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1 Background
1 Regular and ω-regular languages
2 The First- and Second-order Theory of One Successor
3 Automata over finite and infinite words
4 Linear Temporal Logic

2 The safety fragment of LTL and its theoretical features
1 Definition of Safety and Cosafety
2 Characterizations and Normal Forms
3 Kupferman and Vardi’s Classification
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3 Recognizing safety
1 Recognizing safety Büchi automata
2 Recognizing safety formulas of LTL
3 Construction of the automaton for the bad prefixes

4 Algorithms and Complexity
1 Satisfiability
2 Model Checking
3 Reactive Synthesis

5 Succinctness and Pastification
1 Succinctness of Safety Fragments
2 Pastification Algorithms
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MODEL CHECKING OF SAFETY
PROPERTIES



• Invariance checking: it is defined as LTL model checking of a formula of the
form G(ϕ) where ϕ is a Boolean formula.

Does ϕ hold in (at least) every reachable state of M?
• Given M = ⟨AP,Q, I,T,L⟩ and a Boolean formula ϕ over the variables AP

find a reachable state in which ¬ϕ holds or establish its nonexistence.
• it is a reachability problem
• if ϕ holds in every reachable state of M, then ϕ is invariant in M
• otherwise, there is a finite trace as counterexample:

⟨s0, s1, . . . , sn⟩

such that si |= ϕ for any i < n and sn ̸|= ϕ.

Invariance checking
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The problem of invariance checking is thoroughly studied in symbolic model
checking.

• IC3 is arguably the state-of-the-art algorithm for symbolic invariance checking
• outstanding performance

Reference:
Aaron R Bradley (2011). “SAT-based model checking without unrolling”. In:
International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, pp. 70–87

Symbolic Invariance Checking
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Classical Approach

Let M be Kripke structure, s an initial state of M, and ϕ be an LTL formula such
that L(ϕ) is safety.
• Objective: efficient algorithms for model checking of safety properties

(M, s |= Aϕ)
• exploiting the reduction from infinite to finite trace
• exploiting efficient backends for symbolic invariance checking

Model Checking of Safety Properties
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Classical Approach

Let M be Kripke structure, s an initial state of M, and ϕ be an LTL formula such
that L(ϕ) is safety.

1 Build the automaton over finite words (DFA) Abad for the bad prefixes of L(ϕ).
2 Build the product AM ×Abad.
3 Check the reachability of a final state in AM ×Abad

• or equivalently that the property “the current state is not final” is invariant

G(¬final)

4 Output:
• if found: there is a counterexample to ϕ
• otherwise: ϕ holds in M

Model Checking of Safety Properties
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• Kripke Structure M:

m0 m1

m2 m3

p0

p1

p2

p3

AM:

• Automaton for the bad prefixes of
G(p0 ∨ p1 ∨ p2):

q0 q1

∗ \ ⟨p3⟩

⟨p3⟩

∗

Abad:

We denote with ⟨p3⟩ all the subsets of {p0, p1, p2, p3} that contain
the proposition p3 .

m0

q0

m1

q0

m2

q0

m3

q0

m0

q1

m1

q1

m2

q1

m3

q1

p0

p1

p2

p0

p1

p2

p3

p3AM ×Abad:

• We reduced the problem
M, s |= A G(p0 ∨ p1 ∨ p2) to checking
whether: (reachability)

AM ×Abad |= G(q0)

Model Checking of Safety Properties
Example
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• Kripke Structure M:
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G(p0 ∨ p1 ∨ p2):
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Abad:

We denote with ⟨p3⟩ all the subsets of {p0, p1, p2, p3} that contain
the proposition p3 .
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m0

q1

m1

q1

m2

q1

m3

q1

p0

p1

p2

p0

p1

p2

p3

p3AM ×Abad:

• We reduced the problem
M, s |= A G(p0 ∨ p1 ∨ p2) to checking
whether: (reachability)

AM ×Abad |= G(q0)

• The property does not hold:
counterexample trace

Model Checking of Safety Properties
Example
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K-LIVENESS



• (Symbolic) Invariance Checking: very efficient algorithms
• Some algorithms for LTL model checking leverage this efficiency:

• LTL-MC⇝ invariance checking

• K-Liveness

Reference:
Koen Claessen and Niklas Sörensson (2012). “A liveness checking algorithm
that counts”. In: 2012 Formal Methods in Computer-Aided Design (FMCAD).
IEEE, pp. 52–59

Model Checking of Safety Properties
K-Liveness
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Objectives:
1 Solve LTL-MC

M, s |= Aϕ

where ϕ is an LTL formula.
2 Reduction to a sequence of

invariance checking problems.
Solution:
• To count and bound the number of

times the product automaton
AM ×A¬ϕ visits a final state of A¬ϕ.

Model Checking of Safety Properties
K-Liveness
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Objectives:
1 Solve LTL-MC

M, s |= Aϕ

where ϕ is an LTL formula.
2 Reduction to a sequence of

invariance checking problems.
Solution:
• To count and bound the number of

times the product automaton
AM ×A¬ϕ visits a final state of A¬ϕ.

Main idea:
• Let A¬ϕ be a NBA for ¬ϕ.
• M, s |= Aϕ iff the language of
AM ×A¬ϕ is empty

• . . . iff each computation of AM ×A¬ϕ
visits a final state of A¬ϕ a finite
number of times

This number is clearly bounded above by
the number of states of AM ×A¬ϕ, i.e.,
|M| · | A¬ϕ |.

Model Checking of Safety Properties
K-Liveness
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• K-Liveness proceeds incrementally,
checking whether AM ×A¬ϕ visits a
final state K times for K = 1, 2, 3, . . .

• Methodology: use a counter
• K-counter AK = automaton that

stays in its state qf iff the
computation has visited less than K
times a final state of A¬ϕ

• Each subproblem is of the form:

AM ×A¬ϕ×AK, s |= A G(qf )

It is an invariance checking problem.

Main idea:
• Let A¬ϕ be a NBA for ¬ϕ.
• M, s |= Aϕ iff the language of
AM ×A¬ϕ is empty

• . . . iff each computation of AM ×A¬ϕ
visits a final state of A¬ϕ a finite
number of times

This number is clearly bounded above by
the number of states of AM ×A¬ϕ, i.e.,
|M| · | A¬ϕ |.

Model Checking of Safety Properties
K-Liveness
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• K-Liveness proceeds incrementally,
checking whether AM ×A¬ϕ visits a
final state K times for K = 1, 2, 3, . . .

• Methodology: use a counter
• K-counter AK = automaton that

stays in its state qf iff the
computation has visited less than K
times a final state of A¬ϕ

• Each subproblem is of the form:

AM ×A¬ϕ×AK, s |= A G(qf )

It is an invariance checking problem.

Termination:
• if M, s |= Aϕ, there exists a K for

which AM ×A¬ϕ visits final states at
most K times.

• if M, s ̸|= Aϕ, the algorithms
increments K until the upper bound:
it then stops.

Implementation:
• K-Liveness is implemented in the

nuXmv model checker.
Roberto Cavada et al. (2014). “The nuXmv symbolic model checker”. In:
International Conference on Computer Aided Verification (CAV). Springer,
pp. 334–342. DOI: 10.1007/s10009-006-0001-2

Model Checking of Safety Properties
K-Liveness
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Exploiting the KV’s classification
for efficient model checking



• Problem: the automaton for the bad prefixes is doubly exponential in the size of
the formula, in the worst case:

|ϕ| = n → |Abad | ∈ 22O(n)

This can become easily impractical.
• Solution: we relax the fact that the automaton has to recognize all bad

prefixes.
• ⇒ we want to build an automaton which recognizes only the informative prefixes.
• ⇒ only a single exponential blowup: |ϕ| = n → |Abad | ∈ 2O(n)

Model Checking of Safety Properties
Exploiting the KV’s classification

13/35 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Theorem
For every LTL formula ϕ such that L(ϕ) is safety, there exists a NFA A that recognizes
exactly the informative bad prefixes of ϕ and | A | ∈ 2O(|ϕ|).

Proof.
We will prove this result later.

Reference:
Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291–314. DOI:
10.1023/A:1011254632723

Model Checking of Safety Properties
Exploiting the KV’s classification
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Definition (Tight Automata)

Given a safety language L, a NFA A is tight for L iff L(A) = bad(L).

Definition (Fine Automata)

Given a safety language L, a NFA A is fine for L iff it accepts at least one bad prefix
for each violation of L, i.e.: ∀σ ̸∈ L . ∃i ≥ 0 . σ[0,i] ∈ L(A).

“In practice, almost all the benefit that one obtain from a tight automaton can also be
obtained from a fine automaton.”

Model Checking of Safety Properties
Exploiting the KV’s classification
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Let ϕ be any LTL formula such that L(ϕ) is a safety language. The definition of
informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe
2 accidentally safe
3 pathologically safe

Classification of Safety Properties
by Kupferman and Vardi
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Let ϕ be any LTL formula such that L(ϕ) is a safety language. The definition of
informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe

ϕ is intentionally safe iff all bad prefixes are informative.

For example:
• the formula G(p) is intentionally safe.
• the formula G(p ∨ (Xq ∧ X¬q)) is not intentionally safe, because

⟨{p}, {p}, {p}, {p},∅⟩ is a bad prefix but it is not informative.

2 accidentally safe
3 pathologically safe

Classification of Safety Properties
by Kupferman and Vardi
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Let ϕ be any LTL formula such that L(ϕ) is a safety language. The definition of
informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe
2 accidentally safe

ϕ is accidentally safe iff (i) not all the bad prefixes of ψ are informative, but (ii)
every σ ∈ (2AP)ω that violates ϕ has an informative bad prefix.

For example:
• G(p ∨ (Xq ∧ X¬q)) is accidentally safe: ⟨{p}, {p}, {p}, {p},∅⟩ is a bad prefix but it

is not informative. However, every infinite trace violating the formula has an
informative prefix of type {p}∗ ·∅ ·∅.

3 pathologically safe

Classification of Safety Properties
by Kupferman and Vardi
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Let ϕ be any LTL formula such that L(ϕ) is a safety language. The definition of
informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe
2 accidentally safe
3 pathologically safe

ϕ is pathologically safe iff there is a σ ∈ (2AP)ω that violates ϕ and has no
informative bad prefixes.

For example:
• (

G(q ∨ FGp) ∧ G(r ∨ FG¬p)
)
∨ Gq ∨ Gr

• the computation ∅ω violates the formula

∅ω |=
(
F(¬q ∧ GF¬p) ∨ F(¬r ∧ GFp)

)
∧ F(¬q) ∧ F(¬r)

• but each of its prefixes σ is not informative because
σ ̸|=KV

(
F(¬q ∧ GF¬p) ∨ F(¬r ∧ GFp)

)
∧ F(¬q) ∧ F(¬r), but no finite prefix is such.

Classification of Safety Properties
by Kupferman and Vardi
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Let ϕ be any LTL formula such that L(ϕ) is a safety language. The definition of
informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe
2 accidentally safe
3 pathologically safe

Formulas that are accidentally safe or pathologically safe are needlessly complicated:
• They contain a redundancy that can be eliminated.
• If a user wrote a pathologically safe formula, then probably he/she didn’t

mean to write a safety formula.
• This classification helps in detecting inconsistent or redundant specifications.

Classification of Safety Properties
by Kupferman and Vardi
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Theorem
For every LTL formula ϕ, there exists a NFA A such that | A | ∈ 2O(|ϕ|) and:

• if ϕ is intentionally safe, then A is tight for ϕ;
• if ϕ is accidentally safe, then A is fine for ϕ.

Reference:
Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291–314. DOI:
10.1023/A:1011254632723

Model Checking of Safety Properties
Exploiting the KV’s classification
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Theorem
For every LTL formula ϕ, there exists a NFA A such that | A | ∈ 2O(|ϕ|) and:

• if ϕ is intentionally safe, then A is tight for ϕ;
• if ϕ is accidentally safe, then A is fine for ϕ.

Pros:
• it is exponentially smaller than Abad

• it is built using alternating automata
Cons:

• we sacrify minimality
• this may be good for model

checking
• less good for monitoring

• it is nondeterministic (differently
from Abad):

• ok for model checking
• not ok for reactive synthesis

Model Checking of Safety Properties
Exploiting the KV’s classification
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We know prove this result.

Theorem
For every LTL formula ϕ such that L(ϕ) is safety, there exists a NFA A that recognizes
exactly the informative bad prefixes of ϕ and | A | ∈ 2O(|ϕ|).

Model Checking of Safety Properties
Exploiting the KV’s classification
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ALTERNATING AUTOMATA



Definition
An alternating automaton A is a tuple
A = ⟨Σ,Q, I, δ,F⟩ such that:

• Σ is the alphabet
• Q is the set of states
• I ⊆ Q is the set of initial states
• δ : Q × Σ → B+(Q)

• F ⊆ Q is the set of final states
where B+(Q) is the set of positive Boolean
formulas over the variables in Q.

Example

A := ⟨{a, b, c}, {q0, qA, qA, qB, qB}, {q0},
δ, {qA, qB}⟩ where δ : Q × Σ → B+(Q) is
defined as follows:

• δ(q0, ∗) =
qA ∧ qB

• δ(qA, a) = qA

• δ(qA, b) = qA

• δ(qA, c) = qA

• δ(qA, a) = qA

• δ(qA, b) = qA

• δ(qA, c) = qA

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

Alternating automata
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Definition
An alternating automaton A is a tuple
A = ⟨Σ,Q, I, δ,F⟩ such that:

• Σ is the alphabet
• Q is the set of states
• I ⊆ Q is the set of initial states
• δ : Q × Σ → B+(Q)

• F ⊆ Q is the set of final states
where B+(Q) is the set of positive Boolean
formulas over the variables in Q.

Definition (Run tree)

A run of an alternating automaton
A = ⟨Σ,Q, I, δ,F⟩ over a word
σ := ⟨σ0, σ1, . . .⟩ is a Q-labeled tree such
that:

• the root is labeled with a initial state
in I

• given a node q such that δ(q, σ) = Φ,
the set of all its children {q1, . . . , qk}
must satisfy Φ.

Alternating automata
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If Φ := ⊤, then q does not need to have
children: possible finite branches even

when reading infinite words.

Definition (Run tree)

A run of an alternating automaton
A = ⟨Σ,Q, I, δ,F⟩ over a word
σ := ⟨σ0, σ1, . . .⟩ is a Q-labeled tree such
that:

• the root is labeled with a initial state
in I

• given a node q such that δ(q, σ) = Φ,
the set of all its children {q1, . . . , qk}
must satisfy Φ.

Alternating automata
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Example

A := ⟨{a, b, c}, {q0, qA, qA, qB, qB}, {q0},
δ, {qA, qB}⟩ where δ : Q × Σ → B+(Q) is
defined as follows:

• δ(q0, ∗) =
qA ∧ qB

• δ(qA, a) = qA

• δ(qA, b) = qA

• δ(qA, c) = qA

• δ(qA, a) = qA

• δ(qA, b) = qA

• δ(qA, c) = qA

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

Alternating automata
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In general, an alternating automaton can
have multiple run trees over a given
word.

Definition (Accepting run tree)

A AFA (Alternating Finite Automata)
accepts a word σ iff there exists a run
tree such that all its branches end in a
final state.
A ABA (Alternating Büchi Automata)
accepts a word σ iff there exists a run
tree such that all infinite branches
reaches a final state infinitely often.

• Note that in ABA we don’t require
nothing for branches of finite length.

Alternating automata
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In general, an alternating automaton can
have multiple run trees over a given
word.

Definition (Accepting run tree)

A AFA (Alternating Finite Automata)
accepts a word σ iff there exists a run
tree such that all its branches end in a
final state.
A ABA (Alternating Büchi Automata)
accepts a word σ iff there exists a run
tree such that all infinite branches
reaches a final state infinitely often.

• Note that in ABA we don’t require
nothing for branches of finite length.

• An NFA is a AFA such that, for each
q ∈ Q and for each a ∈ Σ, the
Boolean formula δ(q, a) contains
only disjunctions.

• An NBA is a ABA such that, for each
q ∈ Q and for each a ∈ Σ, the
Boolean formula δ(q, a) contains
only disjunctions.

Alternating automata
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In general, an alternating automaton can
have multiple run trees over a given
word.

Definition (Accepting run tree)

A AFA (Alternating Finite Automata)
accepts a word σ iff there exists a run
tree such that all its branches end in a
final state.
A ABA (Alternating Büchi Automata)
accepts a word σ iff there exists a run
tree such that all infinite branches
reaches a final state infinitely often.

• Note that in ABA we don’t require
nothing for branches of finite length.

• An NFA is a AFA such that, for each
q ∈ Q and for each a ∈ Σ, the
Boolean formula δ(q, a) contains
only disjunctions.

• An NBA is a ABA such that, for each
q ∈ Q and for each a ∈ Σ, the
Boolean formula δ(q, a) contains
only disjunctions.

• If δ(q, a) contains only conjunctions,
for each q ∈ Q and for each a ∈ Σ,
the automaton is said to be universal.

Alternating automata
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Example

A := ⟨{a, b, c}, {q0, qA, qA, qB, qB}, {q0},
δ, {qA, qB}⟩ where δ : Q × Σ → B+(Q) is
defined as follows:

• δ(q0, ∗) =
qA ∧ qB

• δ(qA, a) = qA

• δ(qA, b) = qA

• δ(qA, c) = qA

• δ(qA, a) = qA

• δ(qA, b) = qA

• δ(qA, c) = qA

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

Alternating automata
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Example

A := ⟨{a, b, c}, {q0, qA, qA, qB, qB}, {q0},
δ, {qA, qB}⟩ where δ : Q × Σ → B+(Q) is
defined as follows:

• δ(q0, ∗) =
qA ∧ qB

• δ(qA, a) = qA

• δ(qA, b) = qA

• δ(qA, c) = qA

• δ(qA, a) = qA

• δ(qA, b) = qA

• δ(qA, c) = qA

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

Which is the ω-language of
this alternating automaton?

Alternating automata
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Example

A := ⟨{a, b, c}, {q0, qA, qA, qB, qB}, {q0},
δ, {qA, qB}⟩ where δ : Q × Σ → B+(Q) is
defined as follows:

• δ(q0, ∗) =
qA ∧ qB

• δ(qA, a) = qA

• δ(qA, b) = qA

• δ(qA, c) = qA

• δ(qA, a) = qA

• δ(qA, b) = qA

• δ(qA, c) = qA

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

Which is the ω-language of
this alternating automaton?

L(A) = {σ ∈ Σω | ∃ωi . σi = a ∧ ∃ωi . σi = b}

Alternating automata
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Example

A := ⟨{a, b, c}, {q0, qA, qA, qB, qB}, {q0},
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defined as follows:
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• δ(qB, c) = qB

• δ(qB, a) = qB

• δ(qB, b) = qB

• δ(qB, c) = qB

Alternating automata
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Alternating automata
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Definition
Given a LTL formula ϕ over AP , we can effectively construct a ABA
Aϕ = ⟨Σ,Q, I, δ,F⟩ with Σ = 2AP such that L(Aϕ) = L(ϕ) and | Aϕ | ∈ O(|ϕ|).

Proof.
We define the closure of ϕ, denoted with C(ϕ), as the set of subformulas of ϕ
(included ϕ itself) and their negations.
We define the set of states Q of Aϕ as C(ϕ).

• ⇒ states of Aϕ are subformulas of ϕ

From LTL to Alternating Büchi Automata
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Definition
Given a LTL formula ϕ over AP , we can effectively construct a ABA
Aϕ = ⟨Σ,Q, I, δ,F⟩ with Σ = 2AP such that L(Aϕ) = L(ϕ) and | Aϕ | ∈ O(|ϕ|).

Proof.
The ABA Aϕ = ⟨Σ,Q, I, δ,F⟩ is
defined as follows:
• Σ = 2AP

• Q := C(ϕ)
• I = {ϕ}
• F = {ψ := ¬(α U β) | ψ ∈ C(ϕ)}

Intuition on F:
• an infinite branch of a run tree

reaching a state Gα (≡ ¬(⊤ U ¬α))
correctly ensures the realization of
α at every step.

• an infinite branch of a run tree
reaching a state α U β can postpone
the realization of β forever.

From LTL to Alternating Büchi Automata
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Definition
Given a LTL formula ϕ over AP , we can effectively construct a ABA
Aϕ = ⟨Σ,Q, I, δ,F⟩ with Σ = 2AP such that L(Aϕ) = L(ϕ) and | Aϕ | ∈ O(|ϕ|).

Proof.
The ABA Aϕ = ⟨Σ,Q, I, δ,F⟩ is
defined as follows:
• Σ = 2AP

• Q := C(ϕ)
• I = {ϕ}
• F = {ψ := ¬(α U β) | ψ ∈ C(ϕ)}

Intuition on F:
• We should not allow infinite

branches which visit infinitely
often a state α U β.

• The branches starting from a state
α U β that will realize β in the
future will eventually take a
⊤-transition and thus are finite
branches.

From LTL to Alternating Büchi Automata
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Definition
Given a LTL formula ϕ over AP , we can effectively construct a ABA
Aϕ = ⟨Σ,Q, I, δ,F⟩ with Σ = 2AP such that L(Aϕ) = L(ϕ) and | Aϕ | ∈ O(|ϕ|).

Proof.
For each q ∈ Q and for each a ∈ Σ, we define δ(q, a) as follows:

• δ(p, a) =

{
⊤ if p ∈ a
⊥ otherwise

• δ(¬ψ, a) = ¬δ(ψ, a)
• δ(ψ1 ∧ ψ2, a) = δ(ψ1, a) ∧ δ(ψ2, a)

• δ(Xψ, a) = ψ

• δ(ψ1 U ψ2, a) =
δ(ψ2, a) ∧ (δ(ψ1, a) ∨ ψ1 U ψ2)

From LTL to Alternating Büchi Automata
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Example

Let ϕ := ¬q ∧ X¬q ∧ p U q. We define the
ABA Aϕ equivalent to ϕ as
⟨2AP ,Q, {ϕ}, δ,F⟩ where:

• Q := C(ϕ) =
{ϕ,¬ϕ,¬q, q,X¬q,¬X¬q, . . . ,
p U q,¬(p U q)}

• F := {¬(p U q)}

From LTL to Alternating Büchi Automata
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Example

Let ϕ := ¬q ∧ X¬q ∧ p U q. We define the
ABA Aϕ equivalent to ϕ as
⟨2AP ,Q, {ϕ}, δ,F⟩ where:

• δ(¬q, a) =

{
⊤ if q ̸∈ a
⊥ otherwise

• δ(p, a) =

{
⊤ if p ∈ a
⊥ otherwise

• δ(ϕ, a) =
δ(¬q, a) ∧ δ(X¬q, a) ∧ δ(p U q, a)

• δ(p U q, a) = δ(q, a) ∨ (δ(p, a) ∧ p U q)

From LTL to Alternating Büchi Automata
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There are no infinite branches in the run
tree
• in ABA, we don’t require nothing for

finite branches
• ⇒ the word is accepted

From LTL to Alternating Büchi Automata
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There are no infinite branches in the run
tree
• in ABA, we don’t require nothing for

finite branches
• ⇒ the word is accepted

Note the similarities between taking a
transition of type δ(q, a) = ⊤ and infor-
mative prefixes:
• ⇒ a finite word σ induces a run tree

of Aϕ that contains only branches
reaching a transition of type
δ(q, a) = ⊤ iff σ is informative for ϕ

From LTL to Alternating Büchi Automata
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• any run tree for the ω-word ({p})ω
has an infinite branch going through
state p U q infinitely many times

• p U q is not a final state
• ({p})ω is rejected

From LTL to Alternating Büchi Automata
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• any run tree for the ω-word ({p})ω
has an infinite branch going through
state p U q infinitely many times

• p U q is not a final state
• ({p})ω is rejected
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Theorem
For every LTL formula ϕ such that L(ϕ) is safety, there exists a AFA A that recognizes
exactly the informative bad prefixes of ϕ and | A | ∈ O(|ϕ|).

Proof.
Let A¬ϕ = ⟨Σ,Q, I, δ,F⟩ be the ABA for ¬ϕ (its size in linear in |ϕ|).
We define A′

¬ϕ as ⟨Σ,Q, I, δ,∅⟩.
• the only way for A′

¬ϕ to accept a word having a run tree in which all branches
take a transition of type δ(q, a) = ⊤.

• this means that the word must be informative for ¬ϕ.
The AFA for the informative bad prefixes of ϕ is obtained from A′

¬ϕ by setting the
accepting condition to the case of finite words.

An AFA for the informative prefixes
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Consider the formula:

ϕ := G(p → (Xq ∧ X¬q))

which is equivalent to G(p).
We have:

¬ϕ := F(p ∧ (Xq ∨ X¬q))

The AFA for the informative bad prefixes
of ϕ is such that:
• it accepts the word {p} · {p}, which

is informative
• but it does not accept the minimal

bad prefix {p}, which is not
informative

Counterexample to minimality
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Theorem
For every SafetyLTL formula ϕ, there exists an AFA A such that | A | ∈ O(|ϕ|) and

• if ϕ is intentionally safe, then A is tight for ϕ;
• if ϕ is accidentally safe, then A is fine for ϕ;

Proof.
Trivially follows from these three points.

• Let A be the automaton for the informative bad prefixes of ϕ.
• Every bad prefix of an intentionally safe formula is informative.

• ⇒ A is tight for ϕ
• Every violation of an accidentally safe formula contains an informative prefix.

• ⇒ A is fine for ϕ

Informative prefixes
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Theorem
For each AFA A there exists an NFA A′ such that L(A′) = L(A) and | A′ | ∈ 2O(| A |).

Reference
Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer (1981).
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https://doi.org/10.1145/322234.322243

Theorem
For every LTL formula ϕ such that L(ϕ) is safety, there exists a NFA A that recognizes
exactly the informative bad prefixes of ϕ and | A | ∈ 2O(|ϕ|).

From AFA to NFA
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