Model checking for LTL (= satisfiability over a finite-state program)

Angelo Montanari

Department of Mathematics and Computer Science University of Udine, Udine Italy

P-validity and *P*-satisfiability problems (of φ)

P-validity problem (of φ)

Main question: given a finite-state program P and a formula φ , is φ P-valid, that is, do all P-computations satisfy φ ?

P-satisfiability problem (of φ)

Main question: given a finite-state program P and a formula φ , is there a P-computation which satisfies φ ?

To determine whether φ is P-valid, it suffices to employ an algorithm for deciding if there is a P-computation which satisfied $\neg \varphi$.

The algorithm for solving the *P*-satisfiability of φ makes use of the tableau for φ T_{φ}

Basic definitions

- For each atom A, let state(A) be the conjunction of all state formulas in A (by R_{sat}, state(A) must be satisfiable).
- Atom A is **consistent** with state s if $s \models state(A)$, that is, all state formulas in A are satisfiable by s.
- Let $\theta: A_0, A_1, \ldots$ be a path in T_{φ} and let $\sigma: s_0, s_1, \ldots$ be a computation of P. θ is **trail** of T_{φ} over σ if A_j is consistent with s_j , for all $j \geq 0$.
- For each atom $A \in T_{\varphi}$, $\delta(A)$ denotes the set of successors of A in T_{φ} .

The behavior graph

Given a finite-state program P and an LTL formula φ , we construct the **behavior graph** of (P, φ) , denoted $\mathcal{B}_{(P,\varphi)}$, as the product of the graph for $P(G_P)$ and the tableau for $\varphi(T_{\varphi})$.

- nodes (s, A), where s is a state of P and A is an atom consistent with s;
- there exists a τ -labeled edge from (s, A) to (s', A') only if $s' = \tau(s)$ (s' is a τ -successor of s) and $A' \in \delta(A)$ in the pruned tableau T_{φ} (A' is a successor of A in T_{φ});
- **initial** φ -**nodes** are pairs (s, A), where s is an initial state for P, A is an initial φ -atom in T_{φ} (that is, $\varphi \in A$), and A is consistent with s.

Algorithm BEHAVIOR-GRAPH to construct $\mathcal{B}_{(\mathcal{P},\varphi)}$

Algorithm **BEHAVIOR-GRAPH**

- Place in $\mathcal{B}_{(\mathcal{P},\varphi)}$ all initial φ -nodes (s,A)
- Repeat until no new nodes or new edges can be added the following steps.
 - Let (s,A) be a node in $\mathcal{B}_{(\mathcal{P},\varphi)}$, let $\tau \in \mathcal{T}$ be a transition, and let (s',A') be a pair such that: (i) s' is a τ -successor of s, $A' \in \delta(A)$ in the pruned tableau T_{φ} , and A' is consistent with s'.
 - Add (s', A') to $\mathcal{B}_{(\mathcal{P}, \varphi)}$, if it is not already there.
 - Draw a τ -edge from (s, A) to (s', A') if it not already there.

An example: the system LOOP

The system **LOOP**

Initially x = 0

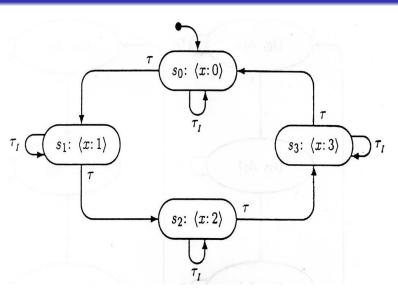
Transitions: (i) the idling transition τ_I and (ii) a transition τ , with transition relation ρ_{τ} : $x' = (x + 1) \mod 4$

The set of weakly fair (just) transitions is $\mathcal{J} = \{\tau\}$

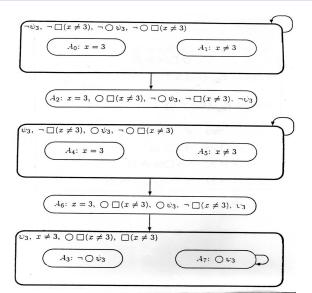
Let us consider the LTL formula $\psi : \Diamond \Box (x \neq 3)$

In the next transparencies, we respectively provide the state-transition graph G_{LOOP} , the pruned tableau T_{ψ} , and the behavior graph $\mathcal{B}_{(\mathcal{LOOP},\psi)}$.

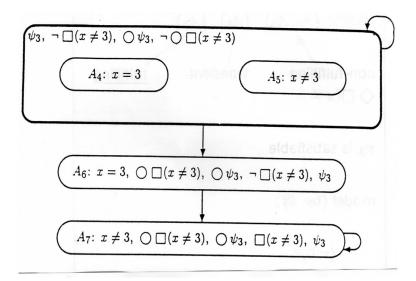
The state-transition graph of system LOOP (G_{LOOP})



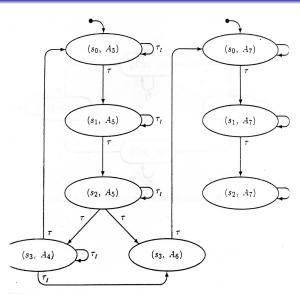
The complete tableau



The pruned tableau (T_ψ)



The behavior graph $\mathcal{B}_{(\mathcal{LOOP},\psi)}$



Paths in the behavior graph $\mathcal{B}_{(\mathcal{P},\varphi)}$

Proposition.

Let φ be an LTL formula.

The infinite sequence $\pi:(s_0,A_0)(s_1,A_1)\ldots$, where (s_0,A_0) is an initial φ -node, is a path in $\mathcal{B}_{(\mathcal{P},\varphi)}$

if and only

- σ_{π} : $s_0 s_1 \dots$ is a run of P (computation less fairness)
- $\theta_{\pi}: A_0A_1...$ is a trail of T_{φ} over σ_{π} (for all $j \geq 0$, A_j is consistent with s_j)

Example.

In $\mathcal{B}_{(\mathcal{LOOP},\psi)}$, the path $\pi:(s_0,A_5)(s_1,A_5)(s_2,A_5)(s_3,A_4))^\omega$ induces $\sigma_\pi:(s_0s_1s_2s_3)^\omega$ (run of LOOP) and $\theta_\pi:(A_5A_5A_5A_4)^\omega$ (trail of T_φ over σ_π)

P-satisfiability of φ by path

Proposition.

Let φ be an LTL formula.

There exists a P-computation which satisfies φ

if and only if

there is an infinite path π in $\mathcal{B}_{(\mathcal{P},\varphi)}$, starting from an initial φ -node, such that

- σ_{π} is a fair run (computation)
- θ_{π} is a fulfilling trail over σ_{π}

Example.

The trail $\theta_{\pi}: (A_5A_5A_5A_4)^{\omega}$ is not fulfilling (both atoms A_5 and A_4 include $\Diamond \Box (x \neq 3)$ and $\neg \Box (x \neq 3)$).

Adequate subgraphs

Given a behavior graph $\mathcal{B}_{(\mathcal{P},\varphi)}$,

- node (s', A') is a τ -successor of node (s, A) if $\mathcal{B}_{(\mathcal{P}, \varphi)}$ contains a τ -edge connecting (s, A) to (s', A')
- transition τ is **enabled** on node (s, A) if it is enabled on state s

Given a subgraph $S \subseteq \mathcal{B}_{(\mathcal{P},\varphi)}$,

- transition τ is **taken** in S if there exist two nodes (s, A) and (s', A') in S such that (s', A') is a τ -successor of (s, A)
- S is **just** (resp., **compassionate**) if every just (resp., compassionate) transition $\tau \in \mathcal{J}$ (resp., $\tau \in \mathcal{C}$) is either taken in S or is disabled on some nodes (resp., all nodes) in S
- S is fair it is both just and compassionate
- S is **fulfilling** if every promising formula is fulfilled by an atom A such that $(s, A) \in S$ for some state s
- S is adequate if it is fair and fulfilling

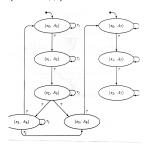
Adequate strongly connected subgraphs and satisfiability

Proposition.

A finite-state program P has a computation σ which satisfies φ if and only if the behavior graph $\mathcal{B}_{(\mathcal{P},\varphi)}$ has an adequate strongly connected subgraph

Example (LOOP and $\psi : \Diamond \Box (x \neq 3)$).

The behavior graph $\mathcal{B}_{(\mathcal{LOOP},\psi)}$ has no adequate subgraphs.



Example (cont'd)

Let us check the maximal strongly connected subgraphs (MSCS):

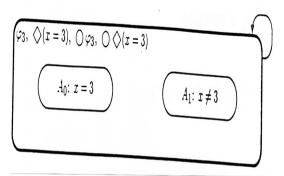
- $\{(s_0, A_5), (s_1, A_5), (s_2, A_5), (s_3, A_4)\}$ is fair, but not fulfilling $(\psi \text{ belongs to both } A_4 \text{ and } A_5, \text{ and it promises } \Box(x \neq 3),$ but $\Box(x \neq 3) \notin A_4, A_5)$
- $\{(s_0, A_7)\}$, $\{(s_1, A_7)\}$, and $\{(s_2, A_7)\}$ are fulfilling, but not fair (they are not just with respect to transition τ)
- $\{(s_3, A_6)\}$ is neither fair (it is not just with respect to τ) nor fulfilling (it is transient)

Hence, there are **no adequate subgraphs** in $\mathcal{B}_{(\mathcal{LOOP},\psi)}$. By the last proposition, it follows that LOOP has no computation that satisfies $\psi: \Diamond \Box (x \neq 3)$

Another example

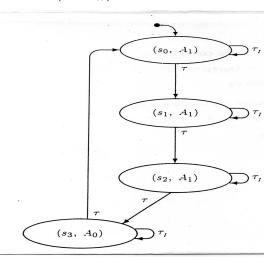
Example (LOOP and $\phi(=\neg\psi):\Box\diamondsuit(x=3)$).

The pruned tableau is the following one:



Another example (cont'd)

The behavior graph $\mathcal{B}_{(\mathcal{LOOP},\phi)}$ is the following one:



Another example (cont'd)

The subgraph $S = \{(s_0, A_1), (s_1, A_1), (s_2, A_1), (s_3, A_0)\}$ is an **adequate subgraph**, as it is both fair $(\tau \text{ is taken in } S)$ and fulfilling $(\diamondsuit(x=3) \text{ belongs to both } A_0 \text{ and } A_1, \text{ but } x=3 \text{ belongs to } A_0)$

By the last proposition, it follows that LOOP has computation that satisfies $\phi : \Box \diamondsuit (x = 3)$

The periodic computation $\sigma: (s_0s_1s_2s_3)^{\omega}$ satisfies ϕ .

It induces the fulfilling trail $\theta : (A_1A_1A_1A_0)^{\omega}$ in T_{ϕ} .

How to find adequate subgraphs?

Checking MSCS' is not enough:

 $\mathcal{S}'\subset\mathcal{S}$

S' just **implies** S just

S' fulfilled implies S fulfilled

but

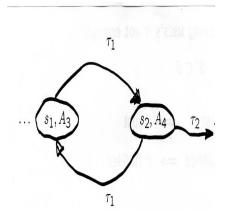
S' compassionate **do not imply** S compassionate

Therefore, it is possible that S is not adequate, but S' is adequate

A counterexample

S' compassionate **do not imply** S compassionate

Let τ_2 belong to the set of compassionate transitions. τ_2 is enabled on s_2 and disabled on s_1



A counterexample (cont'd)

The strongly connected subgraph $S' = \{(s_1, A_3)\}$ is compassionate (τ_2) is disabled on all the states in this subgraph)

The strongly connected subgraph $S = \{(s_1, A_3)(s_2, A_4)\}$, that includes S', is not compassionate $(\tau_2$ is enabled on (s_2, A_4) , but it is not taken in S)

Algorithm ADEQUATE-SUB

Algorithm **ADEQUATE-SUB**

accepts as input a strongly connected subgraph S and returns as output a strongly connected subgraph S' ⊆ S
 If S' = ∅ - S contains no adequate subgraphs
 Otherwise - S' is an adequate strongly connected subgraph in S

Notation:

 $EN(\tau, S)$ - the set of all nodes (s, A) in S on which τ is enabled

Algorithm ADEQUATE-SUB (cont'd)

```
Algorithm ADEQUATE-SUB checks for adequate subgraphs
recursive function adequate-sub(S: SCS) returns SCS
if S is not fulfilling then return \emptyset – failure
if S is not just then return \emptyset – failure
if S is compassionate then return S – success
-S is fulfilling and just but not compassionate. Let T \subseteq \mathcal{C}
- be the set of all compassionate transitions that are not taken
- in S. Clearly, EN(T, S) \neq \emptyset.
let U = S - EN(T, S). Decompose U into MSCSs U_1 \dots U_k.
let V = \emptyset, i = 1
while V = \emptyset and i < k do
let V = adequate - sub(U_i); i := i + 1
end-while
return V
```

An example: the system LOOP+

The system **LOOP+**

Initially x = 0

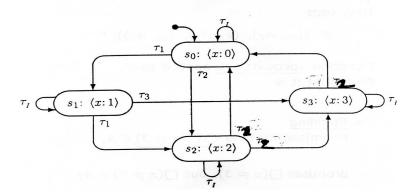
LTL formula $\psi : \Diamond \Box (x \neq 3)$

Transitions: (i) the idling transition τ_I ; (ii) $\mathcal{J} = \{\tau_1, \tau_2\}$; (iii) $\mathcal{C} = \{\tau_3\}$

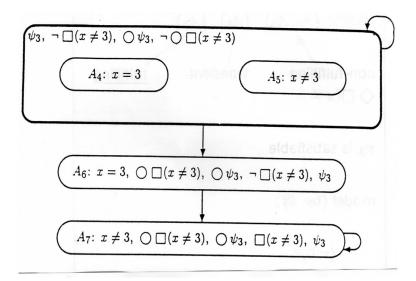
New MSCS: $S = \{(s_0, A_7), (s_1, A_7), (s_2, A_7)\}$

In the next transparencies, we respectively provide the state-transition graph G_{LOOP+} , the pruned tableau T_{ψ} , and the behavior graph $\mathcal{B}_{(\mathcal{L}OOP+,\psi)}$.

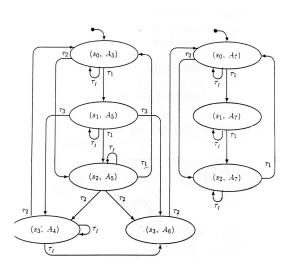
The state-transition graph of system LOOP+ (G_{LOOP+})



The pruned tableau (T_ψ)



The behavior graph $\mathcal{B}_{(\mathcal{LOOP}+,\psi)}$



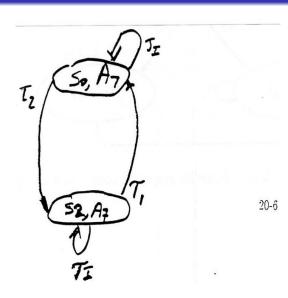
Application of the function ADEQUATE-SUB

Function **ADEQUATE-SUB** applied to *S* finds that it is

- **fulfilling**: the formula ψ : $\Diamond \Box (x \neq 3)$, that promises $\Box (x \neq 3)$, belongs to A_7 , but $\Box (x \neq 3)$ belongs to A_7 as well
- **just**: $\tau_2 \in \mathcal{J}$ is taken in S and $\tau_1 \in \mathcal{J}$ is taken in S
- **not compassionate**: $\tau_3 \in \mathcal{C}$ is not taken in S, but it is enabled on (s_1, A_7)

Construct $U : \{(s_0, A_7), (s_2, A_7)\}\$ by removing (s_1, A_7)

The subgraph *U*



The subgraph *U* (cont'd)

U is a strongly connected subgraph (no decomposition is needed)

U is adequate:

- **fulfilling** A_7 fulfills his promise $\square(x \neq 3)$
- fair τ_1 and τ_2 are enabled s_2 and s_0 , respectively, and both are taken in U

Hence, system LOOP+ has a computation $\sigma:(s_0s_2)^\omega$ that satisfies $\psi:\Diamond\Box(x\neq 3)$

Algorithms SAT and P-SAT

To summarize ..

Algorithm **SAT** to check whether a temporal formula φ is satisfiable

Algorithm **P-SAT** to check the satisfiability of a formula φ over a program (to check whether a finite-state program P has a computation which satisfies a temporal formula φ)

Algorithm P-SAT

To check whether a finite-state program P has a computation that satisfies a temporal formula φ , perform the following steps:

Construct the state-transition graph G_P .

Construct the pruned tableau T_{φ} .

Construct the behavior graph $\mathcal{B}_{(\mathcal{P},\varphi)}$.

Decompose $\mathcal{B}_{(\mathcal{P},\varphi)}$ into MSCS S_1,\ldots,S_t .

For each i = 1, ..., t, apply algorithm ADEQUATE-SUB to S_i .

If any of these applications returns a nonempty result, P has a computation satisfying φ . This computation can be constructed by forming a path π that leads from an initial node to the returned adequate subgraph S, and then continues to visit each node S infinitely many times. The desired computation is the computation σ_{π} induced by π . If all applications return the empty set as result, P has no computation satisfying φ .

P-validity of a formula φ

To check P-validity of a formula φ , apply algorithm P-SAT to check whether there are P-computation satisfying $\neg \varphi$

- If there is a P-computation satisfying $\neg \varphi$, then φ is not P-valid
- If there are no *P*-computations satisfying $\neg \varphi$, then φ is *P*-valid