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Abstract – In this work we propose the F-score measure
as a novel means to perform online selection of the members
of a classifier ensemble. This allows the fast application of
a small number of selected classifiers for real-time appli-
cations such as target tracking for video surveillance. The
proposed selection criterion relies on a performance eval-
uation to assess the ability of individual classifiers to pre-
dict the class membership, that is to discriminate between
foreground and background in the context of video tracking.
Preliminary experiments have shown encouraging results on
real-world sequences.
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1 Introduction
To fuse classifiers a large number of possible rules can be

used [26]: for instance, sum and product [15], Bagging [4]
and Boosting [9], Random Subspaces [14], or oracles [18].
Considering couples of classifiers, mutual information [23],
Q statistic [33], diversity-based criteria [17, 32] or correla-
tion, for instance, can represent valid pairwise measures to
join classifiers. In general, it is well known that the fusion
of “weak” classifiers making independent errors can lead to
dramatic improvements in classification performance [13].
These ensembles can be employed in a broad variety of ap-
plications, from medical imaging [27] to network security
[10], in a large range of real-world domains [20].

Recently, the target tracking field in video applications
has received a new boost thanks to the tracking via classi-
fication concept [11, 24]. Recent works include Avidan’s
Adaboost-based tracker [2], that exploits features associated
to every pixel, and Collins’ one, which is able to select the
most discriminative color features to separate the target from
the background by applying a two-class variance ratio to
log likelihood distributions computed from samples of ob-
ject and background pixels [7]. In this last case the features
are selected at each epoch without considering past history.
In a later work, heterogeneous features have been combined
adopting the same fusion method [21]. Also in [11] the dis-

tinction between object and background is exploited to track
the target constantly updating the model.

The new rise of online learning methods [19, 22] has
opened the possibility to build on-the-fly a classifier ensem-
ble and to train it with fresh samples in an unsupervised
manner without any prior knowledge of the data distribution.
All these methods are based on the evolution of Boosting,
and rely on a fixed dimension ensemble of classifiers, whose
weights are updated maintaining some statistical informa-
tion on observed samples. However, for instance, the Online
Boosting technique can present an optimistic view of the
classifiers behaviour, scoring only the distinction between
correctly and wrongly labelled (classified) samples without
considering the skewness of the training set; assessing the
performance of the classifiers in presence of an unbalanced
number of training samples can be misleading. Pham and
Cham [25] proposed an asymmetric online boosting algo-
rithm, where both a parameter k, that takes into account the
asymmetry of the class labels presented to the classifiers,
and the number of false/true positives and false/true nega-
tives are considered in the tuning of the coefficients of the
linear combination of the classifiers. But in this case the
application of the entire pool of classifiers can be still com-
putationally expensive.

An alternative to fusion is selection that is aimed at form-
ing a reduced ensemble by choosing within a pool the subset
of classifiers that maximizes the performance [16] or, alter-
natively, reduce the error. This approach is often applied
to features [12] to decrease, for instance, the dimensionality
of the input space or to choose a more robust subset, but it
is also used for classifiers [1], to achieve better performance
or to satisfy real-time constraints. In this context, a classifier
combination strategy that links together selection and fusion
include switching between fusion and selection [16].

In this work, we propose a new criterion based on the F-
score to select classifiers from a set of constantly updated
ensemble members. This criterion has been used in [6] ap-
plied to SVM, but its application in online learning is still
unexplored to the best of our knowledge. The measure is
based on the precision and recall scores of each individual



classifier and provides the following advantages:

• it provides a way to rank the performance of each mem-
ber of the ensemble;

• it maintains the history of the performance of each clas-
sifier thus allowing better occlusion handling then sim-
ple single-frame selection approaches;

• it evaluates classifiers instead of features thus allowing
the transparent integration of heterogeneous features;

• explicit handling of asymmetric samples distributions;

• greatly speeds up the search phase by applying only a
reduced number of selected classifiers. This allows fast
tracking without a prior model and without an off-line
training for real-time applications.

Fast tracking without a prior model and without offline
training is achieved by considering the ability of the clas-
sifiers to discriminate between the training samples. The
F-ratio is used to sort the predictors pool and to form the
best subset. The selection task is particularly useful in a
preprocessing step to reduce the number of ensemble mem-
bers and then to reduce the computational burden, removing
at the same time redundant or erroneous classifiers.

2 Background and related work
2.1 Ensemble of classifiers

Consider two possible classes ω+, ω− so that ω+ = +1
represents the target, and ω− = −1 the background. Start-
ing from several classifiers h1, h2, . . . , hM , an ensemble of
predictors H can be built organizing the members with sev-
eral linear fusion rules or with a non-linear combination. In
this work, we decided to employ the mean rule to build a lin-
ear combination of experts, so that the final ensemble takes
the form

H(x) =
1
M

(
M∑
m=1

hm(x)

)
(1)

Considering a sample x belonging to the sample set X and
a classifier h : X → {+1,−1}, the pattern x is assigned to
class ω if

ω = arg max
ωc

P (ωc|h(x))

∝ arg max
ωc

P (ωc)P (h(x)|ωc) (2)

where wc ∈ {−1,+1}. The confidence of the classifier can
be defined as the posterior probability

conf(h(x)) =
P (ω)P (h(x)|ω)

P (h(x))
(3)

2.2 Precision and recall
Precision and recall are widely used to evaluate an al-

gorithm’s performance in Information Retrieval (IR) [3] or,
generically, to measure the quality of a classification process
[8]. With respect to ROC curves, PR curves are more mean-
ingful when the number of negative samples greatly exceeds
the number of positive ones since they take into account the
skewness between classes [8].

The precision π of a classifier h is defined as the proba-
bility that all the items {x1, . . . , xk} in the training set, that
are labelled as belonging to class ω = +1, actually belong
to that class

π ≡ 1
K

∑
k P (ω = +1|h(xk) = +1)

= 1
K

∑
k
P (ω=+1,h(xk)=+1)

P (h(xk)=+1) (4)

Recall is defined as the probability that the items belong-
ing to class ω = +1 are labelled by the classifier h as be-
longing to that class

ρ ≡ 1
K

∑
k P (h(xk) = +1|ω = +1)

= 1
K

∑
k
P (h(xk)=+1,ω=+1)

P (ω=+1) (5)

2.3 F–score measure
Keeping the error fixed, a tradeoff between Precision and

Recall is intrinsic, as increasing one means reducing the
other [5]. Usually the two measures are compared consider-
ing a fixed value for both, or combined into a single formula,
such as the F-score, which is a weighted one-dimensional in-
dicator of the two. The F-score, firstly proposed in [31], is
defined as their weighted harmonic mean,

F-scoreβ ≡ (1 + β2)
ρπ

β2π + ρ
(6)

When β = 1 the F-score evenly balances the two compo-
nents, as it becomes

F-score1 = 2
ρπ

π + ρ
(7)

On the other hand, when β < 1 it favours recall, while pre-
cision is preferred otherwise.

Arguably, other (even earlier) metrics can be seen as
particular cases of F-score, even assuming that the selec-
tion exploits some a priori knowledge, while others, named
ranking-based (i.e. ROC and RP curves, nP and nR, AP,
MAP, iMAP, etc.) sort the results and provide a ranking of
the outputs. The first case is not desirable, while the second
is not significant in our case.

3 Proposed solution
In this work, we explore the use of the F-score as a means

to rank classifiers and provide a robust on-the-fly selection
of classifiers in a video tracking application.

First of all, all the classifiers are trained with some train-
ing samples. Then, the classifiers are ranked considering



Figure 1: Architecture of the proposed approach. The selected ensemble, formed exploiting the F-score measure, is em-
ployed to track the target in the next step.

their ability to discriminate between the training patterns.
In our case, the performance measure is represented by the
F-score value that is calculated for each expert.

The ranking of the classifiers is a preliminary step to be
performed before the selection phase; the selection set is in
fact formed by choosing the best S predictors according to
the F-score ranking. Alternatively, one can start with a ran-
dom classifier and add more learners while the F-score in-
creases.

The selection ensemble Ĥ so obtained

Ĥ(x) =
1
S

(
S∑
s=1

hs(x)

)
(8)

is employed to detect the target in the image. Since the se-
lection rule is required to be fast and accurate to allow a
robust real-time tracking, we have chosen to optimize both
precision and recall through the F-score measure and to rank
the classifiers consequently.

3.1 Optimizing the F-score
Unfortunately, to the best of our knowledge there are

no classifiers that directly optimize the F-score or the
precision–recall balance, as already noted in [30]; for this
reason, we need to find a common criterion to optimize the
measure for ranking the classifiers.

Considering a training set constituted of a set of couples
(x1, ω1), (x2, ω2), . . . , (xN , ωN ) where xn ∈ X are image
patches, and ωn ∈ {ω+ = +1, ω− = −1} their labels, we
can define the true positives as the number of positive sam-
ples correctly classified by the classifier h and counted by
the indicator function I

TP =
N∑
n=1

I(h(xn) = +1, ωn = +1) (9)

The false positives and false negative respectively are the
amount of negative samples classified as positives, and the
number of misclassified positive samples

FP =
N∑
i=1

I(h(xn) = +1, ωn = −1) (10)

FN =
N∑
i=1

I(h(xn) = −1, ωn = +1) (11)

Then, we can express the F-score as

F-scoreβ =
(1 + β2)TP

β2(TP + FN) + TP + FP

=
(1 + β2)

β2 + 1 + β2FN+FP
TP

(12)

or, when β = 1,

F-score1 = 2
TP

2TP + FP + FN
(13)

Since β2 ≥ 0, in order to maximize the F-score, and thus
have the best balance between precision and recall, the ratio

β2FN + FP

TP
(14)

in the denominator of (12) should be minimized. The
smaller this ratio, the more discriminative the classifier.

This new formulation allows one to use the F-score as a
fast classifier selection criterion that can be applied to ev-
ery new round of computation. The measure is individually
computed for each classifier and provides a performance
measure to rank all the members of the ensemble quickly.
This is a critical factor when online learners are involved,
because many other aspects, like training time, should be
considered.

An intrinsic advantage of the proposed solution is that
this allows one to form a flexible selection of classifiers.
The members can be potentially replaced when their per-
formance starts to decrease, or new ones can be added if the
system encounters a critical situation. In this paper, the use
of a fixed pool and selection ensemble cardinality allows one
to understand how the proposed measure works; however, a
dynamic way of regulating the number of classifiers in the
ensemble will be the subject of future investigation.

3.2 Application to tracking
In Figure 1 a flowchart of the proposed approach is pre-

sented, while Algorithm 1 describes in detail the ranking and
the selection steps, Algorithm 2 proposes the application of
the classifier ensemble to a video tracking task. First of all,
the classifiers in the pool are tested on positive and negative
samples and their predictions are compared with the true la-
bels (Figure 1, performance evaluation step). The values of
misclassified and correctly classified samples contribute to



Algorithm 1: F-score based selection

Require: Positive sample(s) x+ and negative one(s) x−
Require: Classifiers selection Ĥ = ⊥
Require: Classifiers pool H
Require: Skewness weight β

// For every classifier in H
for m = 1, 2, . . . ,M do

// Test the classifier on the positive pattern
ω ← arg maxωk

P (ωk|hm(f(x+))) as in (2)
if ω == +1 then
TPm ← TPm + 1

else
FNm ← FNm + 1

end if
// Test the classifier on the negative pattern
ω ← arg maxωk

P (ωk|hm(f(x−))) as in (2)
if ω == +1 then
FPm ← FPm + 1

end if
// Calculate the denominator of Eq. (12)
Fdenomm ← β2FNm+FPm

TPm

end for
// Sort the denominators in ascending order
sort(Fdenom)
// Fill the ensemble
counter ← 0
while counter < S do
s← index(Fdenom(counter))
Ĥ ← Ĥ

⋃
hs

counter ← counter + 1
end while
// Update the classifiers parameters
for m = 1, 2, . . . ,M do

update(µm,ω+ , µm,ω−) as in Eq. (17)
update(σm,ω+ , σm,ω−) as in Eq. (18)

end for
Return Ĥ

calculate the F-score denominator (ranking phase) for every
classifier in the pool. This value is used to pick the S << M
classifiers from the original set H (ensemble generation).

Looking at Figure 2, the direct combination approach di-
rectly provides a classifier output, while, if the selection step
is present as in our case, the combination is preceded by a
ranking and discarding phase that reduces the cardinality of
the ensemble.

The new selection ensemble Ĥ is employed to search for
the object in the subsequent frame (samples selection mod-
ule). This is probably the most time consuming step, as each
subregion of the image has to be processed. With the selec-
tion set, only S classifiers are used during this phase, thus
saving computational time.

At each frame the training set composition strictly de-
pends on the output of the ensemble Ĥ in the previous

Algorithm 2: Selection for tracking application

Require: Selection classifier ensemble Ĥ
Require: Frame F of size I × J

while x← subregion(F, i, j) do
// Test the ensemble on x
// and save results in a temporary map
// map(i, j)← conf(Ĥ(x))

end while
// Set the positive sample x+

x+ ← arg max(map)
// Set the negative sample x−
x− ← subregion(map, randX, randY )
return x+ as the target

(a) (b)

Figure 2: Comparison of a direct combination method (a)
and a selection step, like in our case, that precedes the com-
bination phase (b).

frame. Algorithm 2 summarizes this approach: each sub-
region of the video frame Ft is processed by the selection
ensemble Ĥ . The sample x that has been classified as pos-
itive with the maximum confidence by the ensemble Ĥ at
time t becomes the new positive training sample at time t+1

Xt+1 ← x+ = arg max
x

(Ĥ(x)), x ∈ Ft (15)

The same can be said for the samples classified as negatives,
that is belonging to the class ω−

Xt+1 ← Xt+1 ∪ x− ∈ Ft (16)

The tracker, in fact, behaves like an unsupervised system
that searches for a positive sample into a set of possible can-
didates (patches of the image). Thus, there are no pre-set
samples, but the classifier ensemble finds a single positive
sample and a single random negative pattern in each frame
to be learnt in the next step. When the ensemble classifier
is used for tracking [11, 19], usually at each computation
round (at least) one positive sample and one negative coun-
terpart are unsupervisedly chosen from the video stream.



Figure 3: Centre image: Trajectories of the F-score tracker when varying β. Yellow: β = 0.5, red: β = 1, blue: β = 1.5,
black: β = 2. Left image: error in pixels on the X coordinate compared with the ground truth. Right: error (in pixels) on
the Y coordinate.

3.3 Parameters update
After a new sample is processed, the parameters of all

classifiers must be updated to maintain the model coherence
with the appearance of the target.

A single Bayesian classifier hm maintains two distribu-
tions on the training data, regarding positive x+ and negative
x− samples. When learning a specific pattern x, the param-
eters of the corresponding distribution at time t are updated
considering the new observation h(x). Thus, at time t the
mean µm,ω and the variance σ2

m,ω of each class become

µm,ω,t = (1− α)µm,ω,t−1 + αh(x) (17)

σ2
m,ω,t = (1− α)σ2

m,ω,t−1 + α(h(x)− µm,ω,t)2 (18)

where α is a learning rate parameter. In our experiments, α
was set to 0.25 taking into account the frame rate and the
typical movement speed of observed objects; other previous
experiments proved that small variations in this value pro-
duced no significant effects [29].

4 Experiments
In this section we want to study the effect of the F-score

ranking on the performance of tracking via classification.
The hardware employed was an AMD Athlon64 3500+

with 1GB of RAM. All the algorithms have been imple-
mented in C++ using optimized structures, i.e. integral im-
ages and integral histograms, to reduce the computational
requirements.

4.1 Choice of β

First of all, we describe how the β parameter of (6) was
chosen. After several tests on the CAVIAR1 sequences,
where we bootstrapped a pool of 500 classifiers with only
20 positive hand-labelled samples, the trackers were com-
pared.

The number of the classifiers used in our experiments was
fixed at 500, while we choose only 100 to be selected. In
particular, we decided to maintain a static pool of experts

1http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

without replacing the worst performing classifiers. The ra-
tionale is to keep the experimental protocol as simple as
possible to show the effectiveness of our solution compared
with other methods, but the possibility to remove and sub-
stitute the classifiers in the global pool is a concrete oppor-
tunity and it is fully supported by the proposed framework.

In Figure 3 the trajectories of the proposed tracker on the
video Browse1.mpg when varying β are shown. In the se-
quence, a man approaches the information point, walks to-
ward the bottom of the scene, and goes back to the leftmost
side. As shown in the left and right graphs of Figure 3, com-
pared with the ground truth the most accurate tracker was
the one with β = 1.5. This setting obtained overall good
performance on numerous clips of the same dataset. This
motivation brought us to set β = 1.5 for the rest of the ex-
periments.

4.2 Settings
In our experiments we tried to consider other similar fea-

ture selection/fusion methods that work both in the (online)
learning field and the tracking area. Of course our approach
can be compared with different tracking algorithms (kernel
or model based, particle filters, etc.), but we aimed to show
how our criterion outperforms similar methods.

We decided to compare the proposed method with differ-
ent fusion and selection approaches. In particular, we tested
three different algorithms, referred as

• PR: Precision/Recall based tracker (proposed solution)

• OB: Online Boosting based tracker [19]

• COL: COLour tracker [7]

The Online Boosting has been selected because it is a
weighted fusion strategy and can be exploited to linearly
combine learning classifiers to track an object. It is a heavily
learning-based approach, but has the drawback that can not
swap in and out classifiers, and it is not a selection method
but a (weighted) fusion one. To compare the Online Boost-
ing and our technique, that both combine or select mem-
bers from a pool of classifiers, we kept the number of these



Figure 4: Comparison of output frames taken from PR (top row), Online Boosting (second row), and colour (bottom row)
trackers run on the same video sequence.

Figure 5: Centre image: Trajectories of the F-score tracker (said PR, blue), Online Boosting tracker (OB, red), and Colour
tracker [7] (Col, yellow) compared with ground truth (GT, light green). Left image: error in pixels on the X coordinate for
the previous trackers compared with the ground truth. Right: error (in pixels) on the Y coordinate.

predictors fixed at 500; the number of classifiers in the se-
lection set was limited to 100. To guarantee fairness, we
performed the experiments using a fixed cardinality ensem-
ble even though our approach could have adapted the num-
ber dynamically. Moreover, this fixed threshold facilitates
the understanding of the behaviour of the selected classifiers
when analysing the swap in→ swap out trend.

We employed four different types of features to describe
moving objects: Haar features, Local Binary Patterns (LBP),
Histograms of Gradients (HOG), and colour histograms. To
speed up the search step, we limited the search area to a 50%
in excess of the target’s dimensions.

The colour tracker [7] selects the best discriminative
colour features and uses them to track the target; we have
chosen the first 15 (out of 49) most precise features to
form the selection. This method (COL) used a selection
criterion (variance ratio) to discriminate between features.

We used classifiers instead of features, that means that we
fused together several heterogeneous features or classifiers
at high level, and a fast selection rule that is aimed to save
time keeping the performances comparable to similar ap-
proaches.

4.3 CAVIAR sequences
We used the CAVIAR dataset and the video sequence pro-

posed in [28] to prove the effectiveness of our approach on
standard sequences.

In Figure 4 are presented some frames from the
Fight RunAway1.mpg CAVIAR video sequences. In the
video two men meet inside a building, have a brief fight and
leave separately. This video represents an interesting case
study due to the ambiguity caused by the two men with sim-
ilar appearance.

The video comprises of 552 frames at 384 × 288 pixels



Tracker Mean X Mean Y
PR 3.241 4.445
OB 5.596 2.506
COL 24.126 15.614

Table 1: Average error (in pixels) on the CAVIAR sequence
for the proposed approach (PR), the Online Boosting (OB)
and the Color tracker (COL).

Tracker 50 feat. 100 feat. 200 feat. 500 feat.
PR 21.03 29.37 38.45 76.94
OB 28.80 32.44 43.05 75.67

Table 2: Application time (in milliseconds) per frame on the
CAVIAR sequence (Fig.4) for the proposed approach and
the Online Boosting tracker.

resolution. The target was initialized at frame 267 with a
change detection algorithm. In this case no bootstrapping
was required: in the first frame where the object appears, a
model of the foreground is built using random features. As
already said in Section 3.2, the training procedure at time
t uses unsupervised samples coming from the search phase
performed by the selection set at time t− 1.

In the first row of Figure 4 the proposed technique output
is shown; it correctly tracked the target even when the two
men were very close, without drifting. In this sequence, the
difference in the illumination conditions and in the target’s
appearance can be critical conditions for colour histograms.
In fact, the Colour tracker drifted after the men’s collision,
while the Online Boosting detector (second row of Figure
4) correctly followed the object, exploiting other features as
shape and texture. In Figure 5 the errors with respect to the
ground truth are presented.

The average shift in pixel from the ground truth for the PR
tracker, the OB method and the Color tracker is presented in
Table 1. The precision-recall based approach resulted more
robust on the CAVIAR sequence, while the Color tracker’s
drift resulted in higher error with respect to the ground truth.

Table 2 presents the average application time for the
aforementioned trackers on the CAVIAR video sequence.
The Colour tracker took an average of 136.67 msecs to pro-
cess a frame. In the case of the PR tracker and the Online
Boosting, as we can see from Table 2 the time of computa-
tion strictly depends on the number of classifiers considered;
when the classifiers amount included in the selection set is
strictly less than the pool cardinality, the proposed approach
outperforms the others.

The selection process is highlighted in Figure 6, where
the trace of the selected classifiers is shown in the left part
of the figure. The frames on the x-axis are numbered from
the instant in which the target appears in the scene. The 500
features are subdivided in four groups. In the first part, Haar
features go from 1 to 125, the LBPs from 126 to 250, and
HOG and colour respectively fill the remaining portion of
the graph. Reflecting the sudden change of the target pose

Figure 6: Left: Trace of the features used by the PR tracker
in the CAVIAR sequence. Right: Hamming distance be-
tween selections of classifiers ensembles.

in this sequence, a high number of classifiers are swapped
in the ensemble. This can be seen in the graph showing the
number of changed classifiers (represented with the Ham-
ming distance) between pairs of frames, where a high value
denotes an activity in subsequent (with peaks of 38%) or
contiguous frames. From frame 40 to frame 80 the uncer-
tainty of the classification (due to the occlusion) results in a
peak of about 30% swapped classifiers.

To conclude, preliminary experiments showed promising
results suggesting that the selection process can be used to
reduce the computational requirements in a video tracking
application while at the same time retaining an acceptable
level of accuracy when compared to similar approaches.

5 Conclusions
The novelty of the paper is focused on the use of the F-

score measure as a means to select classifiers of an online
trained ensemble. The F-score served as a selection rule
to discriminate, without weights adjustments, between sev-
eral classifiers that employ heterogeneous features. This
new technique allows the fast application of a small num-
ber of selected classifiers for real-time applications such as
target tracking for video surveillance. Preliminary results
suggested that the proposed approach achieved an improve-
ment in terms of speed and accuracy with respect to similar
state-of-the art algorithms on real-world video sequences.
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