
Department of Mathematics, Computer Science and Physics, University of Udine

The Safety Fragment of
Temporal Logics on
Infinite Sequences
Lesson 12

Luca Geatti
luca.geatti@uniud.it

Angelo Montanari
angelo.montanari@uniud.it

May 13th, 2024

1 Background
1 Regular and ω-regular languages
2 The First- and Second-order Theory of One Successor
3 Automata over finite and infinite words
4 Linear Temporal Logic

2 The safety fragment of LTL and its theoretical features
1 Definition of Safety and Cosafety
2 Characterizations and Normal Forms
3 Kupferman and Vardi’s Classification

Outline

2/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

3 Recognizing safety
1 Recognizing safety Büchi automata
2 Recognizing safety formulas of LTL
3 Construction of the automaton for the bad prefixes

4 Algorithms and Complexity
1 Satisfiability
2 Model Checking
3 Reactive Synthesis

5 Succinctness and Pastification
1 Succinctness of Safety Fragments
2 Pastification Algorithms

Outline

3/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

IC3
Incremental Construction of Inductive Clauses of Indubitable Correctness

1969. Hoare’s logic:
ϕPψ

Charles Antony Richard Hoare (1969). “An axiomatic basis for computer
programming”. In: Communications of the ACM 12.10, pp. 576–580

1977. Temporal verification of reactive systems:
ϕPψ + temporal rules

Zohar Manna and Amir Pnueli (1995). Temporal verification of reactive systems -
safety. Springer. ISBN: 978-0-387-94459-3

1986. Model checking (fully automatic):
M, σ |= ϕ ∀ paths σ

where M is a representation of machine and ϕ is a temporal formula.
Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla (1986). “Automatic
verification of finite-state concurrent systems using temporal logic specifications”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 8.2,
pp. 244–263

Program verification - Timeline

5/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

1969. Hoare’s logic:
ϕPψ

Charles Antony Richard Hoare (1969). “An axiomatic basis for computer
programming”. In: Communications of the ACM 12.10, pp. 576–580

1977. Temporal verification of reactive systems:
ϕPψ + temporal rules

Zohar Manna and Amir Pnueli (1995). Temporal verification of reactive systems -
safety. Springer. ISBN: 978-0-387-94459-3

1986. Model checking (fully automatic):
M, σ |= ϕ ∀ paths σ

where M is a representation of machine and ϕ is a temporal formula.
Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla (1986). “Automatic
verification of finite-state concurrent systems using temporal logic specifications”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 8.2,
pp. 244–263

Program verification - Timeline

5/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

1969. Hoare’s logic:
ϕPψ

Charles Antony Richard Hoare (1969). “An axiomatic basis for computer
programming”. In: Communications of the ACM 12.10, pp. 576–580

1977. Temporal verification of reactive systems:
ϕPψ + temporal rules

Zohar Manna and Amir Pnueli (1995). Temporal verification of reactive systems -
safety. Springer. ISBN: 978-0-387-94459-3

1986. Model checking (fully automatic):
M, σ |= ϕ ∀ paths σ

where M is a representation of machine and ϕ is a temporal formula.
Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla (1986). “Automatic
verification of finite-state concurrent systems using temporal logic specifications”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 8.2,
pp. 244–263

Program verification - Timeline

5/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• (Symbolic) Finite-state transition system M = (x, I,T)
• x is a set of state variables;
• I(x) is the formula for initial states;
• T(x, x′) is the formula for the transition relation;

• a state s of the system is a cube over x (i.e., a conjunction of literals), e.g.:

s = x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ ¬x5

= ⟨1, 0, 1, 0, 0⟩

• a trace of the system is a sequence s0, s1, . . . such that s0 |= I and
si, s′i+1 |= T ∀i ≥ 0.

(Symbolic) Transition System

6/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• (Symbolic) Finite-state transition system M = (x, I,T)
• x is a set of state variables;
• I(x) is the formula for initial states;
• T(x, x′) is the formula for the transition relation;

• a state s of the system is a cube over x (i.e., a conjunction of literals), e.g.:

s = x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ ¬x5

= ⟨1, 0, 1, 0, 0⟩

• a trace of the system is a sequence s0, s1, . . . such that s0 |= I and
si, s′i+1 |= T ∀i ≥ 0.

(Symbolic) Transition System

6/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• (Symbolic) Finite-state transition system M = (x, I,T)
• x is a set of state variables;
• I(x) is the formula for initial states;
• T(x, x′) is the formula for the transition relation;

• a state s of the system is a cube over x (i.e., a conjunction of literals), e.g.:

s = x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ ¬x5

= ⟨1, 0, 1, 0, 0⟩

• a trace of the system is a sequence s0, s1, . . . such that s0 |= I and
si, s′i+1 |= T ∀i ≥ 0.

(Symbolic) Transition System

6/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• a Boolean formula F over x denotes the set of states JFK = {s ∈ {0, 1}n | s |= F}:

s |= F ⇔ s ∈ JFK

s is called an F-state;

• if F ⇒ G, then:

JFK ⊆ JGK

• a clause c is a disjunction of literals. A subclause d ⊆ c is a clause whose
literals are a subset of c’s literals. It holds that:

d ⇒ c

(Symbolic) Transition System

7/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• a Boolean formula F over x denotes the set of states JFK = {s ∈ {0, 1}n | s |= F}:

s |= F ⇔ s ∈ JFK

s is called an F-state;
• if F ⇒ G, then:

JFK ⊆ JGK

• a clause c is a disjunction of literals. A subclause d ⊆ c is a clause whose
literals are a subset of c’s literals. It holds that:

d ⇒ c

(Symbolic) Transition System

7/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• a Boolean formula F over x denotes the set of states JFK = {s ∈ {0, 1}n | s |= F}:

s |= F ⇔ s ∈ JFK

s is called an F-state;
• if F ⇒ G, then:

JFK ⊆ JGK

• a clause c is a disjunction of literals. A subclause d ⊆ c is a clause whose
literals are a subset of c’s literals. It holds that:

d ⇒ c

(Symbolic) Transition System

7/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We are not interested here in full LTL, but only on invariant properties:

G(φ) in LTL

• Invariant property P(x): boolean formula that asserts that only P-states are
reachable.

• P is M-invariant if P(x) holds for system M. If this is not the case, there exists
a counterexample trace s0, s1, . . . , sk such that sk ̸|= P.

⇒ reachability problem

Invariance checking

8/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We are not interested here in full LTL, but only on invariant properties:

G(φ) in LTL

• Invariant property P(x): boolean formula that asserts that only P-states are
reachable.

• P is M-invariant if P(x) holds for system M. If this is not the case, there exists
a counterexample trace s0, s1, . . . , sk such that sk ̸|= P.

⇒ reachability problem

Invariance checking

8/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We are not interested here in full LTL, but only on invariant properties:

G(φ) in LTL

• Invariant property P(x): boolean formula that asserts that only P-states are
reachable.

• P is M-invariant if P(x) holds for system M. If this is not the case, there exists
a counterexample trace s0, s1, . . . , sk such that sk ̸|= P.

⇒ reachability problem

Invariance checking

8/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

The problem may seem very simple to solve efficiently, but . . .

1. the system M is usually too large to keep it in memory: the symbolic
representation is not a choice but a necessity;

⇒ no standard explicit algorithms for reachability
2. BDD-based techniques: state-space explosion problem;

Kenneth L McMillan (1993). “Symbolic model checking”. In: Symbolic Model
Checking. Springer, pp. 25–60

3. Bounded Model Checking (BMC): unrolling of the transition relation;
Armin Biere et al. (1999). “Symbolic model checking without BDDs”. In:
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Springer, pp. 193–207

Invariance checking

9/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

The problem may seem very simple to solve efficiently, but . . .
1. the system M is usually too large to keep it in memory: the symbolic

representation is not a choice but a necessity;
⇒ no standard explicit algorithms for reachability

2. BDD-based techniques: state-space explosion problem;
Kenneth L McMillan (1993). “Symbolic model checking”. In: Symbolic Model
Checking. Springer, pp. 25–60

3. Bounded Model Checking (BMC): unrolling of the transition relation;
Armin Biere et al. (1999). “Symbolic model checking without BDDs”. In:
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Springer, pp. 193–207

Invariance checking

9/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

The problem may seem very simple to solve efficiently, but . . .
1. the system M is usually too large to keep it in memory: the symbolic

representation is not a choice but a necessity;
⇒ no standard explicit algorithms for reachability

2. BDD-based techniques: state-space explosion problem;
Kenneth L McMillan (1993). “Symbolic model checking”. In: Symbolic Model
Checking. Springer, pp. 25–60

3. Bounded Model Checking (BMC): unrolling of the transition relation;
Armin Biere et al. (1999). “Symbolic model checking without BDDs”. In:
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Springer, pp. 193–207

Invariance checking

9/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

The problem may seem very simple to solve efficiently, but . . .
1. the system M is usually too large to keep it in memory: the symbolic

representation is not a choice but a necessity;
⇒ no standard explicit algorithms for reachability

2. BDD-based techniques: state-space explosion problem;
Kenneth L McMillan (1993). “Symbolic model checking”. In: Symbolic Model
Checking. Springer, pp. 25–60

3. Bounded Model Checking (BMC): unrolling of the transition relation;
Armin Biere et al. (1999). “Symbolic model checking without BDDs”. In:
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Springer, pp. 193–207

Invariance checking

9/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Symbolic Algorithms for
Reachability

Start with ¬P and proceed backward until fixpoint F. If the BDD for F contains an
I-state, then a ¬P-state is reachable: counterexample trace.

I

FIXED POINT

BDD-based backward algorithms

11/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Start with ¬P and proceed backward until fixpoint F. If the BDD for F contains an
I-state, then a ¬P-state is reachable: counterexample trace.

I

FIXED POINT

BDD-based backward algorithms

11/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Start with ¬P and proceed backward until fixpoint F. If the BDD for F contains an
I-state, then a ¬P-state is reachable: counterexample trace.

I

FIXED POINT

BDD-based backward algorithms

11/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Start with ¬P and proceed backward until fixpoint F. If the BDD for F contains an
I-state, then a ¬P-state is reachable: counterexample trace.

I

FIXED POINT

BDD-based backward algorithms

11/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Start with ¬P and proceed backward until fixpoint F. If the BDD for F contains an
I-state, then a ¬P-state is reachable: counterexample trace.

I

FIXED POINT

BDD-based backward algorithms

11/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Start with ¬P and proceed backward until fixpoint F. If the BDD for F contains an
I-state, then a ¬P-state is reachable: counterexample trace.

I

FIXED POINT

BDD-based backward algorithms

11/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

BDDs are much more than a representation of a boolean formula.

Compressed truth tables: BDDs represent all the models of a
boolean formula.

⇒ often too much large

Personal view on OBDDs

12/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

At iteration k, check if I ∧
k−1∧
i=0

Ti ∧ ¬Pk is SAT. If so, stop with a counterexample of

length k.

I

I ∧ ¬PI ∧ T ∧ ¬PI ∧ T ∧ T1 ∧ ¬PI ∧ T ∧ T1 ∧ T2 ∧ ¬P

Bounded Model Checking
for invariant properties

13/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

At iteration k, check if I ∧
k−1∧
i=0

Ti ∧ ¬Pk is SAT. If so, stop with a counterexample of

length k.

I

I ∧ ¬PI ∧ T ∧ ¬PI ∧ T ∧ T1 ∧ ¬PI ∧ T ∧ T1 ∧ T2 ∧ ¬P

Bounded Model Checking
for invariant properties

13/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

At iteration k, check if I ∧
k−1∧
i=0

Ti ∧ ¬Pk is SAT. If so, stop with a counterexample of

length k.

I

I ∧ ¬PI ∧ T ∧ ¬PI ∧ T ∧ T1 ∧ ¬PI ∧ T ∧ T1 ∧ T2 ∧ ¬P

Bounded Model Checking
for invariant properties

13/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

At iteration k, check if I ∧
k−1∧
i=0

Ti ∧ ¬Pk is SAT. If so, stop with a counterexample of

length k.

I

I ∧ ¬PI ∧ T ∧ ¬PI ∧ T ∧ T1 ∧ ¬PI ∧ T ∧ T1 ∧ T2 ∧ ¬P

Bounded Model Checking
for invariant properties

13/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

At iteration k, check if I ∧
k−1∧
i=0

Ti ∧ ¬Pk is SAT. If so, stop with a counterexample of

length k.

I

I ∧ ¬PI ∧ T ∧ ¬PI ∧ T ∧ T1 ∧ ¬PI ∧ T ∧ T1 ∧ T2 ∧ ¬P

Bounded Model Checking
for invariant properties

13/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• it leverages the big progress made in SAT solvers in the last decades;

• BMC looks for counterexamples of length k and increases k only if the formula
of the current iteration is UNSAT;

• drawbacks:
• in general it is not complete: we have to compute a big QBF to know the

diameter of the graph;
• it requires the unrolling of the transition relation:

I ∧
(

T ∧ T1 ∧ · · · ∧ Tk−1
)
∧ ¬Pk

Both T and k can be very large: the formula can become too large for the SAT
solver.

BMC

14/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• it leverages the big progress made in SAT solvers in the last decades;
• BMC looks for counterexamples of length k and increases k only if the formula

of the current iteration is UNSAT;

• drawbacks:
• in general it is not complete: we have to compute a big QBF to know the

diameter of the graph;
• it requires the unrolling of the transition relation:

I ∧
(

T ∧ T1 ∧ · · · ∧ Tk−1
)
∧ ¬Pk

Both T and k can be very large: the formula can become too large for the SAT
solver.

BMC

14/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• it leverages the big progress made in SAT solvers in the last decades;
• BMC looks for counterexamples of length k and increases k only if the formula

of the current iteration is UNSAT;
• drawbacks:

• in general it is not complete: we have to compute a big QBF to know the
diameter of the graph;

• it requires the unrolling of the transition relation:

I ∧
(

T ∧ T1 ∧ · · · ∧ Tk−1
)
∧ ¬Pk

Both T and k can be very large: the formula can become too large for the SAT
solver.

BMC

14/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• it leverages the big progress made in SAT solvers in the last decades;
• BMC looks for counterexamples of length k and increases k only if the formula

of the current iteration is UNSAT;
• drawbacks:

• in general it is not complete: we have to compute a big QBF to know the
diameter of the graph;

• it requires the unrolling of the transition relation:

I ∧
(

T ∧ T1 ∧ · · · ∧ Tk−1
)
∧ ¬Pk

Both T and k can be very large: the formula can become too large for the SAT
solver.

BMC

14/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

First Attempts to Incremental
Inductive Verification

In order to prove that P(x) is M-invariant, one possibility is to check if P is
inductive. With two SAT-solver calls, we check the validity of:

(initiation) I ⇒ P
(consecution) P ∧ T ⇒ P′

It is a sufficient condition to prove invariance for P. It is not also a necessary
condition.

Why?

Inductive Verification

16/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

In order to prove that P(x) is M-invariant, one possibility is to check if P is
inductive. With two SAT-solver calls, we check the validity of:

(initiation) I ⇒ P
(consecution) P ∧ T ⇒ P′

It is a sufficient condition to prove invariance for P. It is not also a necessary
condition.

Why?

Inductive Verification

16/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

In order to prove that P(x) is M-invariant, one possibility is to check if P is
inductive. With two SAT-solver calls, we check the validity of:

(initiation) I ⇒ P
(consecution) P ∧ T ⇒ P′

It is a sufficient condition to prove invariance for P. It is not also a necessary
condition.

Why?

Inductive Verification

16/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

If consecution fails, then:

• Monolithic approach: look for a stronger assertion F such that F ∧ P is
inductive. F ∧ P is called an inductive strenghtening.

• Incremental proof: look for a sequence of lemmata ϕ1, ϕ2, . . . , ϕk = P such
that ϕi is inductive relative to ϕ1 ∧ · · · ∧ ϕi−1, for all 1 < i ≤ k, i.e.,

• I ⇒ ϕi
• ϕ1 ∧ · · · ∧ ϕi−1 ∧ ϕi ∧ T ⇒ ϕ′i

It follows that P ∧
k−1∧
i=1

ϕi is an inductive strengthening.

Incremental vs Monolithic

17/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

If consecution fails, then:
• Monolithic approach: look for a stronger assertion F such that F ∧ P is

inductive. F ∧ P is called an inductive strenghtening.

• Incremental proof: look for a sequence of lemmata ϕ1, ϕ2, . . . , ϕk = P such
that ϕi is inductive relative to ϕ1 ∧ · · · ∧ ϕi−1, for all 1 < i ≤ k, i.e.,

• I ⇒ ϕi
• ϕ1 ∧ · · · ∧ ϕi−1 ∧ ϕi ∧ T ⇒ ϕ′i

It follows that P ∧
k−1∧
i=1

ϕi is an inductive strengthening.

Incremental vs Monolithic

17/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

If consecution fails, then:
• Monolithic approach: look for a stronger assertion F such that F ∧ P is

inductive. F ∧ P is called an inductive strenghtening.
• Incremental proof: look for a sequence of lemmata ϕ1, ϕ2, . . . , ϕk = P such

that ϕi is inductive relative to ϕ1 ∧ · · · ∧ ϕi−1, for all 1 < i ≤ k, i.e.,
• I ⇒ ϕi
• ϕ1 ∧ · · · ∧ ϕi−1 ∧ ϕi ∧ T ⇒ ϕ′i

It follows that P ∧
k−1∧
i=1

ϕi is an inductive strengthening.

Incremental vs Monolithic

17/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

If consecution fails, then:
• Monolithic approach: look for a stronger assertion F such that F ∧ P is

inductive. F ∧ P is called an inductive strenghtening.
• Incremental proof: look for a sequence of lemmata ϕ1, ϕ2, . . . , ϕk = P such

that ϕi is inductive relative to ϕ1 ∧ · · · ∧ ϕi−1, for all 1 < i ≤ k, i.e.,
• I ⇒ ϕi
• ϕ1 ∧ · · · ∧ ϕi−1 ∧ ϕi ∧ T ⇒ ϕ′i

It follows that P ∧
k−1∧
i=1

ϕi is an inductive strengthening.

Incremental vs Monolithic

17/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Note that:
• both methods do not compute a formula R for the exact set of reachable states

in M;

• rather, they find a formula F ∧ P that represents a larger set of states all
satisfying F ∧ P:

• ⇒ this F is a much smaller formula than R.

Abstraction

18/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Note that:
• both methods do not compute a formula R for the exact set of reachable states

in M;
• rather, they find a formula F ∧ P that represents a larger set of states all

satisfying F ∧ P:
• ⇒ this F is a much smaller formula than R.

Abstraction

18/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Naïve algorithm for finding an inductive strengthening:
1 IS := P

2 if IS is inductive, then we have found an inductive strengthening; stop.
3 else find a CTI err (counterexample to inductiveness):

err |= IS ∧ T ∧ ¬IS′

1 if err ∧ I is SAT, then stop: P is NOT invariant;
2 else set IS := IS ∧ ¬err and go to Item 2.

At the end, the inductive strengthening (if any) will be:

P ∧
∧

err∈CTI

¬err

Monolithic Approach - Naïve algorithm

19/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Naïve algorithm for finding an inductive strengthening:
1 IS := P
2 if IS is inductive, then we have found an inductive strengthening; stop.

3 else find a CTI err (counterexample to inductiveness):

err |= IS ∧ T ∧ ¬IS′

1 if err ∧ I is SAT, then stop: P is NOT invariant;
2 else set IS := IS ∧ ¬err and go to Item 2.

At the end, the inductive strengthening (if any) will be:

P ∧
∧

err∈CTI

¬err

Monolithic Approach - Naïve algorithm

19/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Naïve algorithm for finding an inductive strengthening:
1 IS := P
2 if IS is inductive, then we have found an inductive strengthening; stop.
3 else find a CTI err (counterexample to inductiveness):

err |= IS ∧ T ∧ ¬IS′

1 if err ∧ I is SAT, then stop: P is NOT invariant;
2 else set IS := IS ∧ ¬err and go to Item 2.

At the end, the inductive strengthening (if any) will be:

P ∧
∧

err∈CTI

¬err

Monolithic Approach - Naïve algorithm

19/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Naïve algorithm for finding an inductive strengthening:
1 IS := P
2 if IS is inductive, then we have found an inductive strengthening; stop.
3 else find a CTI err (counterexample to inductiveness):

err |= IS ∧ T ∧ ¬IS′

1 if err ∧ I is SAT, then stop: P is NOT invariant;

2 else set IS := IS ∧ ¬err and go to Item 2.

At the end, the inductive strengthening (if any) will be:

P ∧
∧

err∈CTI

¬err

Monolithic Approach - Naïve algorithm

19/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Naïve algorithm for finding an inductive strengthening:
1 IS := P
2 if IS is inductive, then we have found an inductive strengthening; stop.
3 else find a CTI err (counterexample to inductiveness):

err |= IS ∧ T ∧ ¬IS′

1 if err ∧ I is SAT, then stop: P is NOT invariant;
2 else set IS := IS ∧ ¬err and go to Item 2.

At the end, the inductive strengthening (if any) will be:

P ∧
∧

err∈CTI

¬err

Monolithic Approach - Naïve algorithm

19/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Naïve algorithm for finding an inductive strengthening:
1 IS := P
2 if IS is inductive, then we have found an inductive strengthening; stop.
3 else find a CTI err (counterexample to inductiveness):

err |= IS ∧ T ∧ ¬IS′

1 if err ∧ I is SAT, then stop: P is NOT invariant;
2 else set IS := IS ∧ ¬err and go to Item 2.

At the end, the inductive strengthening (if any) will be:

P ∧
∧

err∈CTI

¬err

Monolithic Approach - Naïve algorithm

19/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Consider the program M1:

1 x , y := 1 ,1
2 whi le * :
3 x , y := x+1,y+x
4

We want to prove that y ≥ 1 is M1-invariant:

• x = 1 ∧ y = 1︸ ︷︷ ︸
I

⇒ y ≥ 1︸ ︷︷ ︸
P

• y ≥ 1︸ ︷︷ ︸
P

∧x′ = x + 1 ∧ y′ = y + x︸ ︷︷ ︸
T

̸⇒ y′ ≥ 1︸ ︷︷ ︸
P′

Why?

Incremental Proof - Example

20/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Consider the program M1:

1 x , y := 1 ,1
2 whi le * :
3 x , y := x+1,y+x
4

We want to prove that y ≥ 1 is M1-invariant:

• x = 1 ∧ y = 1︸ ︷︷ ︸
I

⇒ y ≥ 1︸ ︷︷ ︸
P

• y ≥ 1︸ ︷︷ ︸
P

∧x′ = x + 1 ∧ y′ = y + x︸ ︷︷ ︸
T

̸⇒ y′ ≥ 1︸ ︷︷ ︸
P′

Why?

Incremental Proof - Example

20/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Consider the program M1:

1 x , y := 1 ,1
2 whi le * :
3 x , y := x+1,y+x
4

We want to prove that y ≥ 1 is M1-invariant:
• x = 1 ∧ y = 1︸ ︷︷ ︸

I

⇒ y ≥ 1︸ ︷︷ ︸
P

• y ≥ 1︸ ︷︷ ︸
P

∧x′ = x + 1 ∧ y′ = y + x︸ ︷︷ ︸
T

̸⇒ y′ ≥ 1︸ ︷︷ ︸
P′

Why?

Incremental Proof - Example

20/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Consider the program M1:

1 x , y := 1 ,1
2 whi le * :
3 x , y := x+1,y+x
4

We want to prove that y ≥ 1 is M1-invariant:
• x = 1 ∧ y = 1︸ ︷︷ ︸

I

⇒ y ≥ 1︸ ︷︷ ︸
P

• y ≥ 1︸ ︷︷ ︸
P

∧x′ = x + 1 ∧ y′ = y + x︸ ︷︷ ︸
T

̸⇒ y′ ≥ 1︸ ︷︷ ︸
P′

Why?

Incremental Proof - Example

20/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Consider the program M1:

1 x , y := 1 ,1
2 whi le * :
3 x , y := x+1,y+x
4

We want to prove that y ≥ 1 is M1-invariant:
• x = 1 ∧ y = 1︸ ︷︷ ︸

I

⇒ y ≥ 1︸ ︷︷ ︸
P

• y ≥ 1︸ ︷︷ ︸
P

∧x′ = x + 1 ∧ y′ = y + x︸ ︷︷ ︸
T

̸⇒ y′ ≥ 1︸ ︷︷ ︸
P′

Why?

Incremental Proof - Example

20/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We establish the first inductive incremental lemma ϕ1 := x ≥ 0:
• x = 1 ∧ y = 1 ⇒ x ≥ 0
• x ≥ 0 ∧ x′ = x + 1 ∧ y′ = y + x ⇒ x′ ≥ 0

Now, ϕ2 := y ≥ 1 is inductive relative to ϕ1:
• x = 1 ∧ y = 1 ⇒ y ≥ 1
• x ≥ 0︸ ︷︷ ︸

ϕ1

∧ y ≥ 1 ∧ x′ = x + 1 ∧ y′ = y + x ⇒ y′ ≥ 1

We have found the inductive strengthening ϕ1 ∧ ϕ2, by means of an incremental
proof.

Incremental Proof - Example

21/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We establish the first inductive incremental lemma ϕ1 := x ≥ 0:
• x = 1 ∧ y = 1 ⇒ x ≥ 0
• x ≥ 0 ∧ x′ = x + 1 ∧ y′ = y + x ⇒ x′ ≥ 0

Now, ϕ2 := y ≥ 1 is inductive relative to ϕ1:
• x = 1 ∧ y = 1 ⇒ y ≥ 1
• x ≥ 0︸ ︷︷ ︸

ϕ1

∧ y ≥ 1 ∧ x′ = x + 1 ∧ y′ = y + x ⇒ y′ ≥ 1

We have found the inductive strengthening ϕ1 ∧ ϕ2, by means of an incremental
proof.

Incremental Proof - Example

21/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We establish the first inductive incremental lemma ϕ1 := x ≥ 0:
• x = 1 ∧ y = 1 ⇒ x ≥ 0
• x ≥ 0 ∧ x′ = x + 1 ∧ y′ = y + x ⇒ x′ ≥ 0

Now, ϕ2 := y ≥ 1 is inductive relative to ϕ1:
• x = 1 ∧ y = 1 ⇒ y ≥ 1
• x ≥ 0︸ ︷︷ ︸

ϕ1

∧ y ≥ 1 ∧ x′ = x + 1 ∧ y′ = y + x ⇒ y′ ≥ 1

We have found the inductive strengthening ϕ1 ∧ ϕ2, by means of an incremental
proof.

Incremental Proof - Example

21/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Consider the program M2:

1 x , y := 1 ,1
2 whi le * :
3 x , y := x+y , y+x
4

We want to prove ϕ2 := y ≥ 1.

Like before, ϕ2 is not inductive on its own.
· · · but now neither is ϕ := x ≥ 0:

• x = 1 ∧ y = 1 ⇒ x ≥ 0
• x ≥ 0 ∧ x′ = x + y ∧ y′ = y + x ̸⇒ x′ ≥ 0

Monolithic approach = worst case of incremental proofs.

Limitation of incremental proofs

22/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Consider the program M2:

1 x , y := 1 ,1
2 whi le * :
3 x , y := x+y , y+x
4

We want to prove ϕ2 := y ≥ 1.
Like before, ϕ2 is not inductive on its own.

· · · but now neither is ϕ := x ≥ 0:
• x = 1 ∧ y = 1 ⇒ x ≥ 0
• x ≥ 0 ∧ x′ = x + y ∧ y′ = y + x ̸⇒ x′ ≥ 0

Monolithic approach = worst case of incremental proofs.

Limitation of incremental proofs

22/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Consider the program M2:

1 x , y := 1 ,1
2 whi le * :
3 x , y := x+y , y+x
4

We want to prove ϕ2 := y ≥ 1.
Like before, ϕ2 is not inductive on its own.
· · · but now neither is ϕ := x ≥ 0:

• x = 1 ∧ y = 1 ⇒ x ≥ 0
• x ≥ 0 ∧ x′ = x + y ∧ y′ = y + x ̸⇒ x′ ≥ 0

Monolithic approach = worst case of incremental proofs.

Limitation of incremental proofs

22/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Consider the program M2:

1 x , y := 1 ,1
2 whi le * :
3 x , y := x+y , y+x
4

We want to prove ϕ2 := y ≥ 1.
Like before, ϕ2 is not inductive on its own.
· · · but now neither is ϕ := x ≥ 0:

• x = 1 ∧ y = 1 ⇒ x ≥ 0
• x ≥ 0 ∧ x′ = x + y ∧ y′ = y + x ̸⇒ x′ ≥ 0

Monolithic approach = worst case of incremental proofs.

Limitation of incremental proofs

22/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• FSIS: Finite-State Inductive Strengthening. It follows the incremental
methodology.
Aaron R Bradley and Zohar Manna (2007). “Checking safety by inductive
generalization of counterexamples to induction”. In: Formal Methods in Computer
Aided Design (FMCAD’07). IEEE, pp. 173–180

• “this algorithm is a result of asking the question: if the incremental method is often
better for humans, might it be better for algorithms as well?"
Aaron R Bradley (2012). “Understanding ic3”. In: International Conference on
Theory and Applications of Satisfiability Testing. Springer, pp. 1–14

• the core of the algorithm is the generalization an error state.

FSIS - Algorithm

23/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• FSIS: Finite-State Inductive Strengthening. It follows the incremental
methodology.
Aaron R Bradley and Zohar Manna (2007). “Checking safety by inductive
generalization of counterexamples to induction”. In: Formal Methods in Computer
Aided Design (FMCAD’07). IEEE, pp. 173–180

• “this algorithm is a result of asking the question: if the incremental method is often
better for humans, might it be better for algorithms as well?"
Aaron R Bradley (2012). “Understanding ic3”. In: International Conference on
Theory and Applications of Satisfiability Testing. Springer, pp. 1–14

• the core of the algorithm is the generalization an error state.

FSIS - Algorithm

23/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• FSIS: Finite-State Inductive Strengthening. It follows the incremental
methodology.
Aaron R Bradley and Zohar Manna (2007). “Checking safety by inductive
generalization of counterexamples to induction”. In: Formal Methods in Computer
Aided Design (FMCAD’07). IEEE, pp. 173–180

• “this algorithm is a result of asking the question: if the incremental method is often
better for humans, might it be better for algorithms as well?"
Aaron R Bradley (2012). “Understanding ic3”. In: International Conference on
Theory and Applications of Satisfiability Testing. Springer, pp. 1–14

• the core of the algorithm is the generalization an error state.

FSIS - Algorithm

23/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

I

FSIS - Example

24/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Check if P is inductive (relative to
nobody). Check the validity of:

✓ I ⇒ P
✗ P ∧ T ⇒ P′

State s is a CTI.

I

s

FSIS - Example - 1st iteration

25/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• s is a cube returned by the SAT-solver; ¬s is a clause encoding all states
different from s;

• generalization of error state s: find a clause ϕ1 such that
• ϕ1 ⊆ ¬s; (it excludes s)
• ϕ1 is inductive (relative to nobody); (it includes at least all the reachable states)
• ϕ1 is minimal. (it excludes the maximal number of non-reachable states)

• recall the nice property of clauses: if c ⊆ d then JcK ⊆ JdK

• if ϕ1 does exist, it becomes the first incremental lemma.

FSIS - Example - 1st iteration

26/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• s is a cube returned by the SAT-solver; ¬s is a clause encoding all states
different from s;

• generalization of error state s: find a clause ϕ1 such that
• ϕ1 ⊆ ¬s; (it excludes s)
• ϕ1 is inductive (relative to nobody); (it includes at least all the reachable states)
• ϕ1 is minimal. (it excludes the maximal number of non-reachable states)

• recall the nice property of clauses: if c ⊆ d then JcK ⊆ JdK

• if ϕ1 does exist, it becomes the first incremental lemma.

FSIS - Example - 1st iteration

26/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• s is a cube returned by the SAT-solver; ¬s is a clause encoding all states
different from s;

• generalization of error state s: find a clause ϕ1 such that
• ϕ1 ⊆ ¬s; (it excludes s)
• ϕ1 is inductive (relative to nobody); (it includes at least all the reachable states)
• ϕ1 is minimal. (it excludes the maximal number of non-reachable states)

• recall the nice property of clauses: if c ⊆ d then JcK ⊆ JdK

• if ϕ1 does exist, it becomes the first incremental lemma.

FSIS - Example - 1st iteration

26/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

ϕ1 can be thought as a "boolean" cutting
plane.

Which states are excluded by ϕ1?
(i) those who can reach s in one step

(ii) states “similar" to s (they share with
s the dropped literals).

I

ss

ϕ1

FSIS - Example - 1st iteration

27/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Check if P is inductive relative to ϕ1:

✓ I ⇒ P
✗ ϕ1 ∧ P ∧ T ⇒ P′

State r is a CTI.

I

ss

ϕ1

r

FSIS - Example - 2nd iteration

28/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• generalization of error state r:
• ϕ2 ⊆ ¬r;
• ϕ2 is inductive relative to ϕ1;
• ϕ2 is minimal;

• ϕ2 is the second incremental lemma.

I

ss

ϕ1

r
ϕ2

FSIS - Example - 2nd iteration

29/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• generalization of error state r:
• ϕ2 ⊆ ¬r;
• ϕ2 is inductive relative to ϕ1;
• ϕ2 is minimal;

• ϕ2 is the second incremental lemma.

I

ss

ϕ1

r
ϕ2

FSIS - Example - 2nd iteration

29/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Why “inductive relative to"?
• it would have been correct to generate ϕ2 inductive (relative to its own), but

it’s more than what we need;
• at the end we will consider the AND of all the lemmata;

• in general, it is faster to generate “inductive relative to" clauses.
• intuitively, we are considering many fewer states of the system.

FSIS - Example - 2nd iteration

30/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Why “inductive relative to"?
• it would have been correct to generate ϕ2 inductive (relative to its own), but

it’s more than what we need;
• at the end we will consider the AND of all the lemmata;

• in general, it is faster to generate “inductive relative to" clauses.
• intuitively, we are considering many fewer states of the system.

FSIS - Example - 2nd iteration

30/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Check if P is inductive relative to ϕ1 ∧ ϕ2:

✓ I ⇒ P
✗ ϕ1 ∧ ϕ2 ∧ P ∧ T ̸⇒ P′

State t is a CTI.

I

ss

ϕ1

r
ϕ2

t

FSIS - Example - 3rd iteration

31/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• generalization of error state t:
• ϕ3 ⊆ ¬t;
• ϕ3 is inductive relative to ϕ1 ∧ ϕ2;
• ϕ3 is minimal;

• ϕ3 is the second incremental lemma.

I

ss

ϕ1

r
ϕ2

tϕ3

FSIS - Example - 3rd iteration

32/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• generalization of error state t:
• ϕ3 ⊆ ¬t;
• ϕ3 is inductive relative to ϕ1 ∧ ϕ2;
• ϕ3 is minimal;

• ϕ3 is the second incremental lemma.

I

ss

ϕ1

r
ϕ2

tϕ3

FSIS - Example - 3rd iteration

32/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Check if P is inductive relative to ϕ1 ∧ ϕ2 ∧ ϕ3:

✓ I ⇒ P
✗ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ P ∧ T ⇒ P′

• ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ P is an inductive strengthening.
• P is M-invariant.

FSIS - Example - 4th iteration

33/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Check if P is inductive relative to ϕ1 ∧ ϕ2 ∧ ϕ3:

✓ I ⇒ P
✗ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ P ∧ T ⇒ P′

• ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ P is an inductive strengthening.
• P is M-invariant.

FSIS - Example - 4th iteration

33/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• suppose that an error state s does not have a minimal inductive generalization;

• worst case: we proceed with the monolithic technique;

P := P ∧ ¬s

• eventually,
• either I ∧ ¬P is SAT: P is not invariant;
• or we find an inductive strengthening P ∧

n∧
i=0

ϕi;

Worst case

34/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• suppose that an error state s does not have a minimal inductive generalization;
• worst case: we proceed with the monolithic technique;

P := P ∧ ¬s

• eventually,
• either I ∧ ¬P is SAT: P is not invariant;
• or we find an inductive strengthening P ∧

n∧
i=0

ϕi;

Worst case

34/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• suppose that an error state s does not have a minimal inductive generalization;
• worst case: we proceed with the monolithic technique;

P := P ∧ ¬s

• eventually,
• either I ∧ ¬P is SAT: P is not invariant;
• or we find an inductive strengthening P ∧

n∧
i=0

ϕi;

Worst case

34/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Complexity:
• it is on the convergence of the procedure, not on the calls to the SAT-solver as

before;
• each SAT-solver call is relatively small compared to those made by BMC.

Parallelization:
• straightforward; "by simply using a randomized decision procedure to obtain the

CTIs, each process is likely to analyze a different part of the state-space."
Aaron R Bradley and Zohar Manna (2007). “Checking safety by inductive
generalization of counterexamples to induction”. In: Formal Methods in Computer
Aided Design (FMCAD’07). IEEE, pp. 173–180

Complexity and Parallelization

35/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Complexity:
• it is on the convergence of the procedure, not on the calls to the SAT-solver as

before;
• each SAT-solver call is relatively small compared to those made by BMC.

Parallelization:
• straightforward; "by simply using a randomized decision procedure to obtain the

CTIs, each process is likely to analyze a different part of the state-space."
Aaron R Bradley and Zohar Manna (2007). “Checking safety by inductive
generalization of counterexamples to induction”. In: Formal Methods in Computer
Aided Design (FMCAD’07). IEEE, pp. 173–180

Complexity and Parallelization

35/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

IC3
Incremental Construction of Inductive Clauses of Indubitable Correctness

• FSIS sometimes enters a long search for the next relatively inductive clauses;
• IC3 de-emphasizes global information in favor of stepwise information: we

will generate clauses that ensure that an error is unreachable up to some
number of steps.

IC3

37/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Sequence of frames F0(= I),F1,F2, . . . ,Fk:
• each Fi is a set of clauses, i.e., a CNF formula;
• each Fi is an over-approximation of the set of states reachable in at most k

steps;
• the algorithm stops when Fi ≡ Fi+1. We will maintain the invariance that

clauses(Fi+1) ⊆ clauses(Fi): the equivalence check is simply a syntactic test:
Fi = Fi+1.

• F0 is a special frame always equal to I.

IC3 - Data Structures

38/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Check if there are counterexamples of length 0 or 1 with these two SAT-queries:

✗ I ∧ ¬P
✗ F0(= I) ∧ T ∧ ¬P′

Since F0 ∧ T ⇒ P′, we set F1 := P. (over-approximation)

I

F1

IC3 - 1st iteration

39/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Check if there are counterexamples of length 0 or 1 with these two SAT-queries:

✗ I ∧ ¬P
✗ F0(= I) ∧ T ∧ ¬P′

Since F0 ∧ T ⇒ P′, we set F1 := P. (over-approximation)

I

F1

IC3 - 1st iteration

39/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

At iteration k, check if Fk ∧ T ∧ ¬P′; in this case (k = 1):

✓ F1 ∧ T ∧ ¬P′

i.e., there exists an Fk-state that leads in one step to an error state?

I

s

F1

IC3 - 2nd iteration

40/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

At iteration k, check if Fk ∧ T ∧ ¬P′; in this case (k = 1):

✓ F1 ∧ T ∧ ¬P′

i.e., there exists an Fk-state that leads in one step to an error state?

I

s

F1

IC3 - 2nd iteration

40/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

At iteration k(= 1), we check whether ¬s is inductive relative to Fk−1 = (F0 = I): ✓

⇒ error state s is not reachable in at least k = 1 step.

We find a minimal ϕ1 ⊆ ¬s such that ϕ1 is inductive relative to F0(= I).

⇒ ϕ1 excludes the error state s (and similar states) but contains at least all the
states reachable in at most k = 1 steps.

We add ϕ1 to all the previous frames. In this case F1 := F1 ∧ ϕ1.

I

sF1

IC3 - 2nd iteration (blocking phase)

41/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

At iteration k(= 1), we check whether ¬s is inductive relative to Fk−1 = (F0 = I): ✓

⇒ error state s is not reachable in at least k = 1 step.
We find a minimal ϕ1 ⊆ ¬s such that ϕ1 is inductive relative to F0(= I).

⇒ ϕ1 excludes the error state s (and similar states) but contains at least all the
states reachable in at most k = 1 steps.

We add ϕ1 to all the previous frames. In this case F1 := F1 ∧ ϕ1.

I

sF1

IC3 - 2nd iteration (blocking phase)

41/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

At iteration k(= 1), we check whether ¬s is inductive relative to Fk−1 = (F0 = I): ✓

⇒ error state s is not reachable in at least k = 1 step.
We find a minimal ϕ1 ⊆ ¬s such that ϕ1 is inductive relative to F0(= I).

⇒ ϕ1 excludes the error state s (and similar states) but contains at least all the
states reachable in at most k = 1 steps.

We add ϕ1 to all the previous frames. In this case F1 := F1 ∧ ϕ1.

I

sF1

IC3 - 2nd iteration (blocking phase)

41/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We have found a CTI s such that s |= Fk ∧ T ∧ ¬P′.

⇒ we want to generalize the error s or to prove that it’s reachable from an initial
state

if ¬s is inductive relative to Fk−1, then generate a minimal subclause c ⊆ ¬s
inductive relative to Fk−1, i.e., c holds for at least all states reachable in i steps.

⇒ add c to frames F0 . . . Fk+1, i.e., refine the over-approximations.

IC3 - Blocking phase

42/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We have found a CTI s such that s |= Fk ∧ T ∧ ¬P′.

⇒ we want to generalize the error s or to prove that it’s reachable from an initial
state

if ¬s is inductive relative to Fk−1, then generate a minimal subclause c ⊆ ¬s
inductive relative to Fk−1, i.e., c holds for at least all states reachable in i steps.

⇒ add c to frames F0 . . . Fk+1, i.e., refine the over-approximations.

IC3 - Blocking phase

42/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We create a new frame only when Fk ∧ T ⇒ P′ is valid.

In this case, F1 ∧ T ⇒ P′ is valid. We create a new frame F2 := P.

I

sF1

F2

IC3 - 2nd iteration

43/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We create a new frame only when Fk ∧ T ⇒ P′ is valid.
In this case, F1 ∧ T ⇒ P′ is valid. We create a new frame F2 := P.

I

sF1

F2

IC3 - 2nd iteration

43/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Propagation phase: After creating a new frame Fk+1 := P, we perform the
propagation phase: we push forward the clause discovered in frame Fi for some i.

For all 0 ≤ i ≤ k and c ∈ Fi, check if

Fi ∧ T ⇒ c′

If c ̸∈ clauses(Fi+1), then set Fi+1 := Fi+1 ∪ {c}

⇒ it propagates forward the errors
⇒ it helps the discovery of mutually inductive clauses

IC3 - Propagation phase

44/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Propagation phase: After creating a new frame Fk+1 := P, we perform the
propagation phase: we push forward the clause discovered in frame Fi for some i.
For all 0 ≤ i ≤ k and c ∈ Fi, check if

Fi ∧ T ⇒ c′

If c ̸∈ clauses(Fi+1), then set Fi+1 := Fi+1 ∪ {c}

⇒ it propagates forward the errors
⇒ it helps the discovery of mutually inductive clauses

IC3 - Propagation phase

44/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Check if F2 ∧ T ∧ ¬P′ (✓): counterexample s.
Check if ¬s is inductive relative to F1: ✓ ⇒ error state s is not reachable for at least
k = 2 steps.

Blocking phase: find minimal subclause ϕ2 ⊆ ¬s inductive relative to F1. Add ϕ2
to frames F0 and F1.

I

sF1

F2

IC3 - 3rd iteration

45/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Check if F2 ∧ T ∧ ¬P′ (✓): counterexample s.
Check if ¬s is inductive relative to F1: ✓ ⇒ error state s is not reachable for at least
k = 2 steps.
Blocking phase: find minimal subclause ϕ2 ⊆ ¬s inductive relative to F1. Add ϕ2
to frames F0 and F1.

I

sF1

F2

IC3 - 3rd iteration

45/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Since F2 ∧ T ⇒ P′ is valid, we create a new frame F3 := P.

I

sF1

F2 F3

IC3 - 4rd iteration

46/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Since F2 ∧ T ⇒ P′ is valid, we create a new frame F3 := P.

I

sF1

F2 F3

IC3 - 4rd iteration

46/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Again F3 ∧ T ∧ ¬P′ (✓): counterexample s.
But now ¬s is not inductive relative to F2

: error state s could be reachable in k = 3
steps . . .

I

sF1

F2 F3

t

IC3 - 4rd iteration

47/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Again F3 ∧ T ∧ ¬P′ (✓): counterexample s.
But now ¬s is not inductive relative to F2: error state s could be reachable in k = 3
steps . . .

I

sF1

F2 F3

t

IC3 - 4rd iteration

47/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Instead of generating a clause that excludes s (it is possible), we call the algorithm
recursively on the predecessor t of s

. . . remember that t could still be reachable as far as we know . . .

"t is the new s" ;-)

IC3 - 4rd iteration

48/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Instead of generating a clause that excludes s (it is possible), we call the algorithm
recursively on the predecessor t of s

. . . remember that t could still be reachable as far as we know . . .

"t is the new s" ;-)

IC3 - 4rd iteration

48/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We want to remove error state t from F2. ¬t is inductive relative to F1: find min
subclause ϕ4 ⊆ ¬t and add it to F1 and F2.

I

s
t

F1

F2

If in this process we go back with recursion until an initial state, then we would
have found a counterexample.

IC3 - Recursion

49/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

We want to remove error state t from F2. ¬t is inductive relative to F1: find min
subclause ϕ4 ⊆ ¬t and add it to F1 and F2.

I

s
t

F1

F2

If in this process we go back with recursion until an initial state, then we would
have found a counterexample.

IC3 - Recursion

49/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Now error state s in frame F3 can be generalized: find min clause ϕ5 ⊆ ¬s
inductive relative to F2.

I

s
t

F1

F2 F3F3

F2 = F3 : IC3 terminates with True.

IC3 - Termination

50/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Now error state s in frame F3 can be generalized: find min clause ϕ5 ⊆ ¬s
inductive relative to F2.

I

s
t

F1

F2 F3F3

F2 = F3 : IC3 terminates with True.

IC3 - Termination

50/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

• FAIR: IC3 for ω-regular properties (e.g., LTL).
Aaron R Bradley, Fabio Somenzi, et al. (2011). “An incremental approach to model
checking progress properties”. In: 2011 Formal Methods in Computer-Aided Design
(FMCAD). IEEE, pp. 144–153

• IICTL: IC3 for CTL properties.
Zyad Hassan, Aaron R Bradley, and Fabio Somenzi (2012). “Incremental, inductive
CTL model checking”. In: International Conference on Computer Aided
Verification. Springer, pp. 532–547

• Infinite-state: software model checking via IC3.
Alessandro Cimatti and Alberto Griggio (2012). “Software model checking via
IC3”. In: International Conference on Computer Aided Verification. Springer,
pp. 277–293

Beyond IC3

51/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

REFERENCES

Armin Biere et al. (1999). “Symbolic model checking without BDDs”. In:
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer, pp. 193–207.

Aaron R Bradley (2012). “Understanding ic3”. In: International Conference on
Theory and Applications of Satisfiability Testing. Springer, pp. 1–14.

Aaron R Bradley and Zohar Manna (2007). “Checking safety by inductive
generalization of counterexamples to induction”. In: Formal Methods in
Computer Aided Design (FMCAD’07). IEEE, pp. 173–180.

Aaron R Bradley, Fabio Somenzi, et al. (2011). “An incremental approach to
model checking progress properties”. In: 2011 Formal Methods in
Computer-Aided Design (FMCAD). IEEE, pp. 144–153.

Alessandro Cimatti and Alberto Griggio (2012). “Software model checking via
IC3”. In: International Conference on Computer Aided Verification. Springer,
pp. 277–293.

Bibliography I

53/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla (1986). “Automatic
verification of finite-state concurrent systems using temporal logic
specifications”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 8.2, pp. 244–263.

Zyad Hassan, Aaron R Bradley, and Fabio Somenzi (2012). “Incremental,
inductive CTL model checking”. In: International Conference on Computer
Aided Verification. Springer, pp. 532–547.

Charles Antony Richard Hoare (1969). “An axiomatic basis for computer
programming”. In: Communications of the ACM 12.10, pp. 576–580.

Zohar Manna and Amir Pnueli (1995). Temporal verification of reactive systems -
safety. Springer. ISBN: 978-0-387-94459-3.

Kenneth L McMillan (1993). “Symbolic model checking”. In: Symbolic Model
Checking. Springer, pp. 25–60.

Bibliography II

54/54 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

	References

