Department of Mathematics, Computer Science and Physics, University of Udine

Succinctness of Linear Temporal Logic with Past

April 23, 2024

Outline

LTL +P is the extension of LTL with past temporal operators.
We will prove the following result.

Theorem

$\mathrm{LTL}+\mathrm{P}$ can be exponentially more succinct than LTL.

Reference:

Nicolas Markey (2003). "Temporal logic with past is exponentially more succinct". In: Bull. EATCS 79, pp. 122-128

Outline

Outline:
(1) Recap of past temporal operators of LTL +P
(2) Transformation of LTL $+P$ formulas into equivalent NBA (Nondeterministic Büchi Automata)
(3) Proof of the succinctness result.

Linear Temporal Logic with Past
 LTL+P Syntax

The syntax of LTL+P is defined as follows:

$$
\begin{aligned}
& \phi:=p|\neg \phi| \phi \vee \phi \text { Boolean Modalities with } p \in \mathcal{A P} \\
&|\mathrm{X} \phi| \phi \cup \phi \text { Future Temporal Modalities } \\
&|\mathrm{Y} \phi| \phi S \phi \\
& \text { Past Temporal Modalities }
\end{aligned}
$$

- $\mathrm{Y} \phi$ is the Yesterday operator: the previous time point exists and it satisfies the formula ϕ
- $\phi_{1} S \phi_{2}$ is the Since operator: there exists a time point in the past where ϕ_{2} is true, and ϕ_{1} holds since (and excluding) that point up to now.
Shortcuts:
- Once, $\mathrm{O} \phi$: there exists a time point in the past where ϕ holds. $\mathrm{O} \phi \equiv \top \mathrm{S} \phi$.
- Historically, $\mathrm{H} \phi$: for all time points in the past ϕ holds. $\mathrm{H} \phi \equiv \neg(\mathrm{O} \neg \phi)$.

Linear Temporal Logic
 LTL Semantics

We say that σ satisfies at position i the LTL formula ϕ, written $\sigma, i=\phi$, iff:

- $\sigma, i \models \mathrm{Y} \phi$ iff $i>0$ and $\sigma, i-1 \models \phi$

position i has a predecessor and ϕ holds at the previous position of i

Note: $\sigma, 0 \models \mathrm{Y} \phi$ is always false.

Linear Temporal Logic
 LTL Semantics

We say that σ satisfies at position i the LTL formula ϕ, written $\sigma, i=\phi$, iff:

- $\sigma, i \models \phi_{1} \mathrm{~S} \phi_{2}$ iff $\exists j \leq i . \sigma, j \models \phi_{2}$ and $\forall j<k \leq i . \sigma, k \models \phi_{1}$

$$
\phi_{1} \text { holds since } \phi_{2} \text { held }
$$

Linear Temporal Logic

 LTL Shortcuts
Shortcuts:

- (once) $\mathrm{O} \phi \equiv \mathrm{T} \mathrm{S} \phi$

Linear Temporal Logic

Shortcuts:

- (historically) $\mathrm{H} \phi \equiv \neg \mathrm{O} \neg \phi$

ϕ holds always in the past

Linear Temporal Logic

Shortcuts:

- (weak yesterday) $\widetilde{\mathrm{Y}} \phi \equiv \neg \mathrm{Y} \neg \phi$

Note: $\sigma, i \neq \widetilde{\mathrm{Y}} \perp$ is true iff $i=0$.

Notation

Notation:

- we will write $\phi \in \mathrm{LTL}$ (resp., $\phi \in \mathrm{LTL}+\mathrm{P}$) to denote the fact that ϕ is a formula of LTL (resp., LTL+P)
- we will denote with $|\phi|$ the size of ϕ, defined as the size of its parse tree.

Exercises useful for the succinctness proof.

Exercise 1

$$
\sigma, i \neq \widetilde{\mathrm{Y}} \perp \quad \Leftrightarrow \quad i ?
$$

Exercises useful for the succinctness proof.

Exercise 1

$$
\sigma, i \models \widetilde{Y} \perp \quad \Leftrightarrow \quad i \quad=0
$$

Exercise

Exercises useful for the succinctness proof.

Exercise 2

$$
\sigma, i \models \widetilde{\mathrm{Y}} \widetilde{\mathrm{Y}} \widetilde{\mathrm{Y}} \perp \quad \Leftrightarrow \quad i ?
$$

Exercise

Exercises useful for the succinctness proof.

Exercise 2

$$
\sigma, i \neq \widetilde{Y} \widetilde{Y} \widetilde{Y} \perp \quad \Leftrightarrow \quad i \quad \leq 2
$$

Exercises useful for the succinctness proof.

Exercise 3

$$
\sigma, i \models ? \quad \Leftrightarrow \quad i \geq 2
$$

Exercises useful for the succinctness proof.

Exercise 3

$$
\sigma, i \models \mathrm{YY} \top \quad \Leftrightarrow \quad i \geq 2
$$

Exercises useful for the succinctness proof.

Exercise 4

$$
\sigma, i \neq ? \quad \Leftrightarrow \quad i=2
$$

Exercise

Exercises useful for the succinctness proof.

Exercise 4

$$
\sigma, i \neq \tilde{Y} \tilde{Y} \tilde{Y} \perp \wedge \mathrm{YY} \top \quad \Leftrightarrow \quad i=2
$$

From LTL + P to NBA

Goal

For any formula ϕ of $L T L+P$ over the atomic propositions $\mathcal{A P}$, we will build a NBA \mathcal{A}_{ϕ} over the alphabet $\Sigma:=2^{\mathcal{A} \mathcal{P}}$ such that $\mathcal{L}(\phi)=\mathcal{L}\left(\mathcal{A}_{\phi}\right)$.

Definition (Extended Closure)

For any formula ϕ of LTL+P, we define the extended closure of ϕ, denoted with $\mathcal{C}(\phi)$, as the smallest set of formulas such that:

- $\phi \in \mathcal{C}(\phi)$;
- if $\alpha \in \mathcal{C}(\phi)$ and β is a subformula of α, then $\beta \in \mathcal{C}(\phi)$;
- if $\alpha \in \mathcal{C}(\phi)$, then $\neg \alpha \in \mathcal{C}(\phi)$; (n.b. we identify $\neg \neg \alpha$ with α)
- if $\alpha \mathrm{U} \beta \in \mathcal{C}(\phi)$, then $\mathrm{X}(\alpha \cup \beta) \in \mathcal{C}(\phi)$;
- if $\alpha \mathrm{S} \beta \in \mathcal{C}(\phi)$, then $\{\mathrm{Y}(\alpha \mathrm{S} \beta), \widetilde{\mathrm{Y}}(\alpha \mathrm{S} \beta)\} \subseteq \mathcal{C}(\phi)$.

From LTL + P to NBA

States of the automaton

States of \mathcal{A}_{ϕ}

A state of the NBA \mathcal{A}_{ϕ} is any subset $S \subseteq \mathcal{C}(\phi)$ such that:

- the conjunction of all propositional formulas in S is satisfiable; (local consistency)
- for all $\alpha \in \mathcal{C}(\phi)$, it holds that $\alpha \in S$ iff $\neg \alpha \notin S$;
- for all $\alpha:=\alpha_{1} \wedge \alpha_{2}$, it holds that $\alpha \in S$ iff $\left\{\alpha_{1}, \alpha_{2}\right\} \subseteq S$
- for all $\alpha:=\alpha_{1} \cup \alpha_{2}$, it holds that $\alpha \in S$ iff either $\alpha_{2} \in S$ or $\left\{\alpha_{1}, \mathrm{X} \alpha\right\} \subseteq S$;
- for all $\alpha:=\alpha_{1} S \alpha_{2}$, it holds that $\alpha \in S$ iff either $\alpha_{2} \in S$ or $\left\{\alpha_{1}, Y \alpha\right\} \subseteq S$.

Initial states of \mathcal{A}_{ϕ}

A state $S \subseteq \mathcal{C}(\phi)$ is initial for \mathcal{A}_{ϕ} iff $\phi \in S$ and S does not contain any formula of type $\mathrm{Y} \alpha$ or $\neg \widetilde{\mathrm{Y}} \alpha$.

Transitions of \mathcal{A}_{ϕ}

For any two states $S, S^{\prime} \subseteq \mathcal{C}(\phi)$, there is a transition from S to S^{\prime} labelled with $a \in \Sigma$ in the automaton \mathcal{A}_{ϕ} iff:

- the label of the transition is consistent with the source state (recall that $\left.\Sigma:=2^{\mathcal{A} \mathcal{P}}\right):$

$$
p \in a \leftrightarrow p \in P \quad \forall p \in \mathcal{A P}
$$

- $\mathrm{X} \alpha \in S$ iff $\alpha \in S^{\prime}$, for all $\mathrm{X} \alpha \in \mathcal{C}(\phi)$;
- $\mathrm{Y} \alpha \in S^{\prime}$ iff $\alpha \in S$, for all $\mathrm{Y} \alpha \in \mathcal{C}(\phi)$;
- $\widetilde{\mathrm{Y}} \alpha \in S^{\prime}$ iff $\alpha \in S$, for all $\widetilde{\mathrm{Y}} \alpha \in \mathcal{C}(\phi)$.

From LTL + P to NBA

Final states of \mathcal{A}_{ϕ}

For every $\alpha:=\alpha_{1} U \alpha_{2} \in \mathcal{C}(\phi)$, we say that a state S is α-fulfilling iff $\alpha \in S \rightarrow \alpha_{2} \in S$.
A state of \mathcal{A}_{ϕ} is final iff is α-fulfilling for some $\alpha:=\alpha_{1} U \alpha_{2} \in \mathcal{C}(\phi)$.

Generalized Büchi Condition

A generalized Büchi automaton is a tuple $\mathcal{A}=\langle Q, \Sigma, I, \Delta, \mathcal{F}\rangle$ such that $\mathcal{F}:=\left\{F_{1}, \ldots, F_{n}\right\}$, for some $n \in \mathbb{N}$, where $F_{i} \subseteq Q$ for each $1 \leq i \leq n$.
A run π is accepting for \mathcal{A} iff, for all $1 \leq i \leq n$, we have that $\operatorname{Inf}(\pi) \cap F_{i} \neq \varnothing$.
We define \mathcal{A}_{ϕ} as a Generalized NBA with the collection of final states defined as follows:

$$
\mathcal{F}:=\left\{F_{\alpha} \mid \alpha:=\alpha_{1} \cup \alpha_{2} \in \mathcal{C}(\phi), F_{\alpha}:=\{S \mid S \text { is an } \alpha \text {-fulfilling state }\}\right\}
$$

From LTL + P to NBA

Final states of the automaton
For the details about the translation of LTL+P into Generalized NBA see:
Reference:
Rob Gerth et al. (1995). "Simple on-the-fly automatic verification of linear temporal logic". In: International Conference on Protocol Specification, Testing and Verification. Springer, pp. 3-18

Generalized NBA can be degeneralized, e.g., using a counter.

Reference:

Yaacov Choueka (1974). "Theories of automata on ω-tapes: A simplified approach". In: Journal of computer and system sciences 8.2, pp. 117-141

From LTL+P to NBA

Alternatively, we can use the Müller condition.

Müller Condition

A Müller automaton is a tuple $\mathcal{A}=\langle Q, \Sigma, I, \Delta, \mathcal{F}\rangle$ such that $\mathcal{F}:=\left\{F_{1}, \ldots, F_{n}\right\}$, for some $n \in \mathbb{N}$, where $F_{i} \subseteq Q$ for each $1 \leq i \leq n$.
A run π is accepting for \mathcal{A} iff, for some $1 \leq i \leq n$, we have that $\operatorname{Inf}(\pi)=F_{i}$.
We can define \mathcal{A}_{ϕ} as a Müller automaton with the collection of final states defined as follows:

$$
\mathcal{F}:=\left\{F \subseteq Q \mid \forall \alpha:=\alpha_{1} \cup \alpha_{2} \in \mathcal{C}(\phi) . \exists S_{\alpha} \in F \text { and } S_{\alpha} \text { is } \alpha \text {-fulfilling }\right\}
$$

From LTL + P to NBA
 Some tools

Some tools:

- LTL2BA (http://www.lsv.fr/ gastin/ltl2ba/) by Paul Gastin and Denis Oddoux (simple, does not always give a pruned automaton)
- Rabinizer 4 (https://www7.in.tum.de/ kretinsk/rabinizer4.html) by Jan Kretinsky, Tobias Meggendorfer, Salomon Sickert (et al.)
- OWL (https:/ /owl.model.in.tum.de) by Jan Křetínský, Tobias Meggendorfer, Salomon Sickert

Automata-based approach to LTL+P satisfiability

How can we solve LTL+P satisfiability using the translation of LTL $+P$ formulas into NBA?

Automata-based approach to LTL+P satisfiability

How can we solve LTL+P satisfiability using the translation of LTL $+P$ formulas into NBA?
(1) Let ϕ be a LTL +P formula
(2) Build the NBA \mathcal{A}_{ϕ} equivalent to ϕ
(3) Check for the emptiness of \mathcal{A}_{ϕ}

- if $\mathcal{L}\left(\mathcal{A}_{\phi}\right)=\varnothing$, then \ldots
- otherwise, ...

Automata-based approach to LTL+P satisfiability

How can we solve LTL+P satisfiability using the translation of LTL $+P$ formulas into NBA?
(1) Let ϕ be a LTL + P formula
(2) Build the NBA \mathcal{A}_{ϕ} equivalent to ϕ
(3) Check for the emptiness of \mathcal{A}_{ϕ}

- if $\mathcal{L}\left(\mathcal{A}_{\phi}\right)=\varnothing$, then ϕ is unsatisfiable
- otherwise, ϕ is satisfiable

Automata-based approach to LTL+P satisfiability

How can we solve LTL+P satisfiability using the translation of LTL+P formulas into NBA?
(1) Let ϕ be a LTL +P formula
(2) Build the NBA \mathcal{A}_{ϕ} equivalent to ϕ
(3) Check for the emptiness of \mathcal{A}_{ϕ}

- if $\mathcal{L}\left(\mathcal{A}_{\phi}\right)=\varnothing$, then ϕ is unsatisfiable
- otherwise, ϕ is satisfiable

Complexity:

- Step 2 is exponential in the size of ϕ
- Step 3 can be done in nondeterministic logarithmic space (Savitch Theorem)
- Steps 2 and 3 can be performed on-the-fly: thus, the complexity of the procedure is polynomial space (PSPACE).

Succinctness of LTL+P

We will prove the following result.

Theorem

LTL+P can be exponentially more succinct than LTL.

Reference:

Nicolas Markey (2003). "Temporal logic with past is exponentially more succinct". In: Bull. EATCS 79, pp. 122-128

- past temporal operators do not add expressive power
- but they add succinctness power

Succinctness of LTL+P

LTL+P can be exponentially more succinct than LTL

There exists a family of languages $\left\{\mathcal{L}_{n}\right\}_{n=1}^{\infty} \subseteq\left(2^{\mathcal{A} \mathcal{P}_{n}}\right)^{\omega}$ such that:

- for all $n>0, \mathcal{L}_{n}$ is definable in LTL+P with a formula of size $\mathcal{O}(n)$, i.e.,

$$
\forall n>0 . \exists \phi \in \operatorname{LTL}+\mathrm{P} .\left(\mathcal{L}(\phi)=\mathcal{L}_{n} \wedge|\phi| \in \mathcal{O}(n)\right)
$$

- for all $n>0, \mathcal{L}_{n}$ is not definable in LTL with formulas of size less than exponential in n, i.e.,

$$
\forall n>0 . \forall \psi \in \operatorname{LTL} .\left(\mathcal{L}(\psi)=\mathcal{L}_{n} \rightarrow|\psi| \in 2^{\Omega(n)}\right)
$$

Definition of the candidate family of

Definition (Family of languages $\left\{A_{n}\right\}_{n=1}^{\infty}$)

For all $n>0$, we define $\mathcal{A} \mathcal{P}_{n}:=\left\{p_{0}, \ldots, p_{n}\right\}$ and we define the language $A_{n} \subseteq\left(2^{\mathcal{A} \mathcal{P}_{n}}\right)^{\omega}$ as follows:
A_{n} is the set of words in which, if any position i agrees with position 0 on the interpretation of all p_{1}, \ldots, p_{n}, then i and 0 agree also on the interpretation of p_{0}.

Example with $\mathrm{n}=2$ and $\mathcal{A} \mathcal{P}_{n}=\left\{p_{0}, p_{1}, p_{2}\right\}$

- $\left\{p_{0}, p_{2}\right\} \cdot\left(\left\langle\left\{p_{1}\right\} \cdot\left\{p_{1}, p_{2}\right\} \cdot \varnothing\right\rangle\right)^{\omega} \in A_{n}$
- $\left\{p_{0}, p_{2}\right\} \cdot\left(\left\langle\left\{p_{1}\right\} \cdot\left\{p_{0}, p_{2}\right\} \cdot \varnothing\right\rangle\right)^{\omega} \in A_{n}$
- $\left\{p_{0}, p_{1}, p_{2}\right\} \cdot\left(\left\langle\left\{p_{1}\right\} \cdot\left\{p_{1}, p_{2}\right\} \cdot \varnothing\right\rangle\right)^{\omega} \notin A_{n}$

A_{n} is succinctly definable in $\mathrm{LTL}+\mathrm{P}$

Proposition

For all $n>0$, the language A_{n} is definable by a formula of $L T L+P$ of size $\mathcal{O}(n)$.

Proof.

For all $n>0$, we define the LTL +P formula equivalent to A_{n} as follows:

$$
\mathrm{G}\left(\left(\bigwedge_{i=1}^{n}\left(p_{i} \leftrightarrow \mathrm{O}\left(\tilde{\mathrm{Y}} \perp \wedge p_{i}\right)\right)\right) \rightarrow\left(p_{0} \leftrightarrow \mathrm{O}\left(\widetilde{\mathrm{Y}} \perp \wedge p_{0}\right)\right)\right)
$$

Succinctness of LTL+P

We will prove the following result which, together with the previous Proposition, proves that LTL+P can be exponentially more succinct than LTL.

Lemma

For each $n>0$, the language A_{n} is not definable in LTL with formulas of size less than exponential in n.

In order to prove it, we first define another family of languages.

Definition of the family of languages B_{n}

Definition (Family of languages $\left\{B_{n}\right\}_{n=1}^{\infty}$)

For all $n>0$, we define $\mathcal{A} \mathcal{P}_{n}:=\left\{p_{0}, \ldots, p_{n}\right\}$ and we define the language $B_{n} \subseteq\left(2^{\mathcal{A} \mathcal{P}_{n}}\right)^{\omega}$ as follows:
B_{n} is the set of words in which, if any two position i agrees with position j on the interpretation of all p_{1}, \ldots, p_{n}, then i and j agree also on the interpretation of p_{0}.

Example with $\mathrm{n}=2$ and $\mathcal{A} \mathcal{P}_{n}=\left\{p_{0}, p_{1}, p_{2}\right\}$

- $\left\{p_{0}, p_{2}\right\} \cdot\left(\left\langle\left\{p_{1}\right\} \cdot\left\{p_{1}, p_{2}\right\} \cdot \varnothing\right\rangle\right)^{\omega} \in B_{n}$
- $\left(\left\langle\left\{p_{0}, p_{2}\right\} \cdot\left\{p_{1}\right\} \cdot\left\{p_{0}, p_{2}\right\} \cdot \varnothing \cdot\left\{p_{1}\right\}\right\rangle\right)^{\omega} \in B_{n}$
- $\left(\left\langle\left\{p_{0}, p_{2}\right\} \cdot\left\{p_{1}\right\} \cdot\left\{p_{0}, p_{2}\right\} \cdot \varnothing \cdot\left\{p_{0}, p_{1}\right\}\right\rangle\right)^{\omega} \notin B_{n}$

Connection between A_{n} and B_{n}

Lemma

For all $n>0$, if A_{n} were definable in LTL with formulas of size less than exponential in n, then also B_{n} is expressible in LTL +P with formulas of size less than exponential in n.

Proof.

For all $n>0$, by hypothesis there exists a formula $\phi_{n} \in \operatorname{LTL}$ such that $\mathcal{L}\left(\phi_{n}\right)=A_{n}$ and $\left|\phi_{n}\right|$ is less than $2^{\mathcal{O}(n)}$.

Connection between A_{n} and B_{n}

Lemma

For all $n>0$, if A_{n} were definable in LTL with formulas of size less than exponential in n, then also B_{n} is expressible in LTL +P with formulas of size less than exponential in n.

Proof.

Since ϕ_{n} contains only future temporal operators, it holds that the language of the formula $\psi_{n}:=\mathrm{G}\left(\phi_{n}\right)$ is exactly B_{n}, because:

- since ϕ_{n} contains only future operators, $\sigma \models \mathrm{G}\left(\phi_{n}\right)$ iff all suffixes of σ are models of ϕ_{n}
- by definition of ϕ_{n}, this is equivalent of saying that for all i and for all $j>i$, if σ_{i} and σ_{j} agree on p_{1}, \ldots, p_{n}, then they also agree on p_{0}.
- by definition of B_{n}, this is equivalent to $\sigma \in B_{n}$.

Connection between A_{n} and B_{n}

Lemma

For all $n>0$, if A_{n} were definable in LTL with formulas of size less than exponential in n, then also B_{n} is expressible in LTL +P with formulas of size less than exponential in n.

Proof.

Moreover, $\psi_{n}:=\mathrm{G}\left(\phi_{n}\right)$ is trivially a formula of LTL +P and $\left|\psi_{n}\right|=\left|\phi_{n}\right|+1$, therefore B_{n} is expressible in LTL +P with a formula of size less than exponential in n.

Connection between A_{n} and B_{n}

Lemma

For all $n>0$, if A_{n} were definable in LTL with formulas of size less than exponential in n, then also B_{n} is expressible in LTL +P with formulas of size less than exponential in n.

Proof.

Moreover, $\psi_{n}:=\mathrm{G}\left(\phi_{n}\right)$ is trivially a formula of LTL +P and $\left|\psi_{n}\right|=\left|\phi_{n}\right|+1$, therefore B_{n} is expressible in LTL +P with a formula of size less than exponential in n.

We will show that the consequent of the above implication is false. This implies that A_{n} cannot be defined succinctly in LTL.

Explosion of B_{n}

Lemma

For all $n>0, B_{n}$ is expressible in LTL +P only with formulas of size at least exponential in n, i.e.:

$$
\forall n>0 . \forall \psi \in \operatorname{LTL}+\mathrm{P} .\left(\mathcal{L}(\psi)=B_{n} \rightarrow|\psi| \in 2^{\Omega(n)}\right)
$$

Proof.

The proof is based on the following two points:
(1) Each LTL +P formula ϕ can be translated into an equivalent NBA of size at most exponential in $|\phi|$;

- this is what we saw at the beginning of the lecture
(2) Any NBA over $2^{\mathcal{A} \mathcal{P}_{n}}$ recognizing B_{n} is of size $2^{2^{\Omega(n)}}$.
- we will prove it later.

Explosion of B_{n}

Lemma

For all $n>0, B_{n}$ is expressible in LTL +P only with formulas of size at least exponential in n, i.e.:

$$
\forall n>0 . \forall \psi \in \operatorname{LTL}+\mathrm{P} .\left(\mathcal{L}(\psi)=B_{n} \rightarrow|\psi| \in 2^{\Omega(n)}\right)
$$

Proof.

- Suppose by contradiction that there exists a $n>0$ and a formula $\phi \in L T L+P$ such that $\mathcal{L}(\phi)=B_{n}$ and $|\phi|$ is less than exponential in n.
- Then, by Point 1 , there exists a NBA \mathcal{A}_{ϕ} such that $\mathcal{L}\left(\mathcal{A}_{\phi}\right)=B_{n}$ and the size of \mathcal{A}_{ϕ} is less than doubly exponential in n.
- However, this is a contradiction with Point 2.

Doubly exponential lower bound for any automaton recognizing B_{n}

The last bit that it is left to prove is the following doubly exponential lower bound.

Lemma

For all $n>0$, any NBA over $2^{\mathcal{A} \mathcal{P}_{n}}$ recognizing B_{n} is of size $2^{2^{\Omega(n)}}$.

Doubly exponential lower bound
 for any automaton recognizing B_{n}

Consider the set $\mathcal{A} \mathcal{P}_{n} \backslash\left\{p_{0}\right\}:=\left\{p_{1}, \ldots, p_{n}\right\}$. Let \bar{a} be an arbitrary sequence of the 2^{n} subsets of $\mathcal{A} \mathcal{P}_{n} \backslash\left\{p_{0}\right\}$:

$$
\bar{a}:=\left\langle a_{0}, \ldots, a_{2^{n}-1}\right\rangle
$$

From now on, we fix such a sequence \bar{a}.

Example with $n=3$

$$
\begin{aligned}
\mathcal{A} \mathcal{P}_{n} \backslash\left\{p_{0}\right\} & :=\left\{p_{1}, p_{2}, p_{3}\right\} . \\
\bar{a} & :=\left\langle a_{0}, \ldots, a_{7}\right\rangle \\
& :=\left\langle\left\{p_{1}\right\},\left\{p_{1}, p_{2}\right\}, \varnothing,\left\{p_{3}\right\},\left\{p_{3}, p_{2}\right\},\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}\right\},\left\{p_{2}, p_{3}\right\}\right\rangle
\end{aligned}
$$

Doubly exponential lower bound

For any $K \subseteq\left\{0, \ldots, 2^{n}-1\right\}$, we define:

$$
a_{i}^{K}:= \begin{cases}a_{i} & \text { iff } i \notin K \\ a_{i} \cup\left\{p_{0}\right\} & \text { otherwise }\end{cases}
$$

For any $K \subseteq\left\{0, \ldots, 2^{n}-1\right\}$, we define $\overline{a^{K}}:=\left\langle a_{0}^{K}, \ldots, a_{2^{n}-1}^{K}\right\rangle$.

Example with $n=3$

- if $\bar{a}:=\left\langle\left\{p_{1}\right\},\left\{p_{1}, p_{2}\right\}, \varnothing,\left\{p_{3}\right\},\left\{p_{3}, p_{2}\right\},\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}\right\},\left\{p_{2}, p_{3}\right\}\right\rangle$ and
- if $K:=\{1,7\}$
- then $\overline{a^{K}}:=\left\langle\left\{p_{1}\right\},\left\{p_{1}, p_{2}, p_{0}\right\}, \varnothing,\left\{p_{3}\right\},\left\{p_{3}, p_{2}\right\},\left\{p_{1}, p_{2}, p_{3}\right\},\left\{p_{2}\right\},\left\{p_{2}, p_{3}, p_{0}\right\}\right\rangle$

Doubly exponential lower bound
 for any automaton recognizing B_{n}

For any $K \subseteq\left\{0, \ldots, 2^{n}-1\right\}$, we define:

$$
a_{i}^{K}:= \begin{cases}a_{i} & \text { iff } i \notin K \\ a_{i} \cup\left\{p_{0}\right\} & \text { otherwise }\end{cases}
$$

For any $K \subseteq\left\{0, \ldots, 2^{n}-1\right\}$, we define $\overline{a^{K}}:=\left\langle a_{0}^{K}, \ldots, a_{2^{n}-1}^{K}\right\rangle$.

- Clearly, two distinct $K, K^{\prime} \subseteq\left\{0, \ldots, 2^{n}-1\right\}$ lead to two different sequences $\overline{a^{K}}$ and $\overline{a^{K^{\prime}}}$.
- There are $2^{2^{n}}$ different choices for $K \subseteq\left\{0, \ldots, 2^{n}-1\right\}$.
- There are $2^{2^{n}}$ different words $\overline{a^{K}}$.

Doubly exponential lower bound
 for any automaton recognizing B_{n}

- Let K and K^{\prime} be two distinct subsets of $\left\{0, \ldots, 2^{n}-1\right\}$.
- The word $\left(\overline{a^{K}}\right)^{\omega}$ belongs to B_{n} because:
- by construction of \bar{a}, two positions i and j agree on p_{1}, \ldots, p_{n} iff they belong to "different repetitions" of $\overline{a^{K}}$;
- since the set K never changes between different repetitions of $\overline{a^{K}}$, we have that i and j also agree on p_{0}.
- With the same line of reasoning, we have that also the word $\left(\overline{a^{K}}\right)^{\omega} \in B_{n}$.
- Since by hypotesis, the automaton \mathcal{A} recognizes B_{n}, both $\left(\overline{a^{K}}\right)^{\omega}$ and $\left(\overline{a^{K^{\prime}}}\right)^{\omega}$ are accepted by \mathcal{A}.

Doubly exponential lower bound
 for any automaton recognizing B_{n}

- Therefore, there exists two accepting runs $\overline{\pi^{K}}$ and $\overline{\pi^{K^{\prime}}}$ in \mathcal{A} induced by $\left(\overline{a^{K}}\right)^{\omega}$ and $\left(\overline{a^{K^{\prime}}}\right)^{\omega}$, respectively.

Doubly exponential lower bound
 for any automaton recognizing B_{n}

- Therefore, there exists two accepting runs $\overline{\pi^{K}}$ and $\overline{\pi^{K^{\prime}}}$ in \mathcal{A} induced by $\left(\overline{a^{K}}\right)^{\omega}$ and $\left(\overline{a^{K^{\prime}}}\right)^{\omega}$, respectively.
- Let q^{K} (resp., $q^{K^{\prime}}$) be the 2^{n}-th state of $\overline{\pi^{K}}$ (resp., $\overline{\pi^{K^{\prime}}}$)

Doubly exponential lower bound
 for any automaton recognizing B_{n}

- Suppose that $q^{K}=q^{K^{\prime}}$.

Doubly exponential lower bound
 for any automaton recognizing B_{n}

- Suppose that $q^{K}=q^{K^{\prime}}$.
- The sequence of states made of the prefix of $\overline{\pi^{K^{\prime}}}$ concatenated to the suffix of π^{K} is an accepting run
- and it is induced by the word $\overline{a^{k}} \cdot\left(\overline{a^{K^{\prime}}}\right)^{\omega}$.

Doubly exponential lower bound
 for any automaton recognizing B_{n}

- However, the word $\overline{a^{K}} \cdot\left(\overline{a^{K^{\prime}}}\right)^{\omega}$ does not belong to B_{n}
- because it contains at least two positions that agree on p_{1}, \ldots, p_{n} but not on p_{0} (since $K \neq K^{\prime}$).
- This means that it cannot be the case that $q^{K}=q^{K^{\prime}}$.
- Therefore, since there are $2^{2^{n}}$ of different K, there are also $2^{2^{n}}$ different q^{K}.
- The automaton for B_{n} has at least $2^{2^{n}}$ states.

Succinctness of LTL $+P$

Summing up

Lemma

For all $n>0, B_{n}$ is recognizable only by NBA of size at least doubly exponential in n.

Lemma

For all $n>0, B_{n}$ is expressible in LTL $+P$ only with formulas of size at least exponential in n.

Lemma

For all $n>0, A_{n}$ is expressible in LTL only with formulas of size at least exponential in n.

Theorem

LTL+P can be exponentially more succinct than LTL.

REFERENCES

Bibliography I

Yaacov Choueka (1974). "Theories of automata on ω-tapes: A simplified approach". In: Journal of computer and system sciences 8.2, pp. 117-141. Rob Gerth et al. (1995). "Simple on-the-fly automatic verification of linear temporal logic". In: International Conference on Protocol Specification, Testing and Verification. Springer, pp. 3-18.
Nicolas Markey (2003). "Temporal logic with past is exponentially more succinct". In: Bull. EATCS 79, pp. 122-128.

