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Abstract. Starting form 3D elasticity, we deduce the variational limit of the string

and of the membrane on the space of one and two-dimensional gradient Young

measures, respectively. The physical requirement that the energy becomes infinite

when the volume locally vanishes is taken into account in the string model. The

rate at which the energy density blows up characterizes the effective domain of the

limit energy. The limit problem uniquely determines the energy density of the thin

structure.

1 Introduction

A first variational derivation of the energy of a string starting from the 3D
nonlinear elasticity is due to Acerbi, Buttazzo and Percivale [1]. Following
the same leading ideas, Le Dret and Raoult [17] derived the energy of a thin
film. The integrands involved in the bulk energy by them derived are quasi-
convex. More precisely they are the quasi-convex envelope QW0 of a function
W0 (denoted f0 for the string), which is obtained from the 3D free energy
density by solving a suitable minimization problem.

It is well known that quasi-convex integrands with appropriate growth
conditions lead to the existence of minimizers of the total energy. If we are
dealing with martensitic materials, we can not conclude that QW0 is the
energy density, since the infimum of the total free energy is not attained, in
general. Hence the question: what is the energy density to be considered for
the thin structure?

It must be noticed that from the results of Acerbi, Buttazzo and Percivale,
or of Le Dret and Raoult as well, we can not deduce that W0 is the free energy,
since there are an infinite number of functions Z such that QZ = QW0. It
is also well known, in phase transition theory, that it is the free energy that
determines the microstructure and not its quasi-convex envelope. Thus the
problem at hand is of noticeable importance in applications.
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To explain how we derive the energy density of the thin structure, we must
be sligthly more specific. The asymptotic methodology initiated in [1] is the
following: a sequence of bodies given in a cylindrical configuration of diam-
eter or thickness ε is considered. For each of these bodies the total energy
is known. Under quite general assumptions on the energy density there are
different topologies which ensure compactness to the family of minimizers (or
quasi-minimizers) of these energies. Once chosen one of these topologies, the
thin structure model is obtained by passing to the limit as ε → 0 in an appro-
priate variational sense (Γ -convergence). Roughly speaking, this variational
limit ensures the convergence, in such topology, of minimizers of the energy
at level ε to the minimizers of the thin structure problem. The obtained limit
problem depends on the chosen topology. As said before, typically the infimum
of the total free energy of a martensitic material is not attained. The minimiz-
ing sequences shall, in general, develop fine scale oscillations, which, according
to the interpretation due to Ball and James [3, 4], model the microstructure
experimentally observed in specimens of phase transforming materials. Thus,
in phase transforming problems the “main properties” of the minimizing se-
quences are to be determined. This suggests that when we pass to the limit
as ε → 0 we should try to use a topology which, loosely speaking, ensures the
convergence of the “main properties” of the minimizing sequences at level ε to
the “main properties” of the minimizing sequences of the thin structure prob-
lem. We achieve this by embedding the 3D problems into a space of Young
measures, see L.C. Young [22], which is one of the most successful tools used
to characterize the oscillatory behaviour of sequences of functions. In this way
we derive a limit functional which has a feature missing in all the other pre-
viously obtained variational limits: it uniquely determines the energy density
of the thin structure.

This methodology introduces several difficulties which are completely miss-
ing in the work of Acerbi, Buttazzo and Percivale. Like them, we perform the
computation of the Γ -limit under the requirement that the energy becomes
infinite when the volume locally vanishes, that is limdet F→0+ f(F ) = +∞.
The same requirement is also met in a recent paper of Ben Belgacem [7]. In
contrast with [1, 7], we need to specify the rate at which the energy blows
up when the volume decreases. In fact, in the cited papers, the obtained
Γ -limit involves the convexification of the energy density, which completely
disregards the behaviour of the energy near vanishing-volume deformations.
On the other hand, in the Young measure setting, where no convexification
appears, the growth near such small deformations is as much important as
the growth for large deformations. This reflects on the fact that the domain
of the limit functional strongly depends on the prescribed growths.

The martensitic thin film model is obtained under the usual growth con-
ditions of order p. This problem has been studied previously by Bhattacharya
and James [8] who have considered a body characterized not only by a free
energy but also by an interfacial energy which, mathematically speaking, be-
haves as a viscosity term and hence the limit problem does not contain any
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quasi-convex envelope. About one year later, Shu [21] has shown that letting
the interfacial energy go to zero the variational limit coincides with that ob-
tained by Le Dret and Raoult. Běĺık and Luskin [6] have observed that with
the energy considered by Bhattacharya and James [8] the deformations with fi-
nite energy cannot have sharp interfaces between compatible variants. For this
reason they set the problem within the framework of functions with bounded
Hessian and consider an interfacial energy proportional to the square of the
total variation of the deformation gradient. Other interesting results on the
Young measure theory of thin films have also been obtained, from a slightly
different point of view, by Bocea and Fonseca [9].

The paper is written in a quite concise manner and all technical details,
for which we refer to Freddi and Paroni [12, 13], have been left out.

2 The Γ -convergence tool

The energies of the thin structures are obtained by taking a limit in the
variational sense of Γ -convergence. Roughly speaking, the Γ -limit ensures
convergence of minimizers of the energy at level ε to minimizers of the thin
structure problem. In fact, we use a variant of De Giorgi’s Γ -convergence,
which has been introduced by Anzellotti, Baldo and Percivale in [2] and allows
to treat families of functionals defined on a space which may be different from
the domain of the limit. Let us recall here just the definition, referring for
a precise formulation of the variational properties to [2] and to the books of
Braides [10] and Dal Maso [11]. Let X be a set, let (Y, τ) be a topological
space and let q : X → Y . Given a sequence Fn : X → R and a point y ∈ Y ,
let us denote by

Γ (q, τY ) lim inf
n→∞

Fn(y) := inf{lim inf
n→∞

Fn(xn) : q(xn) τ→ y},
Γ (q, τY ) lim sup

n→∞
Fn(y) := inf{lim sup

n→∞
Fn(xn) : q(xn) τ→ y}, (1)

the Γ -lower and, respectively, the Γ -upper limit at the point y. If they turn
out to be equal and F (y) denotes their common value then we say that the se-
quence Γ (q, τY )-converges to F (y) and we write Γ (q, τY ) lim

n→∞
Fn(y) = F (y).

Given a family Fε : X → R we say that it Γ (q, τY )-converges to F : Y → R
at a point y ∈ Y , and we write Γ (q, τY ) lim

ε→0
Fε(y) = F (y), if for any sequence

εn of positive reals converging to 0 we have that Γ (q, τY ) lim
n→∞

Fεn(y) = F (y).

3 Young measures

Let, in the current section, Ω be an open bounded subset of Rn. Let
M(Rm) = C0(Rm)∗ denote the space of R-valued Borel measures on Rm
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and L∞w (Ω; M(Rm)) = L1(Ω; C0(Rm))∗ the dual of L1. An element µ ∈
L∞w (Ω; M(Rm)) can be viewed as a parametrized measure, that is a map
x 7→ µx between Ω and M(Rm), which is essentially bounded and weakly*
measurable in the sense that the functions x 7→ 〈µx, ϕ〉 are measurable for
every ϕ ∈ C0(Rm). The subscript w in the notation L∞w refers to this weak*
measurability. If µx is a probability for a.e. x ∈ Ω then µ is called a Young
measure and Y(Ω;Rm) will denote the space of such Young measures. For
instance, if u : Ω → Rm is a measurable function then δu(·) ∈ Y(Ω;Rm).

The space L∞w (Ω; M(Rm)) will be endowed with the weak* convergence
induced by the duality with L1. Hence µn → µ weakly* in L∞w (Ω;M(Rm)) iff
∫

Ω

< µn
x , ϕ > g(x) dx →

∫

Ω

< µx, ϕ > g(x) dx, ∀ϕ ∈ C0(Rm), ∀g ∈ L1(Ω)

where 〈, 〉 stays for integration of ϕ with respect to the involved measure.
Finally, we say that a sequence of measurable functions (un) generates µ

if δun(·) → µ weakly* in L∞w (Ω;M(Rm)).

4 A 3D–1D reduction problem

Let ω be an open, bounded subset of R2 and let, for every ε > 0,

Ωε = {x = (xα, x3) ∈ R2×R : xα ∈ εω, x3 ∈ (0, `)},

a three dimensional cylinder that we consider as the reference configuration of
a hyperelastic body, which reduces to a 1D region as ε goes to zero. Our aim
is to obtain the energy of an elastic string as limit of the total energy of 3D
bodies occupying the regions Ωε. Without loss of generality we can assume
that ω contains the origin and that |ω| = 1.

The stored energy density f : R3×3 → (−∞,+∞] in the reference config-
uration Ωε is assumed to be continuous and to satisfy the following growth
assumptions which include the whole class of Antman materials

det F ≤ 0 ⇒ f(F ) ≡ +∞,

det F > 0 ⇒ there exists two constants C ≥ c > 0 such that

c(
1

| detF |s + |F |p − 1) ≤ f(F ) ≤ C(
1

|det F |s + |F |p + 1),
(2)

for suitable p ∈ [1, +∞) and s ∈ (0,+∞).
The hypothesis that the material is homogeneous, which relays in the

assumption that f be independent of the point in the reference configuration,
is not essential and can be easily dropped. We refer to [13] for a treatment
of the non-homogeneous case where moreover also the diameter of the cross-
section is allowed to change from point to point.

Up to the scaling factor 1/ε2, the total energy Iε of the body is given by
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Iε(y) =
1
ε2

∫

Ωε

f(Dy(x)) dx−
∫

Ωε

ĝε(x) · y(x) dx,

where the body force densities ĝε are taken in Lp′(Ωε;R3), with 1/p + 1/p′ = 1.
Assuming, for instance, the body to be clamped on εω×{0}, the equilib-
rium configurations will be found by minimizing the energy Iε over all
y ∈ W 1,p(Ωε;R3) such that y(x1, x2, 0) = (x1, x2, 0).

Scaling energies and passing to a fixed domain

The scaling factor 1/ε2 in front of the energy functionals serves to avoid the
trivial case where the Γ -limit is identically zero. The choice of different scaling
exponents would provide other limit models with their own physical meaning.
For instance, 1/ε3 and 1/ε4 lead to rod theories; these cases has been studied
in a quite different setting by Mora and Müller [18, 19].

To perform our analysis, it is convenient to put all the energy integrals
on the same domain Ω := Ω1, which is independent of ε, by the change of
variables x′α = εxα α = 1, 2. This gives to the energy functionals the following
form

IΩ
ε (y) :=

∫

Ω

f(
Dαy

ε
|D3y) dx−

∫

Ω

gε · y dx,

where Dαy denotes the first two columns of the deformation gradient, while
D3y is the third column. Hereafter, for simplicity, we assume that the body
force densities gε do not depend on ε and set g := gε. The total energy IΩ

ε has
to be minimized over all y ∈ W 1,p(Ω;R3) such that y(x1, x2, 0) = ε(x1, x2, 0).

Previous results and some remarks

Acerbi, Buttazzo and Percivale [1] studied the problem under the following
growth assumptions

det F ≤ 0 ⇒ f(F ) ≡ +∞,

∀ δ > 0 ∃Cδ > 0 s.t. det F ≥ δ ⇒ f(F ) ≤ Cδ(|F |p + 1),

∃ c > 0 s.t. c(|F |p − 1) ≤ f(F ),

(3)

for a suitable p ∈ [1, +∞). The Γ -limit of the functionals Iε is taken by them
under the norm convergence in Lp((0, `);R3) of the average of the deformation
over the cross section and the resulting Γ (Lp)-limit is

G0(v) =
∫ `

0

f∗∗0 (v′) dx3 −
∫ `

0

Avαg · v dx3

if v ∈ W 1,p((0, `);R3) with v(0) = 0. f∗∗0 is the convex envelope of the function

f0(z) := min{f(F |z) : F ∈ R3×2}, z ∈ R3
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and Avα denotes the integral mean value with respect to x1 and x2.
Under the assumptions (2), conditions (3) are satisfied and a simple com-

putation shows that f0 satisfies the following estimates

c
( 1
|z|q + |z|p − 1

) ≤ f0(z) ≤ C
( 1
|z|q + |z|p + 1

)
for every z 6= 0, (4)

with q =
ps

p + 2s
, for suitable positive constants C and c.

In fact, the convexification of the en-
ergy density completely disregards the
behaviour of the energy near vanishing-
volume deformations. On the other
hand, in the Young measure setting,
where no convexification appears, the
growth near such small deformations is
as much important as the growth for
large deformations.

0W   (z)

z

Then we have to expect that conditions (3) be not precise enough to
characterize the domain of the limit problem in terms of Young measures.
Indeed, we shall see that two different choices of the exponents s and p in (2),
will lead to limit problems defined on different spaces.

The Young measure setting

Acerbi, Buttazzo and Percivale, in taking the Γ -limit, used the norm topology
of Lp. Nevertheless, there are other topologies which ensure compactness to
the minimizing sequences which can choose to compute the Γ -limit. Limit
problems provided by different topologies show different ability in describing
the behaviour of the minimizing sequences. As already explained, we shall
work within the framework of Young measures.

Via the Dirac mass supported on the gradient, the space of functions W 1,p

with some prescribed boundary conditions can be identified with a subspace
of L∞w . Thus we can extend the functionals IΩ

ε to L∞w (Ω;M(R3×3)) by setting

I∞ε (µ) =

{
IΩ
ε (y) if ∃ y ∈ AΩ

ε s.t. µ = δDy(·)
+∞ otherwise in L∞w (Ω; M(R3×3)).

(5)

Due to the growth constraints (2), the effective domain of the limit functional
will consist of those Young measures which are characterized by a certain kind
of growth, as precised by the following definition.

Definition 1. Let p ≥ 1 and q > 0. With Y−q,p((0, `);Rm), m ∈ N, we denote
the set of Young measures ν ∈ Y((0, `);Rm) such that

∫ `

0

∫

Rm

(|z|−q + |z|p) dνt(z) dt < +∞.
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The Young measures in this spaces can be characterized as those generated
by sequences (zj) such that

(|zj |−q + |zj |p
)

is equi-integrable (see [13]).

Compactness properties of bounded sequences

In the Lp setting, if yε are deformations with equi-bounded energy, the growth
conditions imply that, up to subsequences, yε → y and Dαyε → 0 in Lp, hence
Dαy = 0 and y = y(x3). On the contrary, in our case

δ( Dαyε

ε |D3yε)→µ weakly* in L∞w ⇒ µ = δ0 ⊗ νx

with δ0 ∈ M(R3×2) and νx ∈ M(R3), but now ν may depend also on x1 and
x2. Moreover the only relevant part of the limit parametrized measure is given
by the projection on the third column.

The average-projection mapping and the Γ -convergence result

The considerations above motivate the introduction of the following mapping

ρ : L∞w (Ω; M(R3×3)) → L∞w ((0, `); M(R3)),

defined by ρ = π3
#◦Avα = Avα ◦π3

#, where Avα denotes average with respect
to the first two variables and π3

# is the image measure under the projection
on the third column. The commutativity of composition follows directly from
the definitions. The following Γ -convergence theorem is stated with respect
to the weak* convergence in L∞w (ω; M(R3×2)) of ρ(µε) → ν, under which the
sequences with bounded energy are relatively compact (see [13], Lemma 5.1).

Theorem 1. Let f be a real extended valued continuous function which sat-
isfies (2). Then Γ (ρ,w∗L∞w ((0, `); M(R3))) lim

ε→0+
I∞ε (ν) = IS(ν) were

IS(ν) =
∫ `

0

〈νt, f0〉 dt−
∫ `

0

Avαg · y dt

if ν ∈ Y−q,p((0, `);R3) with q = ps/(p + 2s), and holds +∞ otherwise in
L∞w ((0, `); M(R3)). The function y ∈ W 1,p((0, `);R3) which appears in the ex-
pression above stays for the underlying deformation of ν with boundary con-
dition y(0) = 0.

From our result we can recover the Γ -limit G0 of Acerbi, Buttazzo and
Percivale as follows. Let v ∈ Lp((0, `);R3); then

G0(v) = inf{IS(ν) : ν ∈ L∞w ((0, `); M(R3)), 〈ν, id〉 = v′, v(0) = 0}

with the usual convention inf ∅ = +∞. Moreover the infimum is attained.
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The energy density of the string

The map f0 : R3 → R is the unique continuous integrand satisfying the growth
conditions (4) and such that the Γ -limit IS is the relaxation of the functional

E(y) =
∫ `

0

f0(y′(x3)) dx3 −
∫ `

0

Avαg · y dx3

with respect to the weak* topology in L∞w ((0, `); M(R3)). Hence f0 can be
considered to be the energy density of the string.

5 A 3D–2D reduction problem

Let ω be an open bounded subset of R2 with a regular boundary, which we
assume to be the reference configuration of a membrane. We want to obtain
the energy of the membrane as limit, when ε → 0, of the total energy of 3D
hyperelastic bodies occupying the cylindrical regions Ωε = ω×(−ε/2, ε/2).

Up to the scaling factor 1/ε, the total energy of the 3D body Ωε is

Iε(y) =
1
ε

∫

Ωε

W (Dy) dx−
∫

Ωε

gε(x) · y dx,

where the deformation y : Ωε → R3 is subject to a prescribed linear boundary
condition on the lateral boundary of the cylinder, that is y(x) = Bx on
Γε = ∂ω×(−ε/2, ε/2), where B : R3 → R3 is a linear map. The energy
density W : R3×3 → R is continuous, generally non-convex, and satisfies a
growth condition of order p ∈ (1,+∞), that is

C(|F |p − 1) ≤ W (F ) ≤ C(|F |p + 1). (6)

The body force densities gε are assumed to be in Lp′ , with 1/p + 1/p′ = 1.

Scaling energies and passing to a fixed domain

The choice of a scaling factor different from 1/ε in front of the 3D energies
would lead to other limit problems; 1/ε3, for example, corresponds to a plate
model (see for instance Friesecke, James and Müller [14]).

Under the change of variable x′3 = εx3 (still called x3) the energy func-
tionals become

Iε(y) =
∫

Ω

W
(
Dαy|D3y

ε

)
dx−

∫

Ω

gε(x) · y dx

where Ω := Ω1, and y ∈ W 1,p(Ω;R3) has to satisfy y(x) = B(x1, x2, εx3)
on Γ = ∂ω×(−1/2, 1/2). Hereafter, for the sake of simplicity, we assume the
scaled body force densities to be independent of ε.
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5.1 Previous results and some remarks

Le Dret and Raoult [17] proved that Γ (Lp) lim
ε→0

Iε(y) = ILDR(y) where

ILDR(y) = 2
∫

ω

QW0(Dαy) dxα −
∫

ω

Av3g(xα) · y(xα) dxα

if y ∈ W 1,p(Ω;R3), y(x) = (x1, x2, 0) on Γ and D3y = 0. Here QW0 denotes
the quasi-convex envelope of the function

W0(F ) := min{W (F |z) : z ∈ R3}, F ∈ R3×2

and Av3 denotes the integral mean value with respect to x3.
As explained in the introduction, quasi-convex integrands cannot describe

any microstructure. In order to overcome this difficulty, Bhattacharya and
James [8] considered a 3D body characterized also by an interfacial energy
which is taken to be proportional to the square of the Hessian of the defor-
mation; in fact they consider the functionals

Jε,κ(y) =
∫

Ωε

W (Dy) + κ|D2y|2 dx

where the positive constant κ > 0 is fixed and the limit is taken as ε → 0. The
introduction of the extra term leads to a Γ -limit in which no quasi-convex
envelope appears. The limit energy obtained, like the three dimensional, has
an interfacial energy which makes the minimization quite hard to perform.

About one year later Shu [21] has shown that if ε and κ(ε) go to 0 then the
total energy considered by Bhattacharya and James Γ -converges, in a suitable
topology, to the one obtained by Le Dret and Raoult.

Young measures generated by gradients

Le Dret and Raoult, in taking the Γ -limit, used the norm topology of Lp.
We shall work instead within the framework of Young measures and use a
topology which provides a richer description of the microstructure.

To this aim we extend the energies Iε to L∞w (Ω; M(R3×3)) by setting

I∞ε (µ) =

{
Iε(y) if ∃ y ∈ W 1,p, y(x) = B(x1, x2, εx3) on Γ : µ = δDy(·)
+∞ otherwise in L∞w (Ω; M(R3×3)),

and such extension is well defined thanks to the boundary conditions.
The effective domain of the limit problem will turn out to be the space

Y1,p(ω;R3) of Young measures generated by gradients of functions in W 1,p(ω;R3).
From the characterization of Kinderlehrer and Pedregal [16] the center of
mass of such a Young measure is a gradient of a function y ∈ W 1,p, that is
〈µx, id〉 = Dy(x), and y is called an underlying deformation of µ. We denote
by Y1,p

Γ (ω;R3) the subspace of Y1,p(ω;R3) whose elements have an underlying
deformation satisfying the prescribed boundary condition on ∂ω.
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Compactness and Γ -convergence results

In the Lp setting, if yε are deformations bounded in energy, the growth con-
ditions imply that, up to subsequences, yε → y and D3y

ε → 0 in Lp, hence
D3y = 0 and y = y(x1, x2). On the contrary, in our case

δ
(Dαyε,

D3yε

ε )

∗→ µ ⇒ µ = νx ⊗ δ0

where νx ∈ M(R3×2) and δ0 ∈ M(R3), but now ν may depend also on the
variable x3. Moreover the only relevant part of the limit parametrized measure
is given by the projection on the first two columns. These facts motivates also
in this case the introduction of a suitable average-projection mapping

q : L∞w (Ω; M(R3×3)) → L∞w (ω; M(R3×2)),

defined by q := π̄# ◦Av3 = Av3 ◦ π̄#, where Av3 denotes average with respect
to the third variable and π̄# is the image measure under the projection on
the first two columns. The following Γ -convergence theorem is stated with
respect to the weak* convergence in L∞w (ω;M(R3×2)) of q(µε) → ν, under
which the sequences with bounded energy are relatively compact (see [12],
Theorem 5.6).

Theorem 2. Let W be a real continuous function which satisfies the growth
assumptions (6). Then Γ (q, w∗L∞w (ω;M(R3×2))) lim

ε→0
I∞ε (ν) = IM (ν) were

IM (ν) =
∫

ω

〈νxα ,W0〉 dxα −
∫

ω

Av3g · y dxα

if ν ∈ Y1,p
Γ (ω;R3) and holds +∞ otherwise in L∞w (ω;M(R3×2)). The function

y ∈ W 1,p(ω;R3) which appears in the expression above denotes the underlying
deformation of ν which satisfies the boundary condition y(x) = B(x1, x2, 0)
on ∂ω.

Given y ∈ W 1,p(Ω;R3), the Γ -limit of Le Dret and Raoult at y can be ob-
tained from ours by taking the infimum of IM (ν) over all ν ∈ L∞w (ω;M(R3×2))
which satisfy 〈ν, id〉 = Dαy and y(x) = (x1, x2, 0) on ∂ω, with the usual con-
vention inf ∅ = +∞. Moreover the infimum is attained.

The energy density of the thin film

For every matrix B, the Γ -limit IM is the Young measure relaxation of

EW0(y) =
∫

ω

W0(Dαy) dxα −
∫

ω

Av3 g · y dxα, y(x) = B(x1, x2, 0) on ∂ω.

The remarkable fact is that among all continuous integrands with p-growth,
W0 is the unique density such that the relaxation of the corresponding energy
EW0 produces the functional IM , for every linear map B. Hence W0 can be
considered to be the energy density of the thin film.
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