
Real-time thresholding with Euler numbers

L. Snidaro *, G.L. Foresti

Department of Mathematics and Computer Science (DIMI), University of Udine, Via delle Scienze 208, 33100 Udine, Italy

Received 1 May 2002

Abstract

The problem of finding an automatic thresholding technique is well known in applications involving image differ-

encing like visual-based surveillance systems, autonomous vehicle driving, etc. Among the algorithms proposed in the

past years, the thresholding technique based on the stable Euler number method is considered one of the most promising

in terms of visual results. Unfortunately its high computational complexity made it an impossible choice for real-time

applications. The implementation here proposed, called fast Euler numbers, overcomes the problem since it calculates all

the Euler numbers in just one single raster scan of the image. That is, it runs in OðhwÞ, where h and w are the image�s
height and width, respectively. A technique for determining the optimal threshold, called zero crossing, is also proposed.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Automatic thresholding; Euler number; Real-time; Optimal threshold; Video surveillance

1. Introduction

Image differencing is a straightforward and in-

tuitive method for change detection. The absolute

value of the difference between a reference image

and the current one gives the changes occurred in
the time interval separating the two frames. The

problem is deciding which values of the difference

image are to be considered information (i.e., in-

dicating moving objects in the scene) and which

are not (i.e., noise generated by the camera). A

binarization of the difference map has to be done

and a threshold is needed.

In the past years, several methods for automatic
thresholding have been proposed. A survey of the

most effective techniques has been made by Rosin

and Ellis (1995) and Rosin (1998). The works of

Kapur et al. (1985), Tsai (1985) and Otsu (1979)

are well-known in the literature. Among the recent

developments are the results of Sezgin and Taaltin

(2000) and Friel and Molchanov (1999).
The stable Euler number technique is very

promising in terms of visual results and stands out

as one of the most effective algorithms as pointed

out by Rosin and Ellis (1995) and by Rosin (1998).

Unfortunately, its high computational complexity

has always precluded its employment in real-time

applications, and thus relegated it to off-line pro-

cessing and laboratory experiments.
The new generation of visual-based real-time

applications, such those described by Collins et al.

(2001) and Foresti (1999), could improve their

performance by applying the stable Euler number

method for image thresholding.

*Corresponding author. Fax: +39-432-558499.

E-mail addresses: snidaro@dimi.uniud.it (L. Snidaro),

foresti@dimi.uniud.it (G.L. Foresti).

0167-8655/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8655 (02 )00392-6

Pattern Recognition Letters 24 (2003) 1533–1544

www.elsevier.com/locate/patrec

mail to: snidaro@dimi.uniud.it


Following the classification made by Rosin

(1998), the stable Euler number algorithm falls in

the category of methods describing the spatial

distribution of the signal. In particular, the Euler

number gives a measure of the connectivity of the

image and can be preferred to region counting
since it is locally countable (as indicated in the

work of Gray (1971)) and it yields very similar

results as suggested by Rosin and Ellis (1995).

The stable Euler number method consists in

thresholding the difference image at g different

levels, computing the Euler number for each bi-

narization, and choosing the ‘‘optimal’’ threshold

value that better separates signal from noise.
Leaving out for the moment the last step, let us

consider the computational complexity of the for-

mer ones. These require the computation of the

binary image and its Euler number for each of the g
thresholds. This means an OðpgÞ complexity,

where p is the number of pixels constituting the

image. But since p does not change linearly, that is,
image dimensions vary adding a row or a column
at time, a better understanding of the complexity

may be achieved writing OðhwgÞ, where h and w
are respectively image�s height and width. If square

images are considered, the complexity is obviously

Oðn2gÞ, were n is the image�s side length. The

computational effort quashes every hope to make

it run in real-time even for small images with 256

grayscale levels.
The fast Euler numbers (FEN) algorithm here

proposed calculates the Euler number for every

possible threshold with a single raster scan of the

image thus running in OðhwÞ.
Therefore, the output of the algorithm is an

array of Euler numbers: one for each threshold

value. The quest for the optimal threshold can now

be started. The problem is discussed in Section 4.
A new method, called zero crossing (ZC) and

based on the corner technique proposed by Rosin

(1998), has been developed during the experiments

and is presented in this paper.

2. Stable Euler number

For two-dimensional spaces the Euler number

simply gives the number of distinct objects minus

the number of holes inside objects (see Gray (1971)

for details). Finding an image�s Euler number in-
volves the computation of the number of the q1, q3
and qd quads contained in the image (Fig. 1). A

quad is a 2� 2 mask of bit cells. The q1 and q3
quads differ from the number of lit pixels: 1 and 3

respectively. The qd is a diagonal quad, that is, the

lit bits are diagonally disposed. Obviously, there

are four possible configurations for the q1 and q3
quad types and two for the qd .

The Euler number EðtÞ for a threshold t can be

calculated using the following formula:

EðtÞ ¼ 1
4
½q1ðtÞ � q3ðtÞ � 2qdðtÞ� ð1Þ

as indicated by Gray (1971). The number of re-

gions (and therefore the Euler number) in the bi-
narized difference map is expected to diminish as

the threshold increases. In fact, a high threshold

generally cuts off all the spurious bits given by

random noise. The classic downside is that valu-

able information may be eliminated as well.

Rosin (1998) points out that the graph of Euler

numbers plotted against thresholds (Eq. (1)) re-

sembles a decaying exponential. A good threshold
is hence to be found in the plateau of the graph,

where the Euler number is varying by small

amounts and the number of regions is almost

stable. This indicates that those regions are actu-

ally (or most probably) moving objects in the

scene.

The method used to decide which threshold

should be elected as optimal is now irrelevant.
What should be apparent at this point is that the

Euler number of each binarization (that is, for all

possible values of the threshold) should be known

to start deciding which one is corresponding to the

optimal threshold.

Fig. 1. Bit quads. A possible configuration for (a) q1, (b) q3,
and (c) qd is shown.

1534 L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544



Any attempt to sub-sample the Euler number

graph with only a few threshold�s values (there-

fore calculating the Euler number for only those

values) will inevitably yield a coarse, unreliable

threshold. In addition, unless parallel processing is

employed, it will be still too computationally ex-
pensive for real-time applications.

3. Fast Euler thresholding

The method proposed is based on the observa-

tion that the information needed to compute the

Euler number for all possible thresholds is already
all contained in the difference map. As seen in Eq.

(1), the Euler number depends on the counters q1,
q3 and qd . Each quad of the difference map will

contribute to the counters according to its current

binarization given by the threshold t.
Thus, by making few simple tests, it can be

determined how a quad contributes to the coun-

ters. Suppose that binarization is performed set-
ting to white (object) a pixel pix if valueðpixÞ > t,
where t is the threshold, and setting it to black

(background) if valueðpixÞ6 t instead.
The quad in Fig. 2 is a q3 for 16 t < 3, is a qd

for 36 t < 5, and is a q1 for 56 t < 8. If the ele-

ments of the quad are labelled with the letters a, b,
c, d for increasing values so that a is the minimum

and d is the maximum, the quad will contribute to
the q1, q3 and qd counters according to the fol-

lowing intervals of the value of the threshold t, if
the indicated conditions are satisfied:

q1 : t 2 ½c; d � 1� c < d � 1 ð2Þ

q3 : t 2 ½a; b� 1� a < b� 1 ð3Þ

qd : t 2 ½b; c� 1� b < c� 1; c < d � 1;

c and d are disposed on a diagonal of the quad

ð4Þ

So, the intervals are easily determined by checking

the above conditions. If a condition is not met then

the quad will never contribute to the correspond-

ing counter since it will never assume that config-

uration. To build the Euler numbers� array E
(Euler number calculated for each possible thres-

hold), several working vectors must be constructed

first.

Using three arrays, one for each counter, would

solve the problem but would also be a complexity

trap. To understand the reason, a closer look at

the implementation is necessary. Having a vector

for each counter, with a number of elements equal
to the number of possible thresholds, E can be

simply computed applying Eq. (1) for each ele-

ment:

E½i� ¼ 1
4
ðq1½i� � q3½i� � 2qd ½i�Þ ð5Þ

With a single raster scan of the difference image,
the contributing intervals can be determined for

each quad. Although, incrementing by one unit

each element of the counter arrays in the intervals

specified would be a mistake. Taking as example

the quad of Fig. 2, the elements of q1, q3 and qd
should be modified as shown in Fig. 3.

This must be done for the contributing intervals

of every quad. The for loops needed to accomplish
the operation will make the computational re-

quirements rise dramatically. Since for every quad

g updates could be necessary at worst case (where

g is the number of possible thresholds), it can

easily be seen that an OðhwgÞ complexity is ob-

tained once again.

The problem can be overcome using two arrays

for each counter: one keeps track of the starting
points of the intervals and the other records the

ending points for each threshold�s value t. So each

3 5

8 1

Fig. 2. A quad of the difference map before binarization.

Fig. 3. How the quad of Fig. 2 affects the q1, q3 and qd arrays of

counters.

L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544 1535



cell contains the number of intervals starting at t
and ending at t for the ‘‘start’’ and ‘‘end’’ arrays

respectively. The previous example would be

treated as indicated in Fig. 4.

In this way only a fixed amount of operations is

necessary for each quad (six updates at the most).

Now, with a single for loop, the q1, q3, qd , and E
arrays can be computed.

Let us take q1 as example: q1½i� is the number of
q1 quads when the threshold t ¼ i and can be

computed considering the number of intervals

spanning through t ¼ i (started at t < i), adding
the intervals starting at t ¼ i and subtracting those

ending at t ¼ i. q3 and qd can be obtained in the

same way. The Euler number is given by (5). The C

code reported in Fig. 5 will hopefully clarify the

procedure.

The for loop may be interrupted as soon as

E½i� ¼ 0. The six counter arrays are constructed on

the fly during the raster scan of the difference map

and this, as seen, runs in OðhwÞ and dominates the
Oðmax ThresholdValueÞ operations required by the

for loop above. The overall computational com-

plexity is therefore OðhwÞ.

4. Optimal threshold

The discussion on how the optimal threshold
should be chosen is beyond the purpose of this

paper and is left to further research. Nonetheless

are here described and discussed the techniques

used during the experiments.

Two methods were tested: the corner method

(presented by Rosin (1998)) and a heuristically

modified version of it, called ZC method, which is

here presented.
Suppose to draw the graph of the Euler num-

bers against thresholds. The point of the curve at

maximum distance from the straight line passing

between the end points of the curve is the corner of

the graph. The corresponding threshold is chosen.

As can be seen from Fig. 6, the point C is the

corner and resides just before the plateau of the

curve. The corresponding threshold is tc and is
chosen as optimal value.

This technique is based on the intuitive argu-

ment that the corner threshold gives the best signal

to noise ratio. During the experiments the tech-

Fig. 4. How the information about the contributing intervals of

the quad in Fig. 2 should be efficiently stored.

Fig. 5. The C code used to compute the E array of the Euler

numbers.

threshold

Eu
le

r
 n

um
be

r

C

tC

Fig. 6. The graph of the Euler numbers against thresholds.

1536 L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544



nique usually yielded a threshold that was lower

than the desiderated one. This may depend on the

filtering steps carried out before the computa-

tion of the Euler numbers. Although, the corner

threshold was always lower than expected.

Observing more in detail the curve of Euler
numbers, some considerations can be done. When

processing noisy video sequences (i.e., outdoor

image sequences for visual surveillance), the corner

of the curve may be in correspondence of still a

great number of regions and the slope of the curve

is probably far from stabilizing. Fig. 7 shows the

Euler curve for an IR image. The corner threshold

is 11.
Rosin (1998) correctly pointed out that when

the Euler number is almost stable (the plateau re-

gion, generally corresponding to high thresholds)

its small variations are hardly due to noise. That is,

small variations mean that––most probably––the

noise has been wiped out. As seen in noisy se-

quences, although, the corner technique fails to

detect the starting point of the stable region.
As a matter of fact, in these conditions, the

curve will be very unstable. That is, zooming in

the plateau region it may look like a teeth saw. The

fact remains that a more effective threshold can be

found downwards from the corner point.

Now the problem is deciding when the Euler

number is getting stable. Obviously, introducing a

tolerance parameter should be avoided as it would
severely affect generality and performance.

4.1. The ZC technique

The ZC heuristic tries to find a solution ana-

lyzing the slope of the Euler numbers curve. Fig.

8(a) shows the graph of the derivative computed
for the curve in Fig. 7(a). It can be seen that the

slope tends to zero in correspondence of the pla-

teau region of the Euler curve. Zooming in, the

behavior of the slope is not so smooth as it may

seem. Fig. 8(b) reports the variations of the slope

for the plateau region.

Thus, when the Euler curve is becoming

smoother (after the corner point), its derivative
is approaching the X -axis. The plateau region of

the Euler curve corresponds to small fluctuations

(positive and negative) of the slope along the X -

axis.

The ZC technique detects the first zero crossing

of the slope after the corner point. In fact, the slope

can cross the zero various times before the corner

point due to the instability of the Euler curve at
low thresholds. Either the first zero value or zero

crossing of the derivative, after the corner point,

can be considered a good index of the stability of

the Euler curve. That point is therefore chosen as

threshold value.

If de is the array of the slope values against

thresholds, the optimal threshold may be found

when the following inequality is satisfied:

de½i� 	 de½i� 1�6 0 ði > icornerÞ ð6Þ

Fig. 7. Euler curve (a) for an IR image (b).

L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544 1537



where icorner is the value found by the corner

method.

As mentioned before, the corner threshold for

Fig. 7 is 11. As can be seen in Fig. 8(b), the ZC

method yields a considerably higher value: 26. The

next section explains the effects of these values.

What can be observed at this point is that the

ZC technique fully exploits the concept of stable

Euler number. The algorithm finds a threshold as
soon as the Euler curve stabilizes after the corner

point. Either a zero value or zero crossing of the

derivative stops the search.

The worst case may be an ever decaying Euler

curve: in this case, the returned value of the ZC is

the highest possible threshold (the intersection

point of the Euler curve with the X -axis). This

worst case, in practice, never occurs. The ZC will
almost ever return a value at the beginning of the

plateau region of the Euler curve.

The computational complexity of the ZC tech-

nique is OðgÞ, where g is the number of possible

thresholds. The computation of the corner method

is included. In practice, the ZC finds the optimal

threshold with very few steps. For a 256 gray-scale

image, the Euler graph generally does not span
longer than 256=2; the corner point approximately

splits the Euler graph at 1=5. Therefore, the ZC

searches at worst between ð4=5Þð256=2Þ 
 100

values. During the experiments, the ZC yielded

thresholds which were at max 20 values above the

corner point.

OðgÞ is dominated by the complexity of the

FEN algorithm. The overall computational com-
plexity of the FEN with the ZC thresholding

method is therefore OðhwÞ, where h, w are the

image�s dimensions.

This method gave good results and proved to be

sufficiently reliable as shown in the following sec-

tion.

5. Experimental results

The algorithms proposed in this paper were

employed and tested in a multisensor real-time

system for video-surveillance. The system, which is

currently being developed at the AVIRES 1 labo-

ratory of the University of Udine, is able to

manage heterogeneous sensors (e.g., optical, in-
frared, radar, etc.) to operate during night and day

and in presence of different weather conditions

(e.g., fog, rain, etc.).

Due to the different working conditions and

nature of the sensors, video signals must be pro-

cessed using automatic techniques. A color camera

and a b/w camera with near infrared response have

been employed for the experiments. Image grab-
bing was performed at 256� 256 pixels resolution.

Fig. 8. Slope graphs for the Euler curve in Fig. 7. (a) Slope, (b) slope of the plateau.

1 Artificial vision and real-time systems.

1538 L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544



The tests were conducted primarily using out-

door sequences, which are the most appropriate

test bench for automatic thresholding algorithms.

The methods tested for both computational per-

formance and visual results were the following:

• Kapur thresholding

• Euler thresholding with both corner and ZC

techniques

• FEN with both corner and ZC techniques

A PC with a 1 GHz CPU and with no dedicated

hardware for video processing was used. The im-

age grabber employed was a Matrox MeteorII
board. Image grabbing was performed at 25 fps.

The system performance was measured for each

thresholding algorithm: the Kapur and FEN

methods sustained the grabbing frame rate run-

ning at 25 fps. The classic Euler algorithm per-

formed at 2 fps.

Visual results are presented comparing the

Kapur threshold against the corner and ZC tech-
niques. The Euler numbers were computed using

the fast Euler algorithm for speed�s sake, but the

classical Euler method would have produced the

same results.

A background image, updated with the Kalman

filter technique (see Foresti (1998) for details), was

used as reference for the three thresholding tech-

niques.

For each frame, the obtained threshold th is

reported.

5.1. First IR sequence

The frames shown in Figs. 9, 13 and 17 are taken

from an infrared video sequence shot with the b/w

camera. An infrared beaconwas used to obtain near

IR response from the camera. The sequence was

shot at night in presence of a dense fog bank. The
camera was placed to monitor the front courtyard

at Rizzi building of the University of Udine.

Nobody is present in the frames of Fig. 9, only

the fog bank is visible in the low part of the image.

Fig. 10 shows the source frames of Fig. 9

thresholded with the Kapur method. The thres-

hold is clearly too low, ranging from 6 to 7 through

the four frames, and the images are heavily af-
fected by the noise generated by the fog. False

alarms (the system detects as moving object some-

thing that is part of the scenery) easily arise in this

situation.

Fig. 9. Source frames from the 1st IR sequence.

Fig. 10. Kapur method applied to the frames of Fig. 9.

L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544 1539



Fig. 11 shows the images obtained with the

corner technique. The threshold is slightly higher,

[8,10], and the noise has been reduced.

In Fig. 12 it can be seen how the ZC method

cuts off almost all the noise yielding a sufficiently

high threshold: [18,27]. This technique exhibits the
desired behavior for this situation.

5.2. Second IR sequence

In the source frames of Fig. 13 a pedestrian is

walking into the scene. The fog is still present.

The Kapur method in Fig. 14 correctly sepa-

rates the pedestrian blob from the noise generated
by the fog bank. The blob is broken in two re-

gions, but this was the best result achievable since

a lower threshold would have let pass the fog

noise.

The corner technique produces the images

shown in Fig. 15. The threshold is too low, [9,10].

The fog noise has completely occluded the pedes-

trian blob.
In Fig. 16 the ZC technique gives a result very

similar to Kapur�s. The threshold, ranging from 22

to 30, is correct because the noise has been suc-

cessfully cut off and the blob––although separated

in two regions––is clearly visible.

5.3. Third IR sequence

In Fig. 17 a third set of infrared source frames is

shown. This time the pedestrian is far away,

Fig. 13. Source frames from the 2nd IR sequence.

Fig. 11. Corner method applied to the frames of Fig. 9.

Fig. 12. ZC method applied to the frames of Fig. 9.

1540 L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544



leaving the scene. Additional noise is generated by

car headlights in the top-left corner of the image.

The threshold produced by the Kapur method
in Fig. 18 is too high: [46,54]. The noise has been

almost eliminated, but the pedestrian blob has

been cut off as well.

The corner technique in Fig. 19 gives a satis-
factory result: the pedestrian is detected, but the

Fig. 15. Corner method applied to the frames of Fig. 13.

Fig. 14. Kapur method applied to the frames of Fig. 13.

Fig. 16. ZC method applied to the frames of Fig. 13.

Fig. 17. Source frames from the 3rd IR sequence.

L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544 1541



threshold is low (19 for all the four frames) and the
noise in the top-left corner (caused by headlights)

can generate false alarms.

The result in Fig. 20 is good. The ZC technique

produces a threshold higher than the corner�s,
[27,29]. The pedestrian is still visible and the noise

in the top-left part of the image has been reduced

(roughly 50% less).

In the noisy infrared video-sequence, the overall
behavior of the ZC technique has been certainly

good and gave the best results if compared to the

other methods.

5.4. Highway sequence

The three algorithms were also tested in an

application for traffic monitoring. Fig. 21 shows

three vehicles approaching a highway toll gate.

The quality of the video signal is good. Noise is

primarily generated by illumination variations.

The images in Figs. 22–24 have been obtained
by binarizing the difference maps with the thresh-

olds produced by the three algorithms. No addi-

tional filtering has been performed (e.g., erosion,

median filter, etc.).

Fig. 20. ZC method applied to the frames of Fig. 17.

Fig. 18. Kapur method applied to the frames of Fig. 17.

Fig. 19. Corner method applied to the frames of Fig. 17.

1542 L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544



Fig. 21. Source frames for the highway sequence.

Fig. 24. ZC method applied to the frames of Fig. 21.

Fig. 23. Corner method applied to the frames of Fig. 21.

Fig. 22. Kapur method applied to the frames of Fig. 21.

L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544 1543



The Kapur method Fig. 22 gives too a low

threshold (6). An additional filtering process

would be necessary to remove the spurious spots

generated by the noise.

The corner technique does a little better (Fig.

23): the threshold is slightly higher, [8,9], and the
result is a more filtered image.

The best result is achieved by the ZC method

(Fig. 24). All the noise has been removed and no

additional filtering is necessary.

6. Conclusions

A fast implementation of the stable Euler

number thresholding method has been presented.

The computational complexity has been consid-

erably reduced from OðhwgÞ to OðhwÞ, where h, w
are the image�s height and width and g is the

number of possible thresholds. Only a single ras-

ter scan of the difference map is now required to

determine all possible Euler numbers. The algo-
rithm is therefore suitable for real-time applica-

tions.

A heuristic technique, called ZC, has also been

devised to find out the optimal threshold value.

Although further research is necessary to verify

the robustness of the heuristic, it performed well

in a video surveillance application for outdoor

environments and in a system for traffic moni-
toring.

ZC has proven to be very effective for the tested

conditions and to be considerably resilient to

noise.

The experiments gave good results: real-time

performance and good quality thresholding were

achieved.

References

Collins, R., Lipton, A., Fujiyoshi, H., Kanade, T., 2001. A

system for video surveillance and monitoring. Proc. IEEE

89, 1456–1477.

Foresti, G., 1998. Object detection and tracking in time-varying

and badly illuminated outdoor environments. Opt. Eng. 37

(9), 2550–2564.

Foresti, G.L., 1999. Real-time detection of multiple moving

objects in complex image sequences. Internat. J. Imaging

Systems Technol. 10, 305–317.

Friel, N., Molchanov, I., 1999. A new thresholding technique

based on random sets. Pattern Recognition 32 (9), 1507–

1517.

Gray, S., 1971. Local properties of binary images in two

dimensions. IEEE Trans. Comput. 20, 551–561.

Kapur, J., Sahoo, P., Wong, A., 1985. A new method for

grey-level picture thresholding using the entropy of the

histogram. Comput. Vision Graphics Image Process. 29,

273–285.

Otsu, N., 1979. A threshold selection method from gray-level

histograms. IEEE Trans. System Man Cybernet. SMC 9 (1),

62–66.

Rosin, P., 1998. Thresholding for change detection. In: ICCV98

Proceedings.

Rosin, P., Ellis, T., 1995. Image difference threshold strategies

and shadow detection. In: Proceedings of the 6th British

Machine Vision Conference, pp. 347–356.

Sezgin, M., Taaltin, R., 2000. A new dichotomization technique

to multilevel thresholding devoted to inspection applica-

tions. Pattern Recognition Lett. 21 (2), 151–161.

Tsai, W.-H., 1985. Moment preserving thresholding: A new

approach. Comput. Vision Graphics Image Process. 29,

377–393.

1544 L. Snidaro, G.L. Foresti / Pattern Recognition Letters 24 (2003) 1533–1544


	Real-time thresholding with Euler numbers
	Introduction
	Stable Euler number
	Fast Euler thresholding
	Optimal threshold
	The ZC technique

	Experimental results
	References


