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@ Recognizing safety Biichi automata
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@ Construction of the automaton for the bad prefixes
® Algorithms and Complexity
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® Succinctness and Pastification
@ Succinctness of Safety Fragments
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SUCCINCTNESS AND
PASTIFICATION

Known results and open questions



Succinctness

Definition

Informal definition.

Given two linear-time temporal logics IL and I/, we say that L can be exponen-
tially more succinct than L' iff there exists a property such that

* it can be succinctly expressed in L,
* but all formulas of L for it are at least exponentially larger.
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Succinctness
Definition

Formal definition.
Definition
Given two linear-time temporal logics I and I’, we say that L car be exponentially
more succinct than 1" over infinite trace (resp., over finite traces) iff there exists an
alphabet 3. and a family of languages {£, },~0 C (2%)* (resp., {Ly}n=0 € (2%)*)
such that, for any n > 0,

* there exists a formula ¢ € L over X such that its language over infinite traces

(resp., over finite traces) is £, and |¢| € O(n), and

e for all formulas ¢’ € L' over %, if the language of ¢’ over infinite traces (resp.,
finite traces) is £,, then |¢/| € 290",
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Succinctness

Succinctness is important for various reasons.

In particular,

© it helps choosing the right formalism when solving problems like reactive
synthesis, model checking, and so on;

® itis an important theoretical tool, that connects the study of computational
complexity to that of expressive power.
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Succinctness
The case of LTL+P and LTL
A well-known result about LTL+P and LTL.

Theorem
LTL+P can be exponentially more succinct than LTL.

Reference:

Nicolas Markey (2003). “Temporal logic with past is exponentially more
succinct”. In: Bull. EATCS 79, pp. 122-128
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Succinctness of (co)safety fragments of LTL

Theorem
F(pLTL) can be exponentially more succinct than coSafetyLTL.

It follows from the result by Markey.

Here we give a simplified version.
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Succinctness of (co)safety fragments of LTL

Proof.
Steps (proof by contradiction):

For all n > 0, find a language A, such that L(¢,) = A, and |¢,| € O(n), for
some ¢, €

Suppose by contradiction that, for all n > 0, there exists a formula ¢/, of
such that £(¢},) = L(¢,) and |¢},| is polynomial in 7.

Use ¢;, to build a formula v, of such that |1, | is polynomial in 7. Let
Bn — E(wn).
Prove that all for B,, are of size 22800

Exploit the fact that there exists a singly exponential translation from
to equivalent to prove that:

all formulas of B, are of size 292(")

Conclude that all formulas of that express A, are of size 29",
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Succinctness of (co)safety fragments of LTL

@ For all n > 0, find a language A, such that £(¢,) = A, and |¢,| € O(n), for
some ¢, € F(pLTL).

Let X = {po,p1,---,Pn}-

n

Ayi={o € (2")" | Fk>0. (\(pi€ o+ pi € 00))}

=0
Po Po
_'pl —|p1
R £
o) Ok Olo|-1
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Succinctness of (co)safety fragments of LTL

@ For all n > 0, find a language A, such that £(¢,) = A, and |¢,| € O(n), for
some ¢, € F(pLTL).

Let X = {po,p1,---,Pn}-

n

Ay ={oce@’)"|HK>0. (/\(Pi € oy > pi € 00))}

i=0

Lemma Proof.

For any n > 0, there exists a formula "

¢ € F(pLTL) such that L(¢) = Ay, and F /\(Pi & YO(YLAR))
|¢| € O(n). (i:O )

9/42 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequencesl



Succinctness of (co)safety fragments of LTL

@ Suppose by contradiction that, for all n > 0, there exists a formula ¢, of
coSafetyLTL such that £(¢},) = L(¢,) and |¢},| is polynomial in n.

® Use ¢, to build a formula 1), of LTL+P such that |¢,| is polynomial in n. Let

B, = L(¢y).
Y= F(¢y)
* B, = {O’ S (22)+ ’ dh>0.3k>h. (/\?:0(]91' €0 < pi € Uh))}
Po Po
pz. e PZ
00 Oh Ok Olo|-1
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Succinctness of (co)safety fragments of LTL

@ Suppose by contradiction that, for all n > 0, there exists a formula ¢, of
coSafetyLTL such that £(¢},) = L(¢,) and |¢},| is polynomial in n.

® Use ¢, to build a formula 1), of LTL+P such that |¢,| is polynomial in n. Let
B, = £(¢n)'

Lemma

If there exists a formula of coSafety.TL for A, of size less than exponential in n, then there
exists a formula of LTL+P for B, of size less than exponential in n.
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Succinctness of (co)safety fragments of LTL

@ Prove that all NBA for B,, are of size 22,

Lemma
For any n > 0 and any NBA A over the alphabet 2%, if £(A) = B, then | A| € 22",

Reference:

Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke (2002). “First-Order Logic
with Two Variables and Unary Temporal Logic”. In: Inf. Comput. 179.2,

pPp- 279-295. DOI: 10.1006/inco.2001.2953. URL:
https://doi.org/10.1006/inco.2001.2953
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Succinctness of (co)safety fragments of LTL

Exploit the fact that there exists a singly exponential translation from LTL+P
to equivalent NBA to prove that:

all LTL+P formulas of B, are of size 2£2(").

Proposition

For any LTL formula ¢, with |¢| = n, over the set of atomic propositions AP, there exists
an NBA Ay, over the alphabet 27 such that:

L(¢) = L(Ag) | Ag | €200

Lemma
For any formula ¢ € LTL+P, if L(¢) = B, then |¢| € 22,
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Succinctness of (co)safety fragments of LTL

@ Conclude that all formulas of coSafetyLTL that express A, are of size 28m)

Theorem
For any n > 0 and any formula ¢ € coSafetyLTL, if L(¢) = Ay, then |¢| € 221,

Corollary

F(pLTL) can be exponentially more succinct than coSafetyl TL.
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Succinctness of (co)safety fragments of LTL

By a simple duality argument:
Corollary

G(pLTL) can be exponentially more succinct than Safety . TL.

All these results have been collected in:

Reference:

Alessandro Artale et al. (2023b). “LTL over finite words can be exponentially
more succinct than pure-past LTL, and vice versa”. In: Proceedings of the 30th
International Symposium on Temporal Representation and Reasoning, TIME
2023, September 25-26, 2023, NCSR Demokritos, Athens, Greece. Ed. by
Florian Bruse Alexander Artikis and Luke Hunsberger. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik
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Succinctness of (co)safety fragments of LTL

Open problem:
Can coSafetyl T be exponentially more succinct than F(pl.TL)?

Conjecture:

coSafetyLTL can be 77! more succinct than F(pLTL).
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Succinctness of (co)safety fragments of LTL

Conjecture:

coSafetyLTL can be 77! more succinct than F(pLTL).

* Cp={ce®)¥|HK>0. N Gh>k.(gi€opAVk<I<h.p€o))}

* F(AZipiUqi)
P1 p1
Po Po
szn.%. 12 0 n
UO Uk th Uhg Uhl 0"0-|71

* In F(pLTL), one needs to specify all permutations of the set {1, ..., qn}.
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Succinctness of (co)safety fragments of LTL

The case without Until/Since

Theorem
LTLX. F| can be exponentially more succinct than F(pL.TL[Y .Y Ol), and vice versa.

Reference:

Luca Geatti, Alessio Mansutti, and Angelo Montanari (2024). “Succinctness of
Cosafety Fragments of LTL via Combinatorial Proof Systems”. In: Foundations
of Software Science and Computation Structures - 27th International Conference,
FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11,
2024, Proceedings, Part I1. ed. by Naoki Kobayashi and James Worrell.

Vol. 14575. Lecture Notes in Computer Science. Springer, pp. 95-115. DOI:
10.1007/978-3-031-57231-9\_5. URL:
https://doi.org/10.1007/978-3-031-57231-9%5C_5
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Succinctness
Incomparabilit

Recall that [LTL] N SAFETY = [LTL]<% - (2%)
Consider now LTLy, that s, [LTL]<“. The following incomparability result holds.

Theorem

® LTL¢ can be exponentially more succinct than pLTL.

® pLTL can be exponentially more succinct than LTLg.

Reference:

Alessandro Artale et al. (2023b). “LTL over finite words can be exponentially more succinct than
pure-past LTL, and vice versa”. In: Proceedings of the 30th International Symposium on Temporal
Representation and Reasoning, TIME 2023, September 25-26, 2023, NCSR Demokritos, Athens,
Greece. Ed. by Florian Bruse Alexander Artikis and Luke Hunsberger. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik
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Succinctness and Pastification

* Let us consider again the case of coSafetyl. TL and F(pLTL).

* Succinctness properties can be considered as lower bounds for the
transformation of coSafetyLTL into F(pLTL).

* The transformation of a pure future fragment into a pure past one is called

PASTIFICATION

* Originally introduced in the context of synthesis of timed temporal logics:

Reference:

Oded Maler, Dejan Nickovic, and Amir Pnueli (2007). “On synthesizing
controllers from bounded-response properties”. In: Proceedings of the
International Conference on Computer Aided Verification. Springer, pp. 95-107.
DOI: 10.1023/A:1008734703554

* We now look at some pastification algorithms (upper bounds)

18/42 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequencesl


https://doi.org/10.1023/A:1008734703554

Pastification Algorithms

Let us briefly consider pastification algorithms for the following fragments:
e LTL[X]
® polynomial-size pastification

o LTL[X,F]

® exponential-size pastification

® coSafetyl TL
® triply exponential-size pastification

o LTLs

* triply exponential-size pastification
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2

£ Transforming LTL[X] into F(pLTL)

TELS

* Let ¢ € LTL[X].

¢ There exists a time point d € N, that is, the temporal depth of ¢, such that the
subsequent states cannot be constrained by ¢.

(lltemporal depth of ¢ = maximum number of nested X operators

¢ Thus, we can write a formula (the pastification of ¢) that uses only past
operators and is equivalent to ¢ when interpreted at d.

¢ Example: ¢ :=r — XXXg

r — XXXg YYYr —¢
0 1 2 3
temporal
depth

It holds that: r — XXXg = F(at3 A (YYYr — g)).
® where at3 := YYYLAYYT.
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Transforming LTL[X] into F(pLTL)

Theorem
There is a polynomial-size pastification of LTL[X] into F(pLTL).

Reference:

Oded Maler, Dejan Nickovic, and Amir Pnueli (2007). “On synthesizing
controllers from bounded-response properties”. In: Proceedings of the
International Conference on Computer Aided Verification. Springer, pp. 95-107.
DOI: 10.1023/A:1008734703554
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Transforming LTL[X, F] into F(pLTL)

Theorem
There is a 1 exponential-size pastification of LTL[X, F] into F(pLTL).

* Data structure: dependency trees

Reference:

Alessandro Artale et al. (2023a). “A Singly Exponential Transformation of
LTLIX,F] into Pure Past LTL”. In: Proceedings of the 20th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2023,
Rhodes, Greece. September 2-8, 2023
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Transforming LTL[X, F] into F(pLTL)

Classical Pastification Approach:

Formula ¢ of LTLs

of size n

NFA
of size 20

Subset construction

DFA

o HO (1)
of size 2°

Krohn-Rhodes decomposition theorem

Formula ¢ of pLTL

o 02
of size 2-
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Transforming LTL[X, F] into F(pLTL)

Classical Pastification Approach:

Formula ¢ of LTLs

of size n

NFA
of size 20

Subset construction

DFA

o HO (1)
of size 2°

Krohn-Rhodes decomposition theorem

Formula ¢ of pLTL

o 02
of size 2-

Our Approach:

Formula ¢ of LTL[X, F]

of size n

l

Normal Form

,
. D (n?)
of size @)

l

Dependency Tree

e
of size @)

|

Formula ¢ of F(pLTL)

o 2y
of size (c©("))?2
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Transforming LTL[X, F] into F(pLTL)

Classical Pastification Approach:

Formula ¢ of LTLs

of size n

NFA
of size 20

Subset construction

- O(n)
of size 22
Krohn-Rhodes decomposition theorem

Formula ¢ of pLTL

o 52
of size 2-

Our Approach:

¢ Purely syntactical.

* Implementation in (<500
lines of code).
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Transformation into Normal Form

Consider the following formula of LTL[X, F:

F((pl V XFql) A (pz V XF[]Z))

In general, formulas of LTL[X, F| contains two degrees of uncertainty:
¢ both on which eventualities have to happen
® “which of the q; are going to be fulfilled?”

¢ and on when an eventuality has to be realized
® “in which order the q; are going to be fulfilled?”

We designed the normal form to remove the 1st type of uncertainty.
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Transformation into Normal Form

Definition
Let v be a pLTL formula. The logic

SHE[EA is the set of formulas ¢
generated by the following grammar:

p=¢|oNd|Fo

Uncertainty only about when an
eventuality is going to be fulfilled.
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Transformation into Normal Form

Definition Definition
Let v be a pLTL formula. The logic The normal form of LTL[X, F], denoted
SHE[EA is the set of formulas ¢ with [EEFEPEE] is the set of formulas of
generated by the following grammar: type
C
k
b=1%|9N0|Fo XV o
=1

for some k, ¢ € N, such that ¢; € LTL[F, A]
forany1 <i<c.

Uncertainty only about when an The uncertainty on which eventuality is
eventuality is going to be fulfilled. going to be fulfilled is only at top-level.
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Transformation into Normal Form

Example
: : Xi YiTigy) ifi>j F XF
Ry Xigy @ Xigy o 4 001 @Y TG2) 1> R ((pr vV XFq) A (p2 v XFg))
X] (Y] Z¢1 ® ¢2) Othel'Wlse = rule Rq two times

F(X((Yp1 vV Fq1) A (Ypa V Fg2)))
= ru\(‘/\’z

Ro: FXipy ~ XiFey

Ra: Y1 @ ¢n) ~ Yig1 @ Yign XF((Ypr v P A (Ypa V Fo))

= rule Rg

Ri: Y'Fg1 ~ FYigy XF ((Ypi AYp2)V (Yp1AFg)V (Fau AYpo)V (Fgi AF2))

= rule R5
Rs: F(V§:1 ¢z) ~ \/5:1 Fo;

X(F(Yp1 AYp2) VF(Ypi A Fga)V

Ret Nzt Vi i~ Vsea Ayes ¥ F(Fq1 A Yp2) V F(Fq1 A Fap))
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DEPENDENCY TREES



From Normal Form to Dependency Trees

¢ From the transformation into normal form, we have a formula of this type:

[

with ¢; € LTL[F, Al and k € N.

* We consider separately each LTL[F, A] formula ¢, (and the k) and we build its
dependency tree.
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From Normal Form to Dependency Trees

Each formula ¢ of LTL[F, A] is of the form
aNF(G) A~ ANF(5))
for some n € N, where o ¢ pLTLand 7, ¢ LTL[F. 7|, foreach1 <i < mn.

Example:

pAE@ AF(pAYg) NE(YYr AF(sV Yg)))

pAE( o )
pAF( @ )AF( ® )
~—~ N——
pAYq YYrAF( @ )
~—~

sV Yq
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Dependency Trees

® A Dependency Tree is a tree-shaped structure that reflects the nesting of the F
operators in ¢.

® nodes = pLTL subformulas
® edges = F operators
* Whenever a conjunction of multiple eventualities has to be realised in the
future of a given node, the tree branches without imposing any ordering among
them.
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pAF( ® ) I
N p
pAFC ® )AF( o )
Y YYrAF /\
PAYY rAFC e ) pAYY, YYr
sV Yq
sVYq
[ ]
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FROM DEPENDENCY TREES TO
PURE PAST LTL
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How can we “pastify” this dependency tree?

Wrong solution:

* Specify all the orders between the
nodes on different branches.
° Eg.
@pAYg < YYr < s5VYqg

@YYr < pAYq < sVYq
®YYr < sVYq < pAYq

¢ Complexity: 7! (n factorial)
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From Dependency Trees to Pure Past LTL

How can we “pastify” this dependency tree?

Efficient solution:

* Look the tree bottom up.

33/42
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From Dependency Trees to Pure Past LTL

How can we “pastify” this dependency tree?

Efficient solution: P
* Look the tree bottom up. pI
* Consider separately each path of the
tree that goes from the root to a leaf. pAYq /\ YYr
[ ]
Is V' Yq
[ ]

33/42 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequencesl



How can we “pastify” this dependency tree?

Efficient solution: P o

* Look the tree bottom up. PH

* Consider separately each path of the °
tree that goes from the root to a leaf. pAYq / \ YYr

¢ “Rewrite” each branch upside-down ¢ 2
(i.e., going from the leaf to the root), Ts VYq
by means of a pLTL formula. °

O(p AYq A O(p A O(p)))
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How can we “pastify” this dependency tree?

Efficient solution: o
* Look the tree bottom up. PH

* Consider separately each path of the °
tree that goes from the root to a leaf. pAYq / \ YYr
¢ “Rewrite” each branch upside-down ¢ T
[ ]

(i.e., going from the leaf to the root),
by means of a pLTL formula.

* Consider the conjunction between
the pure past formulas O((pAYq) ANO(p AO(p)))
corresponding to each branch. A

O((s VYq) AO(YYr AO(p AO(p))))
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Why does it work?

¢ Such formulas (one for each p
reversed path) will coincide in the o
description of the “common past”. PH
(J
P/\Yq{//] \\\\YYr

O((p A Yq) N [OXPISOEIN )
AN

O((s vV Yq) A O(YYr A [STINOEN))
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Why does it work?

¢ Such formulas (one for each p

reversed path) will coincide in the o

description of the “common past”. PH
¢ This can create this situation: *

pPAYq / \ YYr
p p t] p L T
sVY
p p r s ° 1
They are out of phase.

O((p A Yq) N [OXPISOEIN )
AN

O((s vV Yq) A O(YYr A [STEINOEM))
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Why does it work?
¢ Such formulas (one for each
reversed path) will coincide in the
description of the “common past”.

e This can create this situation:

p p q p

o0
p p r s
They are out of phase.

¢ The first fulfillment of the “common
past” is good for both branches.

O((p A Yq) N [OXPISOEIN )
AN

O((s VYq) ANO(YYr N[OOI ) )
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Transforming coSafetyLTL into F(pLTL)

Theorem
There is a 3 exponential-size pastification of coSafetyLTL into F(pLTL).

Let ¢ be a coSafetyLTL formula.
© Build the DFA Aj for the set of good prefixes of ¢:
® doubly exponential blow-up
® Use the Krohn-Rhodes Primary Decomposition Theorem to build a cascade
product equivalent to A;ﬁ.
® exponential blow-up
© Translate the cascade product into a formula v of pLTL. Return F(¢).

® Jinear

Total: triply exponential pastification algorithm.
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Transforming coSafetyLTL into F(pLTL)

Theorem
There is a 3 exponential-size pastification of coSafetyLTL into F(pLTL).

Reference:

Oded Maler and Amir Pnueli (1990). “Tight bounds on the complexity of
cascaded decomposition of automata”. In: Proceedings of the 31st Annual
Symposium on Foundations of Computer Science. IEEE, pp. 672-682

There are two missing exponentials between the best-known upper and lower
bounds:

* best known upper bound: triply exponential

* best known lower bound: singly exponential
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Transforming LTL¢ into pLTL

As for LTLg¢, the best known algorithm is the same as the one for coSafetyLTL.

Let ¢ be a LTL¢ formula.
@ Build a NFA Ay for ¢.
® exponential blow-up
© Determinize A into a DFA Aj.
® exponential blow-up
® Use the Krohn-Rhodes Primary Decomposition Theorem to build a cascade
product equivalent to Aj,.
® exponential blow-up
O Translate the cascade product into pLTL.
® linear

Total: triply exponential pastification algorithm.
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Pastification Algorithms

A recap of upper and lower bounds

| Upper bound | Lower bound

LTL[X] linear linear
LTL[X, F] 1-exp l-exp
coSafetyLTL 3-exp 1-exp
LTL¢ 3-exp l-exp

A polynomial-size pastification algorithm is a very uncommon feature for a logic.
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CONCLUSIONS



Conclusions: results

¢ Characterizations of safety and * Algorithms for
cosafety fragments of LTL: * satisfiability checking
¢ reduction from infinite to finite * model checking
words reasoning ¢ the worst-case complexity does
* Role of past temporal operators in not change
the definition of canonical forms ¢ efficient algorithms in practice
* Kupferman & Vardi’s classification * reactive synthesis
of safety properties: * avoid Safra’s determinization
* intentionally, accidentally, and ¢ by using past operators, the
pathologically safe. worst-case complexity can be

. . d db tial
* Algorithms to recognize safety cereased by one exponentia

automata and LTL safety formulas

* Algorithms to build the set of bad * G(pLTL) can be exponentially
prefixes more succinct than SafetylL TL

* doubly exponential DFA ¢ Pastification algorithms

® Succinctness issues
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Conclusions: open problems

¢ Some interesting open problems:

® Worst-case complexity of safety model checking
® Succinctness lower bounds

® coSafetyLTL
® LTL¢

¢ Efficient pastification algorithms
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