
Department of Mathematics, Computer Science and Physics, University of Udine

An introduction to
Model Checking

Luca Geatti
luca.geatti@uniud.it

Angelo Montanari
angelo.montanari@uniud.it

April 30th, 2024



MODEL CHECKING
an introduction

based on the slides of Prof. Joost-Pieter Katoen



• Therac-25 was a medical linear
accelerator used for radiation
therapy in the 1980s.

• It caused six known accidents
between 1985 and 1987 due to
software and hardware errors (race
condition).

• Patients received massive overdoses
of radiation, leading to serious
injuries and fatalities.

• The accidents were attributed to
software bugs and a lack of proper
safety mechanisms.

Model Checking
An introduction

3/33 L. Geatti, A. Montanari An introduction to Model Checking



• In 1990, AT&T experienced a
widespread network outage
affecting millions of customers.

• The outage was caused by a
software bug triggered during a
routine maintenance procedure.

• wrong interpretation of break
statement in C

• The bug led to the failure of crucial
network components, disrupting
telephone services across the United
States.

Model Checking
An introduction

4/33 L. Geatti, A. Montanari An introduction to Model Checking



• Crash of the european Ariane
5-missile in June 1996

• Costs: more than 500 million USD
• Source: software flaw in the control

software. A data conversion from a
64-bit floating point to 16-bit signed
integer.

• Efficiency considerations had led to
the disabling of the software
handler (in Ada)

Model Checking
An introduction

5/33 L. Geatti, A. Montanari An introduction to Model Checking



• Pentium FDIV bug: a significant
hardware flaw in Intel’s Pentium
microprocessor in 1994.

• Incorrect calculations in
floating-point division operations

• The bug affected a small percentage
of Pentium processors but garnered
widespread attention.

• Intel initially downplayed the issue
but eventually offered free
replacements for affected chips,
resulting in a costly recall program
and damage to the company’s
reputation (500M USD).

Model Checking
An introduction

6/33 L. Geatti, A. Montanari An introduction to Model Checking



• Speech@50-years Celebration CWI
Amsterdam

• "It is fair to state, that in this digital era
correct systems for information
processing are more valuable than
gold."

• Henk Barendregt

Model Checking
An introduction

7/33 L. Geatti, A. Montanari An introduction to Model Checking



The Importance of Software Correctness

Rapidly increasing integration of ICT in
different applications
• embedded systems
• communication protocols
• transportation systems
• . . .

Defects can be fatal and extremely costly
• products subject to mass-production
• safety-critical systems

Model Checking
An introduction

8/33 L. Geatti, A. Montanari An introduction to Model Checking



Verification:
• Verification answers the question:

"Are we building the product right?"
• It ensures that the software product

meets the specified requirements
and adheres to the design and
development specifications.

• It involves checking whether the
software is being built correctly.

• Verification activities typically
include reviews, inspections to
identify defects early in the
development process, and model
checking.

Validation:
• Validation answers the question:

"Are we building the right product?"
• It confirms that the software meets

the needs and expectations of the
end-users and stakeholders.

• It involves evaluating the software
against user requirements and
ensuring that it solves the intended
problem effectively.

• Validation activities typically
include testing the software against
user scenarios, user acceptance
testing (UAT), and usability testing.

What is Software and Hardware
Verification?

9/33 L. Geatti, A. Montanari An introduction to Model Checking



Reviews and Inspections:
• It involves a group of individuals

examining software documentation,
code, or design to identify defects,
inconsistencies, or areas for
improvement (code reviews, design
reviews, and walkthroughs).

Static Analysis:
• analyze software code or

documentation without executing it,
aiming to identify potential issues
such as syntax errors, coding
standards violations, or security
vulnerabilities.

Unit Testing:
• Unit testing involves testing

individual components or units of
code in isolation to ensure they
perform as expected. Developers
write test cases to verify the
behavior of specific functions or
modules (JUnit, pytest).

Integration Testing:
• Verifies the interactions between

different modules or components of
a software system. It ensures that
the integrated units work together
seamlessly as intended.

Some examples of Verification Techniques

10/33 L. Geatti, A. Montanari An introduction to Model Checking



Testing: the Sooner, the Better

11/33 L. Geatti, A. Montanari An introduction to Model Checking



Definition (Formal Methods)

Formal methods are a set of mathematical techniques used to rigorously specify,
model, and verify software and hardware systems. They involve the use of precise
mathematical languages and logical reasoning to ensure correctness and reliability
in the design and implementation of complex systems.

Advantages:
• early integration of verification in the design process
• providing more effective verification techniques (higher coverage)
• reducing the verification time (automatic techniques)

The usage of formal methods is highly recommended by IEC, FAA, and NASA for
safety-critical software

Formal Methods

12/33 L. Geatti, A. Montanari An introduction to Model Checking



Deductive Methods
• method: provide a formal proof that P holds
• tool: theorem prover/proof assistant or proof checker
• applicable if: system has form of a mathematical theory

Model Checking
• method: systematic check on P in all states
• tool: model checker (Spin, NuSMV, UppAal, . . . )
• applicable if: system generates (finite) behavioural model

Model-based simulation or testing
• method: test for P by exploring possible behaviours
• tool: . . .
• applicable if: system defines an executable model

3 categories of Formal Methods

13/33 L. Geatti, A. Montanari An introduction to Model Checking



Procedure:
• take a model (simulation) or a realisation (testing)
• stimulate it with certain inputs, i.e., the tests
• observe reaction and check whether this is “desired”

Important drawbacks:
• number of possible behaviours is very large (or even infinite)
• unexplored behaviours may contain the fatal bug
• testing/simulation can show the presence of errors, not their absence

Model-based simulation or testing

14/33 L. Geatti, A. Montanari An introduction to Model Checking



Deductive Methods
(based on proof rules)

15/33 L. Geatti, A. Montanari An introduction to Model Checking



1949 (Turing) Mathematical program correctness. An early program proof by Alan
Turing – FL Morris, CB Jones (1984)

1969 (Hoare) Syntax-based technique for sequential programs. For a given input,
does a computer program generate the correct output? Based on
compositional proof rules expressed in predicate logic

1977 (Pnueli) Syntax-based technique for concurrent programs. Handles properties
referring to states during the computation. Based on proof rules expressed in
temporal logic.

1980 (Clarke, Emerson, . . . ) Automated verification of concurrent programs.
Model-based instead of proof-rule based approach. Does the concurrent
program satisfy a given (logical) property?

Milestones in Formal Methods

16/33 L. Geatti, A. Montanari An introduction to Model Checking



The most used formal verification technique is Model Checking (MC, for short).
Distinctive features:

• fully automatic;
• exhaustive;
• it generates a counterexample trace if the specification does not hold.

Model Checking

17/33 L. Geatti, A. Montanari An introduction to Model Checking



Model Checking

18/33 L. Geatti, A. Montanari An introduction to Model Checking



(a) E.M. Clarke (b) E.A. Emer-
son

(c) J. Sifakis

For their role in developing Model-Checking into a highly effective verification technology
that is widely adopted in the hardware and software industries.

Model Checking
Turing Award 2007

19/33 L. Geatti, A. Montanari An introduction to Model Checking



Definition (Kripke structure)

A Kripke structure (or Transition
System) is a tuple M = ⟨AP,Q, I,T,L⟩
where:
• AP is a finite alphabet,
• Q is the finite set of states,
• I ⊆ Q is the set of initial states,
• T ⊆ Q × Q is a complete transition

relation, and
• L : Q → 2AP is the labeling function

that assigns to each state the set of
atoms in AP that are true in that
state.

p0 p1

p2 p3

Model Checking
What is a model?

20/33 L. Geatti, A. Montanari An introduction to Model Checking



Expressivity:
• Programs are transition systems
• Multi-threading programs are

transition systems
• Communicating processes are

transition systems
• Hardware circuits are transition

systems

p0 p1

p2 p3

Model Checking
What is a model?

20/33 L. Geatti, A. Montanari An introduction to Model Checking



NASA’s Deep Space-1 Spacecraft (model checking has been applied to the
modules of this spacecraft)

Model Checking
What is a model?

21/33 L. Geatti, A. Montanari An introduction to Model Checking



Example of properties

• Can the system reach a deadlock situation?
• Can two processes ever be simultaneously in a critical section?
• On termination, does a program provide the correct output?

Temporal Logics

• Linear Temporal Logic (LTL) and its variants
• real-time LTL
• Signal Temporal Logic
• Linear Temporal Logic modulo theories

• Computation Tree Logic (CTL)

Model Checking
What is a property?

22/33 L. Geatti, A. Montanari An introduction to Model Checking



Definition (Model Checking of LTL)

Given:
• a Kripke structure

M = ⟨AP,Q, I,T,L⟩
• an initial state s ∈ I of M
• an LTL formula ϕ over the set of

atomic propositions AP
we write M, s |= Aϕ iff all paths of M
starting from s are models of ϕ.

A is the “for all paths” operator of CTL.

p0 p1

p2 p3

Model Checking

23/33 L. Geatti, A. Montanari An introduction to Model Checking



Definition (Model Checking of LTL)

The model checking problem of LTL
(LTL-MC) is the problem of establishing
whether M, s |= Aϕ.

Example:

• M, s |= GF(p0)

• M, s ̸|= FG(p0)

p0 p1

p2 p3

Model Checking

23/33 L. Geatti, A. Montanari An introduction to Model Checking



Theorem
The LTL-MC is PSPACE-complete.

Reference:
A Prasad Sistla and Edmund M Clarke
(1985). “The complexity of
propositional linear temporal logics”.
In: Journal of the ACM (JACM) 32.3,
pp. 733–749. DOI: 10.1145/3828.3837

p0 p1

p2 p3

Model Checking

23/33 L. Geatti, A. Montanari An introduction to Model Checking

https://doi.org/10.1145/3828.3837


Examples:

• G(
3∧

i=0
(pi → X

3∨
j=0
j̸=i

pj))

• False
• Counterexample: ⟨p0, p1, p2, p2⟩

• F(p3)

• False
• Counterexample: ⟨p0, p1⟩ · (p2)

ω

• FG(p2)

• False
• Counterexample: (⟨p0, p1, p2, p3⟩)ω

p0 p1

p2 p3

Model Checking
More examples

24/33 L. Geatti, A. Montanari An introduction to Model Checking



Examples:

• G(
3∧

i=0
(pi → X

3∨
j=0
j̸=i

pj))

• False
• Counterexample: ⟨p0, p1, p2, p2⟩

• F(p3)

• False
• Counterexample: ⟨p0, p1⟩ · (p2)

ω

• FG(p2)

• False
• Counterexample: (⟨p0, p1, p2, p3⟩)ω

p0 p1

p2 p3

Model Checking
More examples

24/33 L. Geatti, A. Montanari An introduction to Model Checking



Examples:

• G(
3∧

i=0
(pi → X

3∨
j=0
j̸=i

pj))

• False
• Counterexample: ⟨p0, p1, p2, p2⟩

• F(p3)

• False
• Counterexample: ⟨p0, p1⟩ · (p2)

ω

• FG(p2)

• False
• Counterexample: (⟨p0, p1, p2, p3⟩)ω

p0 p1

p2 p3

Model Checking
More examples

24/33 L. Geatti, A. Montanari An introduction to Model Checking



Examples:

• G(
3∧

i=0
(pi → X

3∨
j=0
j̸=i

pj))

• False
• Counterexample: ⟨p0, p1, p2, p2⟩

• F(p3)
• False
• Counterexample: ⟨p0, p1⟩ · (p2)

ω

• FG(p2)

• False
• Counterexample: (⟨p0, p1, p2, p3⟩)ω

p0 p1

p2 p3

Model Checking
More examples

24/33 L. Geatti, A. Montanari An introduction to Model Checking



Examples:

• G(
3∧

i=0
(pi → X

3∨
j=0
j̸=i

pj))

• False
• Counterexample: ⟨p0, p1, p2, p2⟩

• F(p3)
• False
• Counterexample: ⟨p0, p1⟩ · (p2)

ω

• FG(p2)

• False
• Counterexample: (⟨p0, p1, p2, p3⟩)ω

p0 p1

p2 p3

Model Checking
More examples

24/33 L. Geatti, A. Montanari An introduction to Model Checking



Examples:

• G(
3∧

i=0
(pi → X

3∨
j=0
j̸=i

pj))

• False
• Counterexample: ⟨p0, p1, p2, p2⟩

• F(p3)
• False
• Counterexample: ⟨p0, p1⟩ · (p2)

ω

• FG(p2)
• False
• Counterexample: (⟨p0, p1, p2, p3⟩)ω

p0 p1

p2 p3

Model Checking
More examples

24/33 L. Geatti, A. Montanari An introduction to Model Checking



1 p r o c e s s Inc =
2 whi le t rue do
3 i f x < 200 then
4 x := x + 1
5 od
6

1 p r o c e s s Dec =
2 whi le t rue do
3 i f x > 0 then
4 x := x -1
5 od
6

1 p r o c e s s Reset =
2 whi le t rue do
3 i f x = 200 then
4 x := 0
5 od
6

Property: "is x always between (and including) 0 and 200?"

A multi-process example

25/33 L. Geatti, A. Montanari An introduction to Model Checking



1 p r o c e s s Inc =
2 whi le t rue do
3 i f x < 200 then
4 x := x + 1
5 od
6

1 p r o c e s s Dec =
2 whi le t rue do
3 i f x > 0 then
4 x := x -1
5 od
6

1 p r o c e s s Reset =
2 whi le t rue do
3 i f x = 200 then
4 x := 0
5 od
6

Property: "is x always between (and including) 0 and 200?"

A multi-process example

25/33 L. Geatti, A. Montanari An introduction to Model Checking



1 p r o c e s s Inc =
2 while true do
3 if x < 200 then
4 x := x + 1
5 od
6

1 p r o c e s s Dec =
2 while true do
3 if x > 0 then
4 x := x-1
5 od
6

1 p r o c e s s Reset =
2 while true do
3 if x = 200 then
4 x := 0
5 od
6

• Suppose x = 199.

• Counterexample to the property: after 6 steps, x becomes strictly less than 0.
• How can we fix the error?

A multi-process example

26/33 L. Geatti, A. Montanari An introduction to Model Checking



1 p r o c e s s Inc =
2 while true do
3 if x < 200 then
4 x := x + 1
5 od
6

1 p r o c e s s Dec =
2 while true do
3 if x > 0 then
4 x := x-1
5 od
6

1 p r o c e s s Reset =
2 while true do
3 if x = 200 then
4 x := 0
5 od
6

• Suppose x = 199.

• Counterexample to the property: after 6 steps, x becomes strictly less than 0.
• How can we fix the error?

A multi-process example

26/33 L. Geatti, A. Montanari An introduction to Model Checking



1 p r o c e s s Inc =
2 while true do
3 if x < 200 then
4 x := x + 1
5 od
6

1 p r o c e s s Dec =
2 while true do
3 if x > 0 then
4 x := x-1
5 od
6

1 p r o c e s s Reset =
2 while true do
3 if x = 200 then
4 x := 0
5 od
6

• Suppose x = 199.

• Counterexample to the property: after 6 steps, x becomes strictly less than 0.
• How can we fix the error?

A multi-process example

26/33 L. Geatti, A. Montanari An introduction to Model Checking



1 p r o c e s s Inc =
2 while true do
3 if x < 200 then
4 x := x + 1
5 od
6

1 p r o c e s s Dec =
2 while true do
3 if x > 0 then
4 x := x-1
5 od
6

1 p r o c e s s Reset =
2 while true do
3 if x = 200 then
4 x := 0
5 od
6

• Suppose x = 199.

• Counterexample to the property: after 6 steps, x becomes strictly less than 0.
• How can we fix the error?

A multi-process example

26/33 L. Geatti, A. Montanari An introduction to Model Checking



1 p r o c e s s Inc =
2 while true do
3 if x < 200 then
4 x := x + 1
5 od
6

1 p r o c e s s Dec =
2 while true do
3 if x > 0 then
4 x := x-1
5 od
6

1 p r o c e s s Reset =
2 while true do
3 if x = 200 then
4 x := 0
5 od
6

• Suppose x = 199.

• Counterexample to the property: after 6 steps, x becomes strictly less than 0.
• How can we fix the error?

A multi-process example

26/33 L. Geatti, A. Montanari An introduction to Model Checking



1 p r o c e s s Inc =
2 while true do
3 if x < 200 then
4 x := x + 1
5 od
6

1 p r o c e s s Dec =
2 while true do
3 if x > 0 then
4 x := x-1
5 od
6

1 p r o c e s s Reset =
2 while true do
3 if x = 200 then
4 x := 0
5 od
6

• Suppose x = 199.

• Counterexample to the property: after 6 steps, x becomes strictly less than 0.
• How can we fix the error?

A multi-process example

26/33 L. Geatti, A. Montanari An introduction to Model Checking



1 p r o c e s s Inc =
2 while true do
3 if x < 200 then
4 x := x + 1
5 od
6

1 p r o c e s s Dec =
2 while true do
3 if x > 0 then
4 x := x-1
5 od
6

1 p r o c e s s Reset =
2 while true do
3 if x = 200 then
4 x := 0
5 od
6

• Suppose x = 199.

• Counterexample to the property: after 6 steps, x becomes strictly less than 0.
• How can we fix the error?

A multi-process example

26/33 L. Geatti, A. Montanari An introduction to Model Checking



1 p r o c e s s Inc =
2 while true do
3 if x < 200 then
4 x := x + 1
5 od
6

1 p r o c e s s Dec =
2 while true do
3 if x > 0 then
4 x := x-1
5 od
6

1 p r o c e s s Reset =
2 while true do
3 if x = 200 then
4 x := 0
5 od
6

• Suppose x = 199.
• Counterexample to the property: after 6 steps, x becomes strictly less than 0.
• How can we fix the error?

A multi-process example

26/33 L. Geatti, A. Montanari An introduction to Model Checking



1 Modeling phase
• model the system under consideration
• as a first sanity check, perform some simulations
• formalise the property to be checked and perform sanity check on it

2 Running phase
• run the model checker to check the validity of the property in the model

3 Analysis phase
• property satisfied? ⇒ check next property (if any)
• property violated? ⇒

• analyse generated counterexample by simulation
• refine the model, design, or property and repeat the entire procedure

• out of memory? ⇒ try to reduce the model and try again

The Model Checking Process

27/33 L. Geatti, A. Montanari An introduction to Model Checking



• widely applicable (hardware, software, protocol systems, ...)
• allows for partial verification (only most relevant properties)
• potential “push-button” technology (software-tools)
• rapidly increasing industrial interest
• in case of property violation, a counterexample is provided
• sound and interesting mathematical foundations
• not biased to the most possible scenarios (such as testing)

Pros of Model Checking

28/33 L. Geatti, A. Montanari An introduction to Model Checking



• main focus on control-intensive applications (less data-oriented)
• reactive systems

• model checking is only as “good” as the system model
• no guarantee about completeness of results
• impossible to check generalisations (in general)

Cons of Model Checking

29/33 L. Geatti, A. Montanari An introduction to Model Checking



• Security: Needham-Schroeder encryption protocol
• error that remained undiscovered for 17 years unrevealed

• Transportation systems
• train model containing 10476 states
• state-space explosion problem

• Model checkers for C, Java and C++
• used (and developed) by Microsoft, Digital, NASA, FBK
• successful application area: device drivers

• Software in the current/next generation of space missiles
• NASA’s Mars Pathfinder, Deep Space-1, JPL LARS group

Notable model checking applications

30/33 L. Geatti, A. Montanari An introduction to Model Checking



Reference
Christel Baier and Joost-Pieter Katoen
(2008). Principles of model checking.
MIT Press. ISBN: 978-0-262-02649-9

Reference
Edmund M Clarke et al. (2018).
Handbook of model checking. Vol. 10.
Springer. DOI:
10.1007/978-3-319-10575-8

Two excellent and modern books
on model checking

31/33 L. Geatti, A. Montanari An introduction to Model Checking

https://doi.org/10.1007/978-3-319-10575-8


REFERENCES



Christel Baier and Joost-Pieter Katoen (2008). Principles of model checking. MIT
Press. ISBN: 978-0-262-02649-9.

Edmund M Clarke et al. (2018). Handbook of model checking. Vol. 10. Springer.
DOI: 10.1007/978-3-319-10575-8.

A Prasad Sistla and Edmund M Clarke (1985). “The complexity of propositional
linear temporal logics”. In: Journal of the ACM (JACM) 32.3, pp. 733–749.
DOI: 10.1145/3828.3837.

Bibliography I

33/33 L. Geatti, A. Montanari An introduction to Model Checking

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1145/3828.3837

	References

