiable iff M |=k Eϕ.

Overall encoding
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Algorithm:
• start with k = 0
• call a SAT-solver on JM, ϕKk

• if it is SAT, stop; otherwise, k++.

What happens if M ̸|= ϕ?
• the procedure does not terminate
• in order to be complete, BMC needs to compute the recurrence diameter: very

costly
• BMC is mainly used as a bug finder, rather than as a prover.

Completeness
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¬x1

¬x0

¬x1

x0

x1

¬x0

x1

x0

• ϕ1 := GF(x0) ∧ x1) ✓

• ϕ2 := FG(¬x0 ∧ ¬x1) ✗

Example
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LTL-SAT is the problem of establishing if, given an LTL formula ϕ, there exists an
infinite state sequence σ such that σ |= ϕ.

• how can one solve LTL-SAT with BMC?
• model checking:

JMKk ∧
(
(¬Lk ∧ JϕK0

k) ∨
k∨

l=0

(lLk ∧ lJϕK0
k)

)

• satisfiability checking

⊤ ∧
(
(¬Lk ∧ JϕK0

k) ∨
k∨

l=0

(lLk ∧ lJϕK0
k)

)

Solving LTL-SAT with BMC
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• we developed this tool based on the idea of bounded satisfiability checking
• BLACK = Bounded Ltl sAtisfiability ChecKer
• https://www.black-sat.org/en/stable/
• Examples

Reference:
Luca Geatti, Nicola Gigante, and Angelo Montanari (2021). “BLACK: A Fast,
Flexible and Reliable LTL Satisfiability Checker”. In: Proceedings of the 3rd
Workshop on Artificial Intelligence and Formal Verification, Logic, Automata,
and Synthesis. Ed. by Dario Della Monica, Gian Luca Pozzato, and Enrico Scala.
Vol. 2987. CEUR Workshop Proceedings. CEUR-WS.org, pp. 7–12. URL:
http://ceur-ws.org/Vol-2987/paper2.pdf

BLACK
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