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Abstract—In this correspondence, we address the problem of fusing
data for object tracking for video surveillance. The fusion process is
dynamically regulated to take into account the performance of the sensors
in detecting and tracking the targets. This is performed through a function
that adjusts the measurement error covariance associated with the position
information of each target according to the quality of its segmentation.
In this manner, localization errors due to incorrect segmentation of the
blobs are reduced thus improving tracking accuracy. Experimental results
on video sequences of outdoor environments show the effectiveness of the
proposed approach.

Index Terms—Data fusion, object tracking, segmentation quality, video
surveillance.

I. INTRODUCTION

Interest in automatic surveillance systems is rapidly gaining mo-
mentum over the last few years. This is due to an increasing need
for assisting and extending the capabilities of human operators in
remotely monitored large and complex spaces such as public areas,
airports, railway stations, parking lots, bridges, tunnels, etc. The last
generation of surveillance systems was designed to cover larger and
larger areas dealing with multiple video streams from heterogeneous
sensors [1], [2].

The ultimate goal of these systems is to automatically assess the on-
going activities in the monitored environment flagging and presenting
to the operator suspicious events as they happen in order to prevent
dangerous situations. A key step that can help in carrying out this task
is analyzing the trajectories of the objects in the scene and comparing
them against known patterns. In fact, the system can be trained by
the operator with models of normal and suspicious trajectories in the
domain at hand. As recent research shows, this process can even be
carried out semiautomatically [3].

Therefore, a successful video security application requires an un-
derlying robust and accurate tracking of the objects in the scene. That
is, at each time instant the system needs to recursively estimate and
predict the objects’ state, including their positions and velocities, based
on sensors’ measurements that arrive sequentially. This problem is
usually solved by the well-known Kalman filter for a linear system
with Gaussian noise, and by the extended Kalman filter or particle filter
for a nonlinear system. To implement any of these algorithms, two
kinds of noises should be modeled appropriately: process noise and
measurement noise. Predicting the next state of the target also requires
a model of the targets’ motion. However, this cannot be modeled
exactly since sometimes targets are deliberately noncooperative and
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maneuver in an unpredictable manner, as encountered in military and
surveillance applications. Therefore, in target tracking applications,
the state process noise is employed to model the uncertainty of the
motion of the objects. As a result, the actual measurements can differ
substantially from the predictions made by the tracking filter based on
a predefined dynamic motion model. In a video surveillance system,
measurement noise is primarily due to the acquisition process and by
reference plane transformations. This noise can severely degrade the
accuracy of a target’s current state estimate, therefore also affecting the
prediction phase that follows, eventually yielding a coarse estimation
of the target’s trajectory.

The uncertainty of the target motion model can be reduced by adopt-
ing multimodel filtering techniques like the interacting multiple model
(IMM) estimator [4]. The IMM estimator is a very successful tracking
scheme particularly for tracking targets that maneuver from time to
time. Measurement noise may be reduced by either adopting more
accurate sensors or by placing more sensors. The latter case involves
the use of data fusion techniques [5] to improve estimation perfor-
mance and system robustness by exploiting the redundancy provided
by multiple sensors observing the same scene. With recent advances in
cameras and processing technology, data fusion is increasingly being
considered for video-based systems. In addition, the main hurdle of
the additional computational requirements has been removed by the
tremendous processing power of today’s CPUs. Intelligent sensors,
which are equipped with microprocessors to perform distributed data
processing and computation, are also available and can reduce the
computational burden of a central processing node.

The problem of tracking humans and vehicles with multiple sen-
sors has already been investigated [2]. However, the reliability of
the sensors is never explicitly considered. In a video surveillance
system that employs multiple sensors, the problem of selecting the
most appropriate sensor or set of sensors to perform a certain task
often arises. The task could be target tracking, tape recording of a
suspicious event, or triggering of an alarm. It would be desirable to
have a system that could automatically pick the right camera or set
of cameras. Furthermore, if data from multiple sensors are available
and data fusion is to be performed, results could be seriously affected
in case of a malfunctioning sensor. Therefore, a means to evaluate
the performance of the sensors and to weight their contribution in the
fusion process is definitely required.

An adaptive multicue multicamera fusion framework based on
democratic integration [6] is presented in [7]. Fusion is performed
by taking into account sensor reliability but there is no direct sensor
quality assessment. Instead, the realiability of a source is estimated by
measuring the distance between each source’s estimate and the fused
estimate, which is determined by the sources’ estimates. This is based
on the assumption that the majority of sensors are producing reliable
estimates, which cannot always be taken for granted.

The major contributions of this correspondence are the following:
1) the employment of multiple video sensors to enhance target lo-
calization accuracy through data fusion; 2) the development of a new
quality function to dynamically assess the performance of the sensors
for each target; 3) explicit consideration of the accuracy of the sensors
in the fusion process through a weight function. In addition, we further
develop the confidence metric introduced in [8], by taking into account
also blob connectivity as a quality factor.

II. SENSOR EVALUATION AND WEIGHTING

If multiple sensors provide redundant information on a target’s state
then data fusion may be exploited to improve tracking accuracy. The
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fusion process calls for a weighting policy to be adopted since not
making any distinction between the data provided by the different
sensors could lead to filter instability and coarse estimates, particularly
in presence of poorly performing or faulty sensors [5].

Sensors may have different internal characteristics so that their
ability to detect a target could be differently affected by distance
and illumination conditions. There is a lot of research being carried
out in the field of objective image quality evaluation. A review of
some of the most effective metrics developed so far can be found in
[9]. However, these metrics are generally used to estimate the quality
of degraded images due to noise or compression when the flawless
original image is available. Assuming that a reference segmentation is
available, these metrics are claimed to be applicable to vision systems,
such as surveillance ones, to evaluate the quality of segmentation [10],
[11]. This is called “objective relative evaluation” [11] and is clearly
not the case for most of the real-world systems.

The quality function described here does not rely on flawless
reference images and is meant to evaluate only what is really available
from the system, the video signals. The proposed function gives a score
to every blob detected by each sensor by processing the difference
between the current image and the one maintained as reference one
(background). This function marks every blob with a score that gives
a value to the segmentation of the detected object. Since segmentation
errors can eventually translate into localization errors, the position
measurements of a given target obtained from blobs with low values
of the quality function are considered less reliable.

A. Quality Function

The quality function φ presented here represents an improvement
over the appearance-ratio function described in [8], since: 1) it also
considers the connectivity of the blob, and 2) a more lenient behavior
has been attained by modifying the normalization factor.

The following notation will be used in the equations:
A Multichannel color image A.
Ac Channel c of multichannel image A.
A(x, y) Color pixel at position (x, y) of A.
Ac(x, y) Component c of pixel (x, y) in A.
The function φ gives a value to the degree of confidence associated
with bs

j,k, that is the jth blob extracted at time kT from the sensor s,
where T = (1/25) s is the sampling interval of video cameras

φ
(
bs

j,k

)
= w1υ

(
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)
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(
bs
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. (1)

The measure is a combination of the two functions υ and χ with
associated weight parameters w1 and w2. During the experiments, no
preference was expressed thus reducing (1) to the straight arithmetic
average of the two measures by choosing w1 = w2 = 1/2. The first
component models how much the blob is discernible from the back-
ground and is defined as follows:
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where D is the difference map obtained as absolute difference between
the current image I and the reference one B. The numerator is
therefore a sum over the values of the pixels in the difference image
belonging to the detected blob. The denominator represents a sum
over the possible spread of the difference between B(x, y) and I(x, y)
for the pixels belonging to bs

j,k. For both the numerator and denomi-
nator, the sums are carried out spatially over the pixel coordinates and

Fig. 1. Homographic transformation. Image planes of sensors s and s′ are
mapped to a common reference frame.

then chromatically over the number c of the color bands of the involved
images. In this correspondence, three-band red, green, and blue color
images are employed. The function ε calculates the possible spread for
each pixel in the following way:

ε (Bc(x, y)) = max (Bc(x, y), 255 − Bc(x, y)) . (3)

For example, B1(x
′, y′) = 75 means that the value of the first color

component (red) of the pixel at position (x′, y′) of the reference
(background) image is 75. The maximum difference that the current
image in the red color component of pixel (x′, y′) can display in this
case is 255 − 75 = 180 dimmer color tones. Therefore, ε computes the
maximum difference (in brighter or darker tones) that a pixel (x, y) in
the current image could display compared to the corresponding pixel
in the background.

The function χ measures the goodness of the segmentation of
a blob through its connectivity. A blob is supposed to have been
correctly extracted if it is composed of a single connected component.
Therefore, given the number n(bs

j,t) ≥ 1 of connected components
of blob bs

j,t, the function χ yields the value 1 for n(bs
j,t) = 1, and

decreases, in a Gaussian manner, for increasing n(bs
j,t)

χ
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= e

−
[

n

(
bs

j,k

)
−1

]2

2σ2 . (4)

During the experiments, the standard deviation 0 takes values in the
interval 4 ≤ σ ≤ 6, depending on the distance of the targets from the
camera, computed taking into account the projection on the ground
plane (Fig. 1). The homographic transformations between the camera
plane and the ground plane are determined during the initial setup
of the system. The operator establishes the correspondences between
salient points on the image planes and the ground plane. The homo-
graphic transforms are then easily found [12]. Closer targets are more
likely to exhibit cracks in their segmentation. This is due to the fact
that closer targets cover a relatively large region of the background,
and it is therefore probable that some parts of them be similar to the
underlying background thus not being detected in the change detection
process. The function χ is therefore intended as a penalizing factor for
blobs not correctly segmented.

Since υ and χ range from 0 to 1, the same is true for φ which in
the end gives an estimate of the level of performance of each sensor
for each extracted blob. As shown in Fig. 3, the φ values (reported
below the bounding boxes) of the blobs extracted from the infrared
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Fig. 2. φ values for some frames of the sequence in the presence of fog. The
IR sensor clearly outperforms the color camera in detecting the target.

Fig. 3. Four image frames and blobs from a video sequence. Frames acquired
by the color camera (top row), blobs obtained from the color camera sequence
(second row), frames acquired by the IR camera (third row), blobs obtained
from the IR camera sequence (fourth row).

(IR) sensor are considerably higher than those extracted from the
optical one. Fig. 2 shows the φ values for the blob of the walking
person in Fig. 3. The scene is irradiated by IR rays and monitored
by a color [set to black-and-white (b/w) mode] and a b/w camera
with near IR response. It can be seen how the IR sensor outperforms
the color camera: the φ values of the blob corresponding to the IR
sensor are consistently higher. This is directly reflected by the correct
segmentation of the silhouette of the person. It can also be noted how
the color camera is not able to discriminate the person as he moves
away and into a fog bank (the φ values in Fig. 2 are not indicated in
the graph since the blob is not detected).

The φ measure has to be computed for each blob detected by
each sensor. This allows to compare and rate the performance of the
available sensor as can be seen in the experiment reported in Fig. 4.
Two color cameras have been employed to follow the movements of
three persons walking in a courtyard.

The first row of Fig. 4 shows images taken from the first camera
which is superior in quality to the second camera and proved to be
more effective in detecting the walking persons. In fact, the first camera
yields images with better contrast that benefit the change detection
process. Even though the first sensor is monitoring the area with a

configuration of the optics more wide-angled than the second one
(thus detecting smaller blobs), it still performed slightly better. This
is reflected by the φ values of the blobs in the second row which are
generally greater than those in the fourth row. In this experiment both
sensors performed reasonably well.

From this experiment, other benefits of employing multiple sensors
can be highlighted in the following.

1) The system exploits the estimates of just one sensor when the
other one is not giving readings (i.e., the target is out of the field
of view, e.g., in Fig. 4, first column, the person on the left in
rows 1–2 is not present in the field of view of the second sensor,
rows 3–4).

2) Multiple views of the same target can help disambiguate situ-
ations of partial or total occlusions (second column of Fig. 4),
therefore helping in maintaining a correct and continuous track-
ing of the targets. Note that the φ value is not computed for
the blob detected by the first sensor since it is recognized as
a compound object generated by an occlusion and therefore
will not be associated to any of the three objects present at
the previous time instant. Since occlusions severely spoil the
appearance of a blob, its localization is generally extremely
imprecise. Therefore, the φ value of occluded blobs is set to 0
by default.

3) Data fusion compensates for errors due to the homographic
transformation from image pixels to map points. In fact, the first
sensor gives better segmentation results. But, due to the wide-
angle setup of the optics, homographic errors are more probable.

B. Sensor Weighting Function

The idea is to obtain from the Kalman filter a fused estimate
more influenced by accurate local estimates and almost unaffected
by inaccurate ones. Unreliable sensors, namely those whose detected
blobs have φ values below a given threshold, may be even completely
discarded in the fusion process. In this way, the fused estimates are
obtained only from the pool of sensors that are giving an acceptable
performance.

The filter’s responsiveness can be adjusted through the measurement
error covariance matrix R that at time k is given by

Rk =

(
rk

xx 0
0 rk

yy

)
.

Position measurement error is not assumed to be cross-correlated,
therefore rxy and ryx are set to zero. If the eigenvalues of a given
matrix R′ associated with a sensor s′ are smaller than those of R′′

associated with s′′, the corresponding measurement will have a larger
weight. φ values are then used to regulate the measurement error
covariance matrix that eventually weights state estimates in the fusion
process. Since the matrix R influences the Kalman filter gain matrix
K, it will affect the fused state estimate x̂k|k and its corresponding
error covariance matrix Pk|k, as shown in (6)–(8) in the Appendix.
The following function for the position measurement error variance
has been developed:

rk
xx = rk

yy = r
(
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j,k

)
= max 2

r

[
1 − φ

(
bs

j,k

)]
(5)

where max2
r is a constant corresponding to the maximum measure-

ment error variance (which was experimentally evaluated as 5 m2).
The function is therefore used to adjust the measurement position error
so that the map positions calculated for blobs with high φ values are
trusted more (the values of Rk are close to zero), while blobs poorly
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Fig. 4. Two color sensors monitoring a courtyard. The first sensor (first and second row) is performing better due to better contrast between the objects and the
background. This is reflected by higher φ values (indicated below each blob in the binary images). Note that φ values are not computed when an occlusion is
detected (second column).

detected (low φ value) are trusted less (the values of Rk are close to
the maximum).

III. EXPERIMENTAL RESULTS

Experiments with real video sequences have been carried out in
order to test the performance of the proposed approach. Up to three
cameras, directly attached to a processing unit, have been employed
to track the movements of a person walking in outdoor scenes. Each
experiment is comprised of sequences 1-h long each; the detection
rate was 90% and the false alarm rate was 0.01%. A single target is
certainly not critical for a vision tracking system, however the purpose
here is to evaluate the accuracy of the trajectories, not the tracking
algorithms. Root mean square (rms) errors of the trajectories resulting
from the individual sensors, blind fusion (sensor performance is not
considered), and the proposed performance-based (PB) fusion have
been computed against ground truth trajectories. These were obtained
by positioning markers on the ground and by timing the target. Cubic
splines were then computed to interpolate the markers on the ground
as a function of time.

A. Two Cameras

In this experiment, a person is walking in a parking lot and making
a curved trajectory. In this case, illumination conditions are more

Fig. 5. Two-camera experiment. The second camera (b) has better sensibility
and provides a brighter image.

challenging since natural light is low. As shown in Fig. 5, the second
sensor is more informative and provides a brighter image. This is also
confirmed by the quality assigned to the detected target: the φ values
assigned to the target are clearly different, as shown in Fig. 6.

The trajectory according to the individual sensors and the two fusion
approaches are shown in Figs. 7 and 8.

It can be seen how the PB fusion approach dynamically regulates the
fusion process taking into account the quality of the detected target. In
fact, the fused trajectory is mostly determined by the second camera
that is correctly capturing the motion of the target. The errors of the
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Fig. 6. Two-camera experiment. Target’s quality according to sensors. The
second sensor is detecting the target with higher φ values.

Fig. 7. Two-camera experiment. Target’s trajectory according to ground truth
(solid line), the two sensors, and blind fusion.

Fig. 8. Two-camera experiment. Target’s trajectory obtained through PB
fusion (compare with Fig. 7).

estimated tracks according to the two cameras are reported in the charts
of Fig. 9, while those committed by standard and PB fusion are shown
in Fig. 10.

Finally, the standard deviation of the error is reported in Table I. As
shown, PB fusion is performing better than blind fusion.

Fig. 9. Two-camera experiment. Position errors of the trajectory produced by
(top) the first and (bottom) the second sensor.

Fig. 10. Two-camera experiment. Position error of the trajectory obtained
from (top) blind fusion and (bottom) the proposed approach.

TABLE I
RMS ERRORS IN THE TWO-CAMERA EXPERIMENT

B. Three Cameras

In this experiment, three cameras are observing the pathway by a
parking lot in daylight (Fig. 11). Sensor 1 is a fixed b/w camera with
very wide angle lens, sensor 2 is a zoomed active black-and-white
camera, while sensor 3 is a fixed color camera with a wide-angle lens.
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Fig. 11. Frames from the three-camera experiment. (a) First sensor is the
one performing worst, (b) sensor 2 is the second best, and (c) sensor 3 is the
best one.

Fig. 12. Three-camera experiment. Target’s quality according to three sen-
sors. Sensors 2 and 3 are yielding higher φ values.

The active camera was registered on the ground plane as well [1] and
was following a target selected by the operator among those detected
by the two fixed cameras (three in the shown scene). For the sake of
clarity, only the tracks and quality information regarding one of them
will be here reported.

The sensors were performing differently, as shown in Fig. 12. In
particular, while sensors 2 and 3 were giving high φ values, sensor 1
was performing poorly. Targets detected by sensor 1 are very small
and easily corruptible by noise. This in turn translates into localization
errors on the map. The quality function correctly evaluated the dis-
criminative capability of the sensor, giving it consistently low values.

This is reflected by the detected trajectories, as shown in Fig. 13,
where track 1 is considerably noisy, while tracks 2 and 3 are closer to
ground truth.

Fig. 13 also shows the trajectories obtained by fusing two and three
sensors. In the former case, sensors 1 and 2 were fused. It can be
clearly seen how the fused trajectory benefits from the addition of
track 3, i.e., the fused trajectory of the three sensors is closer to the
ground truth than the fusion of the first two alone. Fig. 14 shows how
the proposed PB fusion process brings the two fused trajectories even
closer to the ground truth. This is numerically confirmed by the error
plots in Figs. 15–17.

Table II summarizes the results of this experiment. It can be seen
how the blind fusion of the three sensors is better than the blind fusion
of sensors 1 and 2, and how PB fusion is better than blind fusion both
in the two- and three-sensors case. Note that, in this case, the fusion of
the three sensors outperforms the individual sensors.

Fig. 13. Target’s trajectory according to ground truth (solid line), the three
sensors, and blind fusion.

Fig. 14. Single tracks and PB fusion.

C. Discussion

In summary, the advantages of using adaptive fusion for the estima-
tion of trajectories in a surveillance application are the following.

1) The system automatically takes into consideration redundant
data when available.

2) The presence of two points of view can help disambiguate
situations of partial or total occlusions, therefore maintaining a
correct and continuous track of the targets.

3) There is an explicit weighting of the measurements in the fusion
process through the φ function to account for segmentation
errors, and hence localization errors caused by segmentation
errors.

4) Data fusion increases the confidence in estimates.

IV. CONCLUSION

In this correspondence, the problem of improving tracking accuracy
through multiple visual sensors in a distributed framework has been
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Fig. 15. Three-camera experiment. Position errors of (top) the first, (middle)
second, and (bottom) third sensor.

Fig. 16. Three-camera experiment. Position error of (top) the first, (middle)
the second, and (bottom) the third sensor.

addressed for an outdoor video surveillance application. A data fusion
approach has been proposed to adaptively combine, according to the
performance of each sensor, the position of a target resulting in a
unified estimate. Sensor reliability is explicitly considered and a confi-
dence function has been defined to automatically weight redundant es-
timates of the location of the targets in the fusion process. In this way,
localization errors due to incorrect segmentation of the blobs have been
reduced, as well as the errors due to homographic transformations.
Experimental results have shown the effectiveness of the proposed
approach in terms of tracking accuracy in comparison with single-
camera systems.

Future development of the presented approach is expected to pro-
ceed in at least two directions. The first one is to introduce additional
factors to the quality function φ described here. It could be extended to
include other elements such as distance of the blob from the camera,
or global illumination of the scene. The second possible direction is
to experiment with other methods and filtering techniques for tracking
such as particle filters.

Fig. 17. Three-camera experiment. Position error of (top) of blind and
(bottom) of PB fusion of the three sensors.

TABLE II
RMS ERRORS IN THE THREE-CAMERA EXPERIMENT

APPENDIX

FUSION PROCESS

The fused state x̂k|k for a given target is obtained fusing all the local
estimates matching the predicted fused state x̂k|k−1. In the case of two
estimates x̂i

k|k and x̂j
k|k from sensors i and j, fusion is performed as

follows:

x̂k|k = x̂i
k|k +

[
Pi

k|k −Pij
k|k

] [
Pi

k|k + Pj
k|k −Pij

k|k −Pji
k|k

]−1

×
(
x̂j

k|k − x̂i
k|k

)
(6)

where Pi
k|k and Pj

k|k are the error covariance matrices for the local
estimates and Pij

k|k = (Pji
k|k)T is the cross-covariance matrix, which

is given by the following recursive equation:

Pij
k|k =

[
I−Ki

kH
i
k

] [
Fk−1P

ij
k−1|k−1F

T
k−1 + Γk−1QΓT

k−1

]

×
[
I−Kj

kH
j
k

]
(7)
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where Ks
k is the Kalman filter gain matrix for sensor s at time kT ,

Γk is the process noise matrix at time kT , and Q is the process noise
covariance matrix. Once the cross-covariance matrix is available, the
covariance matrix associated with the fused estimate can be evaluated
as follows:

Pk|k =Pi
k|k −

[
Pi

k|k −Pij
k|k

]

×
[
Pi

k|k + Pj
k|k −Pij

k|k −Pji
k|k

]−1 [
Pi

k|k −Pji
k|k

]
. (8)

Further details can be found in [13] and [14], and generalized fusion
equations for the case of N sensors can be found in [15].
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