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the classical equilibrium problem

Elastic or inextensible membrane Ω ⊂ R2
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the classical equilibrium problem

Ω simply connected bounded open set

σ =
(
σ11 σ12
σ12 σ22

)
stress tensor

Assume σ ∈ L∞(Ω) be such that

K−1|ξ|2 ≤ σ(x)ξ · ξ ≤ K|ξ|2 , K ≥ 1 ,

and equilibrated with stretching forces T applied on ∂Ω, so{
divσ = 0 in Ω
σν = T on ∂Ω

f transverse load
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the classical equilibrium problem

The transverse displacement u satisfies the boundary value problem
(see [2] and [1]) {

− div(σ∇u) = f in Ω
u = ϕ on ∂Ω

Let f = 0 in the sequel.

Notice that σ divergencefree means

div(σξ) = 0 ∀ξ ∈ R2

hence (crucial for a property in Γ-convergence [6])

ϕ(x) = ξ · x on ∂Ω ⇒ u(x) = ξ · x on Ω

equivalently, the operator is both variational and nonvariational
2∑

ij=1

Di(σijDju) =
2∑

ij=1

σijD2
iju
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the model

This model is derived in [2] from the Von Kármán plate
Eh3

12(1− ν)
42u− h div(σ∇u) = f

divσ = 0
+b.c.

where the first term (longitudinal stress caused by bending) is
neglected, it is considered small with respect to the external stretching
forces applied on ∂Ω.

In [1] the model is justified in the framework of asymptotic expansion
in Γ-convergence for dimension reduction of a 3D elastic body.
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the D-N map

For every Dirichlet datum ϕ we measure the corresponding load
(”Neumann output”) on the boundary

Λσϕ = σ∇u · ν on ∂Ω

The bounded linear operator Λσ : H
1
2 (∂Ω) → H− 1

2 (∂Ω) is named
Dirichlet-to-Neumann (D-N) map.
Weak definition of Λσ

< Λσϕ, v|∂Ω >=
∫

Ω
σ∇u · ∇v ∀v ∈ H1(Ω)

so that it is related with the energy (in a sense, the power needed to
maintain the potential ϕ on ∂Ω)

Qσ(ϕ) =
∫

Ω
σ∇u·∇u =

∫
∂Ω

Λσ(ϕ)ϕ =< Λσϕ,ϕ > ∀ϕ ∈ H
1
2 (∂Ω)

and, by symmetry of Λσ, the knowledge of Qσ is equivalent to the
knowledge of Λσ
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our inverse problem

Problem
Given Λσ, find σ ∈ ΣK where
ΣK = {σ ∈ L∞(Ω, Sym2×2) | K−1 ≤ σ ≤ K, divσ = 0}

Relevant aspects: uniqueness and, possibly, stability (i.e. continuous
dependence).
In general:

proposed by Calderón in 1980 [8] for a scalar (conductivity
isotropic tensor) σ : Ω → (0,+∞), has been extensively studied
for k−1 ≤ σ ≤ k, k > 1, see [3], [11] etc.
for uniqueness, regularity assumptions on σ and ∂Ω were
needed, now relaxed in [5] for the 2D case: σ ∈ L∞ and ∂Ω
simple curve.
Material instability may lead to perturbed anisotropic tensors,
see [10], in the natural framework of G-convergence. For this
reason, assuming additional bounds on the derivatives of σ play
an essential rôle for stability, see [3].
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nonuniqueness

nonuniqueness if σ not isotropic, argument by L. Tartar in [9] for EIT:
Let Φ : Ω̄ → Ω̄ be a C∞ diffeomorphism such that Φ|∂Ω = identity
Apply the change of variables v = u ◦ Φ−1 to the energy∫

Ω
σ∇u · ∇u =

∫
Ω
σ̃∇v · ∇v

where σ̃ =
(
∇Φ ◦ σ ◦ ∇TΦ

det∇Φ

)
◦ Φ−1 and note as a consequence

{
div(σ̃∇v) = 0 in Ω
v = ϕ on ∂Ω

Qσ̃(ϕ) = Qσ(ϕ) ⇒< Λσ̃(ϕ), ϕ >=< Λσ(ϕ), ϕ >, so Λσ̃ = Λσ

In [4] the converse: Λσ̃ = Λσ ⇒ σ, σ̃ related by some Φ
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an explicit example

Explicit identification for a rectangular network, a portion of fabrics
(see [7] for an optimal traction design problem)

¾

¾

¾

¾

-

-

-

-

? ? ? ? ?

6 6 6 6 6

σ1(x2)

σ2(x1)
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an explicit example

In this case the traction tensor field takes the form

σ =
(
σ11(x2) 0

0 σ22(x1)

)
= (σ1(x2), σ2(x1)) , x1, x2 ∈ [0, 1]

Given Λσ(ϕ) = σ∇u · ν = ψ ∀ϕ on ∂Ω, take ϕ linear

ϕ(x) = ξ · x ⇒ u(x) = ξ · x

then
σξ · ν = ψξ

choose ξ = (1, 0) on x1 = 1, ν = (1, 0) and ψξ(x) = ψ(x2),
then

σ1(x2) = ψ(x2)

similar argument for the other edges.
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main result: uniqueness

Theorem
Λσ uniquely determines σ among all tensors in ΣK

We work with σij, ∂Ω ∈ C∞, but our result carries over to the case
when σ ∈ L∞(Ω) and ∂Ω arbitrary closed curve.

pushforward of σ by Φ : Ω̄ → D̄

TΦσ(y) =
∇Φσ∇TΦ

det∇Φ
(Φ−1(y)) , y ∈ D

TΦσ is still symmetric and elliptic with a (possibly new) constant
K ≥ 1
Tσ preserves the bilinear Dirichlet form associated to σ, i.e.∫

Ω
σ∇u ·∇v =

∫
D

TΦσ∇(u ◦Φ−1) ·∇(v ◦Φ−1) ∀u, v ∈ H1(Ω)
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(Φ−1(y)) , y ∈ D

TΦσ is still symmetric and elliptic with a (possibly new) constant
K ≥ 1
Tσ preserves the bilinear Dirichlet form associated to σ, i.e.∫

Ω
σ∇u ·∇v =

∫
D

TΦσ∇(u ◦Φ−1) ·∇(v ◦Φ−1) ∀u, v ∈ H1(Ω)
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a lemma

Lemma

If divσ = 0 in Ω then div(TΦσ∇TΦ−1) = 0 in D

Proof.
Put u = xr in the previous bilinear form∫

Ω
σrjDjv =

∫
D

Φi,hσhkΦj,k

det∇Φ
◦ Φ−1DiΦ−1

r (y)Djv(Φ−1(y))

If ∫
Ω
σrjDjv = 0 ∀v ∈ H1

0(Ω)

the same holds true for the right hand side∫
D

TΦσ(Φ−1(y))ijDiΦ−1
r (y)Djv = 0
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another lemma

Lemma

If div TΦσ = 0 in D for some Φ, then div(σ∇TΦ) = 0 in Ω

Proof.
Let σ̃ = TΦσ and apply the previous lemma

div σ̃ = 0 in D ⇒ div(T−1
Φ σ̃∇TΦ) = div(σ∇TΦ) = 0 in Ω

Alessandrini, Cabib Determining the anisotropic traction state in a membrane by boundary measurements



another lemma

Lemma

If div TΦσ = 0 in D for some Φ, then div(σ∇TΦ) = 0 in Ω

Proof.
Let σ̃ = TΦσ and apply the previous lemma

div σ̃ = 0 in D ⇒ div(T−1
Φ σ̃∇TΦ) = div(σ∇TΦ) = 0 in Ω

Alessandrini, Cabib Determining the anisotropic traction state in a membrane by boundary measurements



proof of the theorem

Proof.
From [11] and [12] Λσ determines uniquely the class

{TΦσ | Φ : Ω̄ → Ω̄ is a diffeomorphism such that Φ∂Ω = I}

which contains at most one divergencefree element.
In fact, if div TΦσ = 0 for some diffeomorphism Φ which fixes the
boundary, by the II lemma{

div(σ∇ΦT) = 0 in Ω
Φ = I on ∂Ω

hence Φ = I.
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stability

Theorem

The mapping σ → Λσ from ΣK to L (H1/2(Ω),H−1/2(Ω)) has a
continuous inverse when ΣK is endowed with G-convergence topology

Proof.
ΣK closed, hence G-compact.
Let Λσh ,Λσ be D-N maps such that ‖Λσh − Λσ‖ → 0

By compactness (see [6]) ∃σrh

G→ σ′ ∈ ΣK and we prove σ′ = σ
∀ϕ ∈ H1/2(∂Ω) Dirichlet datum, let uh, u′ solutions with σh, σ′

< Λσrh
(ϕ), ϕ >=

∫
Ω
σrhDurh ·Durh →

∫
Ω
σ′Du′·Du′ =< Λσ′(ϕ), ϕ >

but Λσh → Λσ, hence < Λσ′(ϕ), ϕ >=< Λσ(ϕ), ϕ >, so Λσ′ = Λσ

From uniqueness, we get σ′ = σ Above argument applies to any
subsequence of σh thus ∀ subsequence of (σh) ∃ sub-subsequence
G→ σ⇒ the full σh

G→ σ
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stability

This result explains previous instability results ([10] and others).
For isotropic conductivity problems, stability fails because when σ is
known to be isotropic any tensor can be G-approximated by isotropic
tensors. Hence stability for isotropic ⇒ uniqueness in its G-closure,
in contradiction with Tartar’s example.
stability result based on the property of our admissible set to be
G-closed
(Better continuity requires a priori conditions like ‖∇σ‖Lp ≤ M.)

Alessandrini, Cabib Determining the anisotropic traction state in a membrane by boundary measurements



stability

This result explains previous instability results ([10] and others).
For isotropic conductivity problems, stability fails because when σ is
known to be isotropic any tensor can be G-approximated by isotropic
tensors. Hence stability for isotropic ⇒ uniqueness in its G-closure,
in contradiction with Tartar’s example.
stability result based on the property of our admissible set to be
G-closed
(Better continuity requires a priori conditions like ‖∇σ‖Lp ≤ M.)

Alessandrini, Cabib Determining the anisotropic traction state in a membrane by boundary measurements



stability

This result explains previous instability results ([10] and others).
For isotropic conductivity problems, stability fails because when σ is
known to be isotropic any tensor can be G-approximated by isotropic
tensors. Hence stability for isotropic ⇒ uniqueness in its G-closure,
in contradiction with Tartar’s example.
stability result based on the property of our admissible set to be
G-closed
(Better continuity requires a priori conditions like ‖∇σ‖Lp ≤ M.)

Alessandrini, Cabib Determining the anisotropic traction state in a membrane by boundary measurements



stability

G-convergence on ΣK equivalent to L∞(Ω)-weak* convergence.
Hence, previous theorem ⇒ ∀ψ ∈ L1(Ω)

F(σ) =
∫

Ω
ψσij , σ ∈ ΣK ,

depends continuously on Λσ.
If ψ = 1/|Ω| we get the average, which depends Lipschitz on on
D− N map.

Theorem
∀σ, σ′ ∈ Σ we have∥∥∥∥ 1

|Ω|

∫
Ω
(σ − σ′)

∥∥∥∥ ≤ (1 + (diamΩ)2)‖Λσ − Λσ‖ .

Alessandrini, Cabib Determining the anisotropic traction state in a membrane by boundary measurements



stability

G-convergence on ΣK equivalent to L∞(Ω)-weak* convergence.
Hence, previous theorem ⇒ ∀ψ ∈ L1(Ω)

F(σ) =
∫

Ω
ψσij , σ ∈ ΣK ,

depends continuously on Λσ.
If ψ = 1/|Ω| we get the average, which depends Lipschitz on on
D− N map.

Theorem
∀σ, σ′ ∈ Σ we have∥∥∥∥ 1

|Ω|

∫
Ω
(σ − σ′)

∥∥∥∥ ≤ (1 + (diamΩ)2)‖Λσ − Λσ‖ .

Alessandrini, Cabib Determining the anisotropic traction state in a membrane by boundary measurements



stability

Proof.
u = xi, v = xj ∫

Ω
(σ − σ′)ij =< (Λσ − Λσ′)xi, xj >
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