Department of Mathematics, Computer Science and Physics, University of Udine The Safety Fragment of Temporal Logics on Infinite Sequences Lesson 2

Luca Geatti

luca.geatti@uniud.it

Angelo Montanari

angelo.montanari@uniud.it

April 8th, 2024

The *monadic second-order theory of one successor* (S1S, for short) is a fragment of second-order logic in which we fix this alphabet:

 $\underbrace{0}_{\text{constant function}}, \underbrace{+1}_{\text{binary}}, \underbrace{<, =}_{\text{unary}}, \underbrace{\{P\}_{P \in \Sigma}}_{\text{unary}}$

predicates predicates

The *monadic second-order theory of one successor* (S1S, for short) is a fragment of second-order logic in which we fix this alphabet:

Its syntax is the following. Let $\mathcal{V} = \{x, y, z, ...\}$ be a set of *first-order variables*. Let $\mathcal{V}' = \{X, Y, Z, ...\}$ be a set of *second-order variables*.

$$\begin{array}{ll} (\text{terms}) & t \coloneqq x \mid 0 \mid t+1 \\ (\text{formulas}) & \phi \coloneqq \underbrace{P(t)}_{\text{with } P \in \Sigma} \mid \underbrace{X(t)}_{\substack{\text{with } X \\ \text{monadic} \\ \text{variable}}} \mid t < t' \mid t = t' \mid \neg \phi \mid \phi \lor \phi \mid \underbrace{\exists x \cdot \phi}_{\substack{\text{first-order} \\ \text{quantifier}}} \mid \underbrace{\exists X \cdot \phi}_{\substack{\text{monadic} \\ \text{second-order} \\ \text{quantifier}}} \\ \end{array}$$

The *monadic second-order theory of one successor* (S1S, for short) is a fragment of second-order logic in which we fix this alphabet:

predicates predicates

Semantics:

Words

 $\langle D, 0, +1, <, =, \{P\}_{P \in \Sigma} \rangle$

 ω -Words

 $\langle \mathbb{N}, 0, +1, <, =, \{P\}_{P \in \Sigma} \rangle$

The *monadic second-order theory of one successor* (S1S, for short) is a fragment of second-order logic in which we fix this alphabet:

- Let $\phi(x, y, z, X, Y, Z, ...)$ be an S1S formula with free variables x, y, z, X, Y, Z, ... and let ρ be a variable evaluation function.
- We write $\langle D, 0, +1, <, =, \{P\}_{P \in \Sigma} \rangle$, $\rho \models \phi(x, y, z, X, Y, Z, ...)$ to denote the fact that the finite word $\langle D, 0, +1, <, =, \{P\}_{P \in \Sigma} \rangle$ satisfies $\phi(x, y, z, X, Y, Z, ...)$ under the evaluation ρ of the free variables.
- The same holds for ω-words ⟨ℕ, 0, +1, <, =, {P}_{P∈Σ}⟩.

Remark

We can free ourselves from the dependency from a specific alphabet of symbols by replacing Σ by $\{0,1\}^n$, where $n = \lceil log_2(|\Sigma|) \rceil$.

Example. Let $\Sigma = \{a, b, c\}$. We can encode a, b, and c as (0, 0), (0, 1), and (1, 0), respectively, and make use of two second-order variables X_1 and X_2 to represent $(\omega$ -)words. As an example, the word w = abbcb is encoded by the word w = (0, 0)(0, 1)(0, 1) (1, 0)(0, 1), which interprets X_1 as the singleton $\{3\}$ and X_2 as the set of natural numbers $\{1, 2, 4\}$.

S1S

The Monadic Second-order Theory of One Successor is the set of sentences of such a language which are true over $\langle D, 0, +1, <, = \rangle$ (resp., $\langle \mathbb{N}, 0, +1, <, = \rangle$).

Example

There exists a position in which both P_1 and P_2 hold.

$$\exists x . (P_1(x) \land P_2(x+1))$$

Example

Each position where P_1 holds is followed by a position where P_2 holds (by using +1 and second-order quantification).

$$\forall x . \left(P_1(x) \to \forall X . \left(X(x) \land \forall y . (X(y) \to X(y+1)) \to \exists z . (X(z) \land P_2(z)) \right) \right)$$

- We call S1S[FO] (the *first-order* fragment of S1S) the fragment of S1S devoid of second-order quantifiers.
- We denote with S1S_f the logic S1S interpreted over *finite words*.

The First-order fragment of S1S S1S[F0]

- We are interested on S1S[FO] formula $\phi(x)$ with *exactly one free variable x*.
 - *x* is meant to represent the initial time point.
- The *language over finite words* of $\phi(x)$, denoted with $\mathcal{L}^{\leq \omega}(\phi(x))$ is defined as:

$$\mathcal{L}^{<\omega}(\phi(x)) \coloneqq \left\{ \langle D, 0, +1, <, =, \{P\}_{P \in \Sigma} \rangle, x \mapsto 0 \models \phi(x) \right\}$$

• The *language over* ω *-words* of $\phi(x)$, denoted with $\mathcal{L}(\phi(x))$ is defined as:

$$\mathcal{L}(\phi(x)) \coloneqq \left\{ \langle \mathbb{N}, 0, +1, <, =, \{P\}_{P \in \Sigma} \rangle, x \mapsto 0 \models \phi(x) \right\}$$

Theorem (Büchi's Theorem over ω -words)

- For each S1S formula ϕ , the language $\mathcal{L}(\phi)$ is an ω -regular language.
- For each ω -regular language \mathcal{L} , there exists an S1S formula ϕ such that $\mathcal{L} = \mathcal{L}(\phi)$.

Theorem (Büchi's Theorem over finite words)

- For each $S1S_f$ formula ϕ , the language $\mathcal{L}^{<\omega}(\phi)$ is a regular language.
- For each regular language \mathcal{L} , there exists an $S1S_f$ formula ϕ such that $\mathcal{L} = \mathcal{L}^{<\omega}(\phi)$.

Reference:

J. R. Buechi (1960). "On a decision method in restricted second-order arithmetics". In: Proc. Internat. Congr. on Logic, Methodology and Philosophy of Science, 1960

Reference:

Calvin C Elgot (1961). "Decision problems of finite automata design and related arithmetics". In: *Transactions of the American Mathematical Society* 98.1, pp. 21–51. DOI: 10.1090/S0002-9947-1961-0139530-9

Characterizations of ω -Regular Languages

Characterizations of Regular Languages

Theorem (Expressive Equivalence over ω -words)

- For each S1S[FO] formula ϕ , the language $\mathcal{L}(\phi)$ is a star-free ω -language.
- For each star-free ω -language $\mathcal{L}(\phi)$, there exists an S1S[FO] formula ϕ such that $\mathcal{L} = \mathcal{L}(\phi)$.

Theorem (Expressive Equivalence over finite words)

- For each S1S[FO]_f formula ϕ , the language $\mathcal{L}^{<\omega}(\phi)$ is a star-free language.
- For each star-free language \mathcal{L} , there exists an S1S[FO]_f formula ϕ such that $\mathcal{L} = \mathcal{L}^{<\omega}(\phi)$.

Reference:

Richard E Ladner (1977). "Application of model theoretic games to discrete linear orders and finite automata". In: *Information and Control* 33.4, pp. 281–303. DOI: 10.1016/S0019-9958(77)90443-0

Reference:

Wolfgang Thomas (1981). "A combinatorial approach to the theory of ω -automata". In: *Information and Control* 48.3, pp. 261–283. DOI: 10.1016/S0019-9958(81)90663-X

Characterizations of ω -Star-free Languages

Characterizations of Star-free Languages

Definition (Nondeterministic Automaton)

A *nondeterministic automaton* \mathcal{A} is a tuple $\langle Q, \Sigma, I, \Delta, F \rangle$ where:

- *Q* is the *set of states*;
- Σ is the *alphabet*;
- $I \subseteq Q$ is the set of *initial states*;
- $\Delta \subseteq Q \times \Sigma \times Q$ is the *transition relation*;
- $F \subseteq Q$ is the set of *final states*;

•
$$Q = \{q_0, q_1\};$$
 • $\Sigma = \{a, b\};$ • $I = \{q_0\};$
• $\Delta = \{(q_0, a, q_0), (q_0, b, q_0), (q_0, b, q_1), (q_1, b, q_1)\};$
• $F = \{q_1\};$

Definition (Nondeterministic Automaton)

A *nondeterministic automaton* A is a tuple $\langle Q, \Sigma, I, \Delta, F \rangle$ where:

- *Q* is the *set of states*;
- Σ is the *alphabet*;
- $I \subseteq Q$ is the set of *initial states*;
- $\Delta \subseteq Q \times \Sigma \times Q$ is the *transition relation*;
- $F \subseteq Q$ is the set of *final states*;

A (complete) nondeterministic automaton is *deterministic* iff Δ is a *function*, that is:

$$\Delta(q,a)| = 1$$
 for each $q \in Q, a \in \Sigma$

Let \mathcal{A} be a nondeterministic automaton with alphabet Σ .

Words

• Given a word $\sigma \in \Sigma^*$ with $\sigma = \langle \sigma_0, \sigma_1, \dots, \sigma_n \rangle$, a *run* π *of* \mathcal{A} *over* σ is a finite sequence of states $\langle q_0, q_1, \dots, q_{n+1} \rangle \in Q^*$ such that:

•
$$q_0 \in I$$
;

• $(q_i, \sigma_i, q_{i+1}) \in \Delta$, for each $0 \le i \le n$

- Given an ω-word σ ∈ Σ^ω with σ = ⟨σ₀, σ₁,...⟩, a *run* π *of* A *over* σ is an infinite sequence of states ⟨q₀, q₁,...⟩ ∈ Q^ω such that:
 q₀ ∈ *I*;
 - $(q_i, \sigma_i, q_{i+1}) \in \Delta$, for each $i \ge 0$

Let \mathcal{A} be a nondeterministic automaton with alphabet Σ .

Words

Definition (NFA)

A Nondeterministic Finite Automaton (NFA, for short) $\langle Q, \Sigma, I, \Delta, F \rangle$ is a nondeterministic automaton in which a run $\pi := \langle q_0, q_1, \dots, q_{n+1} \rangle \in Q^*$ is said to be *accepting* iff $q_{n+1} \in F$.

Definition (NBA)

A Nondeterministic Büchi Automaton (NBA, for short) $\langle Q, \Sigma, I, \Delta, F \rangle$ is a nondeterministic automaton in which a run $\pi := \langle q_0, q_1, \ldots \rangle \in Q^{\omega}$ is said to be *accepting* iff $lnf(\pi) \cap F \neq \emptyset$.

 $lnf(\pi)$ is the set of states that occur infinitely often in the infinite run π .

Let \mathcal{A} be a nondeterministic automaton with alphabet Σ .

Words

Definition (NFA)

A Nondeterministic Finite Automaton (NFA, for short) $\langle Q, \Sigma, I, \Delta, F \rangle$ is a nondeterministic automaton in which a run $\pi \coloneqq \langle q_0, q_1, \dots, q_{n+1} \rangle \in Q^*$ is said to be *accepting* iff $q_{n+1} \in F$.

Definition (NBA)

A Nondeterministic Büchi Automaton (NBA, for short) $\langle Q, \Sigma, I, \Delta, F \rangle$ is a nondeterministic automaton in which a run $\pi := \langle q_0, q_1, \ldots \rangle \in Q^{\omega}$ is said to be *accepting* iff $lnf(\pi) \cap F \neq \emptyset$.

A run is accepting for a Büchi automaton iff it reaches a final state infinitely often.

Let \mathcal{A} be a nondeterministic automaton with alphabet Σ .

Words

Let $\mathcal{A} = \langle Q, \Sigma, I, \Delta, F \rangle$ be an NFA.

- A word *σ* ∈ Σ* is *accepted* by *A* iff there exists at least one accepting run of *A* over *σ*.
- The *language of A*, denoted by *L*^{<ω}(*A*), is the set of words in Σ* accepted by *A*.

 ω -Words

Let $\mathcal{A} = \langle Q, \Sigma, I, \Delta, F \rangle$ be an NBA.

- An ω -word $\sigma \in \Sigma^{\omega}$ is *accepted* by \mathcal{A} iff there exists at least one accepting run of \mathcal{A} over σ .
- The *language of* A, denoted by L(A), is the set of ω-words in Σ^ω accepted by A.

Let \mathcal{A} be a nondeterministic automaton with alphabet Σ .

An important difference

- A DFA is a deterministic NFA
- NFA are closed under *determinization*: for each NFA A there exists a DFA A' such that L^{<ω}(A) = L^{<ω}(A').
- Subset construction.

- A DBA is a deterministic NBA
- NBA are not closed under *determinization*: there exists a NBA \mathcal{A} for which all DBA \mathcal{A}' are such that $\mathcal{L}(\mathcal{A}) \neq \mathcal{L}(\mathcal{A}').$

An important difference

- A DFA is a deterministic NFA
- NFA are closed under *determinization*: for each NFA A there exists a DFA A' such that L^{<ω}(A) = L^{<ω}(A').
- Subset construction.

NBA

Example

Let $\Sigma := \{a, b\}$. The language $\mathcal{L} = \{\sigma \in \Sigma^{\omega} \mid \exists^{<\omega}i \cdot \sigma_i = a\}$ is not accepted by any DBA. However, it is accepted by the following NBA.

Theorem (Expressive Equivalence for NBA)

For each ω -language $\mathcal{L} \subseteq \Sigma^{\omega}$, it holds that:

 \mathcal{L} is ω -regular iff $\mathcal{L} = \mathcal{L}(\mathcal{A})$ for some NBA \mathcal{A}

Theorem (Expressive Equivalence for NFA/DFA)

For each language $\mathcal{L} \subseteq \Sigma^*$ *, it holds that:*

$$\mathcal{L}$$
 is regular
iff
 $\mathcal{L} = \mathcal{L}^{<\omega}(\mathcal{A})$ for some NFA/DFA \mathcal{A}

Reference:

Robert McNaughton (1966). "Testing and generating infinite sequences by a finite automaton". In: *Information and control* 9.5, pp. 521–530. DOI: 10.1016/S0019-9958(66)80013-X

Characterizations of ω -Regular Languages

Characterizations of Regular Languages

REFERENCES

Bibliography I

- J. R. Buechi (1960). "On a decision method in restricted second-order arithmetics". In: Proc. Internat. Congr. on Logic, Methodology and Philosophy of Science, 1960.
- Calvin C Elgot (1961). "Decision problems of finite automata design and related arithmetics". In: *Transactions of the American Mathematical Society* 98.1, pp. 21–51. DOI: 10.1090/S0002-9947-1961-0139530-9.
- Richard E Ladner (1977). "Application of model theoretic games to discrete linear orders and finite automata". In: *Information and Control* 33.4, pp. 281–303. DOI: 10.1016/S0019-9958(77)90443-0.
- Robert McNaughton (1966). "Testing and generating infinite sequences by a finite automaton". In: *Information and control* 9.5, pp. 521–530. DOI: 10.1016/S0019-9958(66)80013-X.

Bibliography II

Wolfgang Thomas (1981). "A combinatorial approach to the theory of ω-automata". In: *Information and Control* 48.3, pp. 261–283. DOI: 10.1016/S0019-9958(81)90663-X.