
Distributional memory explainable word
embeddings in continuous space

Lauro Snidaro, Giovanni Ferrin and Gian Luca Foresti
Department of Mathematics, Computer Science and Physics

University of Udine
Via delle Scienze, 206, 33100 Udine, Italy

{lauro.snidaro, giovanni.ferrin gianluca.foresti}@uniud.it

Abstract—Natural Language Processing (NLP) is a key pro-
cessing step in fusion systems that need to process unstructured
-and possibly human generated- text in natural language. Recent
developments in Deep Learning have greatly increased the perfor-
mance of NLP tasks. In particular, learned word representations
have the form of high dimensional real valued vectors, called word
embeddings, that have a number of amenable properties such as
representing similar words with similar values of their vectorial
representation, and capturing semantic regularities that corre-
spond to geometric properties in the continuous high dimensional
space. However, word embeddings have the drawback of being
non interpretable. That is, their dimensions cannot be clearly
associated to linguistic features. In this work, we propose real
valued explicit linguistic word vectors that enjoy the properties
of learned word embeddings while being human understandable.

Index Terms—Word Embeddings, NLP, Explainable Artificial
Intelligence, Interpretability, Situation assessment, Semantics,
Lexical semantics, Distributional semantics

I. INTRODUCTION

The present paper represents a further step in outlining the
possibility of exploiting natural language text corpora. The aim
consists in bringing out similarity mappings able to drive the
retrieval of semantic information about real world, both about
objects and events [1]. Recent examples in the literature can
be found that discuss, for example, automatic identification of
artifact usage information [2] from corpora.

Trying to get meaning from text implies dealing with the
problem of defining what “meaning” is with respect to lexical
items. Historically, the point has been addressed talking about
Extensional meaning (all the things in the world that make a
term or predicate true) and Intensional meaning (the conditions
under which a predicate is true), however not solving the
problem of how to define the “conditions”. More recent
research in the field is grounded on the idea that to perform
lexical semantics, a scientifically correct theory of the world
is not needed, but people’s commonsense theories.

Arguing about the distinction between lexical knowledge
and world knowledge is far beyond the scope of our research.
We agree with Hobbs [3]: “If the brain makes a distinction
between linguistic and world knowledge, it does not appear to
be reflected in the temporal course of processing language”.

II. MODELING TEXTUAL KNOWLEDGE

The model of semantic representation we are looking at
to perform the proposed operations, is the Distributional ap-
proach, based on the assumption that lexical meaning depends
on the contexts in which lexemes are used, and grounded on

• the philosophical “usage-based” view of meaning (“The
meaning of a word is its use in the language”) developed
by Ludwig Wittgenstein in his later writings [4]

• the idea of habitual word combinations: “You shall know
a word by the company it keeps!” of John R. Firth [5]

• the Distributional hypothesis: difference of meaning cor-
relates with difference of word distribution in text [6]

Thus Distributional semantics is based on the assumption
that the statistical distribution of linguistic items in context
characterizes their semantic behavior. A summarization of its
main characters can be found in [7].

The availability of large natural language corpora and the
refinement in machine learning algorithms has increased the
interest in working with such semantic representations, not
only on typically linguistic tasks, but also in trying to pre-
dict complex and practically relevant human evaluations in
domains as social cognition, health behavior, risk perception,
and organizational behavior [8].

A. Distributional representations

A distributional representation consists in a matrix built with
the following typical procedure (a thorough review and state
of the art in distributional semantics can be found in [9]):

• extract and count, from a corpus, co-occurrences between
target lexical items and linguistic contexts (collocates);

• represent the distribution of lexical items in the form of
a matrix, whose row vectors correspond to target lexical
items, columns to contexts, and the entries to their co-
occurrence frequency;

• transform frequencies into weights, significative of the
importance of the contexts;

• measure the semantic similarity between lexemes evalu-
ating the similarity between the row vectors in the co-
occurrence matrix.

Building distributional representations requires some param-
eters to be determined:



• the selection of target lexemes;
• the definition of context type;
• the choice of weighting scheme;
• the (possible) application of some dimensionality reduc-

tion;
• the choice of a vector similarity metric;
and, in particular, a distributional semantic model (DSM)

requires a peculiar configuration of the mentioned parameters.
Among the possible models, the main differences can be found
along the dimensions of type of context and method of learning
distributional vectors.

The choice of context strongly affects the similarity relations
that can be identified. The word models and region models
represent the most followed approaches to determine semantic
similarity. In word models two lexemes are considered to be
similar if the collocates they co-occur with are statistically
the same. In region models, instead, two lexemes are similar
if they tend to co-occur in the same texts. Word models, on
one hand, focus on terms that share a number of common
attributes (like coast and shore), that is attributionally
similar. Region models, on the other hand, focus on terms
that appear in texts about the same arguments, belonging to the
same domain (like clothes and closet), that is topically
similar.

As to methods to learn the distributional representations, the
choice is between count models and prediction models. The
former, more precisely the matrix models subtype, represent
target lexemes by counting their co-occurrences in linguistic
contexts. The data are arranged into co-occurrence matrices
that formally represent the distributional statistics extracted
from the corpus. Some models directly implement the basic
extraction to build the representations (window models), some
other introduce extensions and variants to the method, for
example taking into consideration lexico-syntactic patterns
(syntactic models).

B. Explicit vs implicit representations

In the representations obtained, therefore, each vector di-
mension represents the count of the co-occurrence of lexemes
with the specific context. These vectors can reach very high
dimensions, as numerosity of contexts in language data is
usually very high, and, due to Zipf law (the frequency of words
occurrences in a corpus is inversely proportional to words rank
[10]), tend to be very sparse.

High-dimensionality have the consequence of leading to
miss generalizations in data. As each context represent a dis-
tinct feature, explicit representations do not take into account
mutual similarity and correlation of contexts. Possible co-
occurrences, moreover, could remain unobserved in corpora
because of the uneven data distribution. This kind of repre-
sentation, obtained without any further processing, is defined
as an explicit distributional vector.

A possible solution to the aforementioned problems consists
in representing lexemes with distributional vectors which differ
from the former by having a much smaller dimensionality
(few hundreds), corresponding to latent features extracted from

co-occurrences, and being dense, as most of the values are
nonzero. In these vectors there is no direct correspondence
between features and linguistic contexts and they are referred
to as implicit distributional vectors.

Implicit distributional representations are commonly ob-
tained mapping the co-occurrence matrix onto a reduced latent
semantic space using matrix reduction algorithms.

Low-dimensional implicit representations can also be ob-
tained without counting co-occurrences but just using neu-
ral network algorithms. These representations, referred to as
(neural) word embeddings, are vectors whose weights are set
to optimally predict the contexts in which the corresponding
words tend to appear. Since similar words occur in similar
contexts, the system naturally learns to assign similar vectors
to similar words [11], such models are known as prediction
models.

C. AI Explainability

Explainability of components is a key difference between
explicit and implicit representations: explicit vectors, whose
dimensions show a direct correspondence between features and
linguistic contexts, can be interpreted directly. It is difficult (if
not impossible), on the other hand, to assign semantic values
to latent features.

Interpretability makes explanation possible. The entire his-
tory of Western philosophy shows that explanation is strictly
connected to causal reasoning which in turn plays a central
role in using knowledge and beliefs to build mental models
about states of things and events. Mental models might even
be defined as the causal network we believe as ruling external
world and making things happen [12], we need interpretability
to understand the world and to decide and act upon it.

The last decade research in machine learning has shown
a rapid evolution in techniques like neural networks. The
increase in sophistication has lead to a lack of interpretability
of algorithms but, at the same time, the market and the policy
makers (see the European Union General Data Protection
Regulation, Article 22 [13]) demand explainability of the
resulting decisions. Recent studies (e.g. [14]) address the
urgency of interpretability and explainability for a user, in
understanding the outcome of machine learning algorithms,
and research is also ongoing into interpretability of word
embeddings (see [15]).

Each of the aforementioned models have some advantages
and suffer from drawbacks, and no particular approach seems
to definitely outperform in semantic tasks like similarity
judgments, synonym detection or noun categorization (see
again [9] and [16], [17], [18], [19], [20]). On these premises,
among the different models proposed within the Distributional
approach we have decided to focus our attention on the
Distributional Memory framework [21], a syntactic, count,
matrix model which extracts distributional information from
the corpus in the form of a set of weighted word-link-word
ternary tuples arranged into a third-order tensor [22].



TABLE I
EXAMPLES OF DM TUPLES FOR THE NOUN ’KNIFE’ LINKED TO THE

VERBS ’CUT’, ’USE’, AND ’WATCH’.

Word1 Link Word2 Value

knife-n with cut-v 1098.8484
knife-n obj use-v 1061.7598
knife-n obj watch-v 0.5139

III. THE DM TENSOR

The DM framework represents the distributional informa-
tion in a corpus as a third order tensor, that is a ternary
geometrical object that takes the form of weighted word-
link-word tuples encoding typed co-occurence relations among
words [22]. Formally, let W be a set of strings representing
words, and L a set of strings representing co-occurrence links
between words in a text, then T ⊆ W × L ×W is the set
of tuples t = 〈w1, l, w2〉 indicating that w1 co-occurs with
w2 in the corpus via the relation encoded by l. Each tuple t is
associated to a value v (also called weight) which is dependent
on the number of co-occurences in the corpus of w1 and w2

via l.
For example, the DM tensor contains the tuple

〈knife-n,sbj_tr,cut-v, 171.8297〉 that indicates
that the word knife (the suffix -n encodes the fact that
the word is a noun) occurs in the corpus as subject of the
transitive verb (link sbj_tr) cut (the -v suffix encodes the
fact that the word is a verb) with weight 171.8297.

The reader is referred to [22] for details on how the value is
computed, for the discussion here it is sufficient to say that the
greater the weight the greater the number of co-occurrences in
the corpus of the two words indicated by the tuple via the link.
In the DM tensor, 2678 tuples can be found associating the
example noun with a verb via a given link. Other examples
can be seen in Table I, where the first row tells us that in
the corpus the act of cutting is often performed by means of a
knife, or that with the same frequency we can find that knife
is the direct object of the verb use. The third row indicates
that very seldom knife occurs as the direct object of the
verb watch.

The lower bound for the weight is zero, theoretically in-
dicating the absence of co-occurences for a given tuple. No
such tuples are present in the DM tensor, that accounts only
for positive co-occurences in the corpus.

The tensor contains ca. 130M tuples, the number of nouns
is 20408 and the number of different links is 25336. It is
interesting to highlight, for the reminder of the paper, that
nouns are linked to adjectives as well. For example, in Table
II a few tuples are shown involving again the noun knife, but
linked this time to the adjectives sharp and blunt. There
are 917 tuples in the tensor indicating co-occurences of knife
with adjectives. Those shown in Table II are among the ones
with greater weight value. The first row of the table indicates
that the example noun is frequently associated to the adjective
sharp (the suffix -j indicates that the word is an adjective) via

TABLE II
EXAMPLES OF DM TUPLES FOR THE NOUN ’KNIFE’ LINKED TO THE

ADJECTIVES ’SHARP’ AND ’BLUNT’

Word1 Link Word2 Value

knife-n nmod-1 sharp-j 156.6379
knife-n is sharp-j 80.0795
knife-n nmod-1 blunt-j 69.6651

the (inverse) relation nmod (noun modifier). The second row
reports that knife is also frequently associated to sharp
via the link is, although the frequency is almost half with
respect to the previous tuple. The last tuple of the table shows
that with even less frequency blunt is a noun modifier for
knife in the corpus.

What it is interesting to observe here is that the adjectives
are used in the language to describe properties. This will be
exploited in the approach proposed in Sec. V.

IV. WORD EMBEDDINGS

The recent upsurge of deep learning techniques has driven
the development of new models for NLP. In particular, the
representation of words as a numerical vectors has been around
for more than forty years, however only recently [23] the
idea of learning, via unsupervised algorithms, n-dimensional
vectors that would capture word-meaning and context in their
values was developed. Therefore, a set of word vectors for
a vocabulary is able to capture the meaning of words, the
relationship between them and their context.

Vector representations embed words in a feature space, thus
the name word embeddings. As points in a n-dimensional
space, word embeddings enjoy a number of interesting prop-
erties such as:

• a unique representation (vector) for each word
• vectors are relatively low-dimensional, with typically

only a few hundred dimensions
• words with similar meaning have similar vector values

and are thus close-by in the n-dimensional feature space
• semantic regularities correspond to geometric properties
Despite all the advantages described above, learned word

embeddings have the drawback of being non interpretable.
That is, their dimensions cannot be clearly associated to
linguistic features or properties.

V. LINGUISTIC WORD EMBEDDINGS

The proposed approach is to build linguistic word em-
beddings, that is vectorial representations (embeddings) of
the words of a language. In our case here, we will limit
ourselves to the representation of English nouns. As already
mentioned, the novelty of the proposed representation is to
be completely interpretable as every component (dimension)
of the embedding vector corresponds to an adjective in the
English language. Let nA be the number of adjectives in
the language we want to model, then the dimensionality of
our real-valued vectors (word embeddings) will be nA and
their components will be associated to the adjectives in the



language in alphabetical order. Therefore, the j-th word in the
vocabulary is represented by the j-th column vector in the
embedding matrix as follows:

ej =


adj1,j
adj2,j

...
adjnA,j

 (1)

adji,j is then i-th component of ej and stores the value of the
i-th adjective for word j. For example, knife-n is the 10343-
th entry in the Nouns vocabulary and a partial representation
of its embedding is the following, where the actual computed
values are shown corresponding to the the adjectives on the
right:

e10343 =



0
4.329
16.368

...
73.297

...
327.629

...
0



Aboriginal-j
Afghan-j
African-j

...
long-j

...
sharp-j

...
zealous-j

The computation of the embedding values and the process
for building vectorial representation of our proposed Linguistic
Word Embeddings are described in the following section.

A. Computing the linguistic word embeddings

Building our linguistic word embeddings is a one-off pro-
cedure performed on the DM tensor in three steps:

1) Extraction of the list of nouns
2) Extraction of the list of adjectives
3) Construction of the embedding matrix
To simplify accessing and querying the DM tensor, we saved

in SQL database format the DM text file1. We extracted from
the DM tensor a vocabulary of 20408 nouns and a vocabulary
of 5253 adjectives. This could be easily done by running SQL
queries on the DM database selecting all distinct entries of
Word1 (or Word2 alternatively) ending with suffix ’-n’ and ’-
j’ respectively. The resulting single column dataframes Nouns
and Adjectives are then saved as tables to be used in the
following step.

To carry out the third step, we developed a parametric SQL
query to be run via Python for each noun in Nouns. The query
looks for all tuples involving the noun at hand linked to an
adjective and saves the results in a temporary table, specifically
a Common Table Expression (CTE), called NounAdjCTS.
The CTS has tuples of the form 〈adjective, value〉. However,
the adjectives found in this table are only a subset of all the
entries in the Adjectives vocabulary. Since, as explained in
Section V, we need a fixed-dimension vectorial representation

1http://clic.cimec.unitn.it/dm/

with all the adjectives, a LEFT JOIN2 is performed between
the NounAdjCTS and Adjectives tables thus resulting in a
table with the same number of entries as Adjectives. This
single column table is then cast into a column vector of floats
and added as the i-th column of the embedding matrix, where
i is the index of the noun in the Nouns vocabulary.

Listing 1 reports an instance of the parametric query de-
veloped for computing the linguistic embeddings for all the
nouns in our vocabulary. This particular instance of the query
returns the values (weights) for each adjective as found in
the DM tensor for knife-n. It is worth remembering that
in the DM tensor a certain noun can be found linked to the
same adjective via different links, as exemplified in Table
II where knife-n reported to be linked to sharp-j via
nmod-1 and via is with different weights. What value should
then be used in the embedding vector for knife-n in the
component corresponding to sharp-j ? We experimented
with different functions as taking the maximum value or taking
the sum of the values, however we didn’t notice significant
differences in the performance of the embeddings in the
experiments. The sum function, used in Listing 1, obviously
returns higher values than the max function and, as observed
in the experiments we performed, this translated in higher
similarity ratings between couple of vectors. This is a good
thing when the two words are actually similar, but this effect
is balanced by the drawback of higher ratings also for couples
of words that should not be considered similar.

The embedding matrix created with the procedure described
above is very sparse. For example, the matrix generated with
instances of the SQL query in Listing 1 for each noun in
the vocabulary as Word1 is 93.58% sparse, with a mean
number of non-zero components per column (embedding
vector) of 336.98. Our 5253 embedding dimension seems
therefore largely unused and in contrast to the principle behind
learned word embeddings that aim to dimensionality reduction
(with respect for example to one-hot vectors) as seen in Sec.
IV. However, it should be noticed here that, in this work,
our embeddings are not learned but computed directly from
the DM tensor. As already said, the computation is a one-
off procedure that takes a few minutes on a modern laptop
machine, and the matrix is an 817MB structure when saved to
disk in .npy format. As a reference, the DM tensor is instead
a 4GB file. In addition, tremendous savings can be obtained
when representing the embedding matrix via sparse structures,
as for example those made available by scipy.sparse in Python.

VI. EXPERIMENTS

In this section, we experiment with a typical task for mea-
suring the performance of word embeddings: word similarity.
In particular, we perform a few different word similarity tasks:

1) looking for the most similar entries in the dataset to a
given word;

2The LEFT JOIN operation returns all records from the left table and the
matched records from the right table, possibly with NULL results from the
right side when no match is detected.



1 WITH NounAdjCTS (Adj,Value) AS
2 (
3 SELECT Word2 as Adj, SUM(Value) as Value
4 FROM dm_table
5 WHERE Word1='knife-n' and Word2 LIKE '%%-j'
6 GROUP BY Word2
7 )
8 SELECT NounAdjCTS.Value
9 FROM Adjectives LEFT JOIN NounAdjCTS ON NounAdjCTS.Adj = Adjectives.Adj

Listing 1. Instance of the parametric SQL query developed for extracting the linguistic embeddings from the DM tensor. In this case, the query returns the
embedding of knife-n. The first part of the query is comprised by a CTE named NounAdjCTS that extracts all the tuples where the noun parameter is linked
to an adjective. The main part of the query performs a left join between the Adjectives table and NounAdjCTS.

2) measuring the correlation between the similarities com-
puted by the embeddings on a set of word couples from
a dataset and the average results obtained by humans on
the same words.

In addition to these experiments, we would like also to reflect
on the explainability of the obtained results which is the
driving feature of the proposed approach.

A. Most similar words

For this task we have selected a set of nouns representing
both simple and complex objects as well as abstract concepts.
Fig. 1 shows the most similar embeddings to the nouns
knife, ramp, house, kid, computer, faith
via the cosine similarity measure. The cosine similarity
between two vectors u and v is defined as:

cos(u, v) =
u · v
‖u‖ ‖v‖

=

∑
i uivi√∑

i ui
2
√∑

i vi
2

(2)

The cosine similarity is widely used when working with
embeddings. It has a few interesting properties that make it
often preferable over other norms. While in principle returning
values in the [−1, 1], the function is strictly bounded in [0, 1]
when the vectors are positive as in our case. The measure is
also insensitive to scale and works well with sparse vectors.

Therefore, the similarity between the embedding of each
noun in the mentioned list and all the other embeddings
has been computed and the top seven results are shown in
the figure. It can be noticed that the proposed embedding
representation is able to capture the characteristics of each
noun making it comparable with all the others via distance
measures. This is a typical capability of learned word embed-
dings, however we would like to stress again that the approach
here is very different and hinges on the linguistic features
(specifically adjectives) that are similar to those that a human
would use to describe these objects.

We can see that the most similar words in the database
denote a referent in the real world that intuitively shares
physical qualities with the query noun. While in classical
learned word embeddings the intuition would remain such, we
will see in Sec. VI-C examples of the main characteristics that
determine the similarity between couples of vectors. For the

moment, it is interesting to notice that even a noun related to a
concept such as faith-n is properly handled and considered
close to belief-n.

In all examples, it can be seen that while the closest results
are effectively similar to the query noun, results further away
are linked to the query more due to some degree of relatedness
rather than actual similarity. This happens in learned word
embeddings as well.

B. Correlation with similarity DataSets

We perform the evaluation of our approach on four of the
publicly available, state of the art, Test collections. All of
them have been built following the “contextual hypothesis”
with the purpose of measuring attributional similarity (the
degree of synonymy between two words) and association, or
relatedness, (the degree to which words are associated via any
kind of semantic relationship, including synonymy, meronymy,
hyponymy, hypernymy, functional or associative).

• RG-65 Test Collection [24]. It contains 65 pairs of nouns
together with a value from 0.0 to 4.0 assigned by judges
after a process of ordering, according to the amount of
“similarity of meaning”.

• MC-28 Test collection [25]. It is a subset of 30 noun
pairs from the RG-65 set, 10 of which selected from the
high level (rated 3 to 4), 10 from the intermediate level
(rated 1 to 3), and 10 from the low level (rated 0 to 1)
and rescored.

• WordSimilarity-353 (WS-353) Test Collection [26]. It
contains two sets of 353 English noun pairs represent-
ing various degrees of relatedness, along with human-
assigned similarity judgements. The present dataset in-
cludes all the noun pairs of the MC-28, with diffrent
scores on a scale from 0 (semantically unrelated words)
to 10 (identical words)

• SimLex-999 (SL-999) Test collection [27]. It contains
999 pairs of words. The dataset, differently from the
previuos, explicitly quantifies similarity rather than as-
sociation or relatedness and contains a range of ad-
jective, verb and noun concept pairs covering the full
concreteness spectrum: words denoting entities that are
associated but not actually similar have a low rating. For
example the pair of similiar words coast - shore



Fig. 1. Most similar nouns based on cosine similarity between embedding vectors with respect to a few selected nouns. The top seven results are shown.

TABLE III
PERFORMANCE ON STANDARD DATASETS FOR THE WORD SIMILARITY

TASK EXPRESSED BY SPEARMAN’S AND PEARSON’S CORRELATION
INDICES.

Spearman’s rho Pearson’s r

WS-353 0,326 0,361
RG-65 0,806 0,798
MC-28 0,805 0,788
SimLex-999 0,372 0,393

is rated 9.00 (SL-999) against 9.10 (WS-353) while the
pair clothes - closet 1.96 (SL-999) against 8.00
(WS-353).

The results are shown in Table III where it can be seen that
the results reach appreciable levels, especially considering that
no optimization whatsoever has been applied in order to fine
tune the performance on the specific datasets.

State of the art performance on similarity tasks in the above
datasets can be found on the website of the Association for
Computational Linguistics3. While being definitely prelimi-
nary, the obtained results exceed our expectations and motivate
us to further refine and investigate the approach proposed here.

3https://aclweb.org/aclwiki/Similarity (State of the art)

TABLE IV
MOST SIGNIFICANT FEATURES RESULTING FROM THE ELEMENT-WISE

PRODUCT OF THE EMBEDDINGS REPRESENTING KNIFE-N AND RAZOR-N.

Index Value Adj

4181 64930.269 sharp-j
810 2795.800 blunt-j
2105 1660.436 good-j
4618 1399.952 thin-j
2678 1143.005 keen-j
1462 987.955 disposable-j
1885 955.539 fine-j
1913 772.519 flat-j

C. Linguistic Word Embeddings Explainability

Even though similarity performance on standard datasets is
clearly lacking behind specifically developed approaches that
incorporate the latest developments in learned word embed-
dings and/or the incorporation of structured knowledge (eg.
WordNet), the main characteristic of the proposed model is
its complete interpretability.

For example, if we wanted to investigate why knife-n
is considered similar to razor-n, we could perform the
element-wise product between the two vectors to highlight
common features. The result is shown in Table IV.

The table shows the values of the product vector with values
in descending order along with the corresponding adjective
and index in the Adjectives vocabulary. The reported features



actually match properties commonly used to describe both
objects.

VII. CONCLUSIONS

In this work, we propose a novel real-valued vector repre-
sentation for word embeddings that enjoys the properties of
learned word embeddings while being human understandable.
The proposed approach is built on the Distributional Memory
tensor [22] developing a vectorial representation where each
component (dimension) corresponds to an adjective in the
English language. The values of the components are propor-
tional to the co-occurences of the noun with the adjectives, as
detected in the corpus on which the DM tensor was trained.

The proposed explicit linguistic word embeddings showed
decent performance on standard datasets for word similarity,
and demonstrated to be able to perform tasks commonly done
by learned and non interpretable word embeddings. Although
preliminary, the obtained results exceed our expectations and
motivate us to further refine and investigate the proposed
approach, that is in line with the current research thrust aimed
at developing explainable models for Artificial Intelligence.

Distributed semantic models have been often compared
to other models built upon structured lexical resources like
Lexica, Thesauri or WordNet [28], [29] leading to contrasting
conclusions. As future work, we plan to investigate the integra-
tion of such resources in our model, conveniently weighting
the links between the items which can be found within the
structures.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Titan Xp GPU used for this
research.

REFERENCES

[1] G. Ferrin, L. Snidaro, and G. L. Foresti, “Describing capability through
lexical semantics exploitation: Foundational arguments,” in 2018 21st
International Conference on Information Fusion (FUSION). IEEE,
2018, pp. 1912–1916.

[2] M. Uemura, N. Orita, N. Okazaki, and K. Inui, “Toward the automatic
extraction of knowledge of usable goods,” in Proceedings of the 30th
Pacific Asia Conference on Language, Information and Computation:
Oral Papers, 2016, pp. 277–285.

[3] J. R. Hobbs and M. del Rey, “Word meaning and world knowledge,”
Semantics: An international handbook of natural language meaning,
vol. 1, pp. 740–761, 2011.

[4] L. Wittgenstein, Philosophical Investigations. Oxford: Blackwell
Publishers, 2001.

[5] J. R. Firth, “A synopsis of linguistic theory, 1930-1955,” Studies in
linguistic analysis, pp. 1–32, 1957.

[6] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–
162, 1954.

[7] P. Aquaviva, A. Lenci, C. Paradis, and I. Raffaelli, Models of lexical
meaning. De Gruyter Mouton, 2017.

[8] R. Richie, W. Zou, and S. Bhatia, “Semantic representations extracted
from large language corpora predict high-level human judgment in seven
diverse behavioral domains,” 2019.

[9] A. Lenci, “Distributional models of word meaning,” Annual Review of
Linguistics, vol. 4, no. 1, pp. 151–171, 2018.

[10] G. K. Zipf, Selected studies of the principle of relative frequency in
language. Harvard university press, 1932.

[11] M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count, predict! a sys-
tematic comparison of context-counting vs. context-predicting semantic
vectors,” in Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2014,
pp. 238–247.

[12] R. R. Hoffman and G. Klein, “Explaining explanation, part 1: theoretical
foundations,” IEEE Intelligent Systems, vol. 32, no. 3, pp. 68–73, 2017.

[13] “Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection
Regulation),” Official Journal of the European Union, vol. L119, pp.
1–88, May 2016. [Online]. Available: http://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=OJ:L:2016:119:TOC

[14] A. Chander and R. Srinivasan, “Evaluating explanations by cognitive
value,” in International Cross-Domain Conference for Machine Learning
and Knowledge Extraction. Springer, 2018, pp. 314–328.

[15] L. K. Şenel, I. Utlu, V. Yücesoy, A. Koc, and T. Cukur, “Semantic
structure and interpretability of word embeddings,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 26, no. 10,
pp. 1769–1779, 2018.

[16] M. Faruqui and C. Dyer, “Non-distributional word vector representa-
tions,” in Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), vol. 2, 2015,
pp. 464–469.

[17] M. Faruqui, Y. Tsvetkov, P. Rastogi, and C. Dyer, “Problems with evalu-
ation of word embeddings using word similarity tasks,” in Proceedings
of the 1st Workshop on Evaluating Vector-Space Representations for
NLP, 2016, pp. 30–35.

[18] M. Sahlgren and A. Lenci, “The effects of data size and frequency
range on distributional semantic models,” in Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing,
2016, pp. 975–980.

[19] G. Lapesa and S. Evert, “Large-scale evaluation of dependency-based
dsms: Are they worth the effort?” in Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguis-
tics: Volume 2, Short Papers, vol. 2, 2017, pp. 394–400.

[20] P. Mandera, E. Keuleers, and M. Brysbaert, “Explaining human per-
formance in psycholinguistic tasks with models of semantic similarity
based on prediction and counting: A review and empirical validation,”
Journal of Memory and Language, vol. 92, pp. 57–78, 2017.

[21] M. Baroni and A. Lenci, “One distributional memory, many semantic
spaces,” in Proceedings of the Workshop on Geometrical Models of Nat-
ural Language Semantics. Association for Computational Linguistics,
31 March 2009, pp. 1–8.

[22] ——, “Distributional memory: A general framework for corpus-based
semantics,” Computational Linguistics, vol. 36, no. 4, pp. 673–721,
2010.

[23] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” Journal of machine learning research, vol. 3,
no. Feb, pp. 1137–1155, 2003.

[24] H. Rubenstein and J. B. Goodenough, “Contextual correlates of syn-
onymy,” Communications of the ACM, vol. 8, no. 10, pp. 627–633, 1965.

[25] G. A. Miller and W. G. Charles, “Contextual correlates of semantic
similarity,” Language and cognitive processes, vol. 6, no. 1, pp. 1–28,
1991.

[26] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolf-
man, and E. Ruppin, “Placing search in context: The concept revisited,”
ACM Transactions on information systems, vol. 20, no. 1, pp. 116–131,
2002.

[27] F. Hill, R. Reichart, and A. Korhonen, “Simlex-999: Evaluating semantic
models with (genuine) similarity estimation,” Computational Linguistics,
vol. 41, no. 4, pp. 665–695, 2015.

[28] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[29] C. Fellbaum, WordNet: An Electronic Lexical Database, ser. Language,
speech, and communication. MIT Press, 1998.


