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RECOGNIZING SAFETY
Algorithms & Complexity



In this part, we will answer to these questions:
• Can we effectively determine whether a NBA recognizes a safety property? If

so, with which complexity?
• Can we effectively determine whether a LTL formula recognizes a safety

property? If so, with which complexity?
• How complex is building the automaton for the set of bad prefixes of a safety

ω-regular language?

Outline
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Theorem (Alpern & Schneider (1987), Sistla (1994))

Given a NBA A, checking whether L(A) is safety is can be performed effectively.

References:

• Bowen Alpern and Fred B. Schneider (1987). “Recognizing Safety and
Liveness”. In: Distributed Comput. 2.3, pp. 117–126. DOI:
10.1007/BF01782772. URL: https://doi.org/10.1007/BF01782772
• A Prasad Sistla (1994). “Safety, liveness and fairness in temporal logic”. In:

Formal Aspects of Computing 6.5, pp. 495–511. DOI: 10.1007/BF01211865
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Theorem (Alpern & Schneider (1987), Sistla (1994))

Given a NBA A, checking whether L(A) is safety is can be performed effectively.

We prove this theorem.

Recognizing Safety
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Definition (Reduced NBA)

A NBA A = ⟨Q,Σ, I,∆,F⟩ is reduced (rNBA, for short) iff from every state in Q there
exists a path (of length at least 1) reaching a final state in F.

• Every NBA A can be turned into rNBA A′ such that L(A) = L(A′), by
removing the states (and its incoming transitions) from which no final state is
reachable.
• Important: this can add undefined transitions

• This can be done in time linear in |Q| and in space nondeterministic
logarithmic in |Q| (Savitch’s Theorem).

Recognizing Safety
Reduced automata
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Definition (Closure of a rNBA)

Given a rNBA A = ⟨Q,Σ, I,∆,F⟩, we define the closure of A, denoted with cl(A), as
the automaton cl(A) = ⟨Q,Σ, I,∆,Q⟩.

• We will use the automaton cl(A) to determine whether L(A) is a safety
property.
• Important: the automaton cl(A) rejects a word in Σω only by attempting an

undefined transition.

Recognizing Safety
Closure of a rNBA
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇒)

• Suppose that L(A) is a safety property. We show that L(A) = L(cl(A)).
• L(A) ⊆ L(cl(A)): trivial, because cl(A) is obtained from A by making all

states as accepting.

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇒)

• We show that L(cl(A)) ⊆ L(A).
• Let σ ∈ L(cl(A)).
• Observe that, since A and cl(A) have the same set of states and the same

transition relation, if cl(A) reads σ (i.e., without incurring in any undefined
transition) then also A reads σ, and vice versa.
• Thus, now we focus on the automaton A reading σ.

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇒)

• Choose any prefix σ[0,i] and let qi be any of the states reached by A after
reading σ[0,i].
• Since A is reduced, there exists a final state qf1 reachable from qi when A reads

some β0∈ Σ+.
• Similarly, since A is reduced, there exists a final state qf2 reachable from qf1

when A reads some β1∈ Σ+.
• . . . and so on and so forth . . .

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇒)

• Let β = β0 · β1 · . . . . Since, by construction, σ[0,i] · β induces A to visit final
state infinitely often, the word σ[0,i] · β belongs to L(A).
• We have proved that, for any σ ∈ L(cl(A)), it holds that:

∀i ≥ 0 . ∃σ′ ∈ Σω . σ[0,i] · σ′ ∈ L(A)

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇒)

• Since by hypothesis L(A) is a safety property, for all σ ∈ Σω, we have that,

σ ̸∈ L(A)↔ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(A)

• Since before we proved that the rightmost part of the above equation is false
for any σ ∈ L(cl(A)), we have that σ ∈ L(A).

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇐)

• Suppose that L(A) = L(cl(A)).
• We prove that, for all σ ∈ Σω, it holds:

σ ̸∈ L(A)↔ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(A)

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇐)

• The right-to-left direction

∀σ ∈ Σω .
(
σ ̸∈ L(A)←∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(A)

)
holds for every language: it suffices to take σ′ := σ[i+1,∞).

Recognizing Safety
Alpern & Schneider’s Theorem

9/28 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇐)

• We prove the left-to-right direction:

∀σ ∈ Σω .
(
σ ̸∈ L(A)→∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(A)

)
• Since by hypothesis L(A) = L(cl(A)), it is equivalent to prove:

∀σ ∈ Σω .
(
σ ̸∈ L(cl(A))→ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(cl(A))

)

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇐)

• ∀σ ∈ Σω .
(
σ ̸∈ L(cl(A))→ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(cl(A))

)
• Suppose σ ̸∈ L(cl(A)). Thus the automaton cl(A) rejects σ.
• Since by hypothesis cl(A) is a reduced Büchi automatom, cl(A) can reject σ

only by attempting an undefined transition.

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇐)

• ∀σ ∈ Σω .
(
σ ̸∈ L(cl(A))→ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(cl(A))

)
• Let i be the position of σ at which cl(A) takes the undefined transition.
• Clearly, it holds that:

∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(cl(A))

• Thus cl(A) (and A as well) specify a safety property. □

Recognizing Safety
Alpern & Schneider’s Theorem
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Σ = {a, b}, L = (a · b · a)ω ∪ (a · b · a)∗ · bω

q0 q1 q2

q3

a b

ab

b
A

q0 q1 q2

q3

a b

ab

b

cl(A)

The language L is safety because L(A) = L(cl(A)).

Recognizing Safety
Alpern & Schneider’s Theorem - Example
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Σ = {a, b}, L = {σ ∈ Σω | each ‘a’ is eventually followed by ‘b’}

q0 q1

a

b

b aA

q0 q1

a

b

b acl(A)

The language L is not safety because L(A) ̸= L(cl(A)).
• aω ∈ L(cl(A)) but aω ̸∈ L(A)

Recognizing Safety
Alpern & Schneider’s Theorem - Example
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Complexity of the procedure

Checking whether L(cl(A)) = L(A) is done by checking whether:

L(cl(A)) ⊆ L(A) ∧ L(A) ⊆ L(cl(A))

which in turn is equivalent to check whether:

L(cl(A)) ∩ L(A) = ∅ ∧ L(A) ∩ L(cl(A)) = ∅

• Complementation of NBA is needed.
• Complexity of Büchi complementation (n = number of states):

• upper bound: O(0.96n)n

• lower bound: Ω(0.76n)n

• Sven Schewe (2009). “Büchi Complementation Made Tight”. In: 26th International Symposium on Theoretical Aspects of Computer
Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings. Ed. by Susanne Albers and Jean-Yves Marion. Vol. 3. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, pp. 661–672. DOI: 10.4230/LIPIcs.STACS.2009.1854. URL:
https://doi.org/10.4230/LIPIcs.STACS.2009.1854

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity of the procedure

Checking whether L(cl(A)) = L(A) is done by checking whether:

L(cl(A)) ⊆ L(A) ∧ L(A) ⊆ L(cl(A))

which in turn is equivalent to check whether:

L(cl(A)) ∩ L(A) = ∅ ∧ L(A) ∩ L(cl(A)) = ∅

• The emptiness check can be performed on-the-fly during the construction of
the automata.
• Total Complexity: polynomial space (PSPACE)

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity of the problem

Theorem
The set of NBA recognizing safety properties is PSPACE.

Open Question:

Is PSPACE-complete?

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity for the deterministic case

Theorem
Given a DBA A with n states, checking whether L(A) is safety can be done in time
polynomial in n.

Proof.
We have to check these two conditions:
• L(cl(A)) ∩ L(A) = ∅
• L(A) ∩ L(cl(A)) = ∅

Both require complementation, which is problematic (exponential) even for
deterministic Büchi automata:
• swapping final states with nonfinal ones does not work

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity for the deterministic case

Theorem
Given a DBA A with n states, checking whether L(A) is safety can be done in time
polynomial in n.

Proof.
We resort to deterministic Rabin automata (DRA).
Rabin acceptance condition:
• Final state condition: Ω = {(Ai,Bi)}n

i=1
• A run π is accepting iff, for some i ∈ {1, . . . ,n}, it holds that Inf (π) ∩ Ai = ∅

and Inf (π) ∩ Bi ̸= ∅.
Any DBA A := ⟨Q,Σ, q0, δ,F⟩ is equivalent to the DRA A′ := ⟨Q,Σ, q0, δ, {(∅,F)}⟩.

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity for the deterministic case

Theorem
Given a DBA A with n states, checking whether L(A) is safety can be done in time
polynomial in n.

Proof.
Any DRA A′ := ⟨Q,Σ, q0, δ,Ω⟩with Ω = {(Ai,Bi)}n

i=1 can be complemented without
an exponential blow-up into a deterministic Streett automaton.
Streett acceptance condition:
• Final state condition: Ω = {(Ai,Bi)}n

i=1
• A run π is accepting iff, for all i ∈ {1, . . . ,n}, either Inf (π) ∩ Ai = ∅ or

Inf (π) ∩ Bi ̸= ∅.

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity for the deterministic case

Theorem
Given a DBA A with n states, checking whether L(A) is safety can be done in time
polynomial in n.

Proof.
Any DRA A′ := ⟨Q,Σ, q0, δ,Ω⟩with Ω = {(Ai,Bi)}n

i=1 can be complemented without
an exponential blow-up into a deterministic Streett automaton.

• We define the deterministic Streett automaton A′ as ⟨Q,Σ, q0, δ,Ω
′⟩where

Ω′ := {(B,A) | (A,B) ∈ Ω}

• A′ recognizes the complement language of A′.

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity for the deterministic case

Theorem
Given a DBA A with n states, checking whether L(A) is safety can be done in time
polynomial in n.

Proof.
Consider the two conditions:
• L(cl(A)) ∩ L(A) = ∅ • L(A) ∩ L(cl(A)) = ∅

We perform the construction from Büchi to Streett (for the complement language)
for the automata L(A) and L(cl(A)).

Recognizing Safety
Alpern & Schneider’s Theorem

14/28 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Complexity for the deterministic case

Theorem
Given a DBA A with n states, checking whether L(A) is safety can be done in time
polynomial in n.

Proof.
Consider the two conditions:
• L(cl(A)) ∩ L(A) = ∅ • L(A) ∩ L(cl(A)) = ∅

Every Büchi automaton A = ⟨Q,Σ, I,∆,F⟩ is also a Streett automaton.

A′ := ⟨Q,Σ, I,∆, {(Q,F)}⟩

Note the role of Q in (Q,F) to always violate the first disjunct of Streett condition.

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity for the deterministic case

Theorem
Given a DBA A with n states, checking whether L(A) is safety can be done in time
polynomial in n.

Proof.
Consider the two conditions:
• L(cl(A))∩L(A) = ∅ • L(A)∩L(cl(A)) = ∅

Streett automata are closed under Boolean operations.

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity for the deterministic case

Theorem
Given a DBA A with n states, checking whether L(A) is safety can be done in time
polynomial in n.

Proof.
Consider the two conditions:
• L(cl(A)) ∩ L(A)=∅ • L(A) ∩ L(cl(A))=∅

Since their emptiness can be solved in nondeterministic logarithmic space, this
proves that the set of safety DBA is PTIME. □

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Or equivalently: Given a LTL formula ϕ, the problem of establishing whether L(ϕ)
is safety is PSPACE-complete.

Recognizing Safety
for LTL formulas
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Theorem
For any LTL formula ϕ (with n = |ϕ|) over the set of atomic propositions AP there exists a
NBA Aϕ over the alphabet 2AP such that:
• L(ϕ) = L(Aϕ) • |Aϕ | ∈ 2O(n)

Reference
Moshe Y Vardi and Pierre Wolper (1986). “An automata-theoretic approach to
automatic program verification”. In: Proceedings of the First Symposium on
Logic in Computer Science. IEEE Computer Society, pp. 322–331

Reference
Moshe Y Vardi (1996). “An automata-theoretic approach to linear temporal
logic”. In: Logics for concurrency. Springer, pp. 238–266

Recognizing Safety
for LTL formulas

16/28 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Theorem
For any LTL formula ϕ (with n = |ϕ|) over the set of atomic propositions AP there exists a
NBA Aϕ over the alphabet 2AP such that:
• L(ϕ) = L(Aϕ) • |Aϕ | ∈ 2O(n)

Picture taken from
Zohar Manna and Amir Pnueli (1995).
Temporal verification of reactive
systems - safety. Springer. ISBN:
978-0-387-94459-3

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Or equivalently: Given a LTL formula ϕ, the problem of establishing whether L(ϕ)
is safety is PSPACE-complete.

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• Let ϕ ∈ LTL.
• We can effectively build a NBA Aϕ such that L(Aϕ) = L(ϕ) and | Aϕ | = 2O(n).
• In space polynomial in n, we can turn Aϕ into an equivalent rNBA A′

ϕ.
• Let cl(A′

ϕ) be its closure.
• L(ϕ) is safety iff:

• L(A′
ϕ) ⊆ L(cl(A′

ϕ)) and • L(cl(A′
ϕ)) ⊆ L(A

′
ϕ)

Since the 1st point is always true, it suffices to prove the second.

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• L(cl(A′
ϕ)) ⊆ L(A′

ϕ) is equivalent to L(cl(A′
ϕ)) ∩ L(A′

ϕ)

• ... but instead of complementing A′
ϕ (which is difficult) we complement the

formula ϕ (which has a trivial, constant complexity)
• We can effectively build a NBA A¬ϕ such that L(A¬ϕ) = L(¬ϕ) and
| A¬ϕ | = 2O(n).

• We have that L(A¬ϕ) = L(A′
ϕ).

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• L(ϕ) is safety iff L(cl(A′
ϕ)) ∩ L(A¬ϕ) = ∅.

• Check emptiness of cl(A′
ϕ)×A¬ϕ:

• cl(A′
ϕ)×A¬ϕ is of size 2O(n)

• Emptiness: nondeterministic logarithmic space in the number of states of the
automaton.

• It can be performed on-the-fly during the construction of cl(A′
ϕ)×A¬ϕ.

• Total Complexity: Polynomial Space (PSPACE)

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• We prove that the problem is PSPACE-hard.
• Reduction from the LTL validity problem, which is PSPACE-complete.
• Let ϕ ∈ LTL over the atomic propositions AP and let p ̸∈ AP a fresh

proposition.
• It holds that: ϕ is valid iff L(ϕ ∨ Fp) is safety.

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• We prove: if ϕ is valid then L(ϕ ∨ Fp) is safety.
• Suppose that ϕ is valid.
• Then ϕ ∨ Fp is valid as well, that is L(ϕ ∨ Fp) = (2AP)ω.
• Clearly, (2AP)ω is a safety language, because every violation (there are none) is

irremediable.

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• We prove: if L(ϕ ∨ Fp) is safety then ϕ is valid.
• Suppose there exists a violation of L(ϕ ∨ Fp), that is a trace σ ∈ (2AP∪{p})ω

such that σ |= ¬ϕ ∧ G¬p.
• Since by hypothesis L(ϕ ∨ Fp) is safety, this violation must be irremediable, that

is ∃i ≥ 0 . ∀σ′ . σ[0,i] · σ′ |= ¬ϕ ∧ G¬p.
• Because σ[0,i] · σ′ has also to satisfy G¬p for all σ′, there exists no such i.
• This means that there are no violations of ϕ ∨ Fp (this formula is valid).
• Since p doesn’t occur in ϕ, this means that ϕ is valid.

Recognizing Safety
for LTL formulas
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DETECTING BAD PREFIXES
Algorithms & Complexity



For problems like model checking and reactive synthesis, given a safety property:
• one doesn’t want to build a NBA
• but rather to reason on finite words and to build a DFA.

In particular, we consider the automaton over finite words for the set of bad
prefixes.

Reasoning over finite words is simpler than reasoning over infinite words.

Task:
Given a NBA A, to give an algorithm for building the automaton recognizing
exactly the set of bad prefixes of L(A) and to analyze its complexity.

Detecting Bad Prefixes
Algorithms and Complexity
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For problems like model checking and reactive synthesis, given a safety property:
• one doesn’t want to build a NBA
• but rather to reason on finite words and to build a DFA.

In particular, we consider the automaton over finite words for the set of bad
prefixes.

Reasoning over finite words is simpler than reasoning over infinite words.

Reference:
Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291–314. DOI:
10.1023/A:1011254632723

Detecting Bad Prefixes
Algorithms and Complexity
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Definition (Safety Property)

L ⊆ Σω is a safety property iff, for all σ ̸∈ L, there exists an position i ∈ N such that
σ[0,i] · σ′ ̸∈ L, for all σ′ ∈ Σω.

• σ[0,i] is called the bad prefix of σ.
• We denote with bad(L) the set of bad prefixes of L.
• bad(L) is a language of finite words, that is bad(L) ⊆ Σ∗.

Detecting Bad Prefixes
Algorithms and Complexity

20/28 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



The Deterministic Case

If A is a DBA (Deterministic Büchi
Automaton), then building the
automaton for bad(L(A)) is
straightforward
• nondeterministic polynomial space

and linear time.

q0 q1

a

b

a, b

A

q0 q1

a

b

a, b

Abad
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The Deterministic Case

If A is a DBA (Deterministic Büchi
Automaton), then building the
automaton for bad(L(A)) is
straightforward
• Given a set of states S of A, we

denote with AS the automaton
obtained from A by defining the set
of initial states to be S.
• Let Abad be the DFA obtained from A

by defining a state q to be final iff
A{q} recognizes the empty set.
• It holds that L(Abad) = bad(L(A)).
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The Deterministic Case

• L(A) = aω

• bad(L(A)) = a∗ · b · Σ∗

q0 q1

a

b
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A

q0 q1

a

b
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• The nondeterministic case is more
involved.
• The previous algorithm for the

deterministic case does not work in
the nondeterministic case.
• Counterexample:

• L(A) =
b · aω ∪ (b · a+)ω ∪ (b · a+)∗ · aω

• The automaton Abad recognizes
also the word “bab” which is not a
bad prefix.

• We need another way to build Abad.

q0 q1

q2

a

b

a
a

b

a, b

A

q0 q1

q2

a

b

a
a

b

a, b

Abad
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• Let A = ⟨Q,Σ, I,∆,F⟩ be NBA.
• We define Abad as the DFA
⟨2Q,Σ, q′0, δ

′,F′⟩ such that:
• q′0 := I
• for every S ∈ 2Q and every σ ∈ Σ,

δ(S, σ) :=
⋃

q∈S δ(q, σ).
• F := {S ∈ 2Q | L(AS) = ∅}.

• Complexity: | Abad | ∈ 2O(n) where
n = |Q|.
“The detection of bad prefixes with
a nondeterministic Büchi automa-
ton has the flavor of determiniza-
tion."

q0 q1

b

a

a

A

{q0} ∅

{q1} {q0, q1}

a

b

a, b

b
a

b
a
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• Let A = ⟨Q,Σ, I,∆,F⟩ be NBA.
• We define Abad as the DFA
⟨2Q,Σ, q′0, δ

′,F′⟩ such that:
• q′0 := I
• for every S ∈ 2Q and every σ ∈ Σ,

δ(S, σ) :=
⋃

q∈S δ(q, σ).
• F := {S ∈ 2Q | L(AS) = ∅}.

• Complexity: | Abad | ∈ 2O(n) where
n = |Q|.
“The detection of bad prefixes with
a nondeterministic Büchi automa-
ton has the flavor of determiniza-
tion."

This is a lowerbound.
• There exists an NFA Awith n states

such that
• all states are accepting
• its complement A has 2Θ(n) states.

• Let A′ be the NBA obtained by
consideringA as a Büchi automaton.
• Since both A and A′ can reject a

word only by attempting an
undefined transition, it holds that
bad(A′) = A.
• It follows that the automaton for

bad(A) has 2Θ(n) states.
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An analogous result holds for the cosafety case.

Theorem
Given a NBA A with n states such that L(A) is cosafety, the size of an automaton for
good(A) is 2Θ(n).
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Detecting bad prefixing of an LTL formula recognizing a safety language is doubly
exponential.

Theorem
Given an LTL formula ϕ such that L(ϕ) is safety and |ϕ| = n, the size of an automaton for
bad(L(ϕ)) is 22O(n) and 22Ω(

√
n) .

Reference:
Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291–314. DOI:
10.1023/A:1011254632723

Detecting Bad Prefixes
Algorithms and Complexity

25/28 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

https://doi.org/10.1023/A:1011254632723


REFERENCES



Bowen Alpern and Fred B. Schneider (1987). “Recognizing Safety and
Liveness”. In: Distributed Comput. 2.3, pp. 117–126. DOI:
10.1007/BF01782772. URL: https://doi.org/10.1007/BF01782772.

Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291–314. DOI:
10.1023/A:1011254632723.

Zohar Manna and Amir Pnueli (1995). Temporal verification of reactive systems -
safety. Springer. ISBN: 978-0-387-94459-3.

Bibliography I

27/28 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1023/A:1011254632723


Sven Schewe (2009). “Büchi Complementation Made Tight”. In: 26th
International Symposium on Theoretical Aspects of Computer Science, STACS
2009, February 26-28, 2009, Freiburg, Germany, Proceedings. Ed. by
Susanne Albers and Jean-Yves Marion. Vol. 3. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Germany, pp. 661–672. DOI:
10.4230/LIPIcs.STACS.2009.1854. URL:
https://doi.org/10.4230/LIPIcs.STACS.2009.1854.

A Prasad Sistla (1994). “Safety, liveness and fairness in temporal logic”. In:
Formal Aspects of Computing 6.5, pp. 495–511. DOI: 10.1007/BF01211865.

Moshe Y Vardi (1996). “An automata-theoretic approach to linear temporal
logic”. In: Logics for concurrency. Springer, pp. 238–266.

Moshe Y Vardi and Pierre Wolper (1986). “An automata-theoretic approach to
automatic program verification”. In: Proceedings of the First Symposium on
Logic in Computer Science. IEEE Computer Society, pp. 322–331.

Bibliography II

28/28 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

https://doi.org/10.4230/LIPIcs.STACS.2009.1854
https://doi.org/10.4230/LIPIcs.STACS.2009.1854
https://doi.org/10.1007/BF01211865

	Recognizing safety
	Recognizing safety Büchi automata
	Recognizing safety formulas of LTL
	Construction of the automaton for the bad prefixes

	References

