Department of Mathematics, Computer Science and Physics, University of Udine

# The Safety Fragment of Temporal Logics on Infinite Sequences

Lesson 14

Luca Geatti
luca.geatti@uniud.it
Angelo Montanari
angelo.montanari@uniud.it

May 20th, 2024



## Outline

LTL+P is the extension of LTL with past temporal operators.

We will prove the following result.

#### Theorem

LTL+P can be exponentially more succinct than LTL.

### Reference:

Nicolas Markey (2003). "Temporal logic with past is exponentially more succinct". In: *Bull. EATCS* 79, pp. 122–128



## Outline

### Outline:

- Recap of past temporal operators of LTL+P
- 2 Transformation of LTL+P formulas into equivalent NBA (Nondeterministic Büchi Automata)
- Or Proof of the succinctness result.

## Linear Temporal Logic with Past LTL+P Syntax

The syntax of  $\Box \Box \Box \Box \Box \Box$  is defined as follows:

$$\phi \coloneqq p \mid \neg \phi \mid \phi \lor \phi \qquad \qquad \text{Boolean Modalities with } p \in \mathcal{AP}$$
$$\mid \mathsf{X}\phi \mid \phi \lor \phi \qquad \qquad \text{Future Temporal Modalities}$$
$$\mid \mathsf{Y}\phi \mid \phi \mathsf{S}\phi \qquad \qquad \text{Past Temporal Modalities}$$

- $Y\phi$  is the Yesterday operator: the previous time point exists and it satisfies the formula  $\phi$
- $\phi_1$  S  $\phi_2$  is the Since operator: there exists a time point in the past where  $\phi_2$  is true, and  $\phi_1$  holds since (and excluding) that point up to now.

#### Shortcuts:

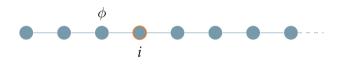
- Once,  $O\phi$ : there exists a time point in the past where  $\phi$  holds.  $O\phi \equiv \top S \phi$ .
- Historically,  $H\phi$ : for all time points in the past  $\phi$  holds.  $H\phi \equiv \neg(O\neg\phi)$ .

Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

## Linear Temporal Logic **ITI** Semantics

We say that  $\sigma$  satisfies at position i the LTL formula  $\phi$ , written  $\sigma$ ,  $i \models \phi$ , iff:

• 
$$\sigma, i \models \mathsf{Y}\phi \text{ iff } i > 0 \text{ and } \sigma, i - 1 \models \phi$$



position i has a predecessor and  $\phi$  holds at the *previous* position of i

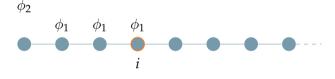
**Note:**  $\sigma$ ,  $0 \models Y \phi$  is always false.



# Linear Temporal Logic LTL Semantics

We say that  $\sigma$  satisfies at position i the LTL formula  $\phi$ , written  $\sigma$ ,  $i \models \phi$ , iff:

•  $\sigma, i \models \phi_1 \ \mathsf{S} \ \phi_2 \ \text{ iff } \ \exists j \leq i \ . \ \sigma, j \models \phi_2 \ \text{and} \ \forall j < k \leq i \ . \ \sigma, k \models \phi_1$ 



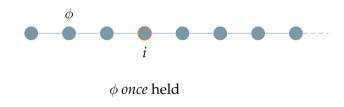
 $\phi_1$  holds since  $\phi_2$  held



# Linear Temporal Logic LTL Shortcuts

## Shortcuts:

• (once)  $O\phi \equiv \top S \phi$ 

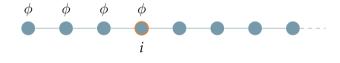




## Linear Temporal Logic LTL Shortcuts

### Shortcuts:

• (historically)  $H\phi \equiv \neg O \neg \phi$ 



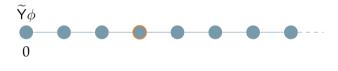
 $\phi$  holds always in the past



# Linear Temporal Logic LTL Shortcuts

### Shortcuts:

• (weak yesterday)  $\widetilde{\mathsf{Y}}\phi \equiv \neg\mathsf{Y}\neg\phi$ 



 $\phi$  holds at the *previous* position of *i*, *if any* 

**Note:**  $\sigma$ ,  $i \models \widetilde{Y} \perp$  is true iff i = 0.



## Notation

### Notation:

- we will write  $\phi \in LTL$  (resp.,  $\phi \in LTL+P$ ) to denote the fact that  $\phi$  is a formula of LTL (resp., LTL+P)
- we will denote with  $|\phi|$  the *size* of  $\phi$ , defined as the size of its parse tree.



Exercises useful for the succinctness proof.

$$\sigma, i \models \widetilde{\mathsf{Y}} \bot \quad \Leftrightarrow \quad i ?$$



Exercises useful for the succinctness proof.

$$\sigma, i \models \widetilde{\mathsf{Y}} \bot \quad \Leftrightarrow \quad i = 0$$



Exercises useful for the succinctness proof.

$$\sigma, i \models \widetilde{\mathsf{Y}}\widetilde{\mathsf{Y}}\widetilde{\mathsf{Y}}\bot \quad \Leftrightarrow \quad i \ ?$$



Exercises useful for the succinctness proof.

$$\sigma, i \models \widetilde{\mathsf{Y}}\widetilde{\mathsf{Y}}\widetilde{\mathsf{Y}}\bot \quad \Leftrightarrow \quad i \quad \leq 2$$



Exercises useful for the succinctness proof.

$$\sigma, i \models ? \Leftrightarrow i \geq 2$$



Exercises useful for the succinctness proof.

$$\sigma, i \models \mathsf{YY} \top \Leftrightarrow i \geq 2$$



Exercises useful for the succinctness proof.

$$\sigma, i \models ?$$

$$\Leftrightarrow$$
  $i=2$ 



Exercises useful for the succinctness proof.

$$\sigma, i \models \widetilde{\mathsf{Y}}\widetilde{\mathsf{Y}}\widetilde{\mathsf{Y}} \perp \wedge \mathsf{Y}\mathsf{Y} \top \quad \Leftrightarrow \quad i = 2$$



## From LTL+P to NBA

### Goal

For any formula  $\phi$  of LTL+P over the atomic propositions  $\mathcal{AP}$ , we will build a NBA  $\mathcal{A}_{\phi}$  over the alphabet  $\Sigma := 2^{\mathcal{AP}}$  such that  $\mathcal{L}(\phi) = \mathcal{L}(\mathcal{A}_{\phi})$ .

### Definition (Extended Closure)

For any formula  $\phi$  of LTL+P, we define the extended closure of  $\phi$ , denoted with  $C(\phi)$ , as the smallest set of formulas such that:

- $\phi \in \mathcal{C}(\phi)$ ;
- if  $\alpha \in \mathcal{C}(\phi)$  and  $\beta$  is a subformula of  $\alpha$ , then  $\beta \in \mathcal{C}(\phi)$ ;
- if  $\alpha \in \mathcal{C}(\phi)$ , then  $\neg \alpha \in \mathcal{C}(\phi)$ ; (n.b. we identify  $\neg \neg \alpha$  with  $\alpha$ )
- if  $\alpha \cup \beta \in \mathcal{C}(\phi)$ , then  $X(\alpha \cup \beta) \in \mathcal{C}(\phi)$ ;
- if  $\alpha S \beta \in \mathcal{C}(\phi)$ , then  $\{Y(\alpha S \beta), \widetilde{Y}(\alpha S \beta)\} \subseteq \mathcal{C}(\phi)$ .

# From LTL+P to NBA States of the automaton

## States of $\mathcal{A}_{\phi}$

A state of the NBA  $A_{\phi}$  is any subset  $S \subseteq C(\phi)$  such that:

- the conjunction of all *propositional formulas* in *S* is satisfiable; (*local consistency*)
- for all  $\alpha \in C(\phi)$ , it holds that  $\alpha \in S$  iff  $\neg \alpha \notin S$ ;
- for all  $\alpha := \alpha_1 \wedge \alpha_2$ , it holds that  $\alpha \in S$  iff  $\{\alpha_1, \alpha_2\} \subseteq S$
- . . .
- for all  $\alpha := \alpha_1 \cup \alpha_2$ , it holds that  $\alpha \in S$  iff either  $\alpha_2 \in S$  or  $\{\alpha_1, X\alpha\} \subseteq S$ ;
- for all  $\alpha := \alpha_1 S \alpha_2$ , it holds that  $\alpha \in S$  iff either  $\alpha_2 \in S$  or  $\{\alpha_1, Y\alpha\} \subseteq S$ .

Initial states of  $\mathcal{A}_{\phi}$ . A state  $S \subseteq \mathcal{C}(\phi)$  is initial for  $\mathcal{A}_{\phi}$  iff  $\phi \in S$  and S does not contain any formula of type  $Y\alpha$  or  $\neg \widetilde{Y}\alpha$ .

# From LTL+P to NBA Transitions of the automaton

## Transitions of $\mathcal{A}_{\phi}$

For any two states  $S, S' \subseteq \mathcal{C}(\phi)$ , there is a transition from S to S' labelled with  $a \in \Sigma$  in the automaton  $\mathcal{A}_{\phi}$  iff:

• the label of the transition is consistent with the source state (recall that  $\Sigma := 2^{AP}$ ):

$$p \in a \leftrightarrow p \in P \qquad \forall p \in \mathcal{AP}$$

- $X\alpha \in S$  iff  $\alpha \in S'$ , for all  $X\alpha \in C(\phi)$ ;
- $\forall \alpha \in S' \text{ iff } \alpha \in S, \text{ for all } \forall \alpha \in C(\phi);$
- $\widetilde{Y}\alpha \in S'$  iff  $\alpha \in S$ , for all  $\widetilde{Y}\alpha \in C(\phi)$ .

## From LTL+P to NBA Final states of the automaton

## Final states of $\mathcal{A}_{\phi}$

For every  $\alpha := \alpha_1 U \alpha_2 \in \mathcal{C}(\phi)$ , we say that a state *S* is  $\alpha$ -fulfilling iff  $\alpha \in S \rightarrow \alpha_2 \in S$ .

A state of  $\mathcal{A}_{\phi}$  is final iff is  $\alpha$ -fulfilling for some  $\alpha := \alpha_1 U \alpha_2 \in \mathcal{C}(\phi)$ .

#### Generalized Büchi Condition

A generalized Büchi automaton is a tuple  $\mathcal{A} = \langle Q, \Sigma, I, \Delta, \mathcal{F} \rangle$  such that

 $\mathcal{F} := \{F_1, \dots, F_n\}$ , for some  $n \in \mathbb{N}$ , where  $F_i \subseteq Q$  for each  $1 \le i \le n$ .

A run  $\pi$  is accepting for  $\mathcal{A}$  iff, for all  $1 \leq i \leq n$ , we have that  $\mathrm{Inf}(\pi) \cap F_i \neq \emptyset$ .

We define  $A_{\phi}$  as a Generalized NBA with the collection of final states defined as follows:

$$\mathcal{F} := \{ F_{\alpha} \mid \alpha := \alpha_1 \cup \alpha_2 \in \mathcal{C}(\phi), F_{\alpha} := \{ S \mid S \text{ is an } \alpha\text{-fulfilling state} \} \}$$

For the details about the translation of LTL+P into Generalized NBA see:

#### Reference:

Rob Gerth et al. (1995). "Simple on-the-fly automatic verification of linear temporal logic". In: *International Conference on Protocol Specification, Testing and Verification*. Springer, pp. 3–18

Generalized NBA can be degeneralized, e.g., using a counter.

### Reference:

Yaacov Choueka (1974). "Theories of automata on  $\omega$ -tapes: A simplified approach". In: *Journal of computer and system sciences* 8.2, pp. 117–141

Alternatively, we can use the Müller condition.

### Müller Condition

A Müller automaton is a tuple  $A = \langle Q, \Sigma, I, \Delta, \mathcal{F} \rangle$  such that  $\mathcal{F} := \{F_1, \dots, F_n\}$ , for some  $n \in \mathbb{N}$ , where  $F_i \subseteq Q$  for each  $1 \le i \le n$ .

A run  $\pi$  is accepting for  $\mathcal{A}$  iff, for some  $1 \leq i \leq n$ , we have that  $Inf(\pi) = F_i$ .

We can define  $A_{\phi}$  as a Müller automaton with the collection of final states defined as follows:

$$\mathcal{F} := \{ F \subseteq Q \mid \forall \alpha := \alpha_1 \cup \alpha_2 \in \mathcal{C}(\phi) : \exists S_\alpha \in F \text{ and } S_\alpha \text{ is } \alpha\text{-fulfilling} \}$$



### Some tools:

- LTL2BA (http://www.lsv.fr/ gastin/ltl2ba/) by Paul Gastin and Denis Oddoux (simple, does not always give a pruned automaton)
- Rabinizer 4 (https://www7.in.tum.de/kretinsk/rabinizer4.html) by Jan Kretinsky, Tobias Meggendorfer, Salomon Sickert (et al.)
- OWL (https://owl.model.in.tum.de) by Jan Křetínský, Tobias Meggendorfer, Salomon Sickert



How can we solve LTL+P satisfiability using the translation of LTL+P formulas into NBA?

How can we solve LTL+P satisfiability using the translation of LTL+P formulas into NBA?

- **1** Let  $\phi$  be an LTL+P formula
- **2** Build the NBA  $A_{\phi}$  equivalent to  $\phi$
- **3** Check for the emptiness of  $\mathcal{A}_{\phi}$ 
  - if  $\mathcal{L}(\mathcal{A}_{\phi}) = \emptyset$ , then ...
  - otherwise, ...

How can we solve LTL+P satisfiability using the translation of LTL+P formulas into NBA?

- **1** Let  $\phi$  be an LTL+P formula
- **2** Build the NBA  $\mathcal{A}_{\phi}$  equivalent to  $\phi$
- **3** Check for the emptiness of  $A_{\phi}$ 
  - if  $\mathcal{L}(\mathcal{A}_{\phi}) = \emptyset$ , then  $\phi$  is unsatisfiable
  - otherwise,  $\phi$  is satisfiable

How can we solve LTL+P satisfiability using the translation of LTL+P formulas into NBA?

- **1** Let  $\phi$  be an LTL+P formula
- **2** Build the NBA  $A_{\phi}$  equivalent to  $\phi$
- **3** Check for the emptiness of  $A_{\phi}$ 
  - if  $\mathcal{L}(\mathcal{A}_{\phi}) = \emptyset$ , then  $\phi$  is unsatisfiable
  - otherwise,  $\phi$  is satisfiable

#### Complexity:

- Step 2 is exponential in the size of  $\phi$
- Step 3 can be done in nondeterministic logarithmic space (Savitch Theorem)
- Steps 2 and 3 can be performed on-the-fly: thus, the complexity of the procedure is polynomial space (PSPACE).



## Succinctness of LTL+P

We will prove the following result.

#### Theorem

LTL+P can be exponentially more succinct than LTL.

#### Reference:

Nicolas Markey (2003). "Temporal logic with past is exponentially more succinct". In: *Bull. EATCS* 79, pp. 122–128

- past temporal operators do *not* add expressive power
- but they add *succinctness power*



## Succinctness of LTL+P

### LTL+P can be exponentially more succinct than LTL

There exists a *family* of languages  $\{\mathcal{L}_n\}_{n=1}^{\infty} \subseteq (2^{\mathcal{AP}_n})^{\omega}$  such that:

• for all n > 0,  $\mathcal{L}_n$  is definable in LTL+P with a formula of size  $\mathcal{O}(n)$ , i.e.,

$$\forall n > 0 : \exists \phi \in \mathsf{LTL} + \mathsf{P} : (\mathcal{L}(\phi) = \mathcal{L}_n \land |\phi| \in \mathcal{O}(n))$$

for all n > 0,  $\mathcal{L}_n$  is *not* definable in LTL with formulas of size *less* than exponential in n, i.e.,

$$\forall n > 0 : \forall \psi \in \mathsf{LTL} : (\mathcal{L}(\psi) = \mathcal{L}_n \to |\psi| \in 2^{\Omega(n)})$$



# The candidate family of languages

## Definition (Family of languages $\{A_n\}_{n=1}^{\infty}$ )

For all n > 0, we define  $\mathcal{AP}_n := \{p_0, \dots, p_n\}$  and we define the language  $A_n \subseteq (2^{\mathcal{AP}_n})^{\omega}$  as follows:

 $A_n$  is the set of words in which, if any position i agrees with position 0 on the interpretation of all  $p_1, \ldots, p_n$ , then i and 0 agree also on the interpretation of  $p_0$ .

## Example with n=2 and $\mathcal{AP}_n = \{p_0, p_1, p_2\}$

- $\{p_0, p_2\} \cdot (\langle \{p_1\} \cdot \{p_1, p_2\} \cdot \varnothing \rangle)^\omega \in A_n$
- $\{p_0, p_2\} \cdot (\langle \{p_1\} \cdot \{p_0, p_2\} \cdot \varnothing \rangle)^\omega \in A_n$
- $\{p_0, p_1, p_2\} \cdot (\langle \{p_1\} \cdot \{p_1, p_2\} \cdot \varnothing \rangle)^\omega \notin A_n$



## $\overline{A_n}$ is succinctly definable in LTL+P

## Proposition

For all n > 0, the language  $A_n$  is definable by a formula of LTL+P of size  $\mathcal{O}(n)$ .

### Proof.

For all n > 0, we define the LTL+P formula equivalent to  $A_n$  as follows:

$$\mathsf{G}\big((\bigwedge_{i=1}^{n}(p_{i}\leftrightarrow\mathsf{O}(\widetilde{\mathsf{Y}}\bot\wedge p_{i})))\to(p_{0}\leftrightarrow\mathsf{O}(\widetilde{\mathsf{Y}}\bot\wedge p_{0}))\big)$$

٦



## Succinctness of LTL+P

We will prove the following result which, together with the previous Proposition, proves that LTL+P can be exponentially more succinct than LTL.

#### Lemma

For each n > 0, the language  $A_n$  is not definable in LTL with formulas of size less than exponential in n.

In order to prove it, we first define another family of languages.



# Definition of the family of languages $B_n$

## Definition (Family of languages $\{B_n\}_{n=1}^{\infty}$ )

For all n > 0, we define  $\mathcal{AP}_n := \{p_0, \dots, p_n\}$  and we define the language  $B_n \subseteq (2^{\mathcal{AP}_n})^{\omega}$  as follows:

 $B_n$  is the set of words in which, if any <u>two</u> positions i and j agree on the interpretation of all  $p_1, \ldots, p_n$ , then i and j agree also on the interpretation of  $p_0$ .

## Example with n=2 and $\mathcal{AP}_n = \{p_0, p_1, p_2\}$

- $\{p_0, p_2\} \cdot (\langle \{p_1\} \cdot \{p_1, p_2\} \cdot \varnothing \rangle)^\omega \in B_n$
- $(\langle \{p_0, p_2\} \cdot \{p_1\} \cdot \{p_0, p_2\} \cdot \varnothing \cdot \{p_1\} \rangle)^{\omega} \in B_n$
- $(\langle \{p_0, p_2\} \cdot \{p_1\} \cdot \{p_0, p_2\} \cdot \varnothing \cdot \{p_0, p_1\} \rangle)^\omega \notin B_n$



## Connection between $A_n$ and $B_n$

### Lemma

For all n > 0, if  $A_n$  were definable in LTL with formulas of size less than exponential in n, then also  $B_n$  is expressible in LTL+P with formulas of size less than exponential in n.

### Proof.

For all n > 0, by hypothesis, there exists a formula  $\phi_n \in LTL$  such that  $\mathcal{L}(\phi_n) = A_n$  and  $|\phi_n|$  is less than  $2^{\mathcal{O}(n)}$ .



### Connection between $A_n$ and $B_n$

#### Lemma

For all n > 0, if  $A_n$  were definable in LTL with formulas of size less than exponential in n, then also  $B_n$  is expressible in LTL+P with formulas of size less than exponential in n.

#### Proof.

Since  $\phi_n$  contains only *future* temporal operators, it holds that the language of the formula  $\psi_n := \mathsf{G}(\phi_n)$  is exactly  $B_n$ , because:

- since  $\phi_n$  contains only future operators,  $\sigma \models \mathsf{G}(\phi_n)$  iff all suffixes of  $\sigma$  are models of  $\phi_n$
- by definition of  $\phi_n$ , this is equivalent of saying that for all i and for all j > i, if  $\sigma_i$  and  $\sigma_i$  agree on  $p_1, \ldots, p_n$ , then they also agree on  $p_0$ .
- by definition of  $B_n$ , this is equivalent to  $\sigma \in B_n$ .



### Connection between $A_n$ and $B_n$

#### Lemma

For all n > 0, if  $A_n$  were definable in LTL with formulas of size less than exponential in n, then also  $B_n$  is expressible in LTL+P with formulas of size less than exponential in n.

#### Proof.

Moreover,  $\psi_n := \mathsf{G}(\phi_n)$  is trivially a formula of LTL+P and  $|\psi_n| = |\phi_n| + 1$ , therefore  $B_n$  is expressible in LTL+P with a formula of size less than exponential in n.



### Connection between $A_n$ and $B_n$

#### Lemma

For all n > 0, if  $A_n$  were definable in LTL with formulas of size less than exponential in n, then also  $B_n$  is expressible in LTL+P with formulas of size less than exponential in n.

#### Proof.

Moreover,  $\psi_n := \mathsf{G}(\phi_n)$  is trivially a formula of LTL+P and  $|\psi_n| = |\phi_n| + 1$ , therefore  $B_n$  is expressible in LTL+P with a formula of size less than exponential in n.

We will show that the consequent of the above implication is false.

This implies that  $A_n$  cannot be defined succinctly in LTL.



### Explosion of $B_n$

#### Lemma

For all n > 0,  $B_n$  is expressible in LTL+P only with formulas of size at least exponential in n, that is,

$$\forall n > 0 : \forall \psi \in \mathsf{LTL} + \mathsf{P} : (\mathcal{L}(\psi) = B_n \to |\psi| \in 2^{\Omega(n)})$$

#### Proof.

The proof is based on the following two points:

- ① Each LTL+P formula  $\phi$  can be translated into an equivalent NBA of size at  $most\ exponential\ in\ |\phi|;$ 
  - this is what we saw at the beginning of the lecture
- ② Any NBA over  $2^{\mathcal{AP}_n}$  recognizing  $B_n$  is of size  $2^{2^{\Omega(n)}}$ .
  - we will prove it later.



### Explosion of $B_n$

#### Lemma

For all n > 0,  $B_n$  is expressible in LTL+P only with formulas of size at least exponential in n, that is,

$$\forall n > 0 : \forall \psi \in \mathsf{LTL+P} : (\mathcal{L}(\psi) = B_n \to |\psi| \in 2^{\Omega(n)})$$

#### Proof.

- Suppose by contradiction that there exists a n > 0 and a formula  $\phi \in LTL+P$  such that  $\mathcal{L}(\phi) = B_n$  and  $|\phi|$  is less than exponential in n.
- Then, by Point 1, there exists a NBA  $\mathcal{A}_{\phi}$  such that  $\mathcal{L}(\mathcal{A}_{\phi}) = B_n$  and the size of  $\mathcal{A}_{\phi}$  is less than *doubly exponential* in n.
- However, this is a contradiction with Point 2.



The last bit that it is left to prove is the following *doubly exponential* lower bound.

#### Lemma

For all n > 0, any NBA over  $2^{AP_n}$  recognizing  $B_n$  is of size  $2^{2^{\Omega(n)}}$ .

#### Reference:

Kousha Etessami, Moshe Y Vardi, and Thomas Wilke (2002). "First-order logic with two variables and unary temporal logic". In: *Information and computation* 179.2, pp. 279–295



Consider the set  $\mathcal{AP}_n \setminus \{p_0\} := \{p_1, \dots, p_n\}$ . Let  $\bar{a}$  be an arbitrary sequence of the  $2^n$ subsets of  $\mathcal{AP}_n \setminus \{p_0\}$ :

$$\overline{a} \coloneqq \langle a_0, \dots, a_{2^n-1} \rangle$$

From now on, we fix such a sequence  $\bar{a}$ .

#### Example with n = 3

$$\mathcal{AP}_n \setminus \{p_0\} := \{p_1, p_2, p_3\}.$$

$$\bar{a} := \langle a_0, \dots, a_7 \rangle$$

$$:= \langle \{p_1\}, \{p_1, p_2\}, \varnothing, \{p_3\}, \{p_3, p_2\}, \{p_1, p_2, p_3\}, \{p_2\}, \{p_2, p_3\} \rangle$$



For any  $K \subseteq \{0, \dots, 2^n - 1\}$ , we define:

$$a_i^K := \begin{cases} a_i & \text{iff } i \notin K \\ a_i \cup \{p_0\} & \text{otherwise} \end{cases}$$

For any  $K \subseteq \{0, \ldots, 2^n - 1\}$ , we define  $\overline{a^K} := \langle a_0^K, \ldots, a_{2^n - 1}^K \rangle$ .

#### Example with n=3

- if  $\bar{a} := \langle \{p_1\}, \{p_1, p_2\}, \varnothing, \{p_3\}, \{p_3, p_2\}, \{p_1, p_2, p_3\}, \{p_2\}, \{p_2, p_3\} \rangle$  and
- if  $K := \{1, 7\}$
- then  $\overline{a^K} := \langle \{p_1\}, \{p_1, p_2, p_0\}, \varnothing, \{p_3\}, \{p_3, p_2\}, \{p_1, p_2, p_3\}, \{p_2\}, \{p_2, p_3, p_0\} \rangle$



For any  $K \subseteq \{0, \dots, 2^n - 1\}$ , we define:

$$a_i^K := \begin{cases} a_i & \text{iff } i \notin K \\ a_i \cup \{p_0\} & \text{otherwise} \end{cases}$$

For any  $K \subseteq \{0, \ldots, 2^n - 1\}$ , we define  $\overline{a^K} := \langle a_0^K, \ldots, a_{2^n - 1}^K \rangle$ .

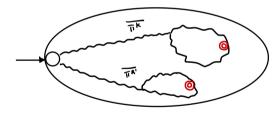
- Clearly, two distinct  $K, K' \subseteq \{0, \dots, 2^n 1\}$  lead to two different sequences  $\overline{a^K}$  and  $\overline{a^{K'}}$ .
- There are  $2^{2^n}$  different choices for  $K \subseteq \{0, \dots, 2^n 1\}$ .
- There are  $2^{2^n}$  different words  $\overline{a^K}$ .



- Let K and K' be two distinct subsets of  $\{0, \ldots, 2^n 1\}$ .
- The word  $(\overline{a^K})^{\omega}$  belongs to  $B_n$  because:
  - by construction of  $\overline{a}$ , two positions i and j agree on  $p_1, \ldots, p_n$  iff they belong to "different repetitions" of  $\overline{a^K}$ ;
  - since the set K never changes between different repetitions of  $\overline{a^K}$ , we have that i and j also agree on  $p_0$ .
- With the same line of reasoning, we have that also the word  $(\overline{a^{K'}})^{\omega} \in B_n$ .
- Since by hypotesis the automaton  $\mathcal{A}$  recognizes  $B_n$ , both  $(\overline{a^K})^{\omega}$  and  $(\overline{a^{K'}})^{\omega}$  are accepted by  $\mathcal{A}$ .

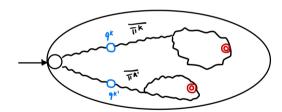


• Therefore, there exists two accepting runs  $\overline{\pi^K}$  and  $\overline{\pi^{K'}}$  in  $\mathcal{A}$  induced by  $(\overline{a^K})^\omega$  and  $(\overline{a^{K'}})^\omega$ , respectively.



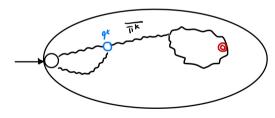


- Therefore, there exists two accepting runs  $\overline{\pi^K}$  and  $\overline{\pi^{K'}}$  in  $\mathcal{A}$  induced by  $(\overline{a^K})^\omega$  and  $(\overline{a^{K'}})^\omega$ , respectively.
- Let  $q^K$  (resp.,  $q^{K'}$ ) be the  $2^n$ -th state of  $\overline{\pi^K}$  (resp.,  $\overline{\pi^{K'}}$ )



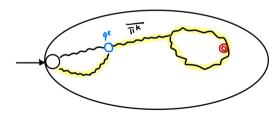


• Suppose that  $q^K = q^{K'}$ .



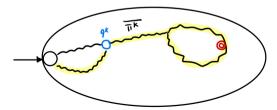


- Suppose that  $q^K = q^{K'}$ .
- The sequence of states made of the prefix of  $\overline{\pi^{K'}}$  concatenated to the suffix of  $\overline{\pi^K}$  is an accepting run
- and it is induced by the word  $\overline{a^{K'}} \cdot (\overline{a^K})^{\omega}$ .





- However, the word  $\overline{a^{K'}} \cdot (\overline{a^K})^{\omega}$  does *not* belong to  $B_n$ 
  - because it contains at least two positions that agree on  $p_1, \ldots, p_n$  but not on  $p_0$  (since  $K \neq K'$ ).
- This means that it cannot be the case that  $q^K = q^{K'}$ .
- Therefore, since there are  $2^{2^n}$  of different K, there are also  $2^{2^n}$  different  $q^K$ .
- The automaton for  $B_n$  has at least  $2^{2^n}$  states.





# Succinctness of LTL+P

#### Lemma

For all n > 0,  $B_n$  is recognizable only by NBA of size at least doubly exponential in n.

#### Lemma

For all n > 0,  $B_n$  is expressible in LTL+P only with formulas of size at least exponential in n.

#### Lemma

For all n > 0,  $A_n$  is expressible in LTL only with formulas of size at least exponential in n.

#### Theorem

LTL+P can be exponentially more succinct than LTL.

### **REFERENCES**



### Bibliography I

- Yaacov Choueka (1974). "Theories of automata on  $\omega$ -tapes: A simplified approach". In: Journal of computer and system sciences 8.2, pp. 117–141.
- Kousha Etessami, Moshe Y Vardi, and Thomas Wilke (2002). "First-order logic with two variables and unary temporal logic". In: *Information and computation* 179.2, pp. 279–295.
- Rob Gerth et al. (1995). "Simple on-the-fly automatic verification of linear temporal logic". In: *International Conference on Protocol Specification, Testing and Verification*. Springer, pp. 3–18.
- Nicolas Markey (2003). "Temporal logic with past is exponentially more succinct". In: *Bull. EATCS* 79, pp. 122–128.