Department of Mathematics, Computer Science and Physics, University of Udine The Safety Fragment of Temporal Logics on Infinite Sequences Lesson 10

Luca Geatti

luca.geatti@uniud.it

Angelo Montanari

angelo.montanari@uniud.it

May 5th, 2024

Background

- (1) Regular and ω -regular languages
- 2 The First- and Second-order Theory of One Successor
- 3 Automata over finite and infinite words
- Linear Temporal Logic
- ② The safety fragment of LTL and its theoretical features
 - 1 Definition of Safety and Cosafety
 - 2 Characterizations and Normal Forms
 - 8 Kupferman and Vardi's Classification

8 Recognizing safety

- Recognizing safety Büchi automata
- 2 Recognizing safety formulas of LTL
- 8 Construction of the automaton for the bad prefixes
- ④ Algorithms and Complexity
 - Satisfiability
 - 2 Model Checking
 - 8 Reactive Synthesis
- Succinctness and Pastification
 - Succinctness of Safety Fragments
 - 2 Pastification Algorithms

MODEL CHECKING OF SAFETY PROPERTIES

• Invariance checking: it is defined as LTL model checking of a formula of the form $G(\phi)$ where ϕ is a Boolean formula.

Does ϕ hold in (at least) every reachable state of *M*?

• Given $M = \langle AP, Q, I, T, L \rangle$ and a Boolean formula ϕ over the variables AP

find a reachable state in which $\neg\phi$ holds or establish its nonexistence.

- it is a reachability problem
- if ϕ holds in every reachable state of *M*, then ϕ is invariant in *M*
- otherwise, there is a *finite trace* as counterexample:

$$\langle s_0, s_1, \ldots, s_n \rangle$$

such that $s_i \models \phi$ for any i < n and $s_n \not\models \phi$.

The problem of invariance checking is thoroughly studied in symbolic model checking.

- IC3 is arguably the state-of-the-art algorithm for symbolic invariance checking
- outstanding performance

Reference:

Aaron R Bradley (2011). "SAT-based model checking without unrolling". In: International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, pp. 70–87

Classical Approach

Let *M* be Kripke structure, *s* an initial state of *M*, and ϕ be an LTL formula such that $\mathcal{L}(\phi)$ is *safety*.

- Objective: efficient algorithms for model checking of safety properties (*M*, *s* ⊨ A φ)
 - exploiting the reduction from infinite to *finite* trace
 - exploiting efficient backends for symbolic invariance checking

Classical Approach

Let *M* be Kripke structure, *s* an initial state of *M*, and ϕ be an LTL formula such that $\mathcal{L}(\phi)$ is *safety*.

- **1** Build the *automaton over finite words* (DFA) \mathcal{A}_{bad} for the bad prefixes of $\mathcal{L}(\phi)$.
- **2** Build the product $\mathcal{A}_M \times \mathcal{A}_{bad}$.
- **8** Check the reachability of a final state in $A_M \times A_{bad}$
 - or equivalently that the property "the current state is not final" is invariant

$$\mathsf{G}(\neg \textit{final})$$

Output:

- if found: there is a counterexample to ϕ
- otherwise: ϕ holds in M

Model Checking of Safety Properties Example

• Kripke Structure *M*:

Automaton for the bad prefixes of

We denote with $\langle p_3 \rangle$ all the subsets of $\{p_0, p_1, p_2, p_3\}$ that contain the proposition p_3 .

We reduced the problem
 M, *s* ⊨ A G(*p*₀ ∨ *p*₁ ∨ *p*₂) to checking whether: (*reachability*)

 $\mathcal{A}_M \times \mathcal{A}_{bad} \models \mathsf{G}(q_0)$

8/35 L. Geatti, A. Montanari

8/35

Model Checking of Safety Properties Example

• Kripke Structure *M*:

Automaton for the bad prefixes of

We denote with $\langle p_3 \rangle$ all the subsets of $\{p_0, p_1, p_2, p_3\}$ that contain the proposition p_3 .

We reduced the problem
 M, *s* ⊨ A G(*p*₀ ∨ *p*₁ ∨ *p*₂) to checking whether: (*reachability*)

 $\mathcal{A}_M \times \mathcal{A}_{bad} \models \mathsf{G}(q_0)$

• The property does not hold: counterexample trace

K-LIVENESS

Model Checking of Safety Properties K-Liveness

- (Symbolic) Invariance Checking: very efficient algorithms
- Some algorithms for LTL model checking leverage this efficiency:
 - LTL-MC → invariance checking
- K-Liveness

Reference:

Koen Claessen and Niklas Sörensson (2012). "A liveness checking algorithm that counts". In: 2012 Formal Methods in Computer-Aided Design (FMCAD). IEEE, pp. 52–59

Model Checking of Safety Properties K-Liveness

Objectives:

Solve LTL-MC

 $M,s\models \mathsf{A}\,\phi$

where ϕ is an LTL formula.

Reduction to a sequence of invariance checking problems.

Solution:

To *count* and *bound* the number of times the product automaton
 A_M × *A*_{¬φ} visits a final state of *A*_{¬φ}.

Model Checking of Safety Properties

Objectives:

Solve LTL-MC

$$M,s\models \mathsf{A}\,\phi$$

where ϕ is an LTL formula.

Reduction to a sequence of invariance checking problems.

Solution:

To *count* and *bound* the number of times the product automaton
 A_M × *A*_{¬φ} visits a final state of *A*_{¬φ}.

Main idea:

- Let $\mathcal{A}_{\neg\phi}$ be a NBA for $\neg\phi$.
- $M, s \models A \phi$ iff the language of $\mathcal{A}_M \times \mathcal{A}_{\neg \phi}$ is *empty*
- ... <u>iff</u> each computation of $\mathcal{A}_M \times \mathcal{A}_{\neg \phi}$ visits a final state of $\mathcal{A}_{\neg \phi}$ a *finite number of times*

This number is clearly *bounded* above by the number of states of $\mathcal{A}_M \times \mathcal{A}_{\neg \phi}$, *i.e.*, $|M| \cdot |\mathcal{A}_{\neg \phi}|$.

Model Checking of Safety Properties K-Liveness

- K-Liveness proceeds *incrementally*, checking whether $A_M \times A_{\neg \phi}$ visits a final state *K* times for K = 1, 2, 3, ...
- Methodology: use a *counter*
 - K-counter A_K = automaton that stays in its state q_f iff the computation has visited *less than K* times a final state of $A_{\neg\phi}$
- Each subproblem is of the form:

 $\mathcal{A}_M \times \mathcal{A}_{\neg \phi} \times \mathcal{A}_K, s \models \mathsf{A} \mathsf{G}(q_f)$

It is an *invariance checking problem*.

Main idea:

- Let $\mathcal{A}_{\neg\phi}$ be a NBA for $\neg\phi$.
- $M, s \models A \phi \text{ iff}$ the language of $\mathcal{A}_M \times \mathcal{A}_{\neg \phi}$ is *empty*
- ... <u>iff</u> each computation of $A_M \times A_{\neg \phi}$ visits a final state of $A_{\neg \phi}$ a *finite number of times*

This number is clearly *bounded* above by the number of states of $\mathcal{A}_M \times \mathcal{A}_{\neg \phi}$, *i.e.*, $|M| \cdot |\mathcal{A}_{\neg \phi}|$.

Model Checking of Safety Properties K-Liveness

- K-Liveness proceeds *incrementally*, checking whether $A_M \times A_{\neg \phi}$ visits a final state *K* times for K = 1, 2, 3, ...
- Methodology: use a *counter*
 - K-counter A_K = automaton that stays in its state q_f iff the computation has visited *less than K* times a final state of $A_{\neg\phi}$
- Each subproblem is of the form:

 $\mathcal{A}_M \times \mathcal{A}_{\neg \phi} \times \mathcal{A}_K, s \models \mathsf{A} \mathsf{G}(q_f)$

It is an *invariance checking problem*.

Termination:

- if $M, s \models A \phi$, there exists a K for which $\mathcal{A}_M \times \mathcal{A}_{\neg \phi}$ visits final states at most K times.
- if *M*, *s* ⊭ A φ, the algorithms increments *K* until the upper bound: it then stops.

Implementation:

• K-Liveness is implemented in the nuXmv model checker.

Roberto Cavada et al. (2014). "The nuXmv symbolic model checker". In: International Conference on Computer Aided Verification (CAV). Springer, pp. 334–342. DOI: 10.1007/s10009-006-0001-2

Exploiting the KV's classification

• Problem: the automaton for the bad prefixes is *doubly exponential* in the size of the formula, in the worst case:

$$|\phi| = n \rightarrow |\mathcal{A}_{bad}| \in 2^{2^{\mathcal{O}(n)}}$$

This can become easily impractical.

- Solution: we *relax* the fact that the automaton has to recognize *all* bad prefixes.
 - \Rightarrow we want to build an automaton which recognizes only the *informative prefixes*.
 - \Rightarrow only a single exponential blowup: $|\phi| = n \rightarrow |\mathcal{A}_{bad}| \in 2^{\mathcal{O}(n)}$

Theorem

For every LTL formula ϕ such that $\mathcal{L}(\phi)$ is safety, there exists a NFA \mathcal{A} that recognizes exactly the informative bad prefixes of ϕ and $|\mathcal{A}| \in 2^{\mathcal{O}(|\phi|)}$.

Proof.

We will prove this result later.

Reference:

Orna Kupferman and Moshe Y Vardi (2001). "Model checking of safety properties". In: *Formal Methods in System Design* **19.3, pp. 291–314.** DOI: 10.1023/A:1011254632723

Definition (Tight Automata)

Given a safety language \mathcal{L} , a NFA \mathcal{A} is *tight for* \mathcal{L} iff $\mathcal{L}(\mathcal{A}) = \mathtt{bad}(\mathcal{L})$.

Definition (Fine Automata)

Given a safety language \mathcal{L} , a NFA \mathcal{A} is *fine for* \mathcal{L} iff it accepts *at least one* bad prefix for each violation of \mathcal{L} , *i.e.*: $\forall \sigma \notin \mathcal{L} : \exists i \geq 0 : \sigma_{[0,i]} \in \mathcal{L}(\mathcal{A})$.

"In practice, almost all the benefit that one obtain from a tight automaton can also be obtained from a fine automaton."

Let ϕ be any LTL formula such that $\mathcal{L}(\phi)$ is a safety language. The definition of informative prefix is used to classify such formulas ϕ into three types:

- **1** intentionally safe
- 2 accidentally safe
- ③ pathologically safe

Let ϕ be any LTL formula such that $\mathcal{L}(\phi)$ is a safety language. The definition of informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe

 ϕ is intentionally safe iff all bad prefixes are informative.

For example:

- the formula G(p) is intentionally safe.
- the formula $G(p \lor (Xq \land X\neg q))$ is *not* intentionally safe, because $\langle \{p\}, \{p\}, \{p\}, \{p\}, \emptyset \rangle$ is a bad prefix but it is not informative.
- 2 accidentally safe
- ③ pathologically safe

Let ϕ be any LTL formula such that $\mathcal{L}(\phi)$ is a safety language. The definition of informative prefix is used to classify such formulas ϕ into three types:

- **1** intentionally safe
- 2 accidentally safe

 ϕ is accidentally safe iff (*i*) not all the bad prefixes of ψ are informative, but (*ii*) every $\sigma \in (2^{AP})^{\omega}$ that violates ϕ has an informative bad prefix.

For example:

G(p ∨ (Xq ∧ X¬q)) is accidentally safe: ({p}, {p}, {p}, {p}, Ø) is a bad prefix but it is not informative. However, every infinite trace violating the formula has an informative prefix of type {p}* · Ø · Ø.

③ pathologically safe

Let ϕ be any LTL formula such that $\mathcal{L}(\phi)$ is a safety language. The definition of informative prefix is used to classify such formulas ϕ into three types:

- **1** intentionally safe
- 2 accidentally safe
- ③ pathologically safe

 ϕ is pathologically safe iff there is a $\sigma \in (2^{AP})^{\omega}$ that violates ϕ and has no informative bad prefixes.

For example:

- $(\mathsf{G}(q \lor \mathsf{FG}p) \land \mathsf{G}(r \lor \mathsf{FG}\neg p)) \lor \mathsf{G}q \lor \mathsf{G}r$
 - the computation \varnothing^{ω} violates the formula

 $\varnothing^{\omega} \models \left(\mathsf{F}(\neg q \land \mathsf{GF} \neg p) \lor \mathsf{F}(\neg r \land \mathsf{GF} p)\right) \land \mathsf{F}(\neg q) \land \mathsf{F}(\neg r)$

• but each of its prefixes σ is *not informative* because $\sigma \not\models_{KV} (F(\neg q \land GF \neg p) \lor F(\neg r \land GFp)) \land F(\neg q) \land F(\neg r)$, but no finite prefix is such.

Let ϕ be any LTL formula such that $\mathcal{L}(\phi)$ is a safety language. The definition of informative prefix is used to classify such formulas ϕ into three types:

- 1 intentionally safe
- 2 accidentally safe
- ③ pathologically safe

Formulas that are accidentally safe or pathologically safe are *needlessly complicated*:

- They contain a redundancy that can be eliminated.
- If a user wrote a pathologically safe formula, then probably he/she didn't mean to write a safety formula.
- This classification helps in detecting inconsistent or redundant specifications.

Theorem

For every LTL *formula* ϕ *, there exists a* NFA A *such that* $|A| \in 2^{\mathcal{O}(|\phi|)}$ *and:*

- *if* ϕ *is intentionally safe, then* A *is tight for* ϕ *;*
- *if* ϕ *is accidentally safe, then* A *is fine for* ϕ *.*

Reference:

Orna Kupferman and Moshe Y Vardi (2001). "Model checking of safety properties". In: *Formal Methods in System Design* **19.3, pp. 291–314.** DOI: 10.1023/A:1011254632723

Theorem

For every LTL *formula* ϕ *, there exists a* NFA A *such that* $|A| \in 2^{\mathcal{O}(|\phi|)}$ *and:*

- *if* ϕ *is intentionally safe, then* A *is tight for* ϕ *;*
- *if* ϕ *is accidentally safe, then* A *is fine for* ϕ *.*

Pros:

- it is exponentially smaller than A_{bad}
- it is built using *alternating automata*

Cons:

- we sacrify *minimality*
 - this may be good for model checking
 - less good for *monitoring*

- it is *nondeterministic* (differently from A_{bad}):
 - ok for model checking
 - not ok for *reactive synthesis*

17/35 L. Geatti, A. Montanari

We know prove this result.

Theorem

For every LTL formula ϕ such that $\mathcal{L}(\phi)$ is safety, there exists a NFA \mathcal{A} that recognizes exactly the informative bad prefixes of ϕ and $|\mathcal{A}| \in 2^{\mathcal{O}(|\phi|)}$.

ALTERNATING AUTOMATA

An *alternating automaton* \mathcal{A} is a tuple $\mathcal{A} = \langle \Sigma, Q, I, \delta, F \rangle$ such that:

- Σ is the alphabet
- *Q* is the set of states
- $I \subseteq Q$ is the set of initial states
- $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$
- $F \subseteq Q$ is the set of final states

where $\mathbb{B}^+(Q)$ is the set of *positive* Boolean formulas over the variables in *Q*.

Example

- $\mathcal{A} := \langle \{a, b, c\}, \{q_0, q_A, \overline{q_A}, q_B, \overline{q_B}\}, \{q_0\}, \\ \delta, \{q_A, q_B\} \rangle \text{ where } \delta : Q \times \Sigma \to \mathbb{B}^+(Q) \text{ is defined as follows:}$
 - $\delta(q_0, *) = q_A \wedge q_B$
 - $\delta(q_A, a) = q_A$

• $\delta(q_A, c) = \overline{q_A}$

• $\delta(\overline{q_A}, a) = q_A$

• $\delta(q_A, b) = \overline{q_A}$

- $\delta(\overline{q_A}, c) = \overline{q_A}$
- $\delta(q_B, a) = \overline{q_B}$
- $\delta(q_B, b) = q_B$
- $\delta(q_B, c) = \overline{q_B}$
- $\delta(\overline{q_B}, a) = \overline{q_B}$
- $\delta(\overline{q_B}, b) = q_B$
- $\delta(\overline{q_A}, b) = \overline{q_A}$ $\delta(\overline{q_B}, c) = \overline{q_B}$

An *alternating automaton* \mathcal{A} is a tuple $\mathcal{A} = \langle \Sigma, Q, I, \delta, F \rangle$ such that:

- Σ is the alphabet
- *Q* is the set of states
- $I \subseteq Q$ is the set of initial states
- $\delta: Q \times \Sigma \to \mathbb{B}^+(Q)$
- $F \subseteq Q$ is the set of final states

where $\mathbb{B}^+(Q)$ is the set of *positive* Boolean formulas over the variables in Q.

Definition (Run tree)

A run of an alternating automaton $\mathcal{A} = \langle \Sigma, Q, I, \delta, F \rangle$ over a word $\sigma := \langle \sigma_0, \sigma_1, \ldots \rangle$ is a *Q*-labeled tree such that:

- the root is labeled with a initial state in *I*
- given a node *q* such that δ(*q*, σ) = Φ, the set of all its children {*q*₁,...,*q_k*} must satisfy Φ.

If $\Phi := \top$, then *q* does not need to have children: possible *finite* branches even when reading *infinite* words.

Definition (Run tree)

A run of an alternating automaton $\mathcal{A} = \langle \Sigma, Q, I, \delta, F \rangle$ over a word $\sigma := \langle \sigma_0, \sigma_1, \ldots \rangle$ is a *Q*-labeled tree such that:

- the root is labeled with a initial state in *I*
- given a node *q* such that δ(*q*, σ) = Φ, the set of all its children {*q*₁,...,*q_k*} must satisfy Φ.

Alternating automata

Example

 $\mathcal{A} \coloneqq \langle \{a, b, c\}, \{q_0, q_A, \overline{q_A}, q_B, \overline{q_B}\}, \{q_0\}, \\ \{q_0\}, \{$ $\delta, \{q_A, q_B\}$ where $\delta: O \times \Sigma \to \mathbb{B}^+(O)$ is defined as follows:

- $\delta(q_0, *) =$ $q_A \wedge q_B$
- $\delta(q_A, a) = q_A$
- $\delta(q_A, b) = \overline{q_A}$
- $\delta(q_A, c) = \overline{q_A}$
- $\delta(\overline{q_A}, a) = q_A$
- $\delta(\overline{q_A}, b) = \overline{q_A}$ • $\delta(\overline{q_B}, c) = \overline{q_B}$

- $\delta(q_B, b) = q_B$
- $\delta(q_B, c) = \overline{q_B}$
- $\delta(\overline{q_B}, a) = \overline{q_B}$
- $\delta(\overline{q_B}, b) = q_B$

In general, an alternating automaton can have *multiple* run trees over a given word.

Definition (Accepting run tree)

A AFA (*Alternating Finite Automata*) accepts a word σ iff there exists a run tree such that all its branches end in a final state.

A ABA (*Alternating Büchi Automata*) accepts a word σ iff there exists a run tree such that all infinite branches reaches a final state infinitely often.

• Note that in ABA we don't require nothing for branches of finite length.

In general, an alternating automaton can have *multiple* run trees over a given word.

Definition (Accepting run tree)

A AFA (*Alternating Finite Automata*) accepts a word σ iff there exists a run tree such that all its branches end in a final state.

A ABA (*Alternating Büchi Automata*) accepts a word σ iff there exists a run tree such that all infinite branches reaches a final state infinitely often.

- Note that in ABA we don't require nothing for branches of finite length.
- An NFA is a AFA such that, for each $q \in Q$ and for each $a \in \Sigma$, the Boolean formula $\delta(q, a)$ contains only *disjunctions*.
- An NBA is a ABA such that, for each $q \in Q$ and for each $a \in \Sigma$, the Boolean formula $\delta(q, a)$ contains only *disjunctions*.

In general, an alternating automaton can have *multiple* run trees over a given word.

Definition (Accepting run tree)

A AFA (*Alternating Finite Automata*) accepts a word σ iff there exists a run tree such that all its branches end in a final state.

A ABA (*Alternating Büchi Automata*) accepts a word σ iff there exists a run tree such that all infinite branches reaches a final state infinitely often.

- Note that in ABA we don't require nothing for branches of finite length.
- An NFA is a AFA such that, for each $q \in Q$ and for each $a \in \Sigma$, the Boolean formula $\delta(q, a)$ contains only *disjunctions*.
- An NBA is a ABA such that, for each $q \in Q$ and for each $a \in \Sigma$, the Boolean formula $\delta(q, a)$ contains only *disjunctions*.
- If $\delta(q, a)$ contains only *conjunctions*, for each $q \in Q$ and for each $a \in \Sigma$, the automaton is said to be *universal*.

Alternating automata

Example

 $\mathcal{A} := \langle \{a, b, c\}, \{q_0, q_A, \overline{q_A}, q_B, \overline{q_B}\}, \{q_0\}, \\ \delta, \{q_A, q_B\} \rangle \text{ where } \delta : Q \times \Sigma \to \mathbb{B}^+(Q) \text{ is defined as follows:}$

• $\delta(q_B, b) = q_B$

• $\delta(\overline{q_B}, a) = \overline{q_B}$

- $\delta(q_0, *) =$ $q_A \wedge q_B$ • $\delta(\overline{q_A}, c) = \overline{q_A}$ • $\delta(q_B, a) = \overline{q_B}$
- $\delta(q_A, a) = q_A$
- $\delta(q_A, b) = \overline{q_A}$ $\delta(q_B, c) = \overline{q_B}$
- $\delta(q_A, c) = \overline{q_A}$
- $\delta(\overline{q_A}, a) = q_A$ $\delta(\overline{q_B}, b) = q_B$
- $\delta(\overline{q_A}, b) = \overline{q_A}$ $\delta(\overline{q_B}, c) = \overline{q_B}$

24/35 L. Geatti, A. Montanari

Example

 $\mathcal{A} := \langle \{a, b, c\}, \{q_0, q_A, \overline{q_A}, q_B, \overline{q_B}\}, \{q_0\}, \\ \delta, \{q_A, q_B\} \rangle \text{ where } \delta : Q \times \Sigma \to \mathbb{B}^+(Q) \text{ is defined as follows:}$

- $\delta(q_0, *) =$ $q_A \wedge q_B$ • $\delta(\overline{q_A}, c) = \overline{q_A}$ • $\delta(q_B, a) = \overline{q_B}$
- $\delta(q_A, a) = q_A$ $\delta(q_B, b) = q_B$
- $\delta(q_A, b) = \overline{q_A}$ $\delta(q_B, c) = \overline{q_B}$
- $\delta(q_A, c) = \overline{q_A}$
- $\delta(\overline{q_A}, a) = q_A$ $\delta(\overline{q_B}, b) = q_B$
- $\delta(\overline{q_A}, b) = \overline{q_A}$ $\delta(\overline{q_B}, c) = \overline{q_B}$

• $\delta(\overline{q_B}, a) = \overline{q_B}$

Which is the ω -language of this alternating automaton?

24/35 L. Geatti, A. Montanari

24/35

Alternating automata

Example

 $\mathcal{A} := \langle \{a, b, c\}, \{q_0, q_A, \overline{q_A}, q_B, \overline{q_B}\}, \{q_0\}, \\ \delta, \{q_A, q_B\} \rangle \text{ where } \delta : Q \times \Sigma \to \mathbb{B}^+(Q) \text{ is defined as follows:}$

• $\delta(q_0, *) = q_A \wedge q_B$

•
$$\delta(q_A, a) = q_A$$

- $\delta(q_A, b) = \overline{q_A}$
- $\delta(q_A, c) = \overline{q_A}$
- $\delta(\overline{q_A}, a) = q_A$
- $\delta(\overline{q_A}, b) = \overline{q_A}$

- $\delta(\overline{q_A}, c) = \overline{q_A}$
- $\delta(q_B, a) = \overline{q_B}$

•
$$\delta(q_B, b) = q_B$$

- $\delta(q_B,c) = \overline{q_B}$
- $\delta(\overline{q_B}, a) = \overline{q_B}$

•
$$\delta(\overline{q_B}, b) = q_B$$

• $\delta(\overline{q_B}, c) = \overline{q_B}$

$$\mathcal{L}(\mathcal{A}) = \{ \sigma \in \Sigma^{\omega} \mid \exists^{\omega} i \, . \, \sigma_i = a \land \exists^{\omega} i \, . \, \sigma_i = b \}$$

Which is the ω -language of this alternating automaton?

L. Geatti, A. Montanari The

Alternating automata

Example

 $\mathcal{A} := \langle \{a, b, c\}, \{q_0, q_A, \overline{q_A}, q_B, \overline{q_B}\}, \{q_0\}, \\ \delta, \{q_A, q_B\} \rangle \text{ where } \delta : Q \times \Sigma \to \mathbb{B}^+(Q) \text{ is defined as follows:}$

- $\delta(q_0, *) =$ $q_A \wedge q_B$ • $\delta(\overline{q_A} + \delta(\overline{q_B}))$
- $\delta(q_A, a) = q_A$
- $\delta(q_A, b) = \overline{q_A}$
- $\delta(q_A, c) = \overline{q_A}$
- $\delta(\overline{q_A}, a) = q_A$
- $\delta(\overline{q_A}, b) = \overline{q_A}$

- $\delta(\overline{q_A}, c) = \overline{q_A}$ • $\delta(q_B, a) = \overline{q_B}$
- $\delta(q_B, b) = q_B$
- $\delta(q_B, c) = \overline{q_B}$
- $\delta(\overline{q_B}, a) = \overline{q_B}$
- $\delta(\overline{q_B}, b) = q_B$ • $\delta(\overline{q_B}, c) = \overline{q_B}$

Alternating automata

Example

 $\mathcal{A} \coloneqq \langle \{a, b, c\}, \{q_0, q_A, \overline{q_A}, q_B, \overline{q_B}\}, \{q_0\}, \\ \{q_0\}, \{$ $\delta, \{q_A, q_B\}$ where $\delta: O \times \Sigma \to \mathbb{B}^+(O)$ is defined as follows:

- $\delta(q_0, *) =$ $q_A \wedge q_B$
- $\delta(q_A, a) = q_A$
- $\delta(q_A, b) = \overline{q_A}$
- $\delta(q_A, c) = \overline{q_A}$
- $\delta(\overline{q_A}, a) = q_A$
- $\delta(\overline{q_A}, b) = \overline{q_A}$

- $\delta(\overline{q_A}, c) = \overline{q_A}$ • $\delta(q_B, a) = \overline{q_B}$
- $\delta(q_B, b) = q_B$
- $\delta(q_B, c) = \overline{q_B}$
- $\delta(\overline{q_B}, a) = \overline{q_B}$
- $\delta(\overline{q_B}, b) = q_B$

Given a LTL formula ϕ over \mathcal{AP} , we can effectively construct a ABA $\mathcal{A}_{\phi} = \langle \Sigma, Q, I, \delta, F \rangle$ with $\Sigma = 2^{\mathcal{AP}}$ such that $\mathcal{L}(\mathcal{A}_{\phi}) = \mathcal{L}(\phi)$ and $|\mathcal{A}_{\phi}| \in \mathcal{O}(|\phi|)$.

Proof.

We define the closure of ϕ , denoted with $C(\phi)$, as the set of subformulas of ϕ (included ϕ itself) and their negations. We define the set of states Q of A_{ϕ} as $C(\phi)$.

• \Rightarrow states of \mathcal{A}_{ϕ} are subformulas of ϕ

Given a LTL formula ϕ over \mathcal{AP} , we can effectively construct a ABA $\mathcal{A}_{\phi} = \langle \Sigma, Q, I, \delta, F \rangle$ with $\Sigma = 2^{\mathcal{AP}}$ such that $\mathcal{L}(\mathcal{A}_{\phi}) = \mathcal{L}(\phi)$ and $|\mathcal{A}_{\phi}| \in \mathcal{O}(|\phi|)$.

Proof.

The ABA $\mathcal{A}_{\phi} = \langle \Sigma, Q, I, \delta, F \rangle$ is defined as follows:

- $\Sigma = 2^{\mathcal{AP}}$
- $\bullet \ Q \coloneqq \mathcal{C}(\phi)$
- $I = \{\phi\}$
- $F = \{ \psi := \neg(\alpha \cup \beta) \mid \psi \in \mathcal{C}(\phi) \}$

Intuition on *F*:

- an infinite branch of a run tree reaching a state Gα (≡ ¬(⊤ U ¬α)) correctly ensures the realization of α at every step.
- an infinite branch of a run tree reaching a state *α* U *β* can postpone the realization of *β* forever.

Given a LTL formula ϕ over \mathcal{AP} , we can effectively construct a ABA $\mathcal{A}_{\phi} = \langle \Sigma, Q, I, \delta, F \rangle$ with $\Sigma = 2^{\mathcal{AP}}$ such that $\mathcal{L}(\mathcal{A}_{\phi}) = \mathcal{L}(\phi)$ and $|\mathcal{A}_{\phi}| \in \mathcal{O}(|\phi|)$.

Proof.

The ABA $\mathcal{A}_{\phi} = \langle \Sigma, Q, I, \delta, F \rangle$ is defined as follows:

- $\Sigma = 2^{\mathcal{AP}}$
- $Q \coloneqq \mathcal{C}(\phi)$
- $I = \{\phi\}$
- $F = \{ \psi := \neg(\alpha \cup \beta) \mid \psi \in \mathcal{C}(\phi) \}$

Intuition on *F*:

- We should *not allow* infinite branches which visit infinitely often a state $\alpha \cup \beta$.
- The branches starting from a state *α* U *β* that will realize *β* in the future will eventually take a *¬*-transition and thus are finite branches.

Given a LTL formula ϕ over \mathcal{AP} , we can effectively construct a ABA $\mathcal{A}_{\phi} = \langle \Sigma, Q, I, \delta, F \rangle$ with $\Sigma = 2^{\mathcal{AP}}$ such that $\mathcal{L}(\mathcal{A}_{\phi}) = \mathcal{L}(\phi)$ and $|\mathcal{A}_{\phi}| \in \mathcal{O}(|\phi|)$.

Proof.

For each $q \in Q$ and for each $a \in \Sigma$, we define $\delta(q, a)$ as follows:

• $\delta(p, a) = \begin{cases} \top & \text{if } p \in a \\ \downarrow & \text{otherwise} \end{cases}$

•
$$\delta(\neg \psi, a) = \neg \delta(\psi, a)$$

• $\delta(\psi_1 \land \psi_2, a) = \delta(\psi_1, a) \land \delta(\psi_2, a)$

•
$$\delta(\mathsf{X}\psi,a) = \psi$$

•
$$\delta(\psi_1 \cup \psi_2, a) =$$

 $\delta(\psi_2, a) \land (\delta(\psi_1, a) \lor \psi_1 \cup \psi_2)$

Example

Let $\phi := \neg q \land X \neg q \land p \lor q$. We define the ABA \mathcal{A}_{ϕ} equivalent to ϕ as $\langle 2^{\mathcal{AP}}, Q, \{\phi\}, \delta, F \rangle$ where:

• $Q \coloneqq C(\phi) = \{\phi, \neg \phi, \neg q, q, \mathsf{X} \neg q, \neg \mathsf{X} \neg q, \ldots, p \cup q, \neg (p \cup q)\}$

•
$$F := \{\neg (p \cup q)\}$$

Example

Let $\phi := \neg q \land X \neg q \land p \cup q$. We define the ABA \mathcal{A}_{ϕ} equivalent to ϕ as $\langle 2^{\mathcal{AP}}, Q, \{\phi\}, \delta, F \rangle$ where: • $\delta(\neg q, a) = \begin{cases} \top & \text{if } q \notin a \\ \bot & \text{otherwise} \end{cases}$ • $\delta(p, a) = \begin{cases} \top & \text{if } p \in a \\ \bot & \text{otherwise} \end{cases}$ • $\delta(\phi, a) =$ $\delta(\neg q, a) \wedge \delta(\mathsf{X} \neg q, a) \wedge \delta(p \cup q, a)$ • $\delta(p \cup q, a) = \delta(q, a) \vee (\delta(p, a) \wedge p \cup q)$

There are no infinite branches in the run tree

- in ABA, we don't require nothing for finite branches
- \Rightarrow the word is accepted

There are no infinite branches in the run tree

- in ABA, we don't require nothing for finite branches
- \Rightarrow the word is accepted

Note the similarities between taking a transition of type $\delta(q, a) = \top$ and informative prefixes:

⇒ a finite word *σ* induces a run tree of *A*_φ that contains only branches reaching a transition of type δ(*q*, *a*) = ⊤ iff *σ* is informative for φ

- any run tree for the ω-word ({p})^ω has an infinite branch going through state *p* U *q* infinitely many times
- *p* U *q* is not a final state
- $(\{p\})^{\omega}$ is rejected

- any run tree for the ω-word ({p})^ω has an infinite branch going through state *p* U *q* infinitely many times
- *p* U *q* is not a final state
- $(\{p\})^{\omega}$ is rejected

Theorem

For every LTL formula ϕ such that $\mathcal{L}(\phi)$ is safety, there exists a AFA \mathcal{A} that recognizes exactly the informative bad prefixes of ϕ and $|\mathcal{A}| \in \mathcal{O}(|\phi|)$.

Proof.

Let $\mathcal{A}_{\neg\phi} = \langle \Sigma, Q, I, \delta, F \rangle$ be the ABA for $\neg \phi$ (its size in linear in $|\phi|$). We define $\mathcal{A}'_{\neg\phi}$ as $\langle \Sigma, Q, I, \delta, \varnothing \rangle$.

- the only way for $\mathcal{A}'_{\neg\phi}$ to accept a word having a run tree in which all branches take a transition of type $\delta(q, a) = \top$.
- this means that the word must be *informative* for $\neg \phi$.

The AFA for the informative bad prefixes of ϕ is obtained from $\mathcal{A}'_{\neg\phi}$ by setting the accepting condition to the case of finite words.

Consider the formula:

 $\phi \coloneqq \mathsf{G}(p \to (\mathsf{X}q \land \mathsf{X} \neg q))$

which is equivalent to G(p). We have:

 $\neg \phi \coloneqq \mathsf{F}(p \land (\mathsf{X}q \lor \mathsf{X}\neg q))$

The AFA for the informative bad prefixes of ϕ is such that:

- it accepts the word {*p*} · {*p*}, which is informative
- but it does not accept the *minimal* bad prefix {*p*}, which is not informative

Theorem

For every SafetyLTL *formula* ϕ *, there exists an* AFA A *such that* $|A| \in O(|\phi|)$ *and*

- *if* ϕ *is intentionally safe, then* A *is tight for* ϕ *;*
- *if* ϕ *is accidentally safe, then* A *is fine for* ϕ *;*

Proof.

Trivially follows from these three points.

- Let *A* be the automaton for the informative bad prefixes of *φ*.
- Every bad prefix of an intentionally safe formula is informative.
 - $\Rightarrow \mathcal{A}$ is tight for ϕ
- Every violation of an accidentally safe formula contains an informative prefix.
 - $\Rightarrow \mathcal{A}$ is fine for ϕ

Theorem

For each AFA \mathcal{A} there exists an NFA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A})$ and $|\mathcal{A}'| \in 2^{\mathcal{O}(|\mathcal{A}|)}$.

Reference

Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer (1981). "Alternation". In: J. ACM 28.1, pp. 114–133. DOI: 10.1145/322234.322243. URL: https://doi.org/10.1145/322234.322243

Theorem

For every LTL formula ϕ such that $\mathcal{L}(\phi)$ is safety, there exists a NFA \mathcal{A} that recognizes exactly the informative bad prefixes of ϕ and $|\mathcal{A}| \in 2^{\mathcal{O}(|\phi|)}$.

REFERENCES

Bibliography I

Aaron R Bradley (2011). "SAT-based model checking without unrolling". In: International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, pp. 70–87.

Roberto Cavada et al. (2014). "The nuXmv symbolic model checker". In:

International Conference on Computer Aided Verification (CAV). Springer, pp. 334–342. DOI: 10.1007/s10009-006-0001-2.

Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer (1981).

"Alternation". In: J. ACM 28.1, pp. 114–133. DOI: 10.1145/322234.322243. URL: https://doi.org/10.1145/322234.322243.

Koen Claessen and Niklas Sörensson (2012). "A liveness checking algorithm that counts". In: 2012 Formal Methods in Computer-Aided Design (FMCAD). IEEE, pp. 52–59.

Bibliography II

Orna Kupferman and Moshe Y Vardi (2001). "Model checking of safety properties". In: *Formal Methods in System Design* 19.3, pp. 291–314. DOI: 10.1023/A:1011254632723.