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Basic coordinates - 1

Explicit vs. implicit methods for (modal and) temporal logics

In implicit methods the accessibility relation is built-in into the
structure of the tableau

This is the case with tableau methods for linear and branching
time point temporal logics

Explicit methods keep track of the accessibility relation by
means of some sort of external device

This is the case with tableau methods for interval temporal
logics where structured labels are associated with nodes to
constrain the corresponding formula, or set of formulae, to hold
only at the domain element(s) identified by the label
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Basic coordinates - 2

Declarative vs. incremental methods

Declarative methods first generate all possible sets of
subformulae of a given formula and then they eliminate some
(possibly all) of them

Declarative methods are generally easier to understand

Incremental methods generate only ‘meaningful’ sets of
subformulae

Incremental methods are generally more efficient
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Tableau systems for LTL and fragments/variants - 1

An exponential time declarative method to check LTL formulae
has been developed by Wolper

P. Wolper, The tableau method for temporal logic: An overview, Logique
et Analyse 28 (1985) 119–136

and later extended by Lichtenstein and Pnueli to Past LTL
(PLTL)

O. Lichtenstein, A. Pnueli, Propositional temporal logic: Decidability and
completeness, Logic Journal of the IGPL 8(1) (2000) 55–85
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Tableau systems for LTL and fragments/variants - 2

A PSPACE incremental method for PLTL has been proposed by
Kesten et al.

Y. Kesten, Z. Manna, H. McGuire, A. Pnueli, A decision algorithm for full
propositional temporal logic, in: Proc. of the 5th International
Conference on Computer Aided Verification, 1993, pp. 97–109

A labeled tableau system for the LTL-fragment LTL[F] has been
proposed by Schmitt and Goubault-Larrecq

P. Schmitt, J. Goubault-Larrecq, A tableau system for linear-time
temporal logic, in: E. Brinksma (Ed.), Proc. of the 3rd Workshop on
Tools and Algorithms for the Construction and Analysis of Systems, Vol.
1217 of LNCS, Springer, 1997, pp. 130–144
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Tableau systems for LTL and fragments/variants - 3

A tableau method for PLTL over bounded models has been
developed by Cerrito and Cialdea-Mayer

S. Cerrito, M. Cialdea-Mayer, Bounded model search in linear temporal
logic and its application to planning, in: Proc. of the International
Conference TABLEAUX 1998, Vol. 1397 of LNAI, Springer, 1998, pp.
124–140

Later Cerrito et al. generalized the method to first-order PLTL

S. Cerrito, M. Cialdea-Mayer, S. Praud, First-order linear temporal logic
over finite time structures, in: H. Ganzinger, D. McAllester, A. Voronkov
(Eds.), Proc. of the 6th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Vol. 1705 of LNAI,
Springer, 1999, pp. 62–76.
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About complexity

The satisfiability problem for LTL / PLTL is PSPACE-complete

A. Sistla, E. Clarke, The complexity of propositional linear time temporal
logics, Journal of the ACM 32 (3) (1985) 733–749

while that LTL[F] and for PLTL over bounded models of
polynomial length is NP-complete

S. Cerrito, M. Cialdea-Mayer, Bounded model search in linear temporal
logic and its application to planning, in: Proc. of the International
Conference TABLEAUX 1998, Vol. 1397 of LNAI, Springer, 1998, pp.
124–140

A. Sistla, E. Clarke, The complexity of propositional linear time temporal
logics, Journal of the ACM 32 (3) (1985) 733–749
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Tableau systems for CTL

An implicit tableau method to check the satisfiability of CTL
formulae, that generalizes Wolper’s method for LTL, has been
proposed by Emerson and Halpern

E. Emerson, J. Halpern, Decision procedures and expressiveness in the
temporal logic of branching time, Journal of Computer and System
Sciences 30 (1) (1985) 1–24

The satisfiability problem for CTL is known to be
EXPTIME-complete. There exists an optimal incremental
version of Emerson and Halpern’s decision procedure
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A tableau-based decision procedure for LTL

In the following, we describe in detail a tableau-based decision
procedure for LTL

For the sake of clarity, among the various existing tableau
systems for LTL, we selected Manna and Pnueli’s implicit
declarative one

Z. Manna, A. Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer, 1995
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Expansion rules and closure

Expansion rules
Gp ≈ p ∧ XGp
Fp ≈ p ∨ XFp
pUq ≈ q ∨ (p ∧ X (pUq))

Closure Φϕ of a formula ϕ

Φϕ is the smallest set of formulae satisfying:
ϕ ∈ Φϕ

for every p ∈ Φϕ and subformula q of p, q ∈ Φϕ

for every p ∈ Φϕ, ¬p ∈ Φϕ (¬¬p ≡ p)
for every ψ ∈ {Gp,Fp,pUq}, if ψ ∈ Φϕ, then Xψ ∈ Φϕ
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Example of closure

ϕ : Gp ∧ F¬p

The closure is Φϕ = Φ+
ϕ ∪ Φ−ϕ , where

Φ+
ϕ = {ϕ,Gp,F¬p,XGp,XF¬p,p}

and

Φ−ϕ = {¬ϕ,¬Gp,¬F¬p,¬XGp,¬XF¬p,¬p}

We have that |Φϕ| ≤ 4 · |ϕ|

Gp → {Gp,XGp,¬Gp,¬XGp}
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Classification of formulae

α and β tables

α k(α)

p ∧ q p,q
Gp p,XGp

We have that an α-formula holds at position j iff all of
k(α)-formulae hold at j

β k1(β) k2(β)

p ∨ q p q
Fp p XFp
pUq q p,X (pUq)

We have that a β-formula holds at position j iff either the
k1(β)-formula holds at j or all k2(β)-formulae hold at j (or both)
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Atoms

Atom over ϕ (ϕ-atom)
A ϕ-atom is a subset A ⊆ Φϕ satisfying:

Rsat : the conjunction of all local formulae in A is satisfiable
R¬: for every p ∈ Φϕ, p ∈ A iff ¬p 6∈ A (i.e., for every
p ∈ Φϕ, a ϕ-atom must contain either p or ¬p)
Rα: for every α-formula α ∈ Φϕ, α ∈ A iff k(α) ⊆ A (e.g.,
Gp ∈ A iff both p ∈ A and XGp ∈ A)
Rβ: for every β-formula β ∈ Φϕ, β ∈ A iff either k1(β) ∈ A
or k2(beta) ⊆ A (or both)

Example (ϕ : Gp ∧ F¬p)

A1 = {ϕ,Gp,F¬p,XGp,XF¬p,p} is an atom
A2 == {ϕ,Gp,F¬p,XGp,¬XF¬p,¬p} is not (Rα is violated)
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Intended meaning of atoms

Atoms are used to represent maximal mutually satisfiable sets
of formulae

Definition
A set of formulae S ⊆ Φϕ is mutually satisfiable if there exist a
model σ and a position j ≥ 0 such that every formula p ∈ S
holds at position j

Proposition
For any set of mutually satisfiable formulae S ⊆ Φϕ there exists
a ϕ-atom A such that S ⊆ A

The opposite does not hold: it may happen that S ⊆ Φϕ and
there exists a ϕ-atom A such that S ⊆ A, but S is not mutually
satisfiable (e.g., Xp ∧ X¬p)
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Basic (or elementary) formulae

Definition
Basic formulae are propositions or formulae of the form Xp

Property of basic formulae
The presence or absence of basic formulae in an atom A
determine the presence or absence of all other closure
formulae in A

Example (ϕ : Gp ∧ F¬p)

Suppose that XGp ∈ A and XF¬p ∈ A, while p 6∈ A.
From p 6∈ A, it follows that ¬p ∈ A
From p 6∈ A and XGp ∈ A, it follows that ¬Gp ∈ A
From ¬p ∈ A and XF¬p ∈ A, it follows that F¬p ∈ A
From Gp 6∈ A and F¬p ∈ A, it follows that ¬ϕ ∈ A
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Tableau

Given a formula ϕ, construct a direct graph Tϕ such that

Nodes and edges of Tϕ
The nodes of Tϕ are the atoms of ϕ and there exists an edge
from an atom A to an atom B if for every Xp ∈ Φϕ, Xp ∈ A iff
p ∈ B

Tableau
Tϕ is the tableau of ϕ

Example (ϕ : Gp ∧ F¬p)
The tableau Tϕ of ϕ = Gp ∧ F¬p is depicted in the next slide
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A2 :

{
¬p,¬XGp, XF¬p

¬Gp, F¬p,¬ϕ

}

A0 :

{
¬p,¬XGp,¬XF¬p

¬Gp, F¬p,¬ϕ

}

A4 :

{
¬p, XGp,¬XF¬p

¬Gp, F¬p,¬ϕ

}

A6 :

{
¬p, XGp, XF¬p

¬Gp, F¬p,¬ϕ

}

A3 :

{
p,¬XGp, XF¬p

¬Gp, F¬p,¬ϕ

}

A1 :

{
p,¬XGp,¬XF¬p

¬Gp,¬F¬p,¬ϕ

}

A5 :

{
p, XGp,¬XF¬p

Gp,¬F¬p,¬ϕ

}

A7 :

{
p, XGp, XF¬p

Gp, F¬p,ϕ

}
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Models and tableau paths - 1

Definition (induced path)
Given a model σ of ϕ, the infinite path πσ : A0,A1, . . . in Tϕ is
induced by σ if for every position j ≥ 0 and every p ∈ Φϕ,
(σ, j)  p iff p ∈ Aj (in particular, ϕ ∈ A0)

Proposition
Given a formula ϕ and a tableau Tϕ for it, for every model
σ : s0, s1, . . . of ϕ there exists an infinite path πσ : A0,A1, . . . in
Tϕ such that πσ is induced by σ.
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Models and tableau paths - 2

Sketch of the proof

Let σ : s0, s1, . . . be a model. For every j ≥ 0, let Aj be the subset of Φφ that
contains all formulas p ∈ Φφ such that (σ, j) |= p. For every j ≥ 0, we have
that (i) Aj satisfies all the requirements of an atom and (ii) the pair (Aj ,Aj+1)
satisfies the condition on edges. Hence, πσ : A0,A1, . . . is an infinite path in
Tϕ induced by σ.

An immediate consequence

Since σ is a model of φ, we have that (σ, 0) |= φ and thus φ ∈ A0

The opposite does not hold: not every infinite path in Tϕ is
induced by some model σ
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A (counter)example

The infinite path Aω7 , where A7 = {p,XGp,XF¬p,Gp,F¬p, ϕ},
is not induced by any model:

every formula q ∈ A7 should hold at all positions j , but there
exists no model σ such that F¬p holds at position 0 and p
holds at all positions j ≥ 0.

For what kind of paths does the opposite hold?
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Promises and promising formulae

Promise
A formula ψ ∈ Φϕ is said to promise a formula r if ψ has one of
the following forms:

Fr pUr ¬G¬r

Property 1

If (σ, j)  ψ, then (σ, k)  r , for some k ≥ j

Property 2
The model σ contains infinitely many positions j ≥ 0 such that

(σ, j)  ¬ψ or (σ, j)  r
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Fulfilling atoms and paths

Fulfilling atom

An atom A fulfills a formula ψ, that promises r , if ¬ψ ∈ A or
r ∈ A

Fulfilling path

A path π = A0,A1, . . . in Tϕ is fulfilling if for every promising
formula ψ ∈ Φϕ, π contains infinitely many atoms Aj which fulfill
ψ (that is, either ¬ψ ∈ Aj or r ∈ Aj or both)

An example
The path Aω7 is not fulfilling, because F¬p ∈ Φϕ promises ¬p,
but ¬p 6∈ A7 and ¬F¬p 6∈ A7
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Additional examples

The path Aω2 is fulfilling, because F¬p ∈ Φϕ promises ¬p, the
path visits A2 infinitely many times, and both F¬p and ¬p
belong to A2

The path (A2 · A3)ω is fulfilling, because F¬p ∈ Φϕ promises
¬p, ¬p ∈ A2, and the path visits A2 infinitely many times

The path A4 · Aω5 is fulfilling, because F¬p ∈ Φϕ promises ¬p,
the path visits A5 infinitely many times, ¬p does not belong to
A5, but ¬F¬p(= Gp) belongs to A5
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From models to fulfilling paths

Proposition (models induce fulfilling paths)

If πσ = A0,A1, . . . is a path induced by a model σ, then πσ is
fulfilling

Proof

Let ψ ∈ Φφ be a formula that promises r . By the definition of model, σ
contains infinitely many positions j such that (σ, j) |= ¬ψ or (σ, j) |= r . By the
correspondence between models and induced paths, for each of these
positions j , ¬ψ ∈ Aj or r ∈ Aj .
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From fulfilling paths to models - 1

Proposition (fulfilling paths induce models)

If π = A0,A1, . . . is a fulfilling path in Tϕ, then there exists a
model σ inducing π, that is, π = πσ and for every ψ ∈ Φϕ and
every j ≥ 0, (σ, j)  ψ iff ψ ∈ Aj

Proof

The proof is by induction on the structure of ψ ∈ Φϕ.

Base case. For all j ≥ 0, we require the state sj of σ to agree with Aj on the
interpretation of propositions in Φϕ, that is, sj [p] = true iff p ∈ Aj . The case of
propositions is thus trivial.

Inductive case. The case of Boolean connectives is straightforward. Let
consider the case of X and F .

Let ψ = Xp. We have that (σ, j)  Xp iff (definition of X ) (σ, j + 1)  p iff
(inductive hypothesis) p ∈ Aj+1 iff (definition on the edges of the tableau)
Xp ∈ Aj
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From fulfilling paths to models - 2

Proof

Let ψ = Fr .

We first prove that Fr ∈ Aj implies (σ, j)  Fr . Assume that Fr ∈ Aj . Since π is
fulfilling, it contains infinitely many positions k beyond j such that Ak fulfills Fr .
Let k ≥ j the smallest k ≥ j fulfilling Fr . If k = j , then, since Fr in Aj , r ∈ Aj as
well. If k > j , then Ak−1 does not fulfill Fr , that is, it contains both Fr and ¬r .
By Rβ for Fr , XFr ∈ Ak−1 and thus Fr ∈ Ak . The only way Ak can fulfill Fr is to
have r ∈ Ak . It follows that there always exists k ≥ j such that r ∈ Ak . By the
inductive hypothesis, (σ, k)  r , which, by definition of Fr , implies (σ, j)  Fr .

We prove now that (σ, j)  Fr implies Fr ∈ Aj . Assume that (σ, j)  Fr and
Fr 6∈ Aj . From ¬Fr ∈ Aj , it follows that {¬r ,¬Fr} ⊆ Ak for all k ≥ j . By the
inductive hypothesis, this implies that (σ, k)  ¬r for all k ≥ j (which
contradicts (σ, j)  Fr ).
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Satisfiability and fulfilling paths

Main proposition
A formula ϕ is satisfiable iff the tableau Tϕ contains a fulfilling
path π = A0,A1, . . . such that ϕ ∈ A0

Proof

The direction from right to left follows from the last lemma (from fulfilling
paths to models).

The direction from left to right follows from the previous lemma (from models
to fulfilling paths) .
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Applications

Is ϕ : Gp ∧ F¬p satisfiable?
ϕ is satisfiable if Tϕ contains a fulfilling path π = B0,B1, . . . with
ϕ ∈ B0

A7 is the only atom containing ϕ (ϕ-atom)
Aω7 is the only infinite path starting at A7

Since Aω7 is not fulfilling, ϕ is not satisfiable

Is ¬ϕ : ¬Gp ∨ ¬F¬p satisfiable?
¬ϕ is satisfiable if T¬ϕ (= Tϕ) contains a fulfilling path
π = B0,B1, . . . with ¬ϕ ∈ B0

Since Aω5 is a fulfilling path and A5 contains ¬ϕ, ¬ϕ is satisfiable
(model 〈p : >〉ω)
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Strongly connected subgraphs

How do we check the existence of fulfilling paths starting at a
ϕ-atom?

Definition (strongly connected subgraph)

A subgraph S ⊆ Tϕ is a strongly connected subgraph (SCS) if
for every pair of distinct atoms A,B ∈ S, there exists a path
from A to B which only passes through atoms of S

Definition (fulfilling SCS)

A non-transient SCS S is fulfilling if every formula ψ ∈ Φϕ that
promises r is fulfilled by some atom A ∈ S (either ¬ψ ∈ A or
r ∈ A or both), where a transient SCS is an SCS consisting of a
single node not connected to itself
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A2 :

{
¬p,¬XGp, XF¬p

¬Gp, F¬p,¬ϕ

}

A0 :

{
¬p,¬XGp,¬XF¬p

¬Gp, F¬p,¬ϕ

}

A4 :

{
¬p, XGp,¬XF¬p

¬Gp, F¬p,¬ϕ

}

A6 :

{
¬p, XGp, XF¬p

¬Gp, F¬p,¬ϕ

}

A3 :

{
p,¬XGp, XF¬p

¬Gp, F¬p,¬ϕ

}

A1 :

{
p,¬XGp,¬XF¬p

¬Gp,¬F¬p,¬ϕ

}

A5 :

{
p, XGp,¬XF¬p

Gp,¬F¬p,¬ϕ

}

A7 :

{
p, XGp, XF¬p

Gp, F¬p,ϕ

}
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Examples

Positive examples
The two SCSs
{A2,A3}
{A5}
are fulfilling SCSs.

Negative examples

The two SCSs
{A1}
{A7}
are not fulfilling.
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SCS and satisfiability

Definition (ϕ-reachable SCS)
An SCS S is ϕ-reachable if there exists a finite path
B0,B1, . . . ,Bk such that ϕ ∈ B0 and Bk ∈ S

Proposition
The tableau Tϕ contains a fulfilling path starting at a ϕ-atom iff
Tϕ contains a ϕ-reachable fulfilling SCS

Corollary
A formula ϕ is satisfiable iff Tϕ contains a ϕ-reachable fulfilling
SCS
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An example

Is ¬ϕ : ¬Gp ∨ ¬F¬p satisfiable?

The SCS S = {A2,A3} is (¬ϕ)-reachable fulfilling SCS because

(A2,A3)ω: A2,A3,A2,A3, . . .

and

¬ϕ ∈ A2 (as well as ¬ϕ ∈ A3)

Hence, ¬ϕ is satisfiable ((model (〈p : ⊥〉〈p : >〉)ω)
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One step more: maximal SCS

Definition (MSCS)
An SCS is maximal (MSCS) if it is not contained in any larger
SCS (notice that there exist at most |Tϕ| MSCSs)

Example

{A2} and {A3} are not MSCS, while {A2,A3} is an MSCS

Proposition
A formula ϕ is satisfiable iff the tableau Tϕ contains a
ϕ-reachable fulfilling MSCS (as a matter of fact, we can
preliminarily remove all atoms which are not reachable from a
ϕ-atom)
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Example 1

Is ϕ : Gp ∧ F¬p satisfiable?
If we remove all atoms which are not reachable from a ϕ-atom,
the resulting pruned graph (tableau) only includes A7
connected to itself

The only MSCS is {A7}; since it is not fulfilling, it immediately
follows that ϕ is not satisfiable
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A2 :

{
¬p,¬XGp, XF¬p

¬Gp, F¬p,¬ϕ

}

A0 :
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¬Gp, F¬p,¬ϕ
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Example 2

Is ¬ϕ : ¬Gp ∨ ¬F¬p satisfiable?
The removal of all atoms which are not reachable from a
(¬ϕ)-atom has not effect in this case: the pruned graph
(tableau) coincides with the original one.

The MSCSs are {A0}, {A1}, {A2,A3}, {A4}, {A5}, {A6}, and
{A7}

MSCSs {A0}, {A4}, and {A6} are transient and MSCSs {A1}
and {A7} are not fulfilling. However, since both {A2,A3} and
{A5} are fulfilling, it follows that ¬ϕ is satisfiable



Point-based temporal logics A tableau-based decision procedure for LTL

Further pruning the tableau

Definition (terminal MSCS)
An MSCS S is terminal if there are no edges leading from
atoms of S to atoms outside S

Examples

{A7} and {A5} are terminal MSCSs, while {A6} and {A2,A3}
are not

Pruning criteria

After constructing Tϕ,
remove any MSCS which is not reachable from a ϕ-atom
remove any terminal MSCS which is not fulfilling



Point-based temporal logics A tableau-based decision procedure for LTL

Further pruning the tableau

Definition (terminal MSCS)
An MSCS S is terminal if there are no edges leading from
atoms of S to atoms outside S

Examples

{A7} and {A5} are terminal MSCSs, while {A6} and {A2,A3}
are not

Pruning criteria

After constructing Tϕ,
remove any MSCS which is not reachable from a ϕ-atom
remove any terminal MSCS which is not fulfilling



Point-based temporal logics A tableau-based decision procedure for LTL

Further pruning the tableau

Definition (terminal MSCS)
An MSCS S is terminal if there are no edges leading from
atoms of S to atoms outside S

Examples

{A7} and {A5} are terminal MSCSs, while {A6} and {A2,A3}
are not

Pruning criteria

After constructing Tϕ,
remove any MSCS which is not reachable from a ϕ-atom
remove any terminal MSCS which is not fulfilling



Point-based temporal logics A tableau-based decision procedure for LTL

How can we check the validity of ϕ?

To check the validity of a formula ϕ, we can apply the proposed
algorithm to ¬ϕ.

Possible outcomes:
If the algorithm reports success, ¬ϕ is satisfiable and thus
ϕ is not valid (the produced model σ is a counterexample
to the validity of ϕ)
If the algorithm reports failure, ¬ϕ is unsatisfiable and thus
ϕ is valid
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