Department of Mathematics, Computer Science and Physics, University of Udine The Safety Fragment of Temporal Logics on Infinite Sequences Lesson 7

Luca Geatti

luca.geatti@uniud.it

Angelo Montanari

angelo.montanari@uniud.it

April 22nd, 2024

Background

- (1) Regular and ω -regular languages
- 2 The First- and Second-order Theory of One Successor
- 3 Automata over finite and infinite words
- Linear Temporal Logic
- ② The safety fragment of LTL and its theoretical features
 - 1 Definition of Safety and Cosafety
 - 2 Characterizations and Normal Forms
 - 8 Kupferman and Vardi's Classification

Recognizing safety

- Recognizing safety Büchi automata
- 2 Recognizing safety formulas of LTL
- 8 Construction of the automaton for the bad prefixes
- ④ Algorithms and Complexity
 - Satisfiability
 - 2 Model Checking
 - 8 Reactive Synthesis
- Succinctness and Pastification
 - Succinctness of Safety Fragments
 - 2 Pastification Algorithms

RECOGNIZING SAFETY Algorithms & Complexity

In this part, we will answer to these questions:

- Can we effectively determine whether a NBA recognizes a safety property? If so, with which complexity?
- Can we effectively determine whether a LTL formula recognizes a safety property? If so, with which complexity?
- How complex is building the *automaton* for the set of *bad prefixes* of a safety *ω*-regular language?

Theorem (Alpern & Schneider (1987), Sistla (1994))

Given a NBA A*, checking whether* $\mathcal{L}(A)$ *is safety is can be performed effectively.*

References:

- Bowen Alpern and Fred B. Schneider (1987). "Recognizing Safety and Liveness". In: Distributed Comput. 2.3, pp. 117–126. DOI: 10.1007/BF01782772. URL: https://doi.org/10.1007/BF01782772
- A Prasad Sistla (1994). "Safety, liveness and fairness in temporal logic". In: *Formal Aspects of Computing* 6.5, pp. 495–511. DOI: 10.1007/BF01211865

Theorem (Alpern & Schneider (1987), Sistla (1994))

Given a NBA A, checking whether $\mathcal{L}(A)$ is safety is can be performed effectively.

We prove this theorem.

Definition (Reduced NBA)

A NBA $\mathcal{A} = \langle Q, \Sigma, I, \Delta, F \rangle$ is *reduced* (rNBA, for short) iff from every state in Q there exists a path (of length at least 1) reaching a final state in F.

- Every NBA \mathcal{A} can be turned into rNBA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$, by removing the states (and its incoming transitions) from which no final state is reachable.
 - **Important:** this can add *undefined* transitions
- This can be done in *time* linear in |*Q*| and in *space* nondeterministic logarithmic in |*Q*| (Savitch's Theorem).

Definition (Closure of a rNBA)

Given a rNBA $\mathcal{A} = \langle Q, \Sigma, I, \Delta, F \rangle$, we define the *closure of* \mathcal{A} , denoted with $cl(\mathcal{A})$, as the automaton $cl(\mathcal{A}) = \langle Q, \Sigma, I, \Delta, Q \rangle$.

- We will use the automaton ${\tt cl}(\mathcal{A})$ to determine whether $\mathcal{L}(\mathcal{A})$ is a safety property.
- **Important:** the automaton cl(A) rejects a word in Σ^{ω} only by attempting an *undefined transition*.

For any rNBA A, it holds that $\mathcal{L}(A)$ is a safety property iff $\mathcal{L}(A) = \mathcal{L}(cl(A))$.

Proof.

(\Rightarrow)

- Suppose that $\mathcal{L}(\mathcal{A})$ is a safety property. We show that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(cl(\mathcal{A}))$.
- *L*(*A*) ⊆ *L*(cl(*A*)): trivial, because cl(*A*) is obtained from *A* by making all states as accepting.

For any rNBA A, it holds that $\mathcal{L}(A)$ is a safety property iff $\mathcal{L}(A) = \mathcal{L}(cl(A))$.

Proof.

 (\Rightarrow)

- We show that $\mathcal{L}(cl(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{A})$.
- Let $\sigma \in \mathcal{L}(cl(\mathcal{A}))$.
- Observe that, since A and cl(A) have the same set of states and the same transition relation, if cl(A) reads σ (*i.e.*, without incurring in any undefined transition) then also A reads σ, and *vice versa*.
- Thus, now we focus on the automaton A reading σ .

For any rNBA A, it holds that $\mathcal{L}(A)$ is a safety property iff $\mathcal{L}(A) = \mathcal{L}(cl(A))$.

Proof.

 (\Rightarrow)

- Choose *any* prefix σ_[0,i] and let q_i be any of the states reached by A after reading σ_[0,i].
- Since A is *reduced*, there exists a final state q_{f_1} reachable from q_i when A reads some $\beta_0 \in \Sigma^+$.
- Similarly, since A is *reduced*, there exists a final state q_{f_2} reachable from q_{f_1} when A reads some $\beta_1 \in \Sigma^+$.
- ... and so on and so forth ...

For any rNBA A, it holds that $\mathcal{L}(A)$ is a safety property iff $\mathcal{L}(A) = \mathcal{L}(cl(A))$.

Proof.

- (\Rightarrow)
 - Let $\beta = \beta_0 \cdot \beta_1 \cdot \ldots$. Since, by construction, $\sigma_{[0,i]} \cdot \beta$ induces \mathcal{A} to visit final state *infinitely often*, the word $\sigma_{[0,i]} \cdot \beta$ belongs to $\mathcal{L}(\mathcal{A})$.
 - We have proved that, for any $\sigma \in \mathcal{L}(cl(\mathcal{A}))$, it holds that:

$$\forall i \geq 0 \;.\; \exists \sigma' \in \Sigma^{\omega} \;.\; \sigma_{[0,i]} \cdot \sigma' \in \mathcal{L}(\mathcal{A})$$

For any rNBA A, it holds that $\mathcal{L}(A)$ is a safety property iff $\mathcal{L}(A) = \mathcal{L}(cl(A))$.

Proof.

 (\Rightarrow)

• Since by hypothesis $\mathcal{L}(\mathcal{A})$ is a safety property, for all $\sigma \in \Sigma^{\omega}$, we have that,

 $\sigma \not\in \mathcal{L}(\mathcal{A}) \leftrightarrow \exists i \geq 0 \ . \ \forall \sigma' \in \Sigma^{\omega} \ . \ \sigma_{[0,i]} \cdot \sigma' \not\in \mathcal{L}(\mathcal{A})$

 Since before we proved that the rightmost part of the above equation is false for any *σ* ∈ *L*(cl(*A*)), we have that *σ* ∈ *L*(*A*).

For any rNBA A, it holds that $\mathcal{L}(A)$ is a safety property iff $\mathcal{L}(A) = \mathcal{L}(cl(A))$.

Proof.

 (\Leftarrow)

- Suppose that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(cl(\mathcal{A}))$.
- We prove that, for all $\sigma \in \Sigma^{\omega}$, it holds:

$$\sigma \not\in \mathcal{L}(\mathcal{A}) \leftrightarrow \exists i \geq 0 \; . \; \forall \sigma' \in \Sigma^{\omega} \; . \; \sigma_{[0,i]} \cdot \sigma' \not\in \mathcal{L}(\mathcal{A})$$

For any rNBA A, it holds that $\mathcal{L}(A)$ is a safety property iff $\mathcal{L}(A) = \mathcal{L}(cl(A))$.

Proof.

(\Leftarrow)

• The right-to-left direction

$$\forall \sigma \in \Sigma^{\omega} \ . \qquad \left(\sigma \not\in \mathcal{L}(\mathcal{A}) {\leftarrow} \exists i \geq 0 \ . \ \forall \sigma' \in \Sigma^{\omega} \ . \ \sigma_{[0,i]} \cdot \sigma' \not\in \mathcal{L}(\mathcal{A}) \right)$$

holds for every language: it suffices to take $\sigma' \coloneqq \sigma_{[i+1,\infty)}$.

For any rNBA A, it holds that $\mathcal{L}(A)$ is a safety property iff $\mathcal{L}(A) = \mathcal{L}(cl(A))$.

Proof.

 (\Leftarrow)

• We prove the left-to-right direction:

$$\forall \sigma \in \Sigma^{\omega} \; . \qquad \left(\sigma \not\in \mathcal{L}(\mathcal{A}) {\rightarrow} \exists i \geq 0 \; . \; \forall \sigma' \in \Sigma^{\omega} \; . \; \sigma_{[0,i]} \cdot \sigma' \not\in \mathcal{L}(\mathcal{A}) \right)$$

• Since by hypothesis $\mathcal{L}(\mathcal{A}) = \mathcal{L}(cl(\mathcal{A}))$, it is equivalent to prove:

 $\forall \sigma \in \Sigma^{\omega} \ . \qquad \left(\sigma \not\in \mathcal{L}(\mathsf{cl}(\mathcal{A})) \to \exists i \geq 0 \ . \ \forall \sigma' \in \Sigma^{\omega} \ . \ \sigma_{[0,i]} \cdot \sigma' \not\in \mathcal{L}(\mathsf{cl}(\mathcal{A})) \right)$

For any rNBA A, it holds that $\mathcal{L}(A)$ is a safety property iff $\mathcal{L}(A) = \mathcal{L}(cl(A))$.

Proof.

(\Leftarrow)

- $\forall \sigma \in \Sigma^{\omega}$. $\left(\sigma \not\in \mathcal{L}(\mathrm{cl}(\mathcal{A})) \to \exists i \geq 0 \ . \ \forall \sigma' \in \Sigma^{\omega} \ . \ \sigma_{[0,i]} \cdot \sigma' \not\in \mathcal{L}(\mathrm{cl}(\mathcal{A}))\right)$
- Suppose $\sigma \notin \mathcal{L}(cl(\mathcal{A}))$. Thus the automaton $cl(\mathcal{A})$ rejects σ .
- Since by hypothesis cl(A) is a *reduced* Büchi automatom, cl(A) can reject σ only by attempting an *undefined* transition.

For any rNBA A, it holds that $\mathcal{L}(A)$ is a safety property iff $\mathcal{L}(A) = \mathcal{L}(cl(A))$.

Proof.

(\Leftarrow)

- $\forall \sigma \in \Sigma^{\omega}$. $\left(\sigma \not\in \mathcal{L}(\mathrm{cl}(\mathcal{A})) \to \exists i \geq 0 \ . \ \forall \sigma' \in \Sigma^{\omega} \ . \ \sigma_{[0,i]} \cdot \sigma' \notin \mathcal{L}(\mathrm{cl}(\mathcal{A}))\right)$
- Let *i* be the position of σ at which cl(A) takes the undefined transition.
- Clearly, it holds that:

$$\forall \sigma' \in \Sigma^{\omega} \ . \ \sigma_{[0,i]} \cdot \sigma' \not\in \mathcal{L}(\mathsf{cl}(\mathcal{A}))$$

• Thus cl(A) (and A as well) specify a safety property.

Recognizing Safety Alpern & Schneider's Theorem - Example

$$\Sigma = \{a, b\}, \mathcal{L} = (a \cdot b \cdot a)^{\omega} \cup (a \cdot b \cdot a)^* \cdot b^{\omega}$$

The language \mathcal{L} is *safety* because $\mathcal{L}(\mathcal{A}) = \mathcal{L}(cl(\mathcal{A}))$.

Recognizing Safety Alpern & Schneider's Theorem - Example

 $\Sigma = \{a, b\}, \mathcal{L} = \{\sigma \in \Sigma^{\omega} \mid \text{ each 'a' is eventually followed by 'b'} \}$

The language \mathcal{L} is <u>not</u> safety because $\mathcal{L}(\mathcal{A}) \neq \mathcal{L}(cl(\mathcal{A}))$. • $a^{\omega} \in \mathcal{L}(cl(\mathcal{A}))$ but $a^{\omega} \notin \mathcal{L}(\mathcal{A})$

Complexity of the procedure

Checking whether $\mathcal{L}(\mathtt{cl}(\mathcal{A})) = \mathcal{L}(\mathcal{A})$ is done by checking whether:

 $\mathcal{L}(\mathrm{cl}(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{A}) \ \land \ \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathrm{cl}(\mathcal{A}))$

which in turn is equivalent to check whether:

$$\mathcal{L}(\mathrm{cl}(\mathcal{A}))\cap\overline{\mathcal{L}(\mathcal{A})}=\varnothing\ \land\ \mathcal{L}(\mathcal{A})\cap\overline{\mathcal{L}(\mathrm{cl}(\mathcal{A}))}=\varnothing$$

- Complementation of NBA is needed.
- Complexity of Büchi complementation (*n* = number of states):
 - upper bound: $\mathcal{O}(0.96n)^n$
 - lower bound: $\Omega(0.76n)^n$

12/28 L. Geatti, A. Montanari

Sven Schewe (2009). "Büchi Complementation Made Tight". In: 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings. Ed. by Susanne Albers and Jean-Yves Marion. Vol. 3. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, pp. 661–672. DOI: 10.4230/LIPIcs.STACS.2009.1854. URL: https://doi.org/10.4230/LIPIcs.STACS.2009.1854

Complexity of the procedure

Checking whether $\mathcal{L}(\mathtt{cl}(\mathcal{A})) = \mathcal{L}(\mathcal{A})$ is done by checking whether:

 $\mathcal{L}(\mathrm{cl}(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{A}) \ \land \ \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathrm{cl}(\mathcal{A}))$

which in turn is equivalent to check whether:

$$\mathcal{L}(\mathrm{cl}(\mathcal{A}))\cap\overline{\mathcal{L}(\mathcal{A})}=\varnothing\ \land\ \mathcal{L}(\mathcal{A})\cap\overline{\mathcal{L}(\mathrm{cl}(\mathcal{A}))}=\varnothing$$

- The emptiness check can be performed *on-the-fly* during the construction of the automata.
- Total Complexity: polynomial space (PSPACE)

Complexity of the problem

Theorem

The set of NBA recognizing safety properties is PSPACE.

Open Question:

Is PSPACE-complete?

Theorem

Given a DBA A with n states, checking whether $\mathcal{L}(A)$ is safety can be done in time polynomial in n.

Proof.

We have to check these two conditions:

•
$$\mathcal{L}(cl(\mathcal{A})) \cap \overline{\mathcal{L}(\mathcal{A})} = \varnothing$$

•
$$\mathcal{L}(\mathcal{A}) \cap \overline{\mathcal{L}(\mathrm{cl}(\mathcal{A}))} = \varnothing$$

Both require *complementation*, which is problematic (exponential) even for *deterministic* Büchi automata:

swapping final states with nonfinal ones does not work

Theorem

Given a DBA A with n states, checking whether $\mathcal{L}(A)$ is safety can be done in time polynomial in n.

Proof.

We resort to *deterministic Rabin automata* (DRA).

Rabin acceptance condition:

- Final state condition: $\Omega = \{(A_i, B_i)\}_{i=1}^n$
- A run π is accepting iff, for some $i \in \{1, ..., n\}$, it holds that $Inf(\pi) \cap A_i = \emptyset$ and $Inf(\pi) \cap B_i \neq \emptyset$.

Any DBA $\mathcal{A} \coloneqq \langle Q, \Sigma, q_0, \delta, F \rangle$ is equivalent to the DRA $\mathcal{A}' \coloneqq \langle Q, \Sigma, q_0, \delta, \{(\emptyset, F)\} \rangle$.

Theorem

Given a DBA A with n states, checking whether $\mathcal{L}(A)$ is safety can be done in time polynomial in n.

Proof.

Any DRA $\mathcal{A}' := \langle Q, \Sigma, q_0, \delta, \Omega \rangle$ with $\Omega = \{(A_i, B_i)\}_{i=1}^n$ can be complemented *without* an exponential blow-up into a *deterministic Streett automaton*. **Streett acceptance condition**:

- Final state condition: $\Omega = \{(A_i, B_i)\}_{i=1}^n$
- A run π is accepting iff, for all $i \in \{1, ..., n\}$, either $Inf(\pi) \cap A_i = \emptyset$ or $Inf(\pi) \cap B_i \neq \emptyset$.

Theorem

Given a DBA A with n states, checking whether $\mathcal{L}(A)$ is safety can be done in time polynomial in n.

Proof.

Any DRA $\mathcal{A}' := \langle Q, \Sigma, q_0, \delta, \Omega \rangle$ with $\Omega = \{(A_i, B_i)\}_{i=1}^n$ can be complemented *without* an exponential blow-up into a *deterministic Streett automaton*.

• We define the deterministic Streett automaton $\overline{\mathcal{A}'}$ as $\langle Q, \Sigma, q_0, \delta, \Omega' \rangle$ where

$$\Omega' \coloneqq \{(B,A) \mid (A,B) \in \Omega\}$$

• $\overline{\mathcal{A}'}$ recognizes the complement language of \mathcal{A}' .

Theorem

Given a DBA A with n states, checking whether $\mathcal{L}(A)$ is safety can be done in time polynomial in n.

Proof.

Consider the two conditions:

• $\mathcal{L}(\mathrm{cl}(\mathcal{A})) \cap \overline{\mathcal{L}(\mathcal{A})} = \emptyset$ •

•
$$\mathcal{L}(\mathcal{A}) \cap \overline{\mathcal{L}(\mathrm{cl}(\mathcal{A}))} = \emptyset$$

We perform the construction from Büchi to Streett (for the complement language) for the automata $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(cl(\mathcal{A}))$.

Theorem

Given a DBA A with n states, checking whether $\mathcal{L}(A)$ is safety can be done in time polynomial in n.

Proof.

Consider the two conditions:

• $\mathcal{L}(\mathrm{cl}(\mathcal{A})) \cap \overline{\mathcal{L}(\mathcal{A})} = \emptyset$ • $\mathcal{L}(\mathcal{A}) \cap \overline{\mathcal{L}(\mathrm{cl}(\mathcal{A}))} = \emptyset$

Every Büchi automaton $\mathcal{A} = \langle Q, \Sigma, I, \Delta, F \rangle$ is also a Streett automaton.

 $\mathcal{A}' \coloneqq \langle Q, \Sigma, I, \Delta, \{(Q, F)\} \rangle$

Note the role of Q in (Q, F) to always violate the first disjunct of Streett condition.

Theorem

Given a DBA A with n states, checking whether $\mathcal{L}(A)$ is safety can be done in time polynomial in n.

Proof.

Consider the two conditions:

•
$$\mathcal{L}(\mathrm{cl}(\mathcal{A})) \cap \overline{\mathcal{L}(\mathcal{A})} = \emptyset$$

•
$$\mathcal{L}(\mathcal{A}) \cap \overline{\mathcal{L}(\mathrm{cl}(\mathcal{A}))} = \varnothing$$

Streett automata are closed under Boolean operations.

Theorem

Given a DBA A with n states, checking whether $\mathcal{L}(A)$ is safety can be done in time polynomial in n.

Proof.

Consider the two conditions:

• $\mathcal{L}(\mathrm{cl}(\mathcal{A})) \cap \overline{\mathcal{L}(\mathcal{A})} = \emptyset$

•
$$\mathcal{L}(\mathcal{A}) \cap \overline{\mathcal{L}(\mathrm{cl}(\mathcal{A}))} = \emptyset$$

Since their emptiness can be solved in nondeterministic logarithmic space, this proves that the set of safety DBA is PTIME.

The set of LTL *formulas* ϕ *such that* $\mathcal{L}(\phi)$ *is safety is* PSPACE*-complete.*

Or equivalently: Given a LTL formula ϕ , the problem of establishing whether $\mathcal{L}(\phi)$ is safety is PSPACE-complete.

For any LTL formula ϕ (with $n = |\phi|$) over the set of atomic propositions \mathcal{AP} there exists a NBA \mathcal{A}_{ϕ} over the alphabet $2^{\mathcal{AP}}$ such that:

•
$$\mathcal{L}(\phi) = \mathcal{L}(\mathcal{A}_{\phi})$$
 • $|\mathcal{A}_{\phi}| \in 2^{\mathcal{O}(n)}$

Reference

Moshe Y Vardi and Pierre Wolper (1986). "An automata-theoretic approach to automatic program verification". In: *Proceedings of the First Symposium on Logic in Computer Science*. IEEE Computer Society, pp. 322–331

Reference

Moshe Y Vardi (1996). "An automata-theoretic approach to linear temporal logic". In: *Logics for concurrency*. Springer, pp. 238–266

16/28 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

For any LTL formula ϕ (with $n = |\phi|$) over the set of atomic propositions \mathcal{AP} there exists a NBA \mathcal{A}_{ϕ} over the alphabet $2^{\mathcal{AP}}$ such that:

• $\mathcal{L}(\phi) = \mathcal{L}(\mathcal{A}_{\phi})$

•
$$|\mathcal{A}_{\phi}| \in 2^{\mathcal{O}(n)}$$

Picture taken from

Zohar Manna and Amir Pnueli (1995). Temporal verification of reactive systems - safety. Springer. ISBN: 978-0-387-94459-3

The set of LTL *formulas* ϕ *such that* $\mathcal{L}(\phi)$ *is safety is* PSPACE*-complete.*

Or equivalently: Given a LTL formula ϕ , the problem of establishing whether $\mathcal{L}(\phi)$ is safety is PSPACE-complete.

The set of LTL *formulas* ϕ *such that* $\mathcal{L}(\phi)$ *is safety is* PSPACE*-complete.*

Proof.

- Let $\phi \in \mathsf{LTL}$.
- We can effectively build a NBA \mathcal{A}_{ϕ} such that $\mathcal{L}(\mathcal{A}_{\phi}) = \mathcal{L}(\phi)$ and $|\mathcal{A}_{\phi}| = 2^{\mathcal{O}(n)}$.
- In *space polynomial in n*, we can turn A_{ϕ} into an equivalent rNBA A'_{ϕ} .
- Let $cl(\mathcal{A}'_{\phi})$ be its *closure*.
- $\mathcal{L}(\phi)$ is safety iff:
 - $\mathcal{L}(\mathcal{A}'_{\phi}) \subseteq \mathcal{L}(\mathrm{cl}(\mathcal{A}'_{\phi}))$ and $\mathcal{L}(\mathrm{cl}(\mathcal{A}'_{\phi})) \subseteq \mathcal{L}(\mathcal{A}'_{\phi})$

Since the 1st point is always true, it suffices to prove the second.

The set of LTL *formulas* ϕ *such that* $\mathcal{L}(\phi)$ *is safety is* PSPACE*-complete.*

- $\mathcal{L}(\mathrm{cl}(\mathcal{A}'_{\phi})) \subseteq \mathcal{L}(\mathcal{A}'_{\phi})$ is equivalent to $\mathcal{L}(\mathrm{cl}(\mathcal{A}'_{\phi})) \cap \overline{\mathcal{L}(\mathcal{A}'_{\phi})}$
- ... but instead of complementing \mathcal{A}'_{ϕ} (which is difficult) we complement the formula ϕ (which has a trivial, constant complexity)
- We can effectively build a NBA $\mathcal{A}_{\neg\phi}$ such that $\mathcal{L}(\mathcal{A}_{\neg\phi}) = \mathcal{L}(\neg\phi)$ and $|\mathcal{A}_{\neg\phi}| = 2^{\mathcal{O}(n)}$.
- We have that $\mathcal{L}(\mathcal{A}_{\neg \phi}) = \overline{\mathcal{L}(\mathcal{A}'_{\phi})}$.

The set of LTL *formulas* ϕ *such that* $\mathcal{L}(\phi)$ *is safety is* PSPACE*-complete.*

- $\mathcal{L}(\phi)$ is safety iff $\mathcal{L}(cl(\mathcal{A}'_{\phi})) \cap \mathcal{L}(\mathcal{A}_{\neg \phi}) = \emptyset$.
- Check *emptiness* of cl(A'_φ) × A_{¬φ}:
 - $\operatorname{cl}(\mathcal{A}'_{\phi}) imes \mathcal{A}_{\neg \phi}$ is of size $2^{\mathcal{O}(n)}$
 - Emptiness: nondeterministic *logarithmic* space in the number of states of the automaton.
 - It can be performed *on-the-fly* during the construction of cl(A'_φ) × A_{¬φ}.
 - Total Complexity: Polynomial Space (PSPACE)

The set of LTL *formulas* ϕ *such that* $\mathcal{L}(\phi)$ *is safety is* PSPACE*-complete.*

- We prove that the problem is **PSPACE-hard**.
- Reduction from the LTL validity problem, which is PSPACE-complete.
- Let $\phi \in LTL$ over the atomic propositions \mathcal{AP} and let $p \notin \mathcal{AP}$ a *fresh* proposition.
- It holds that: ϕ is *valid* iff $\mathcal{L}(\phi \lor \mathsf{F}p)$ is *safety*.

The set of LTL *formulas* ϕ *such that* $\mathcal{L}(\phi)$ *is safety is* PSPACE*-complete.*

- We prove: if ϕ is *valid* then $\mathcal{L}(\phi \lor \mathsf{F}p)$ is *safety*.
- Suppose that ϕ is valid.
- Then $\phi \lor \mathsf{F}p$ is valid as well, that is $\mathcal{L}(\phi \lor \mathsf{F}p) = (2^{\mathcal{AP}})^{\omega}$.
- Clearly, (2^{AP})^ω is a *safety* language, because every violation (there are none) is irremediable.

The set of LTL *formulas* ϕ *such that* $\mathcal{L}(\phi)$ *is safety is* PSPACE*-complete.*

- We prove: if $\mathcal{L}(\phi \lor \mathsf{F}p)$ is *safety* then ϕ is *valid*.
- Suppose there exists a violation of $\mathcal{L}(\phi \vee \mathsf{F}p)$, that is a trace $\sigma \in (2^{\mathcal{AP} \cup \{p\}})^{\omega}$ such that $\sigma \models \neg \phi \land \mathsf{G} \neg p$.
- Since by hypothesis $\mathcal{L}(\phi \lor \mathsf{F}p)$ is *safety*, this violation must be *irremediable*, that is $\exists i \geq 0 : \forall \sigma' : \sigma_{[0,i]} \cdot \sigma' \models \neg \phi \land \mathsf{G} \neg p$.
- Because $\sigma_{[0,i]} \cdot \sigma'$ has also to satisfy $G \neg p$ for all σ' , there exists no such *i*.
- This means that there are no violations of $\phi \lor \mathsf{F}p$ (this formula is valid).
- Since *p* doesn't occur in ϕ , this means that ϕ is valid.

DETECTING BAD PREFIXES

Algorithms & Complexity

For problems like *model checking* and *reactive synthesis*, given a safety property:

- one doesn't want to build a NBA
- but rather to reason on finite words and to build a DFA.

In particular, we consider the automaton over finite words for the set of bad prefixes.

Reasoning over finite words is simpler than reasoning over infinite words.

Task:

Given a NBA A, to give an algorithm for building the automaton recognizing exactly the set of bad prefixes of $\mathcal{L}(A)$ and to analyze its complexity.

For problems like *model checking* and *reactive synthesis*, given a safety property:

- one doesn't want to build a NBA
- but rather to reason on finite words and to build a DFA.

In particular, we consider the automaton over finite words for the set of bad prefixes.

Reasoning over finite words is simpler than reasoning over infinite words.

Reference:

Orna Kupferman and Moshe Y Vardi (2001). "Model checking of safety properties". In: *Formal Methods in System Design* **19.3, pp. 291–314.** DOI: 10.1023/A:1011254632723

Definition (Safety Property)

 $\mathcal{L} \subseteq \Sigma^{\omega}$ is a *safety property* iff, for all $\sigma \notin \mathcal{L}$, there exists an position $i \in \mathbb{N}$ such that $\sigma_{[0,i]} \cdot \sigma' \notin \mathcal{L}$, for all $\sigma' \in \Sigma^{\omega}$.

- $\sigma_{[0,i]}$ is called the *bad prefix* of σ .
- We denote with $\underline{bad}(\mathcal{L})$ the set of bad prefixes of \mathcal{L} .
- $bad(\mathcal{L})$ is a language of finite words, that is $bad(\mathcal{L}) \subseteq \Sigma^*$.

The Deterministic Case

If \mathcal{A} is a DBA (Deterministic Büchi Automaton), then building the automaton for $bad(\mathcal{L}(\mathcal{A}))$ is straightforward

• nondeterministic polynomial space and linear time.

The Deterministic Case

If \mathcal{A} is a DBA (Deterministic Büchi Automaton), then building the automaton for $bad(\mathcal{L}(\mathcal{A}))$ is straightforward

- Given a set of states *S* of *A*, we denote with *A*^S the automaton obtained from *A* by defining the set of initial states to be *S*.
- Let *A*_{bad} be the DFA obtained from *A* by defining a state *q* to be *final* iff *A*^{*q*} recognizes the empty set.
- It holds that $\mathcal{L}(\mathcal{A}_{bad}) = \operatorname{bad}(\mathcal{L}(\mathcal{A}))$.

The Deterministic Case

- The nondeterministic case is more involved.
- The previous algorithm for the deterministic case does <u>not</u> work in the nondeterministic case.
- Counterexample:
 - $\mathcal{L}(\mathcal{A}) = b \cdot a^{\omega} \cup (b \cdot a^+)^{\omega} \cup (b \cdot a^+)^* \cdot a^{\omega}$
 - The automaton A_{bad} recognizes also the word "bab" which is <u>not</u> a bad prefix.
- We need another way to build A_{bad} .

- Let $\mathcal{A} = \langle Q, \Sigma, I, \Delta, F \rangle$ be NBA.
- We define \mathcal{A}_{bad} as the DFA $\langle 2^Q, \Sigma, q'_0, \delta', F' \rangle$ such that:
 - $q'_0 \coloneqq I$
 - for every $S \in 2^Q$ and every $\sigma \in \Sigma$, $\delta(S, \sigma) := \bigcup_{q \in S} \delta(q, \sigma).$

•
$$F := \{ S \in 2^Q \mid \mathcal{L}(\mathcal{A}^S) = \emptyset \}.$$

• Complexity: $|\mathcal{A}_{bad}| \in 2^{\mathcal{O}(n)}$ where n = |Q|.

"The detection of bad prefixes with a nondeterministic Büchi automaton has the flavor of determinization."

- Let $\mathcal{A} = \langle Q, \Sigma, I, \Delta, F \rangle$ be NBA.
- We define A_{bad} as the DFA $\langle 2^Q, \Sigma, q'_0, \delta', F' \rangle$ such that:
 - $q'_0 \coloneqq I$
 - for every $S \in 2^Q$ and every $\sigma \in \Sigma$, $\delta(S, \sigma) := \bigcup_{q \in S} \delta(q, \sigma).$
 - $F := \{ S \in 2^Q \mid \mathcal{L}(\mathcal{A}^S) = \emptyset \}.$
- Complexity: $|\mathcal{A}_{bad}| \in 2^{\mathcal{O}(n)}$ where n = |Q|.

"The detection of bad prefixes with a nondeterministic Büchi automaton has the flavor of determinization."

This is a *lowerbound*.

- There exists an NFA A with n states such that
 - all states are accepting
 - its complement $\overline{\mathcal{A}}$ has $2^{\Theta(n)}$ states.
- Let \mathcal{A}' be the NBA obtained by considering \mathcal{A} as a Büchi automaton.
- Since both A and A' can reject a word only by attempting an undefined transition, it holds that bad(A') = A.
- It follows that the automaton for bad(A) has 2^{⊖(n)} states.

An analogous result holds for the cosafety case.

Theorem

Given a NBA \mathcal{A} with n states such that $\mathcal{L}(\mathcal{A})$ is cosafety, the size of an automaton for $good(\mathcal{A})$ is $2^{\Theta(n)}$.

Detecting bad prefixing of an LTL formula recognizing a safety language is doubly exponential.

Theorem

Given an LTL formula ϕ such that $\mathcal{L}(\phi)$ is safety and $|\phi| = n$, the size of an automaton for $bad(\mathcal{L}(\phi))$ is $2^{2^{\mathcal{O}(n)}}$ and $2^{2^{\Omega(\sqrt{n})}}$.

Reference:

Orna Kupferman and Moshe Y Vardi (2001). "Model checking of safety properties". In: *Formal Methods in System Design* **19.3, pp. 291–314.** DOI: 10.1023/A:1011254632723

REFERENCES

Bibliography I

Bowen Alpern and Fred B. Schneider (1987). "Recognizing Safety and Liveness". In: Distributed Comput. 2.3, pp. 117–126. DOI: 10.1007/BF01782772. URL: https://doi.org/10.1007/BF01782772.
Orna Kupferman and Moshe Y Vardi (2001). "Model checking of safety properties". In: Formal Methods in System Design 19.3, pp. 291–314. DOI: 10.1023/A:1011254632723.

Zohar Manna and Amir Pnueli (1995). *Temporal verification of reactive systems - safety*. Springer. ISBN: 978-0-387-94459-3.

Bibliography II

Sven Schewe (2009). "Büchi Complementation Made Tight". In: 26th

- International Symposium on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings. Ed. by Susanne Albers and Jean-Yves Marion. Vol. 3. LIPIcs. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, Germany, pp. 661–672. DOI: 10.4230/LIPIcs.STACS.2009.1854. URL: https://doi.org/10.4230/LIPIcs.STACS.2009.1854.
- A Prasad Sistla (1994). "Safety, liveness and fairness in temporal logic". In: Formal Aspects of Computing 6.5, pp. 495–511. DOI: 10.1007/BF01211865.
 Moshe Y Vardi (1996). "An automata-theoretic approach to linear temporal logic". In: Logics for concurrency. Springer, pp. 238–266.
 Moshe Y Vardi and Pierre Wolper (1986). "An automata-theoretic approach to automatic program verification". In: Proceedings of the First Symposium on
 - Logic in Computer Science. IEEE Computer Society, pp. 322–331.