Department of Mathematics, Computer Science and Physics, University of Udine The Safety Fragment of Temporal Logics on Infinite Sequences Lesson 6

Luca Geatti

luca.geatti@uniud.it

Angelo Montanari

angelo.montanari@uniud.it

April 15th, 2024

Temporal Logics

We say that a temporal logic \mathbb{L} is *cosafety* iff, for any $\phi \in \mathbb{L}$, $\mathcal{L}(\phi)$ is *cosafety*.

coSafetyLTL

Definition

$$\phi \coloneqq p \mid \neg p \mid \phi \lor \phi \mid \phi \land \phi \mid \mathsf{X}\phi \mid \mathsf{F}\phi \mid \phi \: \mathsf{U} \: \phi$$

Definition

 $\phi := \mathsf{F}(\alpha)$, where $\alpha \in \mathsf{pLTL}$, that is α is a pure-past LTL formula.

Example: $p \cup q$

Example:

 $\mathsf{F}(q\wedge \widetilde{\mathsf{Y}}\mathsf{H}p)$

F(pLTL) is the canonical form of coSafetyLTL.

Theorem

- coSafetyLTL and F(pLTL) are expressively equivalent.
- coSafetyLTL and F(pLTL) are expressively complete w.r.t. $[LTL] \cap coSAFETY$.

Reference:

Edward Y. Chang, Zohar Manna, and Amir Pnueli (1992). "Characterization of Temporal Property Classes". In: *Proceedings of the 19th International Colloquium on Automata, Languages and Programming*. Ed. by Werner Kuich. Vol. 623. Lecture Notes in Computer Science. Springer, pp. 474–486. DOI: 10.1007/3-540-55719-9_97

The cosafety fragment of LTL $_{Link}$ with $_{LTL_{f}}$

Proposition

 $[\![\mathsf{coSafetyLTL}]\!]^{<\omega} \subsetneq [\![\mathsf{LTL}]\!]^{<\omega}$

Proof.

- It is simple to prove that, for all $\phi \in \mathsf{coSafetyLTL}$, $\mathcal{L}^{<\omega}(\phi) = \mathcal{L}^{<\omega}(\phi) \cdot \Sigma^*$. In particular, either $|\mathcal{L}^{<\omega}(\phi)| = 0$ or $|\mathcal{L}^{<\omega}(\phi)| = \omega$ for all $\phi \in \mathsf{coSafetyLTL}$.
- In LTL_f we can use the *weak tomorrow* operator to hook the last position of a finite word.

$$\psi \coloneqq p \land \widetilde{\mathsf{X}} \bot$$

The formula ψ is such that $|\mathcal{L}^{<\omega}(\psi)| = 1$. Therefore, it can't be expressed in coSafetyLTL over finite words.

The cosafety fragment of LTL Link with LTL

Proposition

 $[\![\mathsf{coSafetyLTL}]\!]^{<\omega} \subsetneq [\![\mathsf{LTL}]\!]^{<\omega}$

Proposition

$$[\![\mathsf{coSafetyLTL}]\!]^{<\omega} \cdot (2^{\Sigma})^{\omega} = [\![\mathsf{LTL}]\!]^{<\omega} \cdot (2^{\Sigma})^{\omega}$$

Reference:

Alessandro Cimatti et al. (2022). "A first-order logic characterisation of safety and co-safety languages". In: Foundations of Software Science and Computation Structures - 25th International Conference, FOSSACS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings. Ed. by Patricia Bouyer and Lutz Schröder. Vol. 13242. Lecture Notes in Computer Science. Springer, pp. 244–263. DOI: 10.1007/978-3-030-99253-8_13. URL: https://doi.org/10.1007/978-3-030-99253-8\5C_13

The *safety fragment of* LTL is the set of languages in this set:

 $[\![\mathsf{LTL}]\!] \cap \mathsf{SAFETY}$

We will see four characterizations in terms of:

- regular expressions
- first-order logic

- automata
- temporal logic

The *safety fragment of* LTL is the set of languages in this set:

 $[\![\mathsf{LTL}]\!] \cap \mathsf{SAFETY}$

ω -regular expressions

 $\overline{\mathsf{SF} \cdot \Sigma^{\omega}} = \{ \overline{K \cdot \Sigma^{\omega}} \mid K \in \mathsf{SF} \}$

- the "SF " part corresponds to LTL
- the " $\overline{\cdot \Sigma^{\omega}}$ " part corresponds to being a safety fragment

Ina Schiering and Wolfgang Thomas (1996). "Counter-free automata, first-order logic, and star-free expressions extended by prefix oracles". In: Developments in Language Theory, II (Magdeburg, 1995), Worl Sci. Publishing, River Edge, NJ, pp. 166–175

The *safety fragment of* LTL is the set of languages in this set:

 $[\![\mathsf{LTL}]\!] \cap \mathsf{SAFETY}$

First-order logic

We define Safety-FO as the fragment of S1S[FO] in which quantifiers are bounded as follows:

- $\exists y . (x < y < z \land ...)$
- $\forall y . (x < y \rightarrow ...)$

Alessandro Cimatti et al. (2022). "A first-order logic characterisation of safety and co-safety languages". In: Foundations of Software Science and Computation Structures - 25th International Conference, FOSSACS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings. Ed. by Patricia Bouyer and Lutz Schröder. Vol. 13242. Lecture Notes in Computer Science. Springer, pp. 244–263. DOI: 10.1007/978-3-030-99253-8_13. URL: https://doi.org/10.1007/978-3-030-99253-8\SC_13

8/30 L. Geatti, A. Montanari

The safety fragment of LTL

Definition

The *safety fragment of* LTL is the set of languages in this set:

 $[\![\mathsf{LTL}]\!] \cap \mathsf{SAFETY}$

First-order logic

Example

$$\phi(x) \coloneqq \forall y \mathrel{.} ((x < y \land G(y)) \rightarrow \exists z \mathrel{.} (x < z < y \land R(z)))$$

The *safety fragment of* LTL is the set of languages in this set:

 $[\![\mathsf{LTL}]\!] \cap \mathsf{SAFETY}$

First-order logic

- the "first-order" part corresponds to LTL
- the "bounded quantifiers" part corresponds to being a safety fragment

The *safety fragment of* LTL is the set of languages in this set:

 $[\![\mathsf{LTL}]\!] \cap \mathsf{SAFETY}$

Automata

cf-DSA = counter-free DSA

- the "counter-free" part corresponds to LTL
- the "DSA " part corresponds to being a safety fragment

Ina Schiering and Wolfgang Thomas (1996). "Counter-free automata, first-order logic, and star-free expressions extended by prefix oracles". In: *Developments in Language Theory, II (Magdeburg, 1995), Worl Sci. Publishing, River Edge, NJ*, pp. 166–175

Temporal Logics

We say that a temporal logic \mathbb{L} is *safety* iff, for any $\phi \in \mathbb{L}$, $\mathcal{L}(\phi)$ is *safety*.

SafetyLTL

Definition

$$\phi \coloneqq p \mid \neg p \mid \phi \lor \phi \mid \phi \land \phi \mid \mathsf{X} \phi \mid \mathsf{G} \phi \mid \phi \mathrel{\mathsf{R}} \phi$$

Definition

 $\phi := \mathsf{G}(\alpha)$, where $\alpha \in \mathsf{pLTL}$, that is α is a pure-past LTL formula.

Example:

 $G(r \rightarrow XXg)$

Example:

 $\mathsf{G}(\widetilde{\mathsf{Y}}\widetilde{\mathsf{Y}}r\to g)$

G(pLTL) is the canonical form of SafetyLTL.

Proposition

- $\phi \in \mathsf{SafetyLTL} \ \mathit{iff} \ \mathtt{nnf}(\neg \phi) \in \mathsf{coSafetyLTL}$
- $\phi \in \mathsf{G}(\mathsf{pLTL})$ iff $\mathsf{nnf}(\neg \phi) \in \mathsf{F}(\mathsf{pLTL})$

Theorem

- SafetyLTL and G(pLTL) are expressively equivalent.
- SafetyLTL and G(pLTL) are expressively complete w.r.t. [[LTL]] ∩ SAFETY.

Reference:

Edward Y. Chang, Zohar Manna, and Amir Pnueli (1992). "Characterization of Temporal Property Classes". In: *Proceedings of the 19th International Colloquium on Automata, Languages and Programming*. Ed. by Werner Kuich. Vol. 623. Lecture Notes in Computer Science. Springer, pp. 474–486. DOI: 10.1007/3-540-55719-9_97

- We denote with \mathbb{B} the set of Boolean formulas.
- We denote with LTL[X] the set of LTL formulas in which the only temporal operator that is used is the *tomorrow* (X).

Proposition

- $\mathbb{B} \subseteq \mathsf{LTL} \cap \mathsf{coSAFETY} \cap \mathsf{SAFETY}$
- $LTL[X] \subseteq LTL \cap coSAFETY \cap SAFETY$

Other safety and cosafety fragments

Cosafety

- We denote with LTL[X, F] the set of coSafetyLTL formulas in which the only temporal operators that are used are the *tomorrow* (X) and the *eventually* (F).
- Clearly, LTL[X, F] is a cosafety logic, but it is strictly less expressive than coSafetyLTL.

Proposition

 $[\![\mathsf{LTL}[\mathsf{X},\mathsf{F}]]\!] \subsetneq [\![\mathsf{coSafetyLTL}]\!]$

E.g. $p \cup q$ is not definable in LTL[X, F].

- We denote with LTL[X, G] the set of SafetyLTL formulas in which the only temporal operators that are used are the *tomorrow* (X) and the *globally* (G).
- Clearly, LTL[X, G] is a safety logic, but it is strictly less expressive than SafetyLTL.

Proposition

 $[\![\mathsf{LTL}[\mathsf{X},\mathsf{G}]]\!] \subsetneq [\![\mathsf{SafetyLTL}]\!]$

E.g. p R q is not definable in LTL[X, G].

The Temporal Hierarchy

Legend:

- $\alpha, \alpha_i, \beta, \beta_i$ are pure-past LTL formulas (pLTL)
- → denotes set inclusion

Theorem

 $Reactivity = \llbracket LTL \rrbracket$

 Zohar Manna and Amir Pnueli (1990). "A hierarchy of temporal properties (invited paper, 1989)". In:

 Proceedings of the 9th annual ACM symposium on Principles of distributed computing, pp. 377–410. DOI:

 10.1145/03285.02442

 16/30
 L. Geatti, A. Montanari

 The Safety Fragment of Temporal Logics on Infinite Sequences

Kupferman and Vardi's Classification of the safety properties of LTL

Consider the formula G(p). The following trace is a *bad prefix*:

Recall that $\sigma \in \Sigma^*$ is a bad prefix for a language \mathcal{L} iff $\sigma \cdot \sigma' \notin \mathcal{L}$, for all $\sigma' \in \Sigma^{\omega}$.

Consider the formula G(p). The following trace is a *bad prefix*:

Recall that $\sigma \in \Sigma^*$ is a bad prefix for a language \mathcal{L} iff $\sigma \cdot \sigma' \notin \mathcal{L}$, for all $\sigma' \in \Sigma^{\omega}$. Consider now the formula $G(p \lor (Xq \land X \neg q)).$

- it is equivalent to G(*p*)
- therefore, it is a safety formula
- its set of *bad prefixes* is the same as the one of G(*p*)

Consider the formula G(p). The following trace is a *bad prefix*:

Recall that $\sigma \in \Sigma^*$ is a bad prefix for a language \mathcal{L} iff $\sigma \cdot \sigma' \notin \mathcal{L}$, for all $\sigma' \in \Sigma^{\omega}$. Consider now the formula $G(p \lor (Xq \land X\neg q)).$

- it is equivalent to G(*p*)
- therefore, it is a safety formula
- its set of *bad prefixes* is the same as the one of G(*p*)

Nevertheless, the previous prefix does *not* tell the whole story about the violation of $G(p \lor (Xq \land X\neg q))$. In fact:

• Negation of the above formula:

 $\mathsf{F}(\neg p \land (\mathsf{X} \neg q \lor \mathsf{X} q))$

- Any violation depends on the fact that at certain point:
 - *p* is false and
 - in the *next* state *q* or ¬*q* holds. (*this is always true*)
- In the previous prefix, the point in which ¬*p* holds does *not* have a successor:
 - the prefix is *not informative*

Consider the formula G(p). The following trace is a *bad prefix*:

Recall that $\sigma \in \Sigma^*$ is a bad prefix for a language \mathcal{L} iff $\sigma \cdot \sigma' \notin \mathcal{L}$, for all $\sigma' \in \Sigma^{\omega}$. Consider now the formula $G(p \lor (Xq \land X\neg q)).$

- it is equivalent to G(*p*)
- therefore, it is a safety formula
- its set of *bad prefixes* is the same as the one of G(*p*)

Nevertheless, the previous prefix does *not* tell the whole story about the violation of $G(p \lor (Xq \land X\neg q))$. In fact:

• Negation of the above formula:

 $\mathsf{F}(\neg p \land (\mathsf{X} \neg q \lor \mathsf{X} q))$

• This prefix is *informative* for the formula:

• Consider the specification:

 $\mathsf{G}(p \lor (\mathsf{X}q \land \phi \land \mathsf{X} \neg q))$

- where ϕ is a very complex Boolean formula.
- If the user is given the prefix

 $\{p\} \ \{p\} \ \{p\} \ \{p\} \ \emptyset$

then it is very hard for him/her to notice that the specification contains a redundant part $(Xq \land X\neg q)$.

• If instead the user is given this prefix

then he/she

- notice that the *first* state in which $\neg p$ holds has a successor
- inspect the parts of the specification that talk about the successor state (Xq ∧ X¬q)
- notice that they are *redundant*
- and finally remove them.

- This intuition of a prefix that *"tells the whole story"* is the base for a classification of safety properties in three distinct safety levels.
- This intuition is formalized by defining the notion of *informative prefix*
 - it is based on the semantics of LTL over finite traces

Reference:

Orna Kupferman and Moshe Y Vardi (2001). "Model checking of safety properties". In: *Formal Methods in System Design* **19.3, pp. 291–314.** DOI: 10.1023/A:1011254632723

Usage:

- Detect the cause of inconsistent specifications:
 - e.g.: in formulas like G(p ∨ (Xq ∧ φ ∧ X¬q)), the cause of inconsistency may not be easy to notice by the user, especially in more complicated examples
- Efficient automata construction
 - The automaton that recognizes all and only the informative prefixes of a formula is *exponentially smaller* than the automaton recognizing all and only the bad prefixes.
 - \Rightarrow Efficient algorithms for model checking

Reference:

Orna Kupferman and Moshe Y Vardi (2001). "Model checking of safety properties". In: *Formal Methods in System Design* **19.3, pp. 291–314.** DOI: 10.1023/A:1011254632723

Recall that $nnf(\psi)$ is the *negation normal form* of ψ , that is, a formula equivalent to ψ but with negations only applied to atomic propositions.

We define a new semantics for LTL interpreted over finite traces, that we denote with \models_{KV} .

- $\sigma, i \models_{\mathrm{KV}} p \text{ iff } p \in \sigma_i$
- $\sigma, i \models_{\mathrm{KV}} \phi_1 \lor \phi_2$ iff $\sigma, i \models_{\mathrm{KV}} \phi_1$ or $\sigma, i \models_{\mathrm{KV}} \phi_2$
- $\sigma, i \models_{\mathrm{KV}} \phi_1 \land \phi_2$ iff $\sigma, i \models_{\mathrm{KV}} \phi_1$ and $\sigma, i \models_{\mathrm{KV}} \phi_2$
- $\sigma, i \models_{\mathrm{KV}} \mathsf{X}\phi$ iff $i + 1 < |\sigma|$ and $\sigma, i + 1 \models_{\mathrm{KV}} \phi$

Recall that $nnf(\psi)$ is the *negation normal form* of ψ , that is, a formula equivalent to ψ but with negations only applied to atomic propositions.

We define a new semantics for LTL interpreted over finite traces, that we denote with \models_{KV} .

- $\sigma, i \models_{\mathrm{KV}} p \text{ iff } p \in \sigma_i$
- $\sigma, i \models_{\mathrm{KV}} \phi_1 \lor \phi_2$ iff $\sigma, i \models_{\mathrm{KV}} \phi_1$ or $\sigma, i \models_{\mathrm{KV}} \phi_2$
- $\sigma, i \models_{\mathrm{KV}} \phi_1 \land \phi_2$ iff $\sigma, i \models_{\mathrm{KV}} \phi_1$ and $\sigma, i \models_{\mathrm{KV}} \phi_2$
- $\sigma, i \models_{\mathrm{KV}} \mathsf{X}\phi$ iff $i + 1 < |\sigma|$ and $\sigma, i + 1 \models_{\mathrm{KV}} \phi$
- $\sigma, i \models_{\mathrm{KV}} \mathsf{F}\phi$ iff $\exists i \leq j < |\sigma|$ and $\sigma, j \models_{\mathrm{KV}} \phi$
- $\sigma, i \models_{\mathrm{KV}} \mathsf{G}\phi$ is always false

Recall that $nnf(\psi)$ is the *negation normal form* of ψ , that is, a formula equivalent to ψ but with negations only applied to atomic propositions.

We define a new semantics for LTL interpreted over finite traces, that we denote with \models_{KV} .

- $\sigma, i \models_{\mathrm{KV}} p \text{ iff } p \in \sigma_i$
- $\sigma, i \models_{\mathrm{KV}} \phi_1 \lor \phi_2$ iff $\sigma, i \models_{\mathrm{KV}} \phi_1$ or $\sigma, i \models_{\mathrm{KV}} \phi_2$
- $\sigma, i \models_{\mathrm{KV}} \phi_1 \land \phi_2$ iff $\sigma, i \models_{\mathrm{KV}} \phi_1$ and $\sigma, i \models_{\mathrm{KV}} \phi_2$
- $\sigma, i \models_{\mathrm{KV}} \mathsf{X}\phi$ iff $i + 1 < |\sigma|$ and $\sigma, i + 1 \models_{\mathrm{KV}} \phi$
- $\sigma, i \models_{\mathrm{KV}} \phi_1 \cup \phi_2$ iff $\exists i \leq j < |\sigma| . \sigma, j \models_{\mathrm{KV}} \phi_2$ and $\forall i \leq k < j . \sigma, k \models_{\mathrm{KV}} \phi_1$
- $\sigma, i \models_{\mathrm{KV}} \phi_1 \operatorname{\mathsf{R}} \phi_2$ iff $\exists i \leq j < |\sigma| \cdot \sigma, j \models_{\mathrm{KV}} \phi_1$ and $\forall i \leq k < j \cdot \sigma, k \models_{\mathrm{KV}} \phi_2$

Intuition:

If $\sigma \models_{\text{KV}} \text{nnf}(\neg \phi)$, then σ carries all the information to violate ϕ over infinite traces.

Remark

The definition of \models_{KV} is exactly the one used in *Bounded Model Checking* for defining the truth of an LTL formula over a finite trace.

Reference:

Armin Biere et al. (2003). "Bounded model checking". In: Adv. Comput. 58, pp. 117–148. DOI: 10.1016/S0065-2458(03)58003-2. URL: https://doi.org/10.1016/S0065-2458(03)58003-2

Definition (Informative Prefix)

Let ϕ be an LTL formula over \mathcal{AP} and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace over $2^{\mathcal{AP}}$.

```
\sigma \text{ is an informative prefix for } \phi
iff
\sigma \models_{\text{KV}} \text{nnf}(\neg \phi)
```

Note: in the original paper by Kupferman and Vardi, informative prefixes are defined using a mapping *L*. This is equivalent to our definition.

Definition (Informative Prefix)

Let ϕ be an LTL formula over \mathcal{AP} and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace over $2^{\mathcal{AP}}$.

```
\sigma \text{ is an informative prefix for } \phi
iff
\sigma \models_{\text{KV}} \text{nnf}(\neg \phi)
```

Example:

This prefix is *informative* for G(p).

 $\{p\} \ \{p\} \ \{p\} \ \{p\} \ \emptyset$

 $\operatorname{nnf}(\neg \mathsf{G}(p)) \coloneqq \mathsf{F}(\neg p)$

Definition (Informative Prefix)

Let ϕ be an LTL formula over \mathcal{AP} and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace over $2^{\mathcal{AP}}$.

 $\sigma \text{ is an informative prefix for } \phi$ iff $\sigma \models_{\text{KV}} \text{nnf}(\neg \phi)$

Example:

This prefix is <u>not</u> informative for $\phi := G(p \lor (Xq \land X\neg q))$.

 $\{p\} \ \{p\} \ \{p\} \ \{p\} \ \emptyset$

 $\mathbf{nnf}(\neg \phi) \coloneqq \mathsf{F}(\neg p \land (\mathsf{X} \neg q \lor \mathsf{X} q))$

Definition (Informative Prefix)

Let ϕ be an LTL formula over \mathcal{AP} and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace over $2^{\mathcal{AP}}$.

 $\sigma \text{ is an informative prefix for } \phi$ iff $\sigma \models_{\text{KV}} \text{nnf}(\neg \phi)$

Example:

This prefix is *informative for* $\phi \coloneqq G(p \lor (Xq \land X\neg q))$.

 $\{p\} \{p\} \{p\} \{p\} \emptyset \varnothing \varnothing$

 $\mathbf{nnf}(\neg \phi) \coloneqq \mathsf{F}(\neg p \land (\mathsf{X} \neg q \lor \mathsf{X}q))$

Definition (Informative Prefix)

Let ϕ be an LTL formula over \mathcal{AP} and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace over $2^{\mathcal{AP}}$.

 $\sigma \text{ is an informative prefix for } \phi$ iff $\sigma \models_{\text{KV}} \text{nnf}(\neg \phi)$

Example:

This prefix is <u>not</u> informative for $\phi := (\mathsf{G}(q \vee \mathsf{FG}p) \wedge \mathsf{G}(r \vee \mathsf{FG}\neg p)) \vee \mathsf{G}q \vee \mathsf{G}r$.

 $\{p\} \ \{p\} \ \{p\} \ \{p\} \ \emptyset \ \varnothing \ \emptyset$

 $\mathbf{nnf}(\neg \phi) \coloneqq \left(\mathsf{F}(\neg q \land \mathsf{GF} \neg p) \lor \mathsf{F}(\neg r \land \mathsf{GF}p)\right) \land \mathsf{F} \neg q \land \mathsf{F} \neg r$

Definition (Informative Prefix)

Let ϕ be an LTL formula over \mathcal{AP} and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace over $2^{\mathcal{AP}}$.

 $\sigma \text{ is an informative prefix for } \phi$ iff $\sigma \models_{\text{KV}} \text{nnf}(\neg \phi)$

Example:

This prefix is <u>not</u> informative for $\phi := (G(q \vee FGp) \wedge G(r \vee FG\neg p)) \vee Gq \vee Gr$.

 $G(\dots)$ is always false under \models_{KV} : no prefix is informative for ϕ

$$\mathbf{nnf}(\neg \phi) \coloneqq \left(\mathsf{F}(\neg q \land \mathsf{GF} \neg p) \lor \mathsf{F}(\neg r \land \mathsf{GF} p)\right) \land \mathsf{F} \neg q \land \mathsf{F} \neg r$$

Definition (Informative Prefix)

Let ϕ be an LTL formula over \mathcal{AP} and let $\sigma \in (2^{\mathcal{AP}})^+$ be a finite trace over $2^{\mathcal{AP}}$.

 $\sigma \text{ is an informative prefix for } \phi$ iff $\sigma \models_{\text{KV}} \text{nnf}(\neg \phi)$

Remark:

Given σ and ϕ , checking whether $\sigma \models_{KV} \phi$ can be done in time $\mathcal{O}(|\sigma| \cdot |\phi|)$.

Let ϕ be any LTL formula such that $\mathcal{L}(\phi)$ is a safety language. The definition of informative prefix is used to classify such formulas ϕ into three types:

- **1** intentionally safe
- 2 accidentally safe
- ③ pathologically safe

Let ϕ be any LTL formula such that $\mathcal{L}(\phi)$ is a safety language. The definition of informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe

 ϕ is intentionally safe iff all bad prefixes are informative.

For example:

- the formula G(*p*) is intentionally safe.
- the formula $G(p \lor (Xq \land X\neg q))$ is *not* intentionally safe, because $\langle \{p\}, \{p\}, \{p\}, \{p\}, \emptyset \rangle$ is a bad prefix but it is not informative.
- 2 accidentally safe
- ③ pathologically safe

Let ϕ be any LTL formula such that $\mathcal{L}(\phi)$ is a safety language. The definition of informative prefix is used to classify such formulas ϕ into three types:

- **1** intentionally safe
- 2 accidentally safe

 ϕ is accidentally safe iff (*i*) not all the bad prefixes of ψ are informative, but (*ii*) every $\sigma \in (2^{AP})^{\omega}$ that violates ϕ has an informative bad prefix.

For example:

G(p ∨ (Xq ∧ X¬q)) is accidentally safe: ({p}, {p}, {p}, {p}, Ø) is a bad prefix but it is not informative. However, every infinite trace violating the formula has an informative prefix of type {p}* · Ø · Ø.

B pathologically safe

Let ϕ be any LTL formula such that $\mathcal{L}(\phi)$ is a safety language. The definition of informative prefix is used to classify such formulas ϕ into three types:

- **1** intentionally safe
- 2 accidentally safe
- ③ pathologically safe

 ϕ is pathologically safe iff there is a $\sigma \in (2^{AP})^{\omega}$ that violates ϕ and has no informative bad prefixes.

For example:

- $(\mathsf{G}(q \lor \mathsf{FG}p) \land \mathsf{G}(r \lor \mathsf{FG}\neg p)) \lor \mathsf{G}q \lor \mathsf{G}r$
 - the computation \varnothing^{ω} violates the formula

 $\varnothing^{\omega} \models (\mathsf{F}(\neg q \land \mathsf{GF} \neg p) \lor \mathsf{F}(\neg r \land \mathsf{GF} p)) \land \mathsf{F}(\neg q) \land \mathsf{F}(\neg r)$

• but each of its prefixes σ is *not informative* because $\sigma \not\models_{KV} (F(\neg q \land GF \neg p) \lor F(\neg r \land GFp)) \land F(\neg q) \land F(\neg r)$, but no finite prefix is such.

Let ϕ be any LTL formula such that $\mathcal{L}(\phi)$ is a safety language. The definition of informative prefix is used to classify such formulas ϕ into three types:

- 1 intentionally safe
- 2 accidentally safe
- ③ pathologically safe

Formulas that are accidentally safe or pathologically safe are *needlessly complicated*:

- They contain a redundancy that can be eliminated.
- If a user wrote a pathologically safe formula, then probably he/she didn't mean to write a safety formula.
- This classification helps in detecting inconsistent or redundant specifications.

Theorem

For any formula ϕ of SafetyLTL, it holds that ϕ is either intentionally or accidentally safe.

Proof.

- By the duality between SafetyLTL and coSafetyLTL, we have that nnf(¬φ) is a formula of coSafetyLTL and is equivalent to φ. Let ψ := nnf(¬φ).
- Let $\sigma = \langle \sigma_0, \sigma_1, \ldots \rangle$ be an infinite trace that satisfies ψ , that is $\sigma \models \psi$.
- Since, by definition of coSafetyLTL, ψ contains only X and U as temporal operators, there exists a furthermost time point *i* such that $\sigma_{[0,i]} \models \psi$ (under finite traces semantics).

Theorem

For any formula ϕ of SafetyLTL, it holds that ϕ is either intentionally or accidentally safe.

Proof.

- Since on the operators X and U the definitions of \models and \models_{KV} coincide, we have also that $\sigma_{[0,i]} \models_{KV} \psi$. Therefore, by definition, $\sigma_{[0,i]}$ is an *informative prefix*.
- It follows that every infinite trace that violates *φ* has an informative prefix, thus *φ* is either intentionally or accidentally safe.

As we will see, this classification is exploited for having efficient verification algorithms.

- An automaton that recognizes only the bad prefixes that are *informative* can be built exponentially more efficiently than the automaton for *all* the bad prefixes.
- Moreover, in practice, almost all the benefits that one can obtain from an automaton for the bad prefixes can also be obtained from an automaton for the *informative* bad prefixes.
 - for example, we can perform *model checking* algorithms considering only the informative bad prefixes
 - since there may be bad prefixes that are not informative but may become informative if extended, *minimality* of counterexamples is the only thing that is sacrified when dealing with informative bad prefixes.

REFERENCES

Bibliography I

Armin Biere et al. (2003). "Bounded model checking". In: Adv. Comput. 58, pp. 117–148. DOI: 10.1016/S0065-2458(03)58003-2. URL: https://doi.org/10.1016/S0065-2458(03)58003-2.
Edward Y. Chang, Zohar Manna, and Amir Pnueli (1992). "Characterization of Temporal Property Classes". In: Proceedings of the 19th International Colloquium on Automata, Languages and Programming. Ed. by Werner Kuich. Vol. 623. Lecture Notes in Computer Science. Springer, pp. 474–486. DOI: 10.1007/3-540-55719-9_97.

Bibliography II

Alessandro Cimatti et al. (2022). "A first-order logic characterisation of safety and co-safety languages". In: Foundations of Software Science and Computation Structures - 25th International Conference, FOSSACS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings. Ed. by Patricia Bouyer and Lutz Schröder. Vol. 13242. Lecture Notes in Computer Science. Springer, pp. 244–263. DOI: 10.1007/978-3-030-99253-8_13. URL: https://doi.org/10.1007/978-3-030-99253-8%5C_13.

Orna Kupferman and Moshe Y Vardi (2001). "Model checking of safety properties". In: *Formal Methods in System Design* 19.3, pp. 291–314. DOI: 10.1023/A:1011254632723.

Zohar Manna and Amir Pnueli (1990). "A hierarchy of temporal properties (invited paper, 1989)". In: Proceedings of the 9th annual ACM symposium on Principles of distributed computing, pp. 377–410. DOI: 10.1145/93385.93442.

Bibliography III

Ina Schiering and Wolfgang Thomas (1996). "Counter-free automata, first-order logic, and star-free expressions extended by prefix oracles". In:

Developments in Language Theory, II (Magdeburg, 1995), Worl Sci. Publishing, River Edge, NJ, pp. 166–175.