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Temporal logics are the de-facto standard languages for specifying properties of
systems in formal verification and artificial intelligence.

• born in the ’50s as a tool for philosophical argumentation about time

Reference:
Arthur N Prior (2003). Time and modality. John Locke Lecture

• the idea of its use in formal verification can be traced back to the ’70s

Reference:
Amir Pnueli (1977). “The temporal logic of programs”. In: 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977). IEEE, pp. 46–57.
DOI: 10.1109/SFCS.1977.32
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In artificial intelligence, when do we need to use logic to talk about time?

• automated planning
• temporally extended goals

(Bacchus and Kabanza 1998)
• temporal planning (Fox and Long

2003)
• timeline-based planning (Della

Monica et al. 2017)
• automated synthesis (Jacobs et al.

2017)
• autonomy under uncertainty

(Brafman and De Giacomo 2019)
• specification of goals for planning

over MDPs and POMDPs

• reinforcement learning (De
Giacomo et al. 2020; Hammond
et al. 2021)

• specification of reward functions
and safety conditions

• knowledge representation
• temporal description logics

(Artale et al. 2014)

• multi-agent systems
• temporal epistemic logics (van

Benthem et al. 2009)

Temporal logic in AI
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Modal Logic extends classic propositional (Boolean) logic with the concepts of
necessity and possibility.

• World = set of propositions that are supposed to be true in that world
• Worlds are connected with edges

• directed graph with labels on the nodes: Kripke structure

• in Modal Logic, the truth of a formula depends on the world in which is
interpreted (many-worlds interpretation) and on the worlds accessible from it.

• Necessity (□): is asking something to be true in all accessible states
• Possibility (♢): is asking something to be true in at least one accessible state

Modal Logic
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• Necessity (□): is asking something to be true in all accessible states
• Possibility (♢): is asking something to be true in at least one accessible state

∅ {p}

{p} {p, q}

• AP = {p, q}
• □p is true
• ♢q is true
• □q is false
• □p ∨□q is true

Modal Logic
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Linear Temporal Logic (LTL, for short) is a (special case of) Modal Logic.
• World = State = set of proposition letters that are supposed to hold (i.e., to be

true) in that state
• Kripke Structure = (infinite) linear order of states = state sequence = word in a

language
• accessibility relation = temporal ordering

• Necessity (□) = Always in the future (G)
• Possibility (♢) = Sometimes in the future (F)

AP := {r, g}

{r} ∅ {r, g} {r} {r, g} {r}

0 1 2 3 4 5

Linear Temporal Logic
LTL
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• introduced by Pnueli in the ’70s
• interpreted over state sequences
• it extends classical propositional logic
• temporal operators are used to talk about how propositions

change over time

Reference:
Amir Pnueli (1977). “The temporal logic of programs”. In: 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977). IEEE, pp. 46–57.
DOI: 10.1109/SFCS.1977.32

Linear Temporal Logic
LTL
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There are many choices to be made for the representation of time.

BranchingLinear

Representing time
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There are many choices to be made for the representation of time.

FiniteInfinite

Representing time
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There are many choices to be made for the representation of time.

t = 1 t = 1.5 t = 2.3 t = 3.4 t = 4.2

Real-timeQualitative

Representing time
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There are many choices to be made for the representation of time.

DenseDiscrete

Representing time
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There are many choices to be made for the representation of time.

IntervalsPoints

Representing time
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Past-FuturePure Future

Other parameters
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{p} {p, q} {p} {p, q} {p} x = 1 x = 1.5 x = 0.3 x = 0.6x = 3.14

y = x
2 y = x

2 y = x
2 y = x

2 y = x
2

First-OrderPropositional

Other parameters
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We focus here on:
• linear-time
• discrete-time
• qualitative-time
• infinite-time
• future only
• propositional

Our choice
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Let AP := {p, q, r, . . .} be a set of atomic propositions. The syntax of LTL is defined
as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ Boolean Modalities with p ∈ AP
| Xϕ | ϕ U ϕ Future Temporal Modalities

• Xϕ is the Next operator: at the next time point (tomorrow), the formula ϕ holds
• ϕ1 U ϕ2 is the Until operator : there exists a time point in the future where ϕ2 is

true, and ϕ1 holds from now until (and excluding) that point.
Shortcuts:

• Eventually, Fϕ: there exists a time point in the future where ϕ holds. It is defined
as Fϕ ≡ ⊤ U ϕ.

• Globally, Gϕ: for all time points in the future ϕ holds. It is defined as
Gϕ ≡ ¬(F¬ϕ).

Linear Temporal Logic
LTL Syntax
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Example:

Consider AP = {p, q} and the following formula:

GF(p)

Which state sequences are models of the formula?

• {p} · {q} · {p} · ({q})ω

• ({p, q})ω

• ({q} · {q} · {p} · {q})ω

• ({p})∗ · ({q})ω

Linear Temporal Logic
Examples
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Example:

Consider AP = {p, q} and the following formula:

GF(p)

Which state sequences are models of the formula?

• {p} · {q} · {p} · ({q})ω

• ({p, q})ω

• ({q} · {q} · {p} · {q})ω

• ({p})∗ · ({q})ω

no
yes
yes
no

Linear Temporal Logic
Examples
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Example:

Consider AP = {p, q} and the following formula:

FG(q)

Which state sequences are models of the formula?

• {p} · {q} · {p} · ({q})ω

• ({p, q})ω

• ({q} · {q} · {p} · {q})ω

• ({p})∗ · ({q})ω

Linear Temporal Logic
Examples

13/40 L. Geatti, A. Montanari Linear Temporal Logic



Example:

Consider AP = {p, q} and the following formula:

FG(q)

Which state sequences are models of the formula?

• {p} · {q} · {p} · ({q})ω

• ({p, q})ω

• ({q} · {q} · {p} · {q})ω

• ({p})∗ · ({q})ω

yes
yes
no
yes

Linear Temporal Logic
Examples
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Example:

Let AP = {r, g}. Each request (r) is eventually followed by a grant (g).

G(r → F(g))

Which state sequences are models of the formula?

• (∅)ω

• {r} · {r} · {r} · (∅)ω

• {r} · {r} · {r} · {g} · (∅)ω

• ({r} ·∅ ·∅ · {g})ω

Linear Temporal Logic
Examples
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Example:

Let AP = {r, g}. Each request (r) is eventually followed by a grant (g).

G(r → F(g))

Which state sequences are models of the formula?

• (∅)ω

• {r} · {r} · {r} · (∅)ω

• {r} · {r} · {r} · {g} · (∅)ω

• ({r} ·∅ ·∅ · {g})ω

yes
no
yes
yes

Linear Temporal Logic
Examples
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• Given a set of atomic propositions AP , any LTL formula defined over AP is
interpreted over infinite words σ ∈ (2AP)ω.

• Let σ = ⟨σ0, σ1, . . .⟩. For each i ≥ 0, σi ⊆ AP is called a state contains the
atomic propositions that are supposed to hold in that state.

• In this context, sequences in (2AP)ω are also called state sequences or traces.

AP := {r, g}

{r} ∅ {r, g} {r} {r, g} {r}

0 1 2 3 4 5

Linear Temporal Logic
LTL Semantics
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We say that σ satisfies at position i the LTL formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= p iff p ∈ σi

i

p holds at position i

{p, q}

Linear Temporal Logic
LTL Semantics
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We say that σ satisfies at position i the LTL formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= ¬ϕ iff σ, i ̸|= ϕ

i

ϕ does not hold at position i

¬ϕ

Linear Temporal Logic
LTL Semantics
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We say that σ satisfies at position i the LTL formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2

i

ϕ1 and ϕ2 hold at position i

ϕ1 ∧ ϕ2

Linear Temporal Logic
LTL Semantics
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We say that σ satisfies at position i the LTL formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= Xϕ iff σ, i + 1 |= ϕ

i

ϕ holds at the next position of i

ϕ

Linear Temporal Logic
LTL Semantics
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We say that σ satisfies at position i the LTL formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= ϕ1 U ϕ2 iff ∃j ≥ i . σ, j |= ϕ2 and ∀i ≤ k < j . σ, k |= ϕ1

i

ϕ1 holds until ϕ2 holds

ϕ1 ϕ1 ϕ1

ϕ2

Linear Temporal Logic
LTL Semantics

16/40 L. Geatti, A. Montanari Linear Temporal Logic



Shortcuts:

• (eventually) Fϕ ≡ ⊤ U ϕ

i

ϕ will eventually hold

ϕ

Linear Temporal Logic
LTL Shortcuts
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Shortcuts:

• (globally) Gϕ ≡ ¬F¬ϕ

i

ϕ holds always

ϕ ϕ ϕ ϕ ϕ

Linear Temporal Logic
LTL Shortcuts
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• We say that σ satisfies ϕ (written σ |= ϕ) iff σ, 0 |= ϕ. In this case, we say that σ
is a model of ϕ.

• For any LTL formula ϕ, we define the language of ϕ as:

L(ϕ) = {σ ∈ (2AP)ω | σ |= ϕ}

• We say that ϕ is satisfiable iff L(ϕ) ̸= ∅.
• We say that ϕ is valid iff L(ϕ) = (2AP)ω.

Linear Temporal Logic
LTL Languages
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Example:

Consider AP = {p, q} and the following formula:

F(p ∧ Xq)

Which state sequences are models of the formula?

• (∅)ω

• ({q})ω

• (∅)∗ · {p} ·∅ · {q} · (∅)ω

• (∅)∗ · {p} · {q} · (∅)ω

Linear Temporal Logic
Examples
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Example:

Consider AP = {p, q} and the following formula:

F(p ∧ Xq)

Which state sequences are models of the formula?

• (∅)ω

• ({q})ω

• (∅)∗ · {p} ·∅ · {q} · (∅)ω

• (∅)∗ · {p} · {q} · (∅)ω

no
no
no
yes

Linear Temporal Logic
Examples
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Example:

Consider AP = {p, q} and the following formulas:

F(p) ∧ F(q) F(p ∧ Fq) F(p ∧ q)

Which state sequences are models of the formula?

• (∅)ω

• (∅)∗ · {p} ·∅ · {q} · (∅)ω

• (∅)∗ · {q} ·∅ · {p} · (∅)ω

• (∅)∗ · {p, q} · (∅)ω

Linear Temporal Logic
Examples
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Example:

Consider AP = {p, q} and the following formulas:

F(p) ∧ F(q) F(p ∧ Fq) F(p ∧ q)

Which state sequences are models of the formula?

• (∅)ω

• (∅)∗ · {p} ·∅ · {q} · (∅)ω

• (∅)∗ · {q} ·∅ · {p} · (∅)ω

• (∅)∗ · {p, q} · (∅)ω

no no no
yes yes no
yes no no
yes yes yes

Linear Temporal Logic
Examples
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Example:

Consider AP = {p, q}. What is the language of the following formula?

p U (Gq)

Write an equivalent ω-regular expression.

Linear Temporal Logic
Examples
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Example:

Consider AP = {p, q}. What is the language of the following formula?

p U (Gq)

Write an equivalent ω-regular expression.

L(p U (Gq)) = ({p})∗ · ({q} ∪ {p, q})ω

Linear Temporal Logic
Examples
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Example:

Consider AP = {p, q}.
Is the formula FXp equivalent to XFp?

Linear Temporal Logic
Examples
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Example:

Consider AP = {p, q}.
Is the formula FXp equivalent to XFp?
Yes.

Linear Temporal Logic
Examples
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Example:

Consider AP = {p, q}.
Is the formula FXp equivalent to XFp?
Yes.

Exercise:
Consider AP = {p, q}.
Write the formula (Gp) U q without using the Until operator, that is, using only F,
G, and Boolean modalities.

Linear Temporal Logic
Examples
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Compassion:

Consider AP = {en, tk}.
It is not possible that a transition is enabled infinitely many times but taken only finitely
many times.

GF(en) → GF(tk)

This is very different from GF(en → tk).

Linear Temporal Logic
Fairness constraints
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Compassion:

Consider AP = {en, tk}.
It is not possible that a transition is enabled infinitely many times but taken only finitely
many times.

GF(en) → GF(tk)

This is very different from GF(en → tk).

Linear Temporal Logic
Fairness constraints
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Compassion:

Consider AP = {en, tk}.
It is not possible that a transition is enabled infinitely many times but taken only finitely
many times.

GF(en) → GF(tk)

This is very different from GF(en → tk).

Justice:

Consider AP = {en, tk}.
It is never the case that a transition is always enabled but never taken.

¬F(G(en) ∧ G(¬tk))

This is equivalent to G(G(en) → F(tk)).

Linear Temporal Logic
Fairness constraints
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Compassion:

Consider AP = {en, tk}.
It is not possible that a transition is enabled infinitely many times but taken only finitely
many times.

GF(en) → GF(tk)

This is very different from GF(en → tk).

Justice:

Consider AP = {en, tk}.
It is never the case that a transition is always enabled but never taken.

¬F(G(en) ∧ G(¬tk))

This is equivalent to G(G(en) → F(tk)).

Linear Temporal Logic
Fairness constraints
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It is possible to define a strict version of the until as follows:
• σ, i |= ϕ1 Us ϕ2 iff ∃j > i . σ, j |= ϕ2 and ∀i < k < j . σ, k |= ϕ1

How can be encode formulas of type Xϕ with only the strict version of the until?

Xϕ ≡ ⊥ Us ϕ

Therefore, if we adopt the strict version, then it is possible to define LTL with the
only temporal operator being the until.

• ... but encoding the standard until with the strict until requires more space:

ϕ1 U ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ ϕ1 Us ϕ2)

Linear Temporal Logic
Strict version of the until
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It is possible to define a strict version of the until as follows:
• σ, i |= ϕ1 Us ϕ2 iff ∃j > i . σ, j |= ϕ2 and ∀i < k < j . σ, k |= ϕ1

How can be encode formulas of type Xϕ with only the strict version of the until?

Xϕ ≡ ⊥ Us ϕ

Therefore, if we adopt the strict version, then it is possible to define LTL with the
only temporal operator being the until.

• ... but encoding the standard until with the strict until requires more space:

ϕ1 U ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ ϕ1 Us ϕ2)

Linear Temporal Logic
Strict version of the until
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Definition (Negation Normal Form)

We define the nnf(·) : LTL → LTL (Negation Normal Form) function as follows:
• nnf(p) = p
• nnf(ϕ1 ∧ ϕ2) = nnf(ϕ1) ∧ nnf(ϕ2)

• nnf(ϕ1 ∨ ϕ2) = nnf(ϕ1) ∨ nnf(ϕ2)

• nnf(Xϕ) = X(nnf(ϕ))
• nnf(ϕ1 U ϕ2) = (nnf(ϕ1)) U (nnf(ϕ2))

• nnf(ϕ1 R ϕ2) = (nnf(ϕ1)) R (nnf(ϕ2))

For any ϕ ∈ LTL, the formula nnf(ϕ) has negation only applied to atomic propositions.

Linear Temporal Logic
Negation Normal Form
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Definition (Negation Normal Form)

We define the nnf(·) : LTL → LTL (Negation Normal Form) function as follows:
• nnf(¬p) = ¬p
• nnf(¬¬ϕ) = nnf(ϕ)
• nnf(¬(ϕ1 ∧ ϕ2)) = nnf(¬ϕ1) ∨ nnf(¬ϕ2)

• nnf(¬(ϕ1 ∨ ϕ2)) = nnf(¬ϕ1) ∧ nnf(¬ϕ2)

• nnf(¬Xϕ) = X(nnf(¬ϕ))
• nnf(¬(ϕ1 U ϕ2)) = (nnf(¬ϕ1)) R (nnf(¬ϕ2))

• nnf(¬(ϕ1 R ϕ2)) = (nnf(¬ϕ1)) U (nnf(¬ϕ2))

For any ϕ ∈ LTL, the formula nnf(ϕ) has negation only applied to atomic propositions.

Linear Temporal Logic
Negation Normal Form
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Theorem (Kamp’s Theorem over ω-words)

• For each LTL formula ϕ, there exists an S1S[FO] formula ψ such that L(ϕ) = L(ψ).
• For each S1S[FO] formula ψ, there exists an LTL formula ϕ such that L(ψ) = L(ϕ).

Reference:
Johan Anthony Wilem Kamp (1968). Tense logic and the theory of linear order.
University of California, Los Angeles

Linear Temporal Logic
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ω-Words

ω-SF

S1S[FO]

cf-DRALTL

aperiodic
finite

monoids

Characterizations of ω-Star-free Languages
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The syntax of LTL+P is defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ Boolean Modalities with p ∈ AP
| Xϕ | ϕ U ϕ Future Temporal Modalities
| Yϕ | ϕ S ϕ Past Temporal Modalities

• Yϕ is the Yesterday operator: the previous time point exists and it satisfies the
formula ϕ.

• ϕ1 S ϕ2 is the Since operator: there exists a time point in the past where ϕ2 is true,
and ϕ1 holds since (and excluding) that point up to now.

Shortcuts:
• Once, Oϕ: there exists a time point in the past where ϕ holds. Oϕ ≡ ⊤ S ϕ.
• Historically, Hϕ: for all time points in the past ϕ holds. Hϕ ≡ ¬(O¬ϕ).

Linear Temporal Logic with Past
LTL+P Syntax
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We say that σ satisfies at position i the LTL formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= Yϕ iff i > 0 and σ, i − 1 |= ϕ

i

position i has a predecessor and ϕ holds at the previous position of i

ϕ

Note: σ, 0 |= Yϕ is always false.

Linear Temporal Logic
LTL Semantics
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We say that σ satisfies at position i the LTL formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= ϕ1 S ϕ2 iff ∃j ≤ i . σ, j |= ϕ2 and ∀j < k ≤ i . σ, k |= ϕ1

i

ϕ1 holds since ϕ2 held

ϕ1ϕ1ϕ1

ϕ2

Linear Temporal Logic
LTL Semantics
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Shortcuts:

• (once) Oϕ ≡ ⊤ S ϕ

i

ϕ once held

ϕ

Linear Temporal Logic
LTL Shortcuts
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Shortcuts:

• (historically) Hϕ ≡ ¬O¬ϕ

i

ϕ holds always in the past

ϕ ϕ ϕ ϕ

Linear Temporal Logic
LTL Shortcuts
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Shortcuts:

• (weak yesterday) Ỹϕ ≡ ¬Y¬ϕ

0

ϕ holds at the previous position of i, if any

Ỹϕ

Note: σ, i |= Ỹ⊥ is true iff i = 0.

Linear Temporal Logic
LTL Shortcuts
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Theorem
LTL+P is expressively equivalent to LTL.

Reference:
Dov M. Gabbay et al. (1980). “On the Temporal Analysis of Fairness”. In:
Conference Record of the Seventh Annual ACM Symposium on Principles of
Programming Languages, Las Vegas, Nevada, USA, January 1980. Ed. by
Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne. ACM Press,
pp. 163–173. URL: https://doi.org/10.1145/567446.567462

Linear Temporal Logic with Past
Expressiveness
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Theorem
LTL+P can be exponentially more succinct than LTL.

Reference:
Nicolas Markey (2003). “Temporal logic with past is exponentially more
succinct”. In: Bull. EATCS 79, pp. 122–128

We will see the proof :)

Linear Temporal Logic with Past
Succinctness
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We have seen that LTL captures star-free ω-regular languages.
In order to capture all ω-regular languages, one can consider Extended Linear
Temporal Logic (ETL, for short).

ETL = LTL + operators corresponding to right-linear grammars

Reference:
Pierre Wolper (1983). “Temporal logic can be more expressive”. In: Information
and control 56.1-2, pp. 72–99. DOI: 10.1016/S0019-9958(83)80051-5

Extended Linear Temporal Logic
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ω-Words

ω-RE

S1S

NBAETL

finite
monoids

Characterizations of ω-Regular Languages
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ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

Set-theoretic view of ω-regular and star-free languages
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