
Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Ingrid Visentini · Lauro Snidaro · Gian Luca Foresti

Cascaded Online Boosting

Received: date / Revised: date

Abstract In this paper, we propose a cascaded version
of the online boosting algorithm to speed-up the exe-
cution time and guarantee real-time performance even
when employing a large number of classifiers. This is the
case for target tracking purposes in computer vision ap-
plications. We thus revise the on-line boosting frame-
work by building on-the-fly a cascade of classifiers dy-
namically for each new frame. The procedure takes into
account both the error and the computational require-
ments of the available features and populates the levels
of the cascade accordingly to optimize the detection rate
while retaining real-time performance. We demonstrate
the effectiveness of our approach on standard datasets.

Keywords Online Boosting, Multiple classifiers
systems, Object detection, Tracking

1 Introduction

Classifier ensembles are proved to benefit from the di-
verse decision capabilities of their members, thus improv-
ing classification performance [13]. Boosting [6], bagging
and other forms of classifiers combination [26] aim to
form an ensemble of weak classifiers that will perform as
a strong one [11,28,24,12].

Usually the weak classifiers are trained on the entire
training set and then greedily added to the ensemble with
respect to a certain criterion; therefore, the iterative pro-
cess builds the set of weak classifiers that performs best
on the training set. This batch procedure is particularly
demanding in terms of computational resources and is
dedicated to systems that can afford a time-consuming
training phase [15,32]. A new stimulus has been given
by the intuition of Oza [21] that conceived online ver-
sions of the Bagging and Boosting algorithms. In par-
ticular, the Online Boosting algorithm has found many
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applications in pattern recognition. For example, Grab-
ner and Bischof [10] showed how to apply this framework
to computer vision tasks. Pham and Cham [25] proposed
an asymmetric version of the original algorithm, to cope
with unbalanced classes. Another interesting approach
exploits the Wald’s sequential decision theory within the
Boosting algorithm [31]; in a later work, this idea has
been applied to online learning to achieve a better com-
promise between complexity and accuracy with respect
to Online Boosting [9]. The online WaldBoost modifies
the cardinality of the ensemble depending on the clas-
sification task; when the cardinality is reduced a speed-
up is achieved. As will be discussed later, the proposed
method has variable accuracy but always maintains the
real-time constraint.

Many other recent works point that the Online Boost-
ing is an effective framework for combining multiple clas-
sifiers for computer vision applications [17,39,35,18].

The most prominent use of Online Boosting for vision
is probably object tracking: a combination of classifiers
is used to learn the appearance of a target in the current
frame and the ensemble is then employed to detect it in
the following frame, considering the detection step as a
discrimination between the object and the background
[23,2]. The location of the target is therefore given by
the region that triggers the strongest response of the
ensemble.

Since object detection and tracking in video sequences
are known to benefit from the employment of multi-
ple (heterogeneous) features (e.g. color, orientation his-
tograms, etc.) as shown in [5,8,36], the combination of
different features within the boosting framework can be
a winning strategy in terms of robustness and accuracy
[42]. However, this can prohibitively increase the com-
putational burden to the point of preventing real-time
performance even in the case of Online Boosting. In fact,
the computational complexity increases with the number
of features/classifiers employed.

To overcome a similar problem in off-line classifica-
tion, Viola and Jones [33] proposed the idea of building
a cascaded classifier to speed-up the application of the
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ensemble to many sub-regions of an image during the de-
tection step. They exploited the fact described in [1] that
few accurate weak classifiers are sufficient to narrow the
focus of attention on the regions of the image where the
object is likely to be present. These classifiers would con-
stitute the first level of the cascade while the other levels
would comprise the remaining classifiers in descending
order of accuracy. This approach has been successfully
applied to many tasks, including face detection [38,37],
pedestrian detection [40,22], neural network frameworks
for classification [7], and handwritten digit recognition
[14,41]. From its first appearance in the literature until
these recent works, including [3,38,4], the cascade was
trained off-line through an extremely time consuming
process. An exception is the work of Wu and Nevatia
[35], where a cascaded version of the Online Boosting
algorithm is proposed, but starting from general seed
detectors learned off-line.

To speed up the application of this ensemble, here
we propose a cascaded Online Boosting algorithm that
builds on-the-fly a cascade from a heterogeneous set of
online boosted classifiers. Since different features can
have different computational costs, the cascade construc-
tion takes into account both the error and the compu-
tational requirements of the available features and pop-
ulates the levels accordingly to optimize the detection
rate while retaining real-time performance. We thus ex-
ploit the advantages given by the online boosting algo-
rithm while guaranteeing the sought-after property of
real-time performance as it is the case in most computer
vision tasks.

The idea was initially conceived in [34] for a homoge-
neous set of features and then extended in [30] to the het-
erogeneous case. With respect to these previous papers,
the present work introduces the following improvements:

– A refined cascade algorithm that doesn’t require user
pre-defined thresholds

– A novel strategy for hypotheses selection that dy-
namically takes into account the cost of the features
and the current frame rate

– Thorough experimentation on standard datasets

We have compared the performance achieved by the
proposed cascaded algorithm with those of the mono-
lithic online boosting. In particular, we have focused on
computational cost and thus measured the frame rate
obtained in object tracking tasks. For completeness, we
have also validated the approach by considering tracking
scenarios in real-world video sequences.

The paper is organized as follows: Sect. 2 provides a
brief recount of the key concepts of Boosting and clas-
sifiers ensembles and puts them in the context of ob-
ject tracking in video sequences; Sect. 3 provides a step-
by-step description of the proposed algorithm; Sect. 4
presents the experimental validation on standard datasets
of real-world video sequences.

2 Ensembles of classifiers and Booosting

Ensemble methods are well-known techniques for com-
bining multiple classifiers’ outputs in order to improve
classification performance (see [26] for a recent survey).
Ensemble-based (meta) algorithms [26], such as Bagging
and Boosting, follow the intuition that fusing multiple
weak hypotheses (classifiers) yields a strong ensemble,
that is with increased classification performance.

Given a set of (weak) hypotheses {h1, h2, . . . , hT }
so that ht : X → Y where X is the set of vector-
valued samples, Y = {−1,+1} is the set of labels, and
{(xi, yi) : i = 1, . . . , N ∧ xi ∈ X ∧ yi ∈ Y } is the training
set, the Boosting algorithm builds a (strong) classifier
ensemble H as follows

H(x) = sign

[
T∑

t=1

1
2

log
(

1− εt
εt

)
ht(x)

]
(1)

where t is the current training epoch and T is the to-
tal number of epochs (and, at the same time, the total
number of weak classifiers). For each t, a hypothesis ht is
greedily added to the ensemble with respect to the prob-
ability distribution Dt on all the learning samples in X.
The probability distribution Dt, updated at each epoch
t, assigns a weight to each training example according
to its “difficulty”: the Boosting algorithm adjusts the
weights in order to focus on the “hard” samples in the
training set. The objective is to minimize the weak clas-
sifier error εt, defined as

εt = P (ht(xi) 6= yi) =
∑

i:ht(xi) 6=yi

Dt(i) (2)

In 2001, Oza [21] proposed an online version of the
former boosting algorithm due to Schapire and Freund
[6]. Two main improvements were introduced: the first
one is that the ensemble can be at the same time used
for classification and trained “on-the-fly” on every new
sample. The second one refers to the way the learning
samples are processed. In the off line version, all the sam-
ples are available at the same time, and a distribution on
the training set is maintained. At each boosting round t
the algorithm, thus, modifies the weights of each sample
according to the error of the base learner ht.

On the contrary, in the online version no distribu-
tion on the samples is available, and the information
on the training set difficulty has to be embedded in the
hypotheses. In particular, a value λ associated to each
incoming sample reflects the difficulty of the entire hy-
potheses set to classify it [20]. The error of every hy-
pothesis hm is conditioned by the correctly recognized
samples weight λsc

m = λsc
m + λ and the misclassified sam-

ples weight λsw
m = λsw

m + λ, so that

εm =
λsw

m

λsc
m + λsw

m

(3)
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Eventually, the ensemble output is given by:

H(x) = arg max
y∈Y

(
M∑

m=1

log

(
1− εm
εm

)
hm(x)

)
(4)

where M is the number of weak learners fixed a priori,
and εm is the error of hypothesis hm on the training set
defined as above.

When ensemble classifiers are used online for target
tracking [10,20], there is no training set in the tradi-
tional sense. Instead, samples arrive sequentially in time
and they are processed (learned) one by one and then
discarded. In particular, in our case at each time t the
ensemble learns a positive and a negative sample. Let x
be the subregion of the image It that has been classified
by ensemble H as the target. Then x is considered as the
new positive sample to be learned. The negative sample,
on the contrary, is a background patch (negatively la-
belled) xb chosen at a random position in the image It
with a preference for the area surrounding the target.

Considering every hypothesis hm as a Naive Bayes
classifier that discriminates between the background and
the target, the outputs of the ensemble over the positive
(target) and negative (background) samples can be mod-
elled by two normal distribution N (µm,y, σ

2
m,y) where

y ∈ Y = {−1, 1}. The highest posterior probability given
by the Bayesian classifier on a sample x determines the
belonging class (Maximum a Posteriori)

h(x) = P (y|x) ∝ arg max
y∈Y

P (y)N (x, µm,y, σ
2
m,y|y) (5)

To learn a sample x, the parameters of the distribu-
tions at time t are modified as follows

µm,y,t = (1− ρ)µm,y,t−1 + ρh(x) (6)

σ2
m,y,t = (1− ρ)σ2

m,y,t−1 + ρ(h(x)− µm,y,t)2 (7)

where ρ is a learning rate parameter.

3 Processing steps

This section provides a step-by-step description of the
processing phases required to build on-the-fly the pro-
posed online boosted cascaded ensemble of classifiers.

The principle behind a cascade of classifiers is quite
simple: the hypotheses are organized in a pyramidal fash-
ion, often called cascade of attention, that is composed
of several levels that follow a coarse-to-fine strategy, as
illustrated in Fig. 1. The upper levels, that comprise a
small number of classifiers, are applied first. The job of
the upper level is to provide a quick response with high
sensitivity (few false negatives). In terms of object track-
ing this means that the levels are not likely to miss the
object to be tracked but also a lot of background is prob-
ably going to be considered similar to the target. The
deeper the level, the more populated is the ensemble,

the more confident the classifier, and the more opera-
tions are required.

In [33] a single level of the cascade is built analysing
the performances on the training set, and using a thresh-
old (e.g. on false positives) to determine the stopping
point. As already mentioned, while the classical Boost-
ing algorithm maintains a distribution on the training
data according to the “difficulty” of the samples, no dis-
tribution is available in the case of online Boosting since
new data is continuously streaming in (i.e. new frames
from a video sensor) [20].

We propose to exploit the error associated to each
hypothesis (3) at time t to estimate the accuracy of the
classifier at time t+ 1. In particular, a weak learner with
a low error has, by definition, a low rate of false negatives
and false positives. We can suppose then that a low error
weak learner at at time t is likely to perform well at time
t+ 1. We suppose also that the object we are searching
for maintains a similar appearance in two subsequent
images which is a reasonable assumption given the high
input frame rate.

Moreover, when the ensemble is composed of differ-
ent types of classifiers or features as weak base learners,
every one of them can take a different amount of opera-
tions to be applied; for this reason, a cost factor γm that
indicates the time for a hypothesis hm to be computed
has to be considered.

Following this reasoning, in the first levels of our cas-
cade should be placed the hypotheses with low error and
low computational cost, in order to reject the highest
number of regions not containing the object (True Neg-
atives) while preserving a low False Negatives rate and
maintaining the real-time constraint.

3.1 Cost factor

An important consideration when structuring a frame-
work that involves several types of hypotheses to be ap-
plied in real-time is the different amount of operations
every single weak learner requires in practice to better
distribute the classifiers among levels.

To each hypothesis hm we assign a weight 0 ≤ wm ≤
1 that denotes its “importance”

wm = 1− εm + γm

εmγm + 1
(8)

and comprises the error εm and the computational cost
γm. By means of this value we can build the cascade
including in the first levels the classifiers with a high
weight, to provide a good mix of accuracy and speed.
We then normalize all the wm so that

∑
m wm = 1

The cost γm related to hypothesis hm in (8) can con-
siderably vary depending on the kind of classifiers in-
volved: Haar features are computationally less expensive,
for example, than colour histograms. The costs are de-
termined by an off-line procedure that times the process
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Fig. 1 Architecture of the proposed attention cascade algorithm.

Fig. 2 Illustration of the distribution of the classifiers in the
levels of the cascade when varying the parameter W .

of extracting and probing each feature, thus avoiding the
need to set them manually. This set-up phase is indepen-
dent of the video sequence used and also of the size of
the target, as these features can be computed in constant
time through fast data structures as integral images and
integral histograms. After probing the different compu-
tational times required by each feature type, their cost
is obtained by dividing by the slowest time. In this way,
cost values will be normalized so that 0 < γm ≤ 1, where
the slowest feature type will have a gamma value equal
to 1.

Considering an upper limit 0 ≤ W ≤ 1 for the sum-
mation of the weights of the classifiers for each level l,
the strong classifier at level l is

Hl = {h1, . . . , hk} :
∑

k

wk ≤W (9)

We notice that the higher W the more classifiers are
included in the first levels. The cascade in this case is
shorter, as shown in Fig.2, and the time of computa-
tion is extended: to search the object of interest, more
operations have to be done in the first levels on all the
subregions of the image.

3.2 Forcing the Real-time

Since real-time execution is the goal of the proposed ap-
proach, we have decided to consider the frame rate as a
stakeholder in the process of building the cascade. Ex-
ploiting the fact that W can modify the number of levels
and thus the shape of the cascade (Fig. 2), we tune the
level limit W to reflect the need for speed. As we know
that W influences the number of features to be included
in a level, if the cascade has been too slow at time t, the
shape of the cascade should be revisited and stretched:
Wt+1 should be a more tolerant limit, therefore with a
smaller value.

Said FRopt the desired frame rate, and FRt the cur-
rent frame rate at time t, Wt+1 becomes

Wt+1 = Wt ∗
FRt

FRopt
(10)

Note that values of W > 1 have no meaning since the
upper limit is W = 1 which means that the entire set
of classifiers is comprised in a single level (monolithic
ensemble). With respect to our previously adopted so-
lution, where two thresholds for the error rate and the
cost rate were used to build the cascade levels, here we
use only the frame rate to construct the cascade. To be
more precise, the approach is now almost threshold-free
since the current frame rate FRt can be read from the
system, the target frame rate FRopt is generally set to
25 fps, and the initial value of W can be randomly ini-
tialized or hard-coded to any default value in (0, 1) (e.g.
0.5) and then the algorithm will adjust it automatically
via (10) to achieve the required frame rate FRopt. That
is, the only input required from the user is the required
frame rate FRopt. With this new solution, the real-time
constraint is enforced, but at the same time the classifiers
of each level provide a compromise between accuracy and
maximum number of operations per frame, so that the
total computational cost of the level can be limited and
the error is kept as low as possible.
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Algorithm 1: Cost Cascaded on-line boosting

Require: Strong classifier H0 randomly initialized
Require: Cascaded classifier Hout initialized
Require: Cost value for each hypothesis type in Hout

for the new frame at time t do
// Train Ht with the target (positive sample)
x+
t ← arg maxx(Hout(x)), x ∈ It
λ← 1
OnlineBoosting(Ht, (x

+, 1), λ) [20]
// Train Ht with the negative sample(s)
for each negative training sample x−t do
λ← 1
OnlineBoosting(Ht, (x

−
t , 0), λ) [20]

end for
// Calculate the weight wm for every classifier
for hm ∈ Haux,m = 1, 2, . . . ,M do
wm ← (1− εm+γm

εmγm+1
) as in (8)

end for
// Normalize the weights wm
for m = 1, 2, . . . ,M do
wm ← wm∑

m wm

end for
// Sort the weak classifiers w.r.t. their weight (w)
// in descending order
Haux ← Sort(Ht)
// Build the cascade with the hypotheses in Haux
l← 0
while Haux 6= ∅ do
weight← 0
for hm ∈ Haux,m = 1, 2, . . . ,M do

if weight ≥W then
// Initialize a new level
weight← 0
l← l + 1
break;

else
// Add a hypothesis to the current level
weight← weight+ wm
Haux ← Haux − hm
Hl ← Hl ∪ hm

end if
end for

end while
L← l
Hout ←

⋃L
l=1Hl

end for

Algorithm 1 summarizes the steps to be taken to con-
struct the cascade. First of all, at time t the hypotheses
are trained both with a positive and a negative sample;
the error of the boosted classifiers is multiplied with the
cost coefficient, providing a weight for each hypothesis.
The classifiers are sorted in descending order of weight,
and organized by levels that are partitions of the original
set. In particular, for every level they are included until
the W limit is reached, considering all the weights of the
classifiers in a level. The process is repeated by filling
the next levels with the remaining base learners. After
the levels are completed, their concatenation forms the
cascade, which is applied on the image at time t+ 1 and
the process is repeated.

Algorithm 2 describes the processing steps for the ap-
plication of the cascade ensemble. The cascade obtained

Algorithm 2: Application of the cascade.

Require: Cascaded classifier Hout
Require: Subregion x

// Sum of the weights of the (previous) levels
wHist← 0
// Sum of the weights of the current level
wCurr ← 0
// Cascade output
output← 0
for l = 1, 2, . . . , L do

// Probe hypotheses of level l
for k = 1, 2, . . . ,Kl do

// Update the classifier output
output← output+ βk,l ∗ hk,l(x)
wCurr ← wCurr + βk,l

end for
// Get the weights of the hypotheses
wHist← wHist+ wCurr
if ((output < 0) ∨ (l = L)) then

// Return the normalized confidence
// with which to fill the confidence map
output← output

wHist
break;

end if
end for

at time t−1 processes every subregion in a frame at time
t, assigning them also a confidence value. Every sample
can be rejected at any level or sent further to the next
ones; if the bottom of the cascade is reached and the final
output is positive, the object is flagged with the positive
label. If the object is rejected at any level, the normal-
ized weighted outputs of the classifiers determines the
confidence of the cascade on the subregion; a confidence
map keeps record of the decisions of the ensemble.

3.3 Cascade confidence

For what concerns the output of the cascade, we consider
both the answer of the classifier set Hl at level l and the
output of the previous levels recursively. On a subregion
x of the image, the confidence of the ensemble at level
l is defined as the sum of the confidence of the previous
level and the response of the Kl weak classifiers in Hl,
as given by the following formula

confl(x) ≡ confl−1(x) +
Kl∑

k=1

βk,lhk,l(x) (11)

where the confidence of the first level is defined as

conf0(x) ≡
K0∑
k=1

βk,0hk,0(x) (12)

and the coefficients βk,l are given by

βk,l = log

(
1− εk,l

εk,l

)
(13)



6

Fig. 3 Example of a confidence map on a frame; the highest
peak represents the position of the target.

as in the Boosting weighting scheme. The smaller the
error of hk,l on the training samples, the larger the co-
efficient βk,l assigned to it. The number of classifiers Kl

in level l is |Hl|, where the operator |.| provides the car-
dinality of a set, and it follows that

∑
lKl = M .

As detailed in Algorithm 2, in the training phase the
weak learners are updated with the Boosting algorithm.
At classification (probing) time, if the ensemble Hl at
level l validates the subregion x, establishing that

sign(conf l(x)) = +1 (14)

then the sample is evaluated by level l + 1. The output
of a level is based on the response of the previous levels
and on its hypotheses one, as per (11). The output of the
cascaded ensemble Hout on the input x is thus given by:

Hout(x) = sign (conf(x)) (15)

where

conf(x) =
L∑

l=1

Kl∑
k=1

βk,lhk,l(x) (16)

Eventually, considering the answer of the classifier on
every subregion of the image a confidence map is built.
The target position corresponds to its maximum, and
can be found by a simple Max function. An example of
how the confidence map looks like is presented in Fig. 3.

The computational effort while running depends on
the amount of hypotheses applied per region. With our
solution, not all the hypotheses of the ensemble are nec-
essarily applied at the same time on the region of in-
terest, but possibly only a small subset whose cardinal-
ity depends on the thresholds W . The probing time for
the strong classifier is O(

∑L
l=1Kl) = O(

∑L
l=1 |Hl|) =

O(|H|), since in the worst case all the hypotheses are
tested.

(a) (b) (c)

Fig. 6 Examples of population of a cascade of 300 features
for (a) W = 0.6 (b) W = 0.4 (c) W = 0.2.

4 Experiments

We have applied the proposed approach to object de-
tection and tracking for video surveillance purposes. In
this section, several experiments performed on standard
real-world video sequences are presented to validate the
proposed framework. The hardware employed in all the
tests is an AMD Athlon64 3500+ with 1GB of RAM.
All the modules have been implemented in C++ using
fast data structures, i.e. integral images and integral his-
tograms, to reduce the computational requirements.

4.1 Settings

We used three different types of features to describe mov-
ing objects: Haar features [16], Local Binary Patterns
(LBP) [19], and colour histograms [27]. The common
start-up procedure for ensemble tracking methods in-
volves that the object to be tracked be set up by a change
detection procedure or by hand [20]. Similarly to most of
the recent literature [10], we employ a fixed size window
to track the object. As a natural evolution of the present
work we will consider in the future the application of the
cascade to varying scale target tracking.

As regards the ρ parameter for the classifiers update,
it was set to 0.25 taking into account the frame rate
and the typical movement speed of observed objects [30];
small changes in its value produced no significant effects.

4.2 Comparison of different values of W

First of all, we performed an experiment testing different
values of W , since the variation of this parameter leads
to a trade-off that involves the time of execution and
the accuracy of the ensemble. This experiment wants to
compare, in terms of accuracy and speed, our cost-based
cascade framework with an ensemble of fixed dimension,
called monolithic, when tracking is performed on an ob-
ject of interest. We applied three ensembles, consisting
of 300, 400 and 500 heterogeneous classifiers respectively,
to a standard sequence taken from [29]. The video com-
prises 1340 frames at 320×240 pixels resolution in which
a puppet doll is moved under a light bulb. The target was
manually initialized in the first frame on the puppet’s
muzzle with a 40× 40 pixels area.
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(a) (b)

Fig. 4 (a) Average evaluation time (in milliseconds) for the different-sized cascades for increasing W values. (b) Frames per
second achieved by the proposed algorithm when varying the number of classifiers involved and W .

(a) (b) (c)

Fig. 5 ROC curves for three proposed cascades in the case of 300 (a), 400 (b) or 500 (c) features involved. The monolithic
ensemble is compared with the cascades obtained using W = 0.1, W = 0.3 and the proposed solution that automatically
tunes W .

Fig. 4 shows the average evaluation time and the
correspondent frame rate for each ensemble type pre-
sented. The evaluation time comprises the time required
for building the cascade and the time required for ac-
tually probing it on the image. For each ensemble type,
the performances of the monolithic and the cascaded ver-
sions are shown. As it can be seen, the monolithic ver-
sion is generally slower than the cascaded counterpart
and the performance gap narrows for increasing values
of W . That is, the higher the value of W the slower the
cascade is as its levels will eventually collapse into one
(monolithic classifier). Of course, low values of W yield
high frame rates but at the cost of accuracy.

To evaluate the accuracy of the classifiers, we have
measured their sensitivity and the specificity on the afore-
mentioned video sequence by varying the acceptance func-
tion of the classifiers (14) and plotting ROC curves. Note
that the acceptance threshold has been changed only
for the sake of the experiment, the focus should be on
the effects given by different values of W . In Fig. 5 are
shown the ROC curves that indicate the performances of
the cost-based cascades; these should be correlated with
the results of Fig. 4. Each chart shows the plot of the
ROC curves obtained by the monolithic classifier and
by three cascades for different settings of W : the first
one has W = 0.1, in the second one W = 0.3, and in the
third one W is set to be self-tuning according to the pro-

posed mechanism (10) for a target frame rate FR = 25.
The two fixed values have been chosen to reflect differ-
ent possible conditions: the lower W , the stricter is the
limit imposed to the number of eligible hypotheses, thus
preferring a fast system with more lightweight levels. A
medium tolerance threshold W allows a larger amount of
hypotheses in the initial levels. The higher W the larger
the number of weak learners admitted in the first stages
of the computation, thus generating a shorter cascade
that requires more operations in the initial stages.

We tested three ensembles composed of 300, 400 and
500 heterogeneous features respectively; considering both
the Area Under the Curve (AUC) and the speed, as ex-
pected the ensembles that are more accurate are those
that require more computational time. In particular, the
non-cascaded approach scored the highest accuracy when
applied to the Sylvester scenario. But the most accurate
system is also the most computationally demanding. The
cascade with W = 0.3 is slightly less accurate than the
monolithic detector, but it dramatically reduces the ap-
plication time as the number of features grows, incre-
menting dramatically the frame rate. The same can be
said of the other cascades, included the self-adapting one
with variable W .

The rationale behind this is that the most expensive
features (LBP and colour histograms) are the more ro-
bust and accurate, so they better classify the sample but
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Fig. 7 Results on the Sylvester sequence [29]. The first row shows the monolithic approach, while in the second row the
output of the cascaded ensemble with automatic setting of W is displayed. The bottom row presents the shift in pixel with
respect to the ground truth for the x (left box) and y (right box) coordinate of cascade [(a) and (c)] set, and monolithic
[(b) and (d)]. The cascade detector resulted slightly more sensitive to variations; in the worst case, it showed a 14 pixels shift,
while 11 pixels was the maximum offset for the monolithic classifier. The cascaded achieved 25 frames per second (fps), while
the monolithic ensemble 15 fps.

they are placed in the low levels of the cascades due to
their high cost. For instance, in Fig. 6 the distribution
of 300 features through levels for the three different val-
ues of W is shown. As we can see, when strict cost con-
straints are imposed, a small number of “heavy” features
is included in the first levels, while lightweight features,
even if inaccurate, are preferred. However, while in the
monolithic ensemble all the features are applied at the
same time, this is avoided when the cascade comes into
play, because the levels are applied subsequently when
necessary, speeding up the application.

4.3 Comparison with the Online Boosting

In the first two rows of Fig. 7, we can see the output of
the monolithic detector and the output of the cascaded
detector with automatic setting of W , both comprising
400 features. In the last row, the distance of the static
and the cascade detector from the ground truth is pre-
sented; the shift is represented by its absolute value in
pixels. In the second part of the sequence both detectors
have a slight offset with respect to the ground truth.

This is due to the wide and sudden changes in both the
illumination and in the orientation of the target, and, in
particular, due to the transition between frontal view to
the full profile or to a top view. The cascade detector re-
sulted slightly more sensitive to variations. In the worst
case, the cascade showed a 14 pixels shift, while 11 pixels
was the maximum shift for the monolithic classifier. The
average error of the monolithic classifier was 4, 0 pixels,
while the average error of the cascade was 4, 8 pixels in
the experiment.

Regarding the confidence of the cascades compared
with the detector, the more the classifiers in the ensem-
ble, the better the confidence value. In Fig. 8 is shown
the trend of the confidence values for different ensemble
sizes ((a) - (c)) in the case of monolithic and cascade
approach. The variation of the parameter W in the case
of an automatic setting is presented in Fig. 8 (d). In the
first part of the sequence, the object maintains a frontal
position and its appearance does not vary noticeably; in
the second half, on the contrary the puppet moves ro-
tating (out-of-plane direction), rolling and translating,
causing the confidence to decrease.
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(a) (b)

(c) (d)

Fig. 8 Confidence values for a 300 (a), 400 (b), and 500 (c) cascade classifier on the video sequence of Fig. 7. (d) Dynamically
tuned W values obtained by the proposed cascaded classifier.

Table 1 Results on CAVIAR sequences

Sequence name #Obj #Frames µ COB σ COB µ OB σ OB fps COB fps OB

INRIA sequences
Walk1 1 319 6.30 3.19 4.65 2.34 24.6 18.1
Walk2 1 504 6.42 2.20 5.22 2.28 25.3 18.8
Walk3 1 509 7.39 2.56 5.24 2.18 25.1 18.2
Browse1 1 562 6.13 3.11 4.30 3.45 25.2 18.2
Browse2 1 417 7.39 2.25 5.92 4.44 25.2 18.5
Browse3 1 397 7.18 3.15 6.24 4.82 25.5 18.6
FightRunAway1 2 163 8.52 3.32 7.80 3.58 24.6 18.5
FightRunAway2 1 199 10.89 3.38 8.18 3.28 24.6 18.6
FightOneManDown 3 675 12.24 3.66 10.83 3.11 24.2 18.6
FightChase 1 165 6.58 3.14 5.48 3.03 24.3 18.4
Lisbon sequences
WalkByShop1cor 4 1718 8.78 3.02 8.18 3.86 24.5 18.2
EnterExitCrossingPaths1cor 1 215 7.56 2.18 7.54 2.48 25.2 18.3
OneLeaveShopReenter1cor 2 278 7.68 2.32 6.74 2.74 25.0 18.3
ShopAssistant1cor 3 443 12.11 3.64 10.54 3.34 24.2 18.3

The cascaded ensemble processed the video at an av-
erage of 25 frames per second (fps), as shown in Fig. 9,
while the monolithic ensemble performed at an average
of 15 fps. The imposed optimal frame rate FRopt was 25
frames per second.

In Tab. 1 are presented the results obtained on sev-
eral sequences from the CAVIAR 1 dataset. The cas-
caded Online Boosting (COB) and the Online Boosting
(OB) results have been compared in terms of euclidean
distance from the ground truth. The mean error (µ COB
and µOB) and its standard deviation (σ COB and σ OB)
are reported for both algorithms that are using 400 clas-
sifiers each. The data refer to an average of the number

1 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

of subjects (#Obj) involved, and #Frames refers to the
number of frames of tracking only. We set FRopt = 25
and we tracked one target in the scene. The search area
was restricted to 35% more than the size of the target.
The bounding box in the initial frame has set been man-
ually or via a change detection algorithm.

4.4 Multiple targets

To test the performance of the system when more than
one object is in the scene, we employed the CAVIAR
video sequence dataset to measure the times of compu-
tation of the proposed approach based on ensembles of
different sizes, compared with the fixed size ensemble.
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Fig. 9 Frame rate of the cascaded ensemble composed of 400
features. The choice of W is automatic (Fig. 8 (d)) and the
optimal frame rate was set to 25 fps.

Fig. 10 Average time of computation for the different-sized
cascades while increasing W .

Fig. 11 Frames per seconds achieved by the proposed algo-
rithm when varying both the number of classifiers and W .

We initialized the targets with a simple change de-
tector output, and then the Online Boosting algorithm
and the proposed one are employed to track two tar-
gets. In this case, a simple background subtraction tech-
nique could not be employed to detect the pedestrians
during all the frames of the sequence because of the sud-
den shadows on the floor and because of the illumination
changes all around the scene. On the contrary, the detec-
tion via classification is more robust and can be applied
at each frame.

In Fig. 10 and Fig. 11 the times of computation and
the frame rates for different algorithms are presented.
Three fixed-size ensembles, consisting of 300, 400 and
500 classifiers, are compared with three cascades of the
same size. As predictable, with respect to a single-object
scenario the times of computation are doubled; the frame

rate is halved, and the cascades remain faster than the
non-cascaded ensembles. As we can see, for all the in-
volved algorithms, as W increases the amount of time
per operations gets higher; in particular, after a certain
value of W the cascades have the same computational
cost as the monolithic approach or greater. This can be
explained with the fact that in time of evaluation of the
cascades is included also the overhead of sorting the clas-
sifiers and building the whole structure. Generally, we
can state that for high values of W the cascades increase
their accuracy but also their computational costs, be-
coming not preferable to a fixed-size approach because
of the overhead of organizing the whole structure.

In Fig. 12 the confidences of the ensembles on the
already mentioned video sequence are displayed. Here
only the result on the first 550 frames is shown and, for
sake of readability, only the confidence of the cascade
ensemble consisting of 400 features is presented. In the
first part of the sequence a man is walking in the corridor
until exiting the scene. Another person comes from the
upper part of the image and meets with the previous
man re-entering the scene. As we can see in the graph,
the confidence of the detector decreases in some frames
when there are ambiguities in the scene, as the two men
crossing or a variation of appearance or shape. This does
not affect the final frame rate, however it slightly affects
the accuracy in the detection, as a small shift of few
pixels is visible.

With continuous updates and using 400 heteroge-
neous features to build the cascade, the proposed ap-
proach processed the output at about 25 frames per sec-
ond, as it was the desired frame rate FRopt. The values of
W , that is automatically adjusted through the sequence,
are presented in Fig. 13. In the first frames W takes high
values, decreasing progressively in the next frames. This
behaviour allows to build short but accurate cascades at
the beginning of the sequence, while at the end of the se-
quence the cascades are longer and consist of more levels
to reduce the computational burden.

5 Conclusions

In this paper, we devised an algorithm that dynamically
builds a cascade of classifiers to speed-up the Online
Boosting technique. The cascade explicitly considers the
computational cost of the involved features to maintain
real-time performance. The structure of the cascade and
its classifiers are automatically adjusted balancing speed
and accuracy. Comparisons with monolithic online en-
sembles, in terms of accuracy and speed, on standard
real-world video sequences have demonstrated the effec-
tiveness of our idea.
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Fig. 12 Confidences of three cascade ensembles consisting of 400 classifiers, each one assigned to a distinct subject in the
same CAVIAR sequence. When the two targets cross each other, the accuracy in the detection is affected, and a small shift
of few pixels is visible. Generally the confidence of the detector decreases when there are ambiguities, or variations in the
appearance of the objects.

Fig. 13 Values of W in a sample sequence taken from the
CAVIAR dataset and referring to the scene presented in Fig.
12. W starts with a high value, and then decreases allowing
lighter computational requirements.
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