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Outline

® Background

@ Regular and w-regular languages

@ The First- and Second-order Theory of One Successor
©® Automata over finite and infinite words

@ Linear Temporal Logic

® The safety fragment of LTL and its theoretical features

@ Definition of Safety and Cosafety
@ Characterizations and Normal Forms
® Kupferman and Vardi’s Classification
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Outline

® Recognizing safety

@ Recognizing safety Biichi automata

@ Recognizing safety formulas of LTL

@ Construction of the automaton for the bad prefixes
® Algorithms and Complexity

@ GSatisfiability

® Model Checking

@ Reactive Synthesis
® Succinctness and Pastification

@ Succinctness of Safety Fragments
@ Pastification Algorithms
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MODEL CHECKING OF SAFETY
PROPERTIES



Invariance checking

e Invariance checking: it is defined as LTL model checking of a formula of the
form G(¢) where ¢ is a Boolean formula.

Does ¢ hold in (at least) every reachable state of M?
* Given M = (AP,Q,I,T,L) and a Boolean formula ¢ over the variables AP
find a reachable state in which —¢ holds or establish its nonexistence.

® it is a reachability problem
¢ if ¢ holds in every reachable state of M, then ¢ is invariant in M
® otherwise, there is a finite trace as counterexample:

(S0551, -+ ,5n)

such that s; = ¢ for any i < n and s, ¥~ ¢.
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Symbolic Invariance Checking

The problem of invariance checking is thoroughly studied in symbolic model
checking.
¢ |l@¢lis arguably the state-of-the-art algorithm for symbolic invariance checking

* outstanding performance

Reference:

Aaron R Bradley (2011). “SAT-based model checking without unrolling”. In:
International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, pp. 70-87
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Model Checking of Safety Properties

Classical Approach

Let M be Kripke structure, s an initial state of M, and ¢ be an LTL formula such
that £(¢) is safety.
® Objective: efficient algorithms for model checking of safety properties
M,s =A¢)
¢ exploiting the reduction from infinite to finite trace
® exploiting efficient backends for symbolic invariance checking
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Model Checking of Safety Properties

Classical Approach

Let M be Kripke structure, s an initial state of M, and ¢ be an LTL formula such
that £(¢) is safety.

@ Build the automaton over finite words (DFA) Ay,g for the bad prefixes of L£(¢).

® Build the product Ay x Apyg.
® Check the reachability of a final state in Ay X Apgg
¢ or equivalently that the property “the current state is not final” is invariant

G(—final)
@ Output:

¢ if found: there is a counterexample to ¢
¢ otherwise: ¢ holds in M
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Model Checking of Safety Properties

Example

¢ Kripke Structure M: /\ Po /\ /\ (mo\ P 0

Po
- AMXAbud
Aum: Py

g /\m = /n?z\pz =

O

* Automaton for the bad prefixes of * We reduced the problem
G(po Vp1Vp2): M. s |= AG(pg V p1 V po) to checking
*\ (p3) x whether: (reachability)

Apad: _’ <p3> AM X -Abm{ ‘: G(‘]())

We denote with (p3) all the subsets of {py, p1, p2, p3} that contain
the proposition ps.

8/35

L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences'



Model Checking of Safety Properties

Example

¢ Kripke Structure M: /\ Po /\ /\ (mo\ P 0
_). popl @ An % Abud
. f\ . /n;\ o m3

P3

O

* Automaton for the bad prefixes of * We reduced the problem
G(po Vp1Vp2): M.s = AG(pg V p1 V p2) to checking
*\ (p3) x whether: (reachability)

Apad: _’ <p3> AM X -Abm{ ‘: G(‘]())

® The property does not hold:

We denote with (p3) all the subsets of {py, p1, p2, p3} that contain COUnteTeXa]ﬂple trace
the proposition ps.
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K-LIVENESS



Model Checking of Safety Properties

K-Liveness

¢ (Symbolic) Invariance Checking: very efficient algorithms
¢ Some algorithms for LTL model checking leverage this efficiency:
¢ LTL-MC ~» invariance checking

(WK -] iveness

Reference:

Koen Claessen and Niklas Sorensson (2012). “A liveness checking algorithm
that counts”. In: 2012 Formal Methods in Computer-Aided Design (FMCAD).
IEEE, pp. 52-59
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Model Checking of Safety Properties

K-Liveness

Objectives:
@ Solve LTL-MC

M,s =A¢

where ¢ is an LTL formula.

® Reduction to a sequence of
invariance checking problems.

Solution:

¢ To count and bound the number of
times the product automaton
Apm x A-g4 visits a final state of 4.
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Model Checking of Safety Properties

K-Liveness
Objectives: Main idea:
@ Solve LTL-MC * Let A4 be a NBA for —¢.

* M,s = A ¢ iff the language of

Apm x Ay is empty
where ¢ is an LTL formula. ® ...iff each computation of Ap X A-¢
visits a final state of A a finite
number of times

M,s=A¢

® Reduction to a sequence of

invariance checking problems.
This number is clearly bounded above by

the number of states of Ay x A, i.e.,
® To count and bound the number of M| [ A |

times the product automaton
Apm x A-g4 visits a final state of 4.

Solution:

11/35 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequencesl



Model Checking of Safety Properties

K-Liveness

¢ K-Liveness proceeds incrementally,
checking whether Ay x A- visits a
final state K times for K =1,2.3, ...
* Methodology: use a counter

¢ K-counter Ag = automaton that
stays in its state gy iff the
computation has visited less than K
times a final state of A

¢ Each subproblem is of the form:
Ap o Ay < Agys = AG(gy)

It is an invariance checking problem.

Main idea:
* Let A4 be a NBA for —¢.
* M,s = A ¢ iff the language of
Apm x Ay is empty
* ...iff each computation of Ay x A4
visits a final state of A a finite
number of times

This number is clearly bounded above by
the number of states of Ay x A, i.e.,
M| - [ A-g |-
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Model Checking of Safety Properties

K-Liveness

¢ K-Liveness proceeds incrementally,
checking whether Ay x A- visits a
final state K times for K =1,2.3, ...
* Methodology: use a counter

¢ K-counter Ag = automaton that
stays in its state gy iff the
computation has visited less than K
times a final state of A

¢ Each subproblem is of the form:
Ap o Ay < Agys = AG(gy)

It is an invariance checking problem.

Termination:

* if M,s = A ¢, there exists a K for
which Ay x A- visits final states at
most K times.

* if M,s = A ¢, the algorithms
increments K until the upper bound:
it then stops.

Implementation:

* K-Liveness is implemented in the

nuXmv model checker.
Roberto Cavada et al. (2014). “The nuXmv symbolic model checker”. In:
International Conference on Computer Aided Verification (CAV). Springer,
pp- 334-342. DOI: 10.1007/510009-006-0001-2
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Exploiting the KV’s classification

for efficient model checking



Model Checking of Safety Properties

Exploiting the KV’s classification
¢ Problem: the automaton for the bad prefixes is doubly exponential in the size of
the formula, in the worst case:

ol =n — | Apa| € 227"

This can become easily impractical.
¢ Solution: we relax the fact that the automaton has to recognize all bad
prefixes.
® = we want to build an automaton which recognizes only the informative prefixes.
* = only a single exponential blowup: |¢p| =1 — | Apy | € 29
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Model Checking of Safety Properties

Exploiting the KV’s classification

Theorem

For every LTL formula ¢ such that L(¢) is safety, there exists a NFA A that recognizes
exactly the informative bad prefixes of ¢ and | A| € 20U9D.

Proof.

We will prove this result later. ]

Reference:

Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291-314. DOI:
10.1023/A:1011254632723
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Model Checking of Safety Properties

Exploiting the KV’s classification

Definition (Tight Automata)
Given a safety language £, a NFA A is tight for L iff £L(A) = bad(L).

Definition (Fine Automata)

Given a safety language £, a NFA A is fine for L iff it accepts at least one bad prefix
for each violation of £, i.e.: Vo & L. 3i > 0. 09 € L(A).

“In practice, almost all the benefit that one obtain from a tight automaton can also be
obtained from a fine automaton.”
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Classification of Safety Properties

by Kupferman and Vardi

Let ¢ be any LTL formula such that £(¢) is a safety language. The definition of
informative prefix is used to classify such formulas ¢ into three types:

@ intentionally safe
@® accidentally safe
@ pathologically safe
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Classification of Safety Properties

by Kupferman and Vardi

Let ¢ be any LTL formula such that £(¢) is a safety language. The definition of
informative prefix is used to classify such formulas ¢ into three types:

@ intentionally safe

¢ is intentionally safe iff all bad prefixes are informative.

For example:

¢ the formula G(p) is intentionally safe.
¢ the formula G(p V (Xq A X—q)) is not intentionally safe, because
{p}, {pr}, {r}, {r}, @) is a bad prefix but it is not informative.

® accidentally safe
@ pathologically safe
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Classification of Safety Properties

by Kupferman and Vardi

Let ¢ be any LTL formula such that £(¢) is a safety language. The definition of
informative prefix is used to classify such formulas ¢ into three types:

o
® accidentally safe

¢ is accidentally safe iff (i) not all the bad prefixes of ¢ are informative, but (ii)
every o € (247)* that violates ¢ has an informative bad prefix.

For example:

° G(pV (Xq A X—q)) is accidentally safe: ({p}, {p},{p},{p}, @) is a bad prefix but it
is not informative. However, every infinite trace violating the formula has an
informative prefix of type {p}* - @ - @.

@ pathologically safe
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Classification of Safety Properties

by Kupferman and Vardi

Let ¢ be any LTL formula such that £(¢) is a safety language. The definition of
informative prefix is used to classify such formulas ¢ into three types:

@ intentionally safe

@® accidentally safe

@ pathologically safe
2A73)

¢ is pathologically safe iff thereis a o € ( “ that violates ¢ and has no

informative bad prefixes.

For example:
* (G(qVFGp) AG(rVv FG-p)) vV Gg V Gr

¢ the computation @* violates the formula

@* t= (F(=g A GF=p) V F(=r A GF;))) A F(=q) ANF(=r)
® but each of its prefixes ¢ is not informative because
o Fx (\F(‘ q A GF=p) V F(—r A GFp)) A F(=g) A F(=r), but no finite prefix is such.
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Classification of Safety Properties

by Kupferman and Vardi

Let ¢ be any LTL formula such that £(¢) is a safety language. The definition of
informative prefix is used to classify such formulas ¢ into three types:

@ intentionally safe
@® accidentally safe
@ pathologically safe

Formulas that are accidentally safe or pathologically safe are needlessly complicated:
¢ They contain a redundancy that can be eliminated.

¢ If a user wrote a pathologically safe formula, then probably he/she didn’t
mean to write a safety formula.

¢ This classification helps in detecting inconsistent or redundant specifications.
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Model Checking of Safety Properties

Exploiting the KV’s classification

Theorem

For every LTL formula ¢, there exists a NFA A such that | A| € 2°U¢) and:
* if ¢ is intentionally safe, then A is tight for ¢;
* if ¢ is accidentally safe, then A is fine for ¢.

Reference:

Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291-314. DOI:
10.1023/A:1011254632723
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Model Checking of Safety Properties

Exploiting the KV’s classification

Theorem

For every LTL formula ¢, there exists a NFA A such that | A| € 2°U¢D and:
° if ¢ is intentionally safe, then A is tight for ¢;
* if ¢ is accidentally safe, then A is fine for ¢.

Pros:
* it is exponentially smaller than Ay,
* it is built using alternating automata

Cons:
* we sacrify minimality * it is nondeterministic (differently
¢ this may be good for model from Apgg):
checking * ok for model checking
* less good for monitoring * not ok for reactive synthesis
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Model Checking of Safety Properties

Exploiting the KV’s classification

We know prove this result.

Theorem

For every LTL formula ¢ such that L(¢) is safety, there exists a NFA A that recognizes
exactly the informative bad prefixes of ¢ and | A| € 20U9D,
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ALTERNATING AUTOMATA



5 Alternating automata

Definition Example
An alternating automaton A is a tuple A= ({a,b,c}, {40, 94,74, 98,78}, {q0},
A= (%,Q,1,6,F) such that: 8,{q4,98}) where § : Q x ¥ — BT (Q) is
¢ ¥ is the alphabet defined as follows:
* Qis the set of states * 5(qgo, %) = * §(a,c) =7qa
o I C Qis the set of initial states qa \qs ° 5(gp,a) =5
°*5:Qx¥—BTQ) ° 0(qa,a) =4ga * 5(qp,b) =gz
* F C Qs the set of final states ® 6(ga,b) =qa * d(qp,c) =g
where B (Q) is the set of positive Boolean ® 5(qa,c) =7qa * 0(qp,a) =75
formulas over the variables in Q. ° §(Ga,a) = qa ° §(75,b) = qs
¢ 5(q77b):q7 ¢ 5(‘773?‘:):5]7
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Alternating automata

Definition Definition (Run tree)
An alternating automaton A is a tuple A run of an alternating automaton
A= (%,Q,1,4,F) such that: A= (2,0,1,4,F) over a word
¢ ¥ is the alphabet o = (09,01, ...)is a Q-labeled tree such
* Qis the set of states that:
» [ C Qis the set of initial states ¢ the root is labeled with a initial state

°§:Qx¥ —BHQ) il
e F C Qs the set of final states

where BT (Q) is the set of positive Boolean
formulas over the variables in Q.

* given a node g such that 6(g,0) = @,
the set of all its children {q1, ..., g}
must satisfy ®.
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If @ := T, then q does not need to have
children: possible finite branches even
when reading infinite words.

Alternating automata

Definition (Run tree)

A run of an alternating automaton
A= (3,Q,1,0,F) over a word

o = (09,01, ...)is a Q-labeled tree such
that:

¢ the root is labeled with a initial state
inl
* given a node g such that 6(g,0) = @,

the set of all its children {q1, ..., g}
must satisfy ®.
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Alternating automata

Example

A= ({a,b,c}, {q0,94,94, 98,98}, {90},

6,{q4,q8}) where 6 : Q x ¥ — BT (Q) is . .
defined as follows: " / \ q l e

° 6(qo, ) = * (qa,c) =qa ' 5
ga N qB ® 4(qp,a) =1qB 5 .7 !

° 0(qa,a) =qa ° 5(q8,b) = qs c

* 6(qa,b) =qa ° 6(qp,c) =175 e * 5 .

°©0qa0) =04  ° 6(@5.0) =75 N e \ °

© 0@a.a)=qa  * 6(75.b) =qs l |- e

© 5@nb)=da  ° 5@c) =78 ’ "

22/35 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequencesl



Alternating automata

In general, an alternating automaton can
have multiple run trees over a given
word.

* Note that in ABA we don’t require
nothing for branches of finite length.

Definition (Accepting run tree)

A (Alternating Finite Automata)
accepts a word o iff there exists a run
tree such that all its branches end in a
final state.

A (Alternating Biichi Automata)
accepts a word o iff there exists a run
tree such that all infinite branches
reaches a final state infinitely often.
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Alternating automata

In general, an alternating automaton can

; . * Note that in ABA we don’t require
have multiple run trees over a given

nothing for branches of finite length.

word.

* An NFA is a AFA such that, for each
Definition (Accepting run tree) g € Qand for eacha € 3, the
A (Alternating Finite Automata) Booleapl formula 6(¢,a) contains
accepts a word o iff there exists a run only disjunctions.
tree such that all its branches end in a * An NBA is a ABA such that, for each
final state. g € Qand for eacha € %, the
A (Alternating Biichi Automata) Boolean formula §(g,a) contains
accepts a word o iff there exists a run only disjunctions.

tree such that all infinite branches
reaches a final state infinitely often.
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In general, an alternating automaton can
have multiple run trees over a given
word.

Definition (Accepting run tree)

A (Alternating Finite Automata)
accepts a word o iff there exists a run
tree such that all its branches end in a
final state.

A (Alternating Biichi Automata)
accepts a word o iff there exists a run
tree such that all infinite branches
reaches a final state infinitely often.

Alternating automata

Note that in ABA we don’t require
nothing for branches of finite length.

An NFA is a AFA such that, for each
g € Qand for eacha € 3, the
Boolean formula §(g,a) contains
only disjunctions.

An NBA is a ABA such that, for each
g € Qand for eacha € %, the
Boolean formula 6(g,a) contains
only disjunctions.

If 6(g,a) contains only conjunctions,
for each g € Q and for eacha € %,
the automaton is said to be universal.
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Example

A= <{a7 b,C}, {QOJIAJ]_A, QBM_B}, {q0}7

8,{q94,q98}) where § : Q x ¥ — B*(Q) i

s ez/\qﬁ ]°

defined as follows: |

© 8(q0, %) = ©sgre) = B e
94\ 4B ¢ 6(’737‘1) :q73 c

* 0(q4,2) = qa * 3(q,b) = g e .3, .

SNV =T cdgo=m ] P

©0qa0) =Fa  ° 6(d5.a) =75 ’ | i

© 0@aa)=qa  ° 6@s.b) = qs ‘ "

® 6(qa,b) =qa ® 6(q8,¢) =qp
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Alternating automata

Which is the w-language of

Example this alternating automaton?

A= <{a= b,C}, {QO,LIAJ]_A, qBaq_B}7 {qO},
6,{q4,98}) where § : Q x ¥ — B*(Q) is

defined as follows:

° 0(qo, *) = ° 0(qa,c) =4qa

QA/\[]B ¢ 6(’737‘1) :q73
® 0(q4,8) =4qa * 6(qs.b) = qp
* 8(qa,b) =74 * 5(gs,¢) = 8
* 5(ga,c) =74 * 3(q8,4) = 75
* 3(q4,a) = qa * 5(48,) = q8
© 6(Ga,b) =qa * 6(@s,¢) = 8
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Alternating automata

Which is the w-language of

Example this alternating automaton?

A= ({a,b,c}, {90,94,94, 98,98}, {90} LA)={oceX¥|i.o;=a N .o, =b}
8,{q94,98}) where § : Q x ¥ — BT (Q) is
defined as follows:

® 6(qo, %) * 6(qa,c) = qa

qa N\ qs ° 5(,13,,1) =75
® 6(qa,a) = ga ° §(qs,b) = gs
® 6(qa,b) =qa ® 6(q8,c) =78
* d(qa,c) =1qa ° 6(q,a) =qp
* 6(qa,a) = ga ® 6(q8,b) = g8
* 0(qa,b) =7qa * 6(q,c) =g

24/35 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequencesl



Example o= (obe)”

A= ({a,b,c}, {q0,94,94,98. 98}, {90},
8,{q4,98}) where § : Q x ¥ — B*(Q) is

9o
[
defined as follows: / \
e 9

-]
® 5(qo, %) = ° 5(,177(:):‘77 oo l . .L
qga Nqs ° §(qg,a) =75 T e Lo, |
* 0(q4,0) = 4a © 0(q,b) = q8 % l l % L
°© 6(qa,b) =qa * d(q8,c) =148 l !_ |
* 0(qa;0) =7qa * §(75,a) =75 b | lj& )
°© 0(qa,a) =qa ° 6(gs,b) = g W P :
* 0(qa,b) =qa * 6(75,c) =175 ; :
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Alternating automata

Example e (abe)”

A= ({a,b,c}, {q0,94,94,98. 98}, {90},
8,{q4,98}) where § : Q x ¥ — B*(Q) is

5

defined as follows: $ / .\ [ K

© 6(q0,%) = © 6(74,0) = g I
ga N\ qs ° 6(qs,a) = G e D 1

° 0(qa,a) = qa ° §(q,b) = qp - | lg L
® 6(qa,b) =qa * 6(gp,c) =78 1 I | 3
©0gac) =4 @50 =05 I | .
® 5(qa,a) =qa * 0(qp,b) = s % 'I i 4 8
° §(7a,b) =1qa * §(78,¢c) =75 ' :'
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From LTL to Alternating Biichi Automata

Definition

Given a LTL formula ¢ over AP, we can effectively construct a ABA
Ay =(%,Q,1,6,F) with ¥ = 24P such that L(Ag) = L(¢) and | Ay | € O(|9)]).

Proof.

We define the closure of ¢, denoted with C(¢), as the set of subformulas of ¢
(included ¢ itself) and their negations.
We define the set of states Q of A, as C(¢).

° — of A4 are subformulas of ¢

26/35 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequencesl



From LTL to Alternating Biichi Automata

Definition

Given a LTL formula ¢ over AP, we can effectively construct a ABA
Ag = (2,Q,1,6,F) with & = 247 such that £L(A,) = L(¢) and | Ay | € O(|9]).

Proof.
The ABA A, = (X,Q,1,0,F) is Intuition on F:
defined as follows: ® an infinite branch of a run tree
o Y — AP reaching a state G (= =(T U —a))
correctly ensures the realization of
° Q:=C(9) « at every step.
© I={¢} ® an infinite branch of a run tree
e F={¢y:=—(aUp) |y eC(o)} reaching a state & U § can postpone

the realization of 3 forever.
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From LTL to Alternating Biichi Automata

Definition

Given a LTL formula ¢ over AP, we can effectively construct a ABA
Ay =(%,Q,1,6,F) with ¥ = 24P such that L(Ag) = L(¢) and | Ay | € O(|9)]).

Proof.
The ABA A, = (X,Q,1,0,F) is Intuition on F:
defined as follows: We should not allow infinite
Y — AP branches which visit infinitely
often a state oo U 8.
Q:=C(¢) :
The branches starting from a state
I={¢} o U 3 that will realize 3 in the
F={y:==(aUpB) |y eC()} future will eventually take a
-transition and thus are
branches.

26/35 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequencesl



From LTL to Alternating Biichi Automata

Definition

Given a LTL formula ¢ over AP, we can effectively construct a ABA
Ay =(%,Q,1,6,F) with ¥ = 24P such that L(Ag) = L(¢) and | Ay | € O(|9)]).

Proof.

For each g € Q and for each a € ¥, we define 6(g,a) as follows:

° i(p,a) = I ifpea. S QRS
otherwise
° 5("1/%”) = ﬁé(i/faa) e 5(¢1 U Qj)z,ﬂ) =
® 5(p1 ANpo,a) = d(2p1,a) A 6(1r,a) d(2p2,a) A (0(3h1,a) V 1 U )
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Example

. o= (Jeh-4e4-499) - Z°
Let ¢ .= =g A X—g A p U q. We define the

ABA A, equivalent to ¢ as
(24P Q. {$}, 6, F) where:

[ ] ? [
o Q:i=C(¢) = 29 / \. oy l I

{¢7 _'¢a 4,4, X_'t], _'X_‘q’ SR I *P‘
pUq,—~(pUq)} o #Us
* F={-(pUq} i
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Example

. o= (Jeh-4e4-499) - Z°
Let ¢ .= =g A X—g A p U q. We define the

ABA A, equivalent to ¢ as
(24P Q. {$}, 6, F) where:

[ ] (f [ ]
‘ v \. i lm
5(ﬂq,a)={T ifq¢a -/ P%

6(¢,a) =
d(—g,a) N 6(X—g,a) Né(p U g,a)

é(pUgq,a)=6(q,a) vV (6(p,a) A\pUq)

1 otherwise ]

. ° P07 )
* 8(p,) = {I g | 4
otherwise |

‘ ]
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From LTL to Alternating Biichi Automata

There are no infinite branches in the run
tree

g = P i P; 2 . 5
* in ABA, we don’t require nothing for G Al '}9;) Z
finite branches

* = the word is accepted

[ ] ? [ ]
29 / \. oy lm

° PU?
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There are no infinite branches in the run

tree o= (fPHPf'Hf) Y

* in ABA, we don’t require nothing for
finite branches

* = the word is accepted J
9 \. pYs

Note the similarities between taking a
transition of type §(q,a) = T and infor- I
mative prefixes: o ol

@-—2a
e e
) -
—_— ~—

—
-5
—_

* = afinite word o induces a run tree
of Ay that contains only branches
reaching a transition of type
0(g,a) = T iff o is informative for ¢

e —— o —— @
. .

27/35 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequencesl



¢ any run tree for the w-word ({p})*
has an infinite branch going through o= (47§ )
state p U g infinitely many times

* pUgisnot a final state o .
* ({p})¥is rejected 19 / \. ps l e}
I ) ' i

PYq e
T | 174

) pl/’ o
| | et
I P9 .

]
T
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¢ any run tree for the w-word ({p})* w
has an infinite branch going through o= ({f ‘)
state p U g infinitely many times

* pUgisnot a final state o

(P ( ]
o ({p})* is rejected I i R
1
|
!
!
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An AFA for the informative prefixes

Theorem

For every LTL formula ¢ such that L(¢) is safety, there exists a AFA A that recognizes
exactly the informative bad prefixes of ¢ and | A| € O(|¢)).

Proof.

Let A4 = (X,Q,1,9, F) be the ABA for —¢ (its size in linear in |¢|).

We define A” ; as (%,Q, 1,6, 9).
the only way for A ; to accept a word having a run tree in which all branches
take a transition of type d(g,a) =
this means that the word must be for —¢.

The AFA for the informative bad prefixes of ¢ is obtained from A’ ; by setting the
accepting condition to the case of finite words. ]
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Counterexample to minimality

Consider the formula:
¢ = G(p = (Xg A X~q)) o= {e}-1P)

which is equivalent to G(p). o !

We have: / \ ]“,}
—¢ =F(p A (XqV X—q)) Te o ¢

The AFA for the informative bad prefixes 1

of ¢ is such that:

* it accepts the word {p} - {p}, which o= e}
is informative

¢ but it does not accept the minimal

o ¥
bad prefix {p}, which is not / \ ]H’}
1 ® oﬂq ®

informative
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Informative prefixes

Theorem

For every SafetyLTL formula ¢, there exists an AFA A such that | A| € O(|¢|) and
if ¢ is intentionally safe, then A is tight for ¢;
if ¢ is accidentally safe, then A is fine for ¢;

Proof.
Trivially follows from these three points.
Let A be the automaton for the informative bad prefixes of ¢.
Every bad prefix of an intentionally safe formula is informative.
= A is tight for ¢
Every violation of an accidentally safe formula contains an informative prefix.

= A is fine for ¢

- .
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From AFA to NFA

Theorem
For each AFA A there exists an NFA A’ such that L(A') = L(A) and | A'| € 20UAD,

Reference

Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer (1981).
“Alternation”. In: . ACM 28.1, pp. 114-133. DOI: 10.1145/322234.322243. URL:
https://doi.org/10.1145/322234.322243

Theorem

For every LTL formula ¢ such that L(¢) is safety, there exists a NFA A that recognizes
exactly the informative bad prefixes of p and | A| € 200D,
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