# Department of Mathematics, Computer Science and Physics, University of Udine The Safety Fragment of Temporal Logics on Infinite Sequences Lesson 3

Luca Geatti

luca.geatti@uniud.it

Angelo Montanari

angelo.montanari@uniud.it

April 11th, 2024



- Let  $\mathcal{A} = \langle Q, \Sigma, I, \delta, F \rangle$  be a *deterministic* finite automaton (DFA).
- For each  $\langle \sigma_0, \sigma_1, \ldots, \sigma_n \rangle \in \Sigma^*$  and for each  $q \in Q$ , we define

$$\delta^*(q, \langle \sigma_0, \sigma_1, \dots, \sigma_n \rangle) = \begin{cases} \delta(q, \sigma_0) & \text{if } n = 0\\ \delta(\delta^*(q, \langle \sigma_0, \dots, \sigma_{n-1} \rangle), \sigma_n) & \text{otherwise} \end{cases}$$

• For any word  $\sigma \in \Sigma^*$  and any  $i \in \mathbb{N}$ , we define  $(\sigma)^i$  as the word obtained from *i* concatenations of  $\sigma$ .



## Definition (Nontrivial cycle)

A word  $\sigma \in \Sigma^*$  (with  $\sigma \neq \varepsilon$ ) defines a *nontrivial cycle* in  $\mathcal{A}$  if there exists a state  $q \in Q$  such that:

• 
$$\delta^*(q,\sigma) \neq q$$

• 
$$\delta^*(q, (\sigma)^i) = q.$$

for some i > 1.

### Definition (Counter-free DFA)

A DFA  $\mathcal{A}$  is called *counter-free* if there are no words that define a nontrivial cycle. We denote this class by cf-DFA.



This automaton is *not* counter-free. The word *ab* defines the nontrivial cycle:

$$q_0 \xrightarrow{ab} q_4 \xrightarrow{ab} q_2 \xrightarrow{ab} q_0$$



- The definition of counter-free automaton requires a *deterministic* automaton.
- NBA are not closed under *determinization*.
- We change the type of automata over ω-words which we work with.

 $\Rightarrow$  Rabin Automata

## Definition (DRA)

A *Deterministic Rabin Automaton* (DRA, for short) is a tuple  $\langle Q, \Sigma, q_0, \delta, F \rangle$  where

$$F = \langle (A_1, B_1), \ldots, (A_n, B_n) \rangle$$

with  $A_i, B_i \subseteq Q$ . A run  $\pi := \langle q_0, q_1, \ldots \rangle \in Q^{\omega}$  is said to be *accepting* iff there exists some  $i \in [1, n]$  such that

- $lnf(\pi) \cap B_i \neq \emptyset$  and
- $lnf(\pi) \cap A_i = \varnothing.$



#### Theorem

Deterministic Rabin Automata are equivalent to Nondeterministic Büchi Automata.

## Definition (Counter-free DRA)

A DRA  $\mathcal{A}$  is called *counter-free* if there are no words that define a nontrivial cycle. We call cf-DRA this class.

## Definition (DRA)

A *Deterministic Rabin Automaton* (DRA, for short) is a tuple  $\langle Q, \Sigma, q_0, \delta, F \rangle$  where

$$F = \langle (A_1, B_1), \ldots, (A_n, B_n) \rangle$$

with  $A_i, B_i \subseteq Q$ . A run  $\pi := \langle q_0, q_1, \ldots \rangle \in Q^{\omega}$  is said to be *accepting* iff there exists some  $i \in [1, n]$  such that

- $lnf(\pi) \cap B_i \neq \emptyset$  and
- $lnf(\pi) \cap A_i = \varnothing.$



Counter-free Automata cf-DFA and cf-DRA

Theorem (Expressive Equivalence for cf-DRA)

For each  $\omega$ -language  $\mathcal{L} \subseteq \Sigma^{\omega}$ , it holds that:

 $\begin{array}{l} \mathcal{L} \textit{ is star-free} \\ \textit{iff} \\ \mathcal{L} = \mathcal{L}(\mathcal{A}) \textit{ for some cf-DRA } \mathcal{A} \end{array} \\ \end{array}$ 

### Theorem (Expressive Equivalence for cf-DFA)

*For each language*  $\mathcal{L} \subseteq \Sigma^*$ *, it holds that:* 

$$\mathcal L$$
 is star-free  
iff  
 $\mathcal L = \mathcal L^{<\omega}(\mathcal A)$  for some cf-DFA  $\mathcal A$ 



Counter-free Automata cf-DFA and cf-DRA

#### Reference:

Robert McNaughton and Seymour A Papert (1971). *Counter-Free Automata* (*MIT research monograph no. 65*). The MIT Press

#### **Reference**:

Wolfgang Thomas (1979). "Star-free regular sets of  $\omega$ -sequences". In: Information and Control 42.2, pp. 148–156. DOI: 10.1016/S0019-9958(79)90629-6

#### **Reference:**

Ina Schiering and Wolfgang Thomas (1996). "Counter-free automata, first-order logic, and star-free expressions extended by prefix oracles". In: *Developments in Language Theory, II (Magdeburg, 1995), Worl Sci. Publishing, River Edge, NJ,* pp. 166–175



## Characterizations of $\omega$ -Star-free Languages





## Characterizations of Star-free Languages





# **Temporal Logics**

Temporal logic is the de-facto standard language for specifying properties of systems in *formal verification* and *artificial intelligence*.

• born in the '50s as a tool for philosophical argumentation about time

#### Reference:

Arthur N Prior (2003). Time and modality. John Locke Lecture

• the idea of its use in formal verification can be traced back to the '70s

### **Reference:**

Amir Pnueli (1977). "The temporal logic of programs". In: 18th Annual Symposium on Foundations of Computer Science (sfcs 1977). IEEE, pp. 46–57. DOI: 10.1109/SFCS.1977.32



# Temporal logic in AI

In *artificial intelligence*, when do we need to use *logic* to talk about *time*?

- automated planning
  - temporally extended goals (Bacchus and Kabanza 1998)
  - temporal planning (Fox and Long 2003)
  - timeline-based planning (Della Monica et al. 2017)
- automated synthesis (Jacobs et al. 2017)
- autonomy under uncertainty (Brafman and De Giacomo 2019)
  - specification of goals for planning over MDPs and POMDPs

- reinforcement learning (De Giacomo et al. 2020; Hammond et al. 2021)
  - specification of reward functions and safety conditions
- knowledge representation
  - temporal description logics (Artale et al. 2014)
- multi-agent systems
  - temporal epistemic logics (van Benthem et al. 2009)



There are many choices to be made for the representation of *time*.





There are many choices to be made for the representation of *time*.





**Oualitative** 

There are many choices to be made for the representation of *time*.





**Real-time** 



There are many choices to be made for the representation of *time*.

Discrete

Dense







There are many choices to be made for the representation of *time*.

We focus here on:

- *linear-*time
- discrete-time
- qualitative-time
- *infinite*-time
  - sometimes also *finite*-time



*Linear Temporal Logic with Past* (LTL+P, for short) is a *modal* logic.

- introduced by Pnueli in the '70s
- interpreted over discrete, infinite state sequences (infinite words)
- it extends classical propositional logic
- temporal *operators* are used to talk about how propositions change over time



#### Linear Temporal Logic with Past LTL+P Syntax

Let  $\mathcal{AP} := \{p, q, r, ...\}$  be a set of *atomic propositions*. The syntax of LTL+P is defined as follows:

$$\phi := p \mid \neg \phi \mid \phi \lor \phi$$
$$\mid \mathsf{X}\phi \mid \phi \lor \phi$$
$$\mid \mathsf{Y}\phi \mid \phi \mathsf{S}\phi$$

where  $p \in AP$ .

- X is called *tomorrow* (or *next*)
- U is called *until*
- Y is called *yesterday* (or *previous*)
- S is called *since*

Boolean Modalities Future Temporal Modalities Past Temporal Modalities



- We focus on the *infinite-time* interpretation of LTL+P.
- Given a set of atomic propositions *AP*, any LTL+P formula defined over *AP* is interpreted over *infinite words* σ ∈ (2<sup>*AP*</sup>)<sup>ω</sup>.
- In this context, sequences in  $(2^{\mathcal{AP}})^{\omega}$  are also called state sequences or traces.

$$\mathcal{AP} := \{r, g\} \qquad \begin{cases} r\} & \varnothing & \{r, g\} & \{r\} & \{r, g\} & \{r\} \\ \bullet & \bullet & \bullet & \bullet \\ 0 & 1 & 2 & 3 & 4 & 5 \end{cases}$$



We say that  $\sigma$  satisfies at position *i* the LTL+P formula  $\phi$ , written  $\sigma$ ,  $i \models \phi$ , iff:

•  $\sigma, i \models p$  iff  $p \in \sigma_i$ 





We say that  $\sigma$  satisfies at position *i* the LTL+P formula  $\phi$ , written  $\sigma$ ,  $i \models \phi$ , iff:

•  $\sigma, i \models \neg \phi$  iff  $\sigma, i \not\models \phi$ 



### $\phi$ does not hold at position i



We say that  $\sigma$  satisfies at position *i* the LTL+P formula  $\phi$ , written  $\sigma$ ,  $i \models \phi$ , iff:

• 
$$\sigma, i \models \phi_1 \land \phi_2$$
 iff  $\sigma, i \models \phi_1$  and  $\sigma, i \models \phi_2$ 



 $\phi_1$  and  $\phi_2$  hold at position i



We say that  $\sigma$  satisfies at position *i* the LTL+P formula  $\phi$ , written  $\sigma$ ,  $i \models \phi$ , iff:

•  $\sigma, i \models \mathsf{X}\phi$  iff  $\sigma, i + 1 \models \phi$ 



### $\phi$ holds at the *next* position of i



We say that  $\sigma$  satisfies at position *i* the LTL+P formula  $\phi$ , written  $\sigma$ ,  $i \models \phi$ , iff:

•  $\sigma, i \models \phi_1 \cup \phi_2$  iff  $\exists j \ge i \ . \ \sigma, j \models \phi_2$  and  $\forall i \le k < j \ . \ \sigma, k \models \phi_1$ 



 $\phi_1$  holds *until*  $\phi_2$  holds



We say that  $\sigma$  satisfies at position *i* the LTL+P formula  $\phi$ , written  $\sigma$ ,  $i \models \phi$ , iff:

•  $\sigma, i \models \mathsf{Y}\phi$  iff i > 0 and  $\sigma, i - 1 \models \phi$ 



position *i* has a predecessor and  $\phi$  holds at the *previous* position of *i* 

**Note:**  $\sigma$ , 0  $\models$  Y $\phi$  is always false.



We say that  $\sigma$  satisfies at position *i* the LTL+P formula  $\phi$ , written  $\sigma$ ,  $i \models \phi$ , iff:

•  $\sigma, i \models \phi_1 \ \mathsf{S} \ \phi_2 \ \text{ iff } \exists j \leq i \ . \ \sigma, j \models \phi_2 \text{ and } \forall j < k \leq i \ . \ \sigma, k \models \phi_1$ 





# Linear Temporal Logic with Past LTL+P Shortcuts

Shortcuts:

• *(eventually)*  $F\phi \equiv \top U \phi$ 



 $\phi$  will *eventually* hold



# Linear Temporal Logic with Past LTL+P Shortcuts

Shortcuts:

• (globally)  $G\phi \equiv \neg F \neg \phi$ 



 $\phi$  holds *always* 



#### Linear Temporal Logic with Past LTL+P Shortcuts

Shortcuts:

• (once)  $\mathbf{O}\phi \equiv \top \mathbf{S} \phi$ 



 $\phi$  once held



#### Linear Temporal Logic with Past LTL+P Shortcuts

Shortcuts:

• (*historically*)  $H\phi \equiv \neg O \neg \phi$ 



 $\phi$  holds always in the past



# Linear Temporal Logic with Past LTL+P Shortcuts

Shortcuts:

• (weak yesterday) 
$$\widetilde{\mathsf{Y}}\phi \equiv \neg\mathsf{Y}\neg\phi$$



 $\phi$  holds at the *previous* position of *i*, *if any* 

**Note:**  $\sigma, i \models \widetilde{\mathsf{Y}} \bot$  is true iff i = 0.



#### Linear Temporal Logic with Past Negation Normal Form

## Definition (Negation Normal Form)

We define the  $nnf(\cdot)$  : LTL  $\rightarrow$  LTL (*Negation Normal Form*) function as follows:

- nnf(p) = p
- $\operatorname{nnf}(\phi_1 \land \phi_2) = \operatorname{nnf}(\phi_1) \land \operatorname{nnf}(\phi_2)$
- $nnf(\phi_1 \lor \phi_2) = nnf(\phi_1) \lor nnf(\phi_2)$
- $nnf(X\phi) = X(nnf(\phi))$

• 
$$\operatorname{nnf}(\phi_1 \cup \phi_2) = (\operatorname{nnf}(\phi_1)) \cup (\operatorname{nnf}(\phi_2))$$

•  $\operatorname{nnf}(\phi_1 \operatorname{\mathsf{R}} \phi_2) = (\operatorname{nnf}(\phi_1)) \operatorname{\mathsf{R}} (\operatorname{nnf}(\phi_2))$ 

The release (R) operator is defined as the negation of the until (U):  $\phi_1 \ R \ \phi_2 \equiv \neg((\neg \phi_1) \ U \ (\neg \phi_2)).$ For any  $\phi \in LTL$ , the formula nnf( $\phi$ ) has *negation only applied to atomic propositions*.



#### Linear Temporal Logic with Past Negation Normal Form

## Definition (Negation Normal Form)

We define the  $nnf(\cdot)$  : LTL  $\rightarrow$  LTL (*Negation Normal Form*) function as follows:

- $nnf(\neg p) = \neg p$
- $\operatorname{nnf}(\neg\neg\phi) = \operatorname{nnf}(\phi)$
- $\operatorname{nnf}(\neg(\phi_1 \land \phi_2)) = \operatorname{nnf}(\neg\phi_1) \lor \operatorname{nnf}(\neg\phi_2)$
- $\operatorname{nnf}(\neg(\phi_1 \lor \phi_2)) = \operatorname{nnf}(\neg\phi_1) \land \operatorname{nnf}(\neg\phi_2)$
- $nnf(\neg X\phi) = X(nnf(\neg \phi))$
- $\operatorname{nnf}(\neg(\phi_1 \cup \phi_2)) = (\operatorname{nnf}(\neg\phi_1)) \operatorname{R}(\operatorname{nnf}(\neg\phi_2))$
- $\operatorname{nnf}(\neg(\phi_1 \mathrel{\mathsf{R}} \phi_2)) = (\operatorname{nnf}(\neg\phi_1)) \mathrel{\mathsf{U}}(\operatorname{nnf}(\neg\phi_2))$

For any  $\phi \in LTL$ , the formula  $nnf(\phi)$  has negation only applied to atomic propositions.



#### Linear Temporal Logic with Past LTL+P Languages

- We say that  $\sigma$  satisfies  $\phi$  (written  $\sigma \models \phi$ ) iff  $\sigma, 0 \models \phi$ .
- For any LTL+P formula  $\phi$ , we define the language of  $\phi$  over infinite words as:

$$\mathcal{L}(\phi) = \{ \sigma \in (2^{\mathcal{AP}})^{\omega} \mid \sigma \models \phi \}$$

- We say that  $\phi$  is satisfiable iff  $\mathcal{L}(\phi) \neq \emptyset$ .
- We say that  $\phi$  is valid iff  $\mathcal{L}(\phi) = (2^{\mathcal{AP}})^{\omega}$ .



# Linear Temporal Logic with Past Examples

### Example:

*Each request (r) is eventually followed by a grant (g).* 

 $\mathsf{G}(r \to \mathsf{F}(g))$ 

## Example:

Each grant (g) is preceeded by a request (r).

 $G(g \rightarrow O(r)))$ 

# **REFERENCES**



- Alessandro Artale et al. (2014). "A Cookbook for Temporal Conceptual Data Modelling with Description Logics". In: *ACM Trans. Comput. Log.* 15.3, 25:1–25:50. DOI: 10.1145/2629565.
- Fahiem Bacchus and Froduald Kabanza (1998). "Planning for Temporally Extended Goals". In: Annals of Mathematics in Artificial Intelligence 22.1-2, pp. 5–27.
- Ronen I. Brafman and Giuseppe De Giacomo (2019). "Planning for LTLf /LDLf Goals in Non-Markovian Fully Observable Nondeterministic Domains". In: *Proceedings of the 28th International Joint Conference on Artificial Intelligence*. Ed. by Sarit Kraus. ijcai.org, pp. 1602–1608. DOI: 10.24963/ijcai.2019/222.
- Giuseppe De Giacomo et al. (2020). "Imitation Learning over Heterogeneous Agents with Restraining Bolts". In: Proceedings of the 13th International Conference on Automated Planning and Scheduling. AAAI Press, pp. 517–521.



# Bibliography II

D. Della Monica et al. (2017). "Bounded Timed Propositional Temporal Logic with Past Captures Timeline-based Planning with Bounded Constraints". In: Proc. of the 26th International Joint Conference on Artificial Intelligence, pp. 1008–1014. DOI: 10.24963/ijcai.2017/140.

- Maria Fox and Derek Long (2003). "PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains". In: J. Artif. Intell. Res. 20, pp. 61–124. DOI: 10.1613/jair.1129.
- Lewis Hammond et al. (2021). "Multi-Agent Reinforcement Learning with Temporal Logic Specifications". In: Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems. ACM, pp. 583–592. DOI: 10.5555/3463952.3464024.
- Swen Jacobs et al. (2017). "The first reactive synthesis competition (SYNTCOMP 2014)". In: Int. J. Softw. Tools Technol. Transf. 19.3, pp. 367–390. DOI: 10.1007/s10009-016-0416-3.



# Bibliography III

Robert McNaughton and Seymour A Papert (1971). Counter-Free Automata (MIT research monograph no. 65). The MIT Press. Amir Pnueli (1977). "The temporal logic of programs". In: 18th Annual Symposium on Foundations of Computer Science (sfcs 1977). IEEE, pp. 46–57. DOI: 10.1109/SFCS.1977.32. Arthur N Prior (2003). Time and modality. John Locke Lecture. Ina Schiering and Wolfgang Thomas (1996). "Counter-free automata, first-order logic, and star-free expressions extended by prefix oracles". In: Developments in Language Theory, II (Magdeburg, 1995), Worl Sci. Publishing, *River Edge, NJ,* pp. 166–175. Wolfgang Thomas (1979). "Star-free regular sets of  $\omega$ -sequences". In: Information and Control 42.2, pp. 148–156. DOI:

10.1016/S0019-9958(79)90629-6.



# Bibliography IV

### Johan van Benthem et al. (2009). "Merging Frameworks for Interaction". In: J.

Philos. Log. 38.5, pp. 491–526. DOI: 10.1007/s10992-008-9099-x.