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Abstract

The primary effect of using a reduced number of classifiers is a reduction in the computational requirements during learning and
classification time. In addition to this obvious result, research shows that the fusion of all available classifiers is not a guarantee
of best performance but good results on the average. The much researched issue of whether it is more convenient to fuse or to
select has become even more of interest in recent years with the development of the Online Boosting theory, where a limited set of
classifiers is continuously updated as new inputs are observed and classifications performed. The concept of online classification
has recently received significant interest in the computer vision community. Classifiers can be trained on the visual features of a
target, casting the tracking problem into a binary classification one: distinguishing the target from the background.

Here we discuss how to optimize the performance of a classifier ensemble employed for target tracking in video sequences. In
particular, we propose the F-score measure as a novel means to select the members of the ensemble in a dynamic fashion. For each
frame, the ensemble is built as a subset of a larger pool of classifiers selecting its members according to their F-score. We observed
an overall increase in classification accuracy and a general tendency in redundancy reduction among the members of an f-score

optimized ensemble. We carried out our experiments both on benchmark binary datasets and standard video sequences.
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1. Introduction

It is well known that the fusion of an ensemble of “weak”
independent classifiers can lead to substantial performance im-
provements with respect to a single monolithic classifier [21].
The term “weak” is used to indicate a classifier that is not par-
ticularly specialized or trained for the problem at hand (i.e. it
is sufficient that classification performance be slightly better
than random guessing). These ensembles can be employed in
a broad variety of applications, from medical imaging [48] to
network security [16], from biometric person identification [24]
to remote sensing [59], in a large range of real-world domains
[40].

To fuse classifiers a large number of possible rules can be
used [47]: for instance, sum and product [25], Bagging [5]
and Boosting [14], Random Subspaces [22], or oracles [33].
Considering couples of classifiers, mutual information [44], Q
statistic [60], diversity-based criteria [32, 56] or correlation, for
instance, can represent valid pairwise measures that consider
their independence to merge their outputs.

To save computational time, an option is to employ only a se-
lection of classifiers instead of the entire set [S7]. The selection
procedure is aimed at forming a reduced ensemble by choosing
within a pool the subset of classifiers that maximizes the per-
formance [30] or, alternatively, reduce the error. This approach
is often applied to features [20] to decrease, for instance, the
dimensionality of the input space or to choose a more robust
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subset, but it is also used for classifiers [1], to achieve better
performance or to satisfy real-time constraints. In this con-
text, a classifier combination strategy that links together selec-
tion and fusion includes switching between fusion and selection
[30, 50, 12].

The recent development of online learning methods [39, 43,
34] has opened the possibility to build on-the-fly a classifier
ensemble and to train it with incoming samples in an unsuper-
vised manner and without any prior knowledge of data distri-
bution. These techniques are based on a evolution of the orig-
inal Boosting [55] algorithm and rely on a fixed size ensemble
of classifiers, whose weights are continuously updated accord-
ing to some statistical information on observed samples. How-
ever, for instance, the Online Boosting technique can present
an optimistic view of the classifiers behaviour, scoring only the
distinction between correctly and wrongly labelled (classified)
samples without considering the skewness of the training set
(see [15] for a discussion on ensembles for the class imbal-
ance problem); assessing the performance of the classifiers in
presence of an unbalanced number of training samples can be
misleading.

For this reason, Pham and Cham [46] proposed an asymmet-
ric online boosting algorithm, where both a parameter k, that
takes into account the asymmetry of the class labels presented
to the classifiers, and the number of false/true positives and
false/true negatives are considered in the tuning of the coeffi-
cients of the linear combination of the classifiers. Even if the
problem of unbalanced classes is handled, the application of the
entire pool of classifiers can be still computationally expensive.
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1.1. Online classification for video tracking

An interesting application of online learning methods is tar-
get tracking in video sequences, that recently has received a
new boost thanks to the tracking via classification concept
[8, 18, 45, 53, 38]. The idea is that classifiers can be trained
on the visual features of a target, casting the tracking problem
into a binary classification one: distinguishing the target from
the background. In the vast majority of tracking applications,
the target changes its appearance as it moves within the field of
of view of a video sensor due to rotations (of the target and/or
camera) and perspective distortions. For this reason the model
learned by the classifiers should be updated at every new frame
in a continuous detect <> update cycle. The recent availability
of methods for online training classifier ensembles on incoming
data, like Online Boosting [18], has thus stoked the interest for
this type of tracking instrument. The advantages over existing
tracking methods are clear:

o the ensemble can be trained on heterogeneous features
(e.g. colour features, texture, motion, etc.) thus improving
the robustness of the detector

e being trained on a specific object, it works as a detector of
the particular instance. In the case of multiple objects in
the scene, each of them is tracked by a dedicated ensemble
(i.e. trained on the target’s features).

Recent works include Avidan’s Adaboost-based tracker [3],
that exploits features associated to every pixel. However, the
work uses the classic Adaboost algorithm and does not learn
online the appearance of the target. In [10] the most discrimi-
native color features to separate the target from the background
are chosen by applying a two-class variance ratio to log likeli-
hood distributions computed from samples of object and back-
ground pixels. In a later work, heterogeneous features have
been combined adopting the same fusion method [42]. In these
two works the features are ranked and selected afresh for each
frame without considering past history (i.e. how features per-
formed in the previous frames).

In [18] the Online Boosting technique devised by Oza [39] is
adapted for visual target tracking. Albeit this idea is effective,
since it uses the online ensemble learning paradigm, it employs
an architecture that relies on a fixed cardinality ensemble. No
selection is applied and this can be detrimental for real-time
constraints.

1.2. Algorithm outlook

In this work, we propose a new criterion based on the F-score
measure to select classifiers from a set of constantly updated
ensemble members (Figure 1). This criterion has been used in
[9] applied to SVM, but its application in online learning is still
unexplored to the best of our knowledge.

1. INITIALIZATION: The full ensemble members are super-
visedly trained with a set of labelled samples. This initial-
ization is done once at the startup.
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Figure 1: Architecture of the proposed approach for selecting classifiers on-
line, based on their F-score measure. The loop is described in detail in Section
1.2.

2. STATS UPDATE: The statistics (TN and TP, FN and FP,
precision, recall and F-score) of each classifier of the full
pool are individually updated. Since this step is a matter
of storing a few variables the computation for this step is
fast.

3. RANKING: The members are ranked in descending order
using their revisited F-score value.

4. SELECTION: The classifiers for forming the reduced pool
can be selected, as presented here in the paper, for being
within the first S classifiers in the ranking.

5. LABELLING: The selected ensemble classifies a new un-
labelled testing/validation sample. The labelling of the
sample is performed by the selected set only, while the
other ensemble members are not considered in this phase.

6. LOOPING: While there are test samples available, repeat
all the steps from (2).

This general proposed approach can be used in online and of-
fline datasets. We will test it in both cases:

¢ in the (offline) case of UCI datasets, we train the ensemble
members with a minimal training set of randomly picked
samples (1/3 the size of the dataset). We then re-compute
the F-score based ranking for each new validation sample



(2/3 of the dataset). The validation samples are processed
one-by-one.

¢ In the (online) case of a video sequence, where data is con-
tinuously streaming in, the ensemble is trained on a small
amount of initial frames, where the positive samples are
manually located as image patches (corresponding to the
target) in a semi-supervised fashion. The validation sam-
ples are then found and labelled on-the-fly by the selec-
tion classifiers, which analyse the video stream frame-by-
frame and picking the most likely image patch containing
the target. In this case, the found image patch is labelled as
+1 (positive), while random patches from the background
are used as negative samples (class -1) to recompute the
F-score values for all the classifiers in the pool.

1.3. Novelty of this work
The proposed approach provides the following advantages:

e it provides a way to rank the performance of each member
of the ensemble;

e it maintains the history of the performance of each clas-
sifier (thus allowing better occlusion handling in video
tracking applications);

e it evaluates classifiers instead of features thus allowing the
transparent integration of heterogeneous features;

o explicit handling of asymmetric samples distributions;

e when applied to video tracking it greatly speeds up the
search phase by applying only a reduced number of se-
lected classifiers. This allows fast tracking without a prior
model and without an off-line training for real-time appli-
cations.

Fast tracking without a prior model and without offline train-
ing is achieved by considering the ability of the classifiers to
discriminate between the training samples. The F-ratio is used
to sort the predictors pool and to form the best subset. The
selection task is particularly useful in a preprocessing step to
reduce the number of ensemble members and then to reduce
the computational burden, removing at the same time redun-
dant or erroneous classifiers. Further extending developing our
preliminary work [58], we bring here additional experimental
evidence to our findings along with a digression on the much
researched issue of whether it is more convenient to fuse or to
select. In particular, the concepts of accuracy and diversity of
a classifier ensemble are analysed, in light of the performances
obtained by ensembles selected via the f-score measure on stan-
dard datasets, with some interesting experimental results.

1.4. Organization of the paper

The paper is organized as follows: Section 2 provides the
required background notions, briefly covering the concepts un-
derpinning classifier ensembles along with the definitions of the
precision and recall performance metrics. Section 3 describes

the proposed approach starting with a criterion to optimize the
f-score performance measure, its extension to the multi-class
case, and its application as a classifier selection method. Sec-
tion 4 provides experimental evidence of the classification per-
formance obtained by the proposed approach on standard UCI
datasets with a discussion on classification accuracy and diver-
sity. Section 5 shows the application as tracking via classifica-
tion method on standard and real-world video sequences, while
conclusions and final remarks are given in Section 6.

2. Background on classifier ensembles and Precision-Recall
metrics

2.1. Classifier ensemble

Combining classifiers is the first step to be taken in or-
der to create an ensemble. Starting from several classifiers
hy, hy, ..., hy, an ensemble H of predictors can be built orga-
nizing the members with several linear fusion rules (e.g. sum,
average, product, etc. [25]) or considering a non-linear com-
bination technique (e.g. Dempster-shafer, neural network com-
biners, etc. [47]).

In this work, we decided to employ the mean rule to build a
linear combination of experts, so that the final ensemble takes

the form
1 M
H) = o [; hm<x)] (1)

To classify a new sample x, belonging to the sample set X,
a (weak) classifier 2 : X — {+1,—1} assigns it to the most
probable class w, that is

arg max P(wc|h(x))
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To evaluate the performance of a classifier, or an ensemble,
on the training set, many measures can be used. We propose to
use precision and recall, as they are fast to compute and suited
for online computation, and offer a quite robust indication of
how accurately the classifier is labelling the training set.

2.2. Precision and recall

Precision and recall are widely used to evaluate an algo-
rithm’s performance in Information Retrieval (IR) [4] or, more
generically, to measure the quality of a classification process
[11]. With respect to ROC curves, PR curves are more mean-
ingful when the number of negative samples greatly exceeds the
number of positive ones since they take into account the skew-
ness between classes [11].

Definition Considering a training set constituted of a set of
N couples (x1, w1), (X2, w2), ..., (xny,wy) Where x, € X are
training samples and w, € {+1,—1} their labels, the precision
m of a classifier & is defined as the probability that K items



{x1,...,x;} in the training set, that are labelled as belonging
to class w = +1, actually belong to that class
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Recall is defined as the probability that the items belonging to
class w = +1 are labelled by the classifier & as belonging to that
class
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As known in the literature, a trade-off between Precision and
Recall is intrinsic, as increasing one means reducing the other
[7]. The relation between precision and recall is given by

Plw=+1)
T=p————— 5
PPh(x) = +1) ®)
since, without losing in generality, if we assume that for each
xeX

n= Plw=+1lh(x) =+1)
_ P(h(x)=+llw=+1)P(w=+1)
= P(h(x)=+1) (6)

then, from (4) we know that the first term of the denominator
on the second line is the recall p by definition. Thus, we can
write

P(h(x)

+1) = gP(w = +1) %)

Being P(w = +1) known a priori, the interesting term is the
ratio p/x that, as proved, constitutes the balance between preci-
sion and recall.

We can also define precision and recall in terms of hits and
missed classification.

Definition Considering the training set constituted of a set of N
couples, the true positives are defined as the number of positive
samples correctly classified by the classifier # and counted by
the indicator function /

N
TP:ZI(h(xn)=+l,wn:+l) (8)

n=1

The false positives and false negatives respectively are the
amount of negative samples classified as positives, and the
number of misclassified positive samples

-1 ©))

N
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N
FN = Zl(h(xn) =—1,w, = +1) (10)
i=1

From these definitions, the following equations hold
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Figure 2: Illustration of a classification procedure in terms of confusion matrix
(a) and Bayesian probabilities (b). In both cases, from the training set, where
the positive samples are a subset, the result of the classification process is a
subset of patterns labelled as positives. Among these, only a portion are the
true positives, that is the assigned label matches with the true label. From a
graphical perspective, recall is related to the ability of the classifier to make the
inner circles on both sides (training set and classification result) overlap, while
precision refers to the ability to make the circles on the right side (classification
results) overlap.

Following the above definition, the relation between preci-
sion and recall can be defined as

n=p|N*(TP+FP)| (12)

which comes straightforwardly from (5) and from N* = TP +
FN.

As depicted in Figure 2, supposing to have a training set of
size N, the precision is related to the number of “hits” over
the total positive-labelled samples, while the recall refers to the
ability of the classifier to correctly extract the largest number of
relevant (in our case, belonging to the positive class) samples
from the training set. From a graphical perspective, recall is the
ability of the classifier to make the inner circles on both training
set and classification side overlap, while precision refers to the
ability to make the inner and outer circles only on the classifi-
cation (right) side overlap.

Moreover, considering the parallel proposed in Figure 2,
P(w = +1) can be imagined as related to the number of all
positive samples out of all possible training samples, that is
(TP + FN)/N, and P(h(x) = +1) as the number of samples
in the training set that are labelled as positive by the classifier
h, thatis (TP + FP)/N.

3. Proposed approach

The approach presented in this paper relies on the idea of
forming an ensemble of classifiers by selecting them from a
wider set according to a performance measure (selection by
pruning [37] is also an alternative). The full set, comprising
a fixed number of classifiers, is initially trained with a few sam-
ples; then, as illustrated in Figure 1 at each round the experts



are ranked and selected using their F-score value. The selected
set will assign to few samples a label, to be used as the ground
truth to determine the F-score of all the classifiers at the next
round. The selection process will be repeated in every round in
an unsupervised fashion.

When considering the tracking task, the difference is that
the the classifier ensemble discriminates between the object
and several random background patches in a frame. The tar-
get is iteratively extracted from the foreground in each frame
of the video sequence, and used as a new sample to repeat the
selection-fusion loop.

3.1. F-score and its optimization

Usually precision and recall are compared considering a
fixed value for both, or combined into a single formula, such
as the F-score, which is a weighted one-dimensional indicator
of the two. The F-score, firstly proposed in [54], is defined as
their weighted harmonic mean,

s
Br+p
When 8 = 1 the F-score evenly balances the two components,
as it becomes

F-scoreg = (1 +,82) (13)

F-score; =2 pr

p— (14)

On the other hand, when 8 < 1 it favours recall, while precision
is preferred otherwise. The F-score spans in the interval (0,1)
and high values correspond to good classification quality. When
this measure is maximum, all the data is classified correctly.

Arguably, other (even earlier) metrics can be seen as partic-
ular cases of F-score, even assuming that the selection exploits
some a priori knowledge, while others, named ranking-based
(i.e. ROC and RP curves, nP and nR, AP, MAP, iMAP, etc.)
sort the results and provide a ranking of the outputs. The first
case is not desirable, while the second is not significant in our
case. For instance, the derivation of E-measure is trivial

1
=1-Fp (15)

E,=1-———— =
(-a)
(2)+(LE2)

when a = 21+] [54].

Unfortunately, to the best of our knowledge there are no clas-
sifiers that directly optimize the F-score or the precision—recall
balance, as already noted in [52]; for this reason, we need to
find a common criterion to optimize the measure for ranking
the classifiers.

Using (11), we can express the F-score as
(1+8)TP
B(TP+FN)+TP+FP

_ (1+8)
T g4 BENEE (16)
TP

F-scoreg =

Since /32 > 0, in order to maximize the F-score, and thus have
the best balance between precision and recall, the ratio
B*FN + FP
TP

in the denominator of (16) should be minimized. The smaller
this ratio, the more discriminative the classifier.

(a7

3.2. Extension to multi-class problem

The overall F-score value of the entire classification prob-
lem can be computed by two different types of average, micro-
average and macro-average [41].

Having C classes, in micro-averaging (MI), 7 and p are re-
defined to consider an average of all individual decisions on all
the classes

— >E, TP,
ML= C (TP+FP.)
_ S8, TP,
omr = ; (18)

S (TP+FN,)

F-measure is computed globally as standard F-measure over all

classes x
PMITTMI (19)

BPrmi + pmi
If dealing with single-label classification, the micro-average F-
score is the same as accuracy.

This formulation allows us to give equal weight to each sam-
ple and is therefore considered as an average over all the (sam-
ple,class) pairs . However, when the classifier behaviour is sim-
ilar on common classes, it can lead to unbalanced performance
analysis [36].

Another way to calculate a multi-class F-score is the so called
macro-averaging (MA) procedure; in this case, F-score is com-
puted locally over each class first and then the (weighted by
class size) average over all C classes is taken.

F-scorey; = (1 +,82)

c
F-scorey s = Z F-score, (20)

c=1

Macro-averaged F-score gives equal weight to each class, re-
gardless of its frequency, and for this reason is is highly influ-
enced by the classifier’s behaviour on anomalous classes.

3.3. F-score as selection method

In this work, we explore the use of the F-score as a means
to rank classifiers. Instead of considering the fusion of all the
classifiers, we aim at combining only a part of the whole set.
Looking at Figure 3, the direct combination approach directly
provides a classifier output, while, if the selection step is present
the combination is preceded by a ranking and discarding phase
that reduces the cardinality of the ensemble. This new set, said
H, is composed by S classifiers that are fused as

. (<
AW = ¢ {Z hs<x>] @n
s=1

and is formed by choosing the best S predictors according to
the F-score ranking. The formulation in (16) allows one to use
the F-score as a fast classifier selection criterion that can be
applied to every round of computation. The measure is individ-
ually computed for each classifier and provides a performance
measure to rank all the members of the ensemble quickly.

An intrinsic advantage of the proposed solution is that this
allows one to form a flexible selection of classifiers. The mem-
bers can be potentially discarded and replaced when their per-
formance starts to decrease, or new ones can be added if the
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Figure 3: Comparison of a direct combination method (a) and a selection step,
like in our case, that precedes the combination phase (b).

system encounters a critical situation. In this paper, at each step
of computation we will employ a selection set of fixed cardi-
nality, generated from a larger set of classifiers that will be not
discarded. Keeping fixed this general pool and constructing a
dynamic selection set will help us to understand how the pro-
posed measure works. However, a dynamic technique to reg-
ulate the number of classifiers in the selection ensemble and
to replace the classifiers in the main set will be the subject of
future investigation.

Algorithm 1 describes in detail the ranking and the selec-
tion steps. The selection set A assigns a label to the sample
(sample(s) labelling). All the classifiers in the extended set are
tested on the sample, and their predictions are compared with
the “truth” label assigned in the previous phase (performance
evaluation step). The historical values of misclassified and cor-
rectly classified samples contribute to calculate the F-score de-
nominator (ranking phase) for every classifier in the set. This
value is then used to pick S << M classifiers from the original
set H and to form the selection set to be used in the next round.
Notice that the selection procedure has linear complexity in the
number of classifiers in the pool, that is O(M).

4. F-score and diversity: a discussion on benchmark binary
datasets

Classifier fusion is known to provide increased accuracy by
combining the opinions of multiple experts, thus improving re-
liability by reducing uncertainty [31]. At the same time, elim-
inating redundant classifiers provides better accuracy and re-
duces the computational time required. It is important then to
have non redundant classifiers taking part to the ensemble in or-
der to reduce the error, thus maintaining the level of diversity in
the ensemble. One way to achieve diversity is forcing it while
training, that is through different inputs or training sets. For in-
stance, Bagging can be employed to partition the training data
and use it to train several classifiers. Another method consists
in varying the classifier parameters, if any, introducing varia-
tions and noise. Therefore, monitoring the level of disagree-
ment among the classifier can be an index of how much the en-
semble is varied and comprises independent members. In this

Algorithm 1: F-score based selection

Require: Sample x
Require: Classifiers selection A
Require: Classifiers pool H
Require: Skewness weight 3
// For every classifier in H
// The selected set assigns a label to the sample
W « argmax,, P(wil H(x))
// Each classifier is tested on the pattern x
// and performance metrics are calculated
for m < 1t0 M do
how < argmax,, P(wilhy,(x)) as in (2)
if o = +1 and A,,, = +1 then
TP, TP, +1
end if
if w = +1 and h,,, = —1 then
FN,, <« FN,, + 1
end if
if o = -1 and h,,, = +1 then
FP, « FP, +1
end if

// Calculate the denominator of Eq. (16)
B*FN,+FP,

Fdenom,, « TP,

end for
// Sort the denominators in ascending order
Fdenom < sort(Fdenom)
// Fill the ensemble H to use at the next round
fori— 1t S do
s « index(Fdenom(i))
H— HJh,
end for
Return A

respect, diversity measures can be pairwise, when they consider
pairs of classifiers and average over results, and non—pairwise,
when the diversity refers to the whole ensemble and its per-
formance, and all the members are measured together. Yule’s
Q statistics [60], the correlation coefficient, the disagreement
measure, and the double fault measure [17], for instance, be-
long to the pairwise set, while Kohavi-Wolpert’s variance [26]
or Kuncheva’s entropy [31] are in the second group. To the best
of our knowledge, up to now no unique definition or formaliza-
tion of diversity has been given [28].

In our experiments we will consider and compare eight dif-
ferent measures of diversity (taken from [29]), with the pur-
pose of showing how the classifier selection performed by the
F-score criterion can improve the accuracy of the results, but
at the same time without sensibly affecting the diversity of the
ensemble.

4.1. Experimental setup

To test how the proposed technique promotes a robust, accu-
rate, diverse ensemble, we have chosen several benchmark bi-
nary datasets from the UCI Machine Learning repository [13].
In this paper, we will present the results on



e German credit data (numeric), to classify people de-
scribed by a set of attributes as good or bad credit risks.
The dataset consists of 1000 instances with 20 features
each.

e Ionosphere, to classify as “good” or “bad” the 351 values
returned by radars from the ionosphere.

¢ Pima Indians Diabetes, to detect a possible diabetes dis-
ease from 768 patterns with 8 features each.

e Mammographic mass, to discriminate between benign
and malignant mammographic masses, given 961 in-
stances and 6 attributes each.

o Heart (statlog), composed of 370 instances with 13 fea-
tures to predict the presence or absence of a heart disease.

e Weaning, to decide if 302 instances of patients are ready
or not for weaning '

e Wisconsin breast cancer to classify benign or malign
cancer, observing 699 clinical records of breast cancer, de-
scribed by 10 multivariate features.

e Respiratory data set, to categorize two respiratory dis-
tress syndromes in 85 cases with 17 attributes each.

We tested 50 linear binary classifiers, implemented as “11”
with Matlab Spider libraries [23], trained with a Bagging pro-
cedure with up to 80 samples randomly drawn from one third of
each dataset, and fused by mean rule. The remaining two thirds
are used for validation. One round of cross-validation (ran-
domly) partitions the data set into two (complementary) sub-
sets, and allows performing the training on 1/3 of the data and
the validation (= testing) on the remaining 2/3. Traditionally,
2/3 of the dataset is used for training, and the remaining 1/3
for testing. We have chosen the inverse 1/3 2/3 proportions,
which give us more room for starting with a relatively small
number of training samples and test extensively the proposed
approach, which is based on incremental F-score computation
and re-ranking of the classifiers. We have chosen bagged linear
classifiers to have them the more different as possible, and to al-
low them to commit some errors in order to study the diversity
impact on the ensembles.

To reduce variability, multiple rounds of cross-validation are
performed using different partitions, and the validation results
are averaged over the rounds. We then repeated the process ten
times (10-fold).

To compare the fusion results with the proposed technique,
we applied the F-score based ranking to the previous set in order
to select 40, 30, 20 and 10 experts, we fused them with the mean
rule (Eq. (1)) and we analyzed the outcomes. The accuracy is
measured as the number of correct predictions with respect to
the the true value out of the total samples number. Precision,
recall and F-score are measured as per (11) and (13), averaging
their value on the ensemble to obtain a scalar.

Yhttp @ | Jwww.bangor.ac.uk| ~masOOafactivities/real_data.htm

We calculated the accuracy and the diversity of the differ-
ent classifiers sets, comparing eight different diversity measures
and repeating the experiment in a 10-fold cross-validation to
average the results across different test patterns. The diversity
measures used are Q statistics (later in the text referred as “Q”),
disagreement, double fault measure (DF), Kohavi-Wolpert vari-
ance (KW), Interrated Agreement (IA), Kuncheva’s entropy (K-
Entropy), Generalized Diversity (GD) and Coincident Failure
Diversity (CFD). Q varies in {—1, +1} and is zero for indepen-
dent classifiers, while K-Entropy, GD, CFD vary between 0, 1
and the maximum diversity occurs when the value is one. In
the results, we highlighted in boldface the most significant di-
versity value, that is the highest in the case of Disagreement,
KW, K-Entropy, GD and CFD, while it is the lowest for Q, Df
and IA.

4.2. Discussion

We summarized the results in several tables, which describe
the diversity and the accuracy values and present the average
precision, recall and F-score measures for the whole set (fusion)
of 50 classifiers, and for the selection, obtained by taking 40,
30, 20 and 10 classifiers from the full pool by F-score ranking,
as described in the previous sections.

As a general trend, we can observe that the selection is al-
ways improving the classification accuracy with respect to the
full pool fusion; using the F-score as a means to carefully pick
classifiers resulted in a boost to the classification performances,
with peaks up to 25% (8).

Another interesting fact is the relationship between perfor-
mance and diversity, which suggests that accuracy and diver-
sity are related, as already declared in the literature, emerges
from the experiments, since a slight tradeoff exists in most of
the cases. However, it is not always the case in our experi-
ments that when the accuracy rises the diversity drops; on the
contrary, as an important achievement, we may say that the se-
lection by F-score measure does not always impact on the het-
erogeneity of the pool (see, for instance, Tables 1,2,5,6,13,14).
In many datasets, high F-score values, associated with high ac-
curacy measures, do show positive values of the most of the
diversity indicators. This can be seen analyzing the data in Ta-
bles 5,7,13, where the random selection sets (indicated as “Ran-
dom”) achieve slightly different diversity values with respect to
the selection sets formed by F-score. These, however, yield
much higher accuracies with respect to the random choice, as
shown in Tables 6,8,14, and even with respect to the fusion of
the entire classifier set.

Another observation we can draw is that the measures do not
often agree; they assume different values on the three datasets
and among the different ensembles. At the same time, the high-
est accuracy (Tables 6,8,14) is not always obtained by the en-
semble that is indicated by most of them as the most diverse.
This can be explained by two reasons: the first is that there is
a tradeoff between accuracy and diversity, empirically demon-
strated for classification [31] and formally defined for regres-
sion [6], that implies that there could be no simultaneous max-
imization of the two. Second, as said before, the diversity mea-
sures catch two different aspects of the ensemble: some of them



Classifiers Q Disagreement | Double-fault KW IA K-Entropy GD CDF
Fusion 50 0.6338 0.4523 0.2620 0.2216 | 0.0934 0.7165 0.4644 | 0.5223
Selection 40 0.4278 0.3803 0.1682 0.1863 | 0.1675 0.5652 0.5333 | 0.6550
Selection 30 0.4956 0.3271 0.1506 0.1603 | 0.2358 0.4834 0.5208 | 0.6837
Selection 20 0.5158 0.2853 0.1142 0.1398 | 0.2449 0.4161 0.5548 | 0.7174
Selection 10 0.5655 0.2589 0.0990 0.1269 | 0.2462 0.3835 0.5661 | 0.7208
Random 40 0.6676 0.4523 0.2882 0.2216 | 0.0897 0.7238 0.4396 | 0.4954
Random 30 0.6813 0.4430 0.2874 0.2171 | 0.0978 0.6957 0.4369 | 0.5008
Random 20 0.6366 0.3874 0.2239 0.1898 | 0.1471 0.5928 0.4780 | 0.5992
Random 10 0.5585 0.3779 0.2136 0.1852 | 0.1640 0.5602 0.4696 | 0.6215

Table 1: Diversity values for the German-numeric dataset. The highest diversity values are highlighted in boldface. As the reader can observe, the different diversity
indicators do not agree, promoting two very different classifier sets (fusion of 50 members vs selection of 10), and suggesting that there is no unique and standard
definition.

Combination Rule | Nr Classifiers | Precision | Recall | F-measure | Accuracy
Fusion 50 0.8503 | 0.6624 0.7425 0.6787
Selection 40 0.7962 | 0.8301 0.8109 0.7297
Selection 30 0.7962 | 0.8244 0.8100 0.7290
Selection 20 0.7510 | 0.8607 0.8020 0.7087
Selection 10 0.8094 | 0.8800 0.8432 0.7665
Random 40 0.7119 | 0.4882 0.5792 0.5015
Random 30 0.7186 | 0.4989 0.5863 0.5120
Random 20 0.6681 | 0.5636 0.5993 0.5128
Random 10 0.7107 | 0.5568 0.6242 0.5225

Table 2: German numeric dataset results for single classifier on average (first row), fusion and selection of 40, 30, 20 and 10 classifiers. In the last column, the
accuracy is presented. The selection of a number of classifiers gives a boost to the classification.

Classifiers Q Disagreement | Double-fault KW IA K-Entropy GD CDF
Fusion 50 0.8898 0.2673 0.1569 0.1310 | 0.3351 0.3499 0.4688 | 0.7240
Selection 40 0.8798 0.1531 0.1337 0.0750 | 0.5341 0.2091 0.3662 | 0.6542
Selection 30 0.9027 0.1431 0.1502 0.0701 | 0.5835 0.2019 0.3229 | 0.5797
Selection 20 0.9063 0.1480 0.1668 0.0725 | 0.5941 0.2054 0.3037 | 0.5573
Selection 10 0.9369 0.1137 0.1480 0.0557 | 0.6427 0.1710 0.2777 | 0.4671
Random 40 0.8941 0.2791 0.1573 0.1368 | 0.3131 0.3646 0.4799 | 0.7196
Random 30 0.8980 0.2310 0.1543 0.1132 | 0.4121 0.3049 0.4261 | 0.7516
Random 20 0.8471 0.2268 0.1526 0.1111 | 0.4246 0.3227 0.4064 | 0.6301
Random 10 0.9074 0.2767 0.1685 0.1356 | 0.3071 0.3943 0.4394 | 0.6237

Table 3: Diversity values for the Ionosphere dataset. Here are compared fusion and selection results with a decreasing number of classifiers. We can observe that
the trade off between accuracy and diversity is here depicted; when increasing one, the other drops.

Combination Rule | Nr Classifiers | Precision | Recall | F-measure | Accuracy
Fusion 50 0.8279 | 0.9698 0.8917 0.8438
Selection 40 0.8174 | 0.9828 0.8914 0.8409
Selection 30 0.8614 | 1.0000 0.9256 0.8949
Selection 20 0.7868 | 1.0000 0.8806 0.8381
Selection 10 0.8940 | 0.9916 0.9402 0.9148
Random 40 0.6579 | 0.7802 0.7128 0.5881
Random 30 0.6507 | 0.7696 0.7051 0.5795
Random 20 0.5631 | 0.6952 0.6219 0.4972
Random 10 0.6580 | 0.7269 0.6897 0.5597

Table 4: Accuracy and precision/recall results for the Ionosphere dataset. The accuracy of the single classifier (on average) is presented on the first row, while fusion
is following together with the selection results with a decreasing number of classifiers. A smaller set of classifiers seems to work better in this case.

calculate the relationship between couples of classifiers, while others focus on describing the agreement of the ensemble from



Classifiers Q Disagreement | Double-fault KW IA K-Entropy GD CDF
Fusion 50 0.6453 0.4359 0.4324 0.2136 | 0.0386 0.6810 0.3368 | 0.3569
Selection 40 0.4458 0.4580 0.3310 0.2244 | 0.0595 0.7383 0.4121 | 0.4484
Selection 30 0.5786 0.4180 0.2848 0.2048 | 0.1428 0.6406 0.4279 | 0.5154
Selection 20 0.4934 0.3800 0.1885 0.1862 | 0.1416 0.5712 0.5291 | 0.6321
Selection 10 0.8355 0.2453 0.2386 0.1202 | 0.4325 0.3560 0.3452 | 0.5567
Random 40 0.6310 0.4156 0.4688 0.2036 | 0.0363 0.6292 0.3090 | 0.3282
Random 30 0.6514 0.3870 0.5011 0.1896 | 0.0522 0.5821 0.2812 | 0.3060
Random 20 0.6186 0.4670 0.3447 0.2288 | -0.0079 0.7546 0.4064 | 0.4248
Random 10 0.7427 0.3793 0.3573 0.1859 | 0.1384 0.5687 0.3489 | 0.4494

Table 5: Diversity values for Pima Indians Diabetes dataset. The diversity values for the 40-elements ensemble suggest that there is a low redundancy among
members selected by F-score. In this case, being accurate does not imply being not diverse.

Combination Rule | Nr Classifiers | Precision | Recall | F-measure | Accuracy
Fusion 50 0.8559 0.2138 0.3421 0.7044
Selection 40 0.6910 0.6087 0.6432 0.7565
Selection 30 0.5913 0.7338 0.6476 0.7109
Selection 20 0.4696 0.9173 0.6105 0.5951
Selection 10 0.4913 0.8407 0.6179 0.6328
Random 40 0.4869 0.0725 0.1261 0.6393
Random 30 0.3444 0.0360 0.0647 0.6276
Random 20 0.3895 0.1457 0.1868 0.6211
Random 10 0.3579 0.3111 0.3279 0.5612

Table 6: Pima Indians diabetes dataset results for single classifier on average (first row), fusion and selection of 40, 30, 20 and 10 classifiers. In the last column, the
accuracy is presented. For this dataset a larger classifier ensemble seems to work better, having the highest accuracy with 40 elements.

Classifiers Q Disagreement | Double-fault KwW IA K-Entropy GD CDF
Fusion 50 0.7249 0.4242 0.4533 0.2079 | 0.0473 0.6689 0.3188 | 0.3414
Selection 40 0.5932 0.4494 0.3541 0.2202 | 0.0716 0.7135 0.3883 | 0.4289
Selection 30 0.5938 0.3981 0.2405 0.1951 | 0.1652 0.6232 0.4525 | 0.5502
Selection 20 0.8611 0.2836 0.2525 0.1390 | 0.3927 0.4249 0.3609 | 0.4893
Selection 10 0.8686 0.2764 0.2344 0.1354 | 0.3683 0.4127 0.3770 | 0.5279
Random 40 0.7370 0.4286 0.4323 0.2100 | 0.0499 0.6809 0.3324 | 0.3590
Random 30 0.7806 0.4229 0.4208 0.2072 | 0.0451 0.6402 0.3402 | 0.3714
Random 20 0.7662 0.3936 0.4718 0.1929 | 0.0233 0.5748 0.3011 | 0.3266
Random 10 0.7758 0.4730 0.2579 0.2318 | -0.0564 0.7877 0.4892 | 0.5129

Table 7: Diversity values for different selection sets on the Mammographical mass dataset. The highest diversity values are highlighted in boldface.

Combination Rule | Nr Classifiers | Precision | Recall | F-measure | Accuracy
Fusion 50 0.8333 0.4602 0.5929 0.6478
Selection 40 0.8732 | 0.6307 0.7324 0.7911
Selection 30 0.7359 | 0.8243 0.7669 0.7661
Selection 20 0.7540 | 0.8813 0.8126 0.8150
Selection 10 0.7129 | 0.8645 0.7762 0.7755
Random 40 0.7254 | 0.1307 0.1709 0.5364
Random 30 0.2184 | 0.1554 0.1816 0.5177
Random 20 0.2203 0.1187 0.1543 0.5301
Random 10 0.4719 | 0.3435 0.3489 0.5281

Table 8: Accuracy results on the Mammographical mass dataset for ensembles of decreasing number of classifiers. Combined with Table 7, it reinforces the idea of
a tradeoff between accuracy and diversity.

an overall perspective. In any case, a rigorous demonstration of ~ considering two facts:
how the F-score promotes the diversity in classifier ensembles

is out of the scope of this paper. e if many classifiers are redundant (same classifier type
In some cases, only 10-20 selected classifiers score the best trained with similar data) or mistrained (e.g., the training
performance in f-measure and accuracy. This can be explained data is biased toward one class), a selection will perform



Classifiers Q Disagreement | Double-fault KW IA K-Entropy GD CDF
Fusion 50 0.6650 0.3491 0.2650 0.1711 | 0.2914 0.5112 0.3969 | 0.5719
Selection 40 0.6777 0.2956 0.2399 0.1449 | 0.3738 0.4311 0.3829 | 0.5882
Selection 30 0.5936 0.3210 0.2306 0.1573 | 0.3200 0.4708 0.4104 | 0.5900
Selection 20 0.7849 0.2459 0.2882 0.1205 | 0.4768 0.3483 0.3019 | 0.5261
Selection 10 0.9359 0.1525 0.3463 0.0747 | 0.6633 0.2153 0.1833 | 0.3314
Random 40 0.6759 0.3375 0.2562 0.1654 | 0.3067 0.4946 0.3973 | 0.5876
Random 30 0.5122 0.3858 0.2555 0.1890 | 0.2093 0.5749 0.4303 | 0.5620
Random 20 0.6664 0.3337 0.2672 0.1635 | 0.3016 0.4851 0.3867 | 0.5655
Random 10 0.7965 0.2402 0.3216 0.1177 | 0.4760 0.3480 0.2714 | 0.4612

Table 9: Also for the weaning dataset, the highest diversity belongs to the less accurate ensemble.

Combination Rule | Nr Classifiers | Precision | Recall | F-measure | Accuracy
Fusion 50 0.7353 | 0.8413 0.7848 0.7624
Selection 40 0.7301 | 0.8846 0.7998 0.7723
Selection 30 0.7270 | 0.9330 0.8171 0.7995
Selection 20 0.7611 | 0.8918 0.8200 0.8119
Selection 10 0.8192 | 0.8077 0.8119 0.8069
Random 40 0.5032 | 0.5769 0.5372 0.4876
Random 30 0.5144 | 0.5928 0.5501 0.5347
Random 20 0.4910 | 0.5619 0.5229 0.5074
Random 10 0.4902 | 0.4567 0.4728 0.4752

Table 10: As seen in Table 9, also for the weaning dataset there is a tradeoff between diversity and accuracy.

Classifiers Q Disagreement | Double-fault KW 1A K-Entropy GD CDF
Fusion 50 0.9935 0.1280 0.5865 0.0627 | 0.7174 0.1596 0.0983 | 0.3566
Selection 40 0.9936 0.0573 0.5772 0.0281 | 0.8786 0.0760 0.0473 | 0.1618
Selection 30 0.9950 0.0482 0.6069 0.0236 | 0.8941 0.0675 0.0382 | 0.1234
Selection 20 0.9961 0.0455 0.5821 0.0223 | 0.8999 0.0619 0.0375 | 0.1237
Selection 10 0.9960 0.0388 0.5682 0.0190 | 0.9082 0.0551 0.0329 | 0.0844
Random 40 0.9926 0.1092 0.5793 0.0535 | 0.7606 0.1366 0.0857 | 0.3722
Random 30 0.9923 0.1258 0.6221 0.0617 | 0.6888 0.1697 0.0903 | 0.3161
Random 20 0.9906 0.0636 0.5745 0.0311 | 0.8599 0.0877 0.0524 | 0.1730
Random 10 0.9900 0.0888 0.5596 0.0435 | 0.7812 0.1161 0.0725 | 0.2366

Table 11: Diversity values for Wisconsin breast cancer dataset.

Combination Rule | Nr Classifiers | Precision | Recall | F-measure | Accuracy
Fusion 50 0.9270 | 0.9220 0.9239 0.9421
Selection 40 0.9283 | 0.9404 0.9337 0.9491
Selection 30 0.9461 | 09104 0.9279 0.9474
Selection 20 0.9163 | 0.9375 0.9265 0.9456
Selection 10 0.9748 | 0.9019 0.9368 0.9544
Random 40 0.3676 | 0.3670 0.3670 0.5158
Random 30 0.3532 | 0.3208 0.3362 0.5298
Random 20 0.3396 | 0.3462 0.3428 0.5158
Random 10 0.3667 | 0.3318 0.3481 0.5333

Table 12: Breast cancer dataset results for single classifier on average (first row), fusion and selection of 40, 30, 20 and 10 classifiers. In the last column, the
accuracy is presented.

better than the full ensemble. very small and similar subsets to train the classifiers. Clas-

sifiers learned with similar training sets are redundant, and

e on the other hand, the cardinality of the domain has also if the training set is too small, the classifier can be under-

an impact: the bagging technique is proved not to be effec- trained. Consequently, only a small number of classifiers
tive in sets with low number of elements, since it produces is effective.
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Classifiers Q Disagreement | Double-fault KW IA K-Entropy GD CDF
Fusion 50 0.8173 0.2359 0.3293 0.1156 | 0.5226 0.3330 0.2633 | 0.5087
Selection 40 0.8496 0.2151 0.3237 0.1054 | 0.5598 0.3006 0.2488 | 0.4904
Selection 30 0.7779 0.2532 0.2861 0.1241 | 0.4708 0.3565 0.3066 | 0.5258
Selection 20 0.7538 0.2592 0.2945 0.1270 | 0.4563 0.3722 0.3049 | 0.5092
Selection 10 0.9163 0.1568 0.2971 0.0768 | 0.6437 0.2244 0.2124 | 0.4158
Random 40 0.8139 0.2358 0.3285 0.1156 | 0.5207 0.3306 0.2635 | 0.5064
Random 30 0.6897 0.3018 0.2868 0.1479 | 0.3789 0.4365 0.3446 | 0.5565
Random 20 0.6772 0.3278 0.3247 0.1606 | 0.3164 0.4881 0.3360 | 0.4988
Random 10 0.7439 0.2522 0.2685 0.1236 | 0.4370 0.3728 0.3227 | 0.5041

Table 13: Diversity values from the heart dataset for fusion vs selection of classifiers drawn from the whole pool.

Combination Rule | Nr Classifiers | Precision | Recall | F-measure | Accuracy
Fusion 50 0.7830 | 0.8316 0.8063 0.7889
Selection 40 0.7763 0.8368 0.8052 0.7861
Selection 30 0.7932 | 0.8814 0.8330 0.8083
Selection 20 0.8045 0.8281 0.8158 0.8000
Selection 10 0.8176 | 0.8711 0.8424 0.8250
Random 40 0.5277 | 0.5579 0.5422 0.5028
Random 30 0.5304 | 0.5670 0.5464 0.4972
Random 20 0.5619 | 0.4948 0.5253 0.5278
Random 10 0.5672 | 0.5619 0.5643 0.5333

Table 14: Accuracy and precision, recall and F-score results from the “heart” dataset. In this case, the highest accuracy does not imply lowest values of diversity

(Table 13).
Classifiers Q Disagreement | Double-fault Kw IA K-Entropy GD CDF
Fusion 50 0.2765 0.4043 0.3977 0.1881 | 0.1376 0.6139 0.3470 | 0.4083
Selection 40 0.3827 0.3831 0.3650 0.1977 | 0.1979 0.5732 0.3553 | 0.4519
Selection 30 0.8817 0.1798 0.4006 0.0881 | 0.6183 0.2435 0.1925 | 0.4219
Selection 20 0.7392 0.2485 0.3038 0.1218 | 0.4781 0.3759 0.2860 | 0.4678
Selection 10 0.7760 0.2564 0.3154 0.1256 | 0.4409 0.3554 0.2891 | 0.4977
Random 40 0.3106 0.3943 0.4027 0.1932 | 0.1535 0.5942 0.3390 | 0.4073
Random 30 0.8006 0.2438 0.3816 0.1195 | 0.4641 0.3304 0.2727 | 0.4917
Random 20 0.5475 0.2949 0.3991 0.1445 | 0.3587 0.4455 0.2598 | 0.3881
Random 10 0.5862 0.3393 0.3076 0.1663 | 0.2236 0.5143 0.3920 | 0.5139

Table 15: Also in the case of RDS dataset, the diversity values are higher for the less accurate datasets (Table 16).

Combination Rule | Nr Classifiers | Precision | Recall | F-measure | Accuracy
Fusion 50 0.7538 | 0.4828 0.5613 0.6607
Selection 40 0.8036 | 0.5862 0.6593 0.7143
Selection 30 0.5792 | 0.7083 0.6269 0.6518
Selection 20 0.7264 | 0.7963 0.7592 0.7589
Selection 10 0.8038 | 0.8654 0.8324 0.8393
Random 40 0.4300 | 0.2931 0.3362 0.4732
Random 30 0.5020 | 0.6042 0.5389 0.5804
Random 20 0.5179 | 0.3519 0.3870 0.5357
Random 10 0.5165 | 0.5000 0.4964 0.5625

Table 16: Accuracy for several classifier ensembles on the RDS dataset. In general, the selection by F-score has better performance than the fusion of the full
classifiers pool, and than the randomly formed ensembles.

We decided to split the results into individual dedicated ta-
bles, to present and comment the results in detail, highlighting
that the method works significantly better for improving accu-
racy, but is not always guaranteed to preserve the diversity. We
can observe that in some of the datasets the diversity is not di-

minished, but in some others the compromise between accuracy
and diversity can be perceived.

Table 17 and Table 18 provide instead a summary of the find-
ings averaged over all datasets. We normalized each value by a
factor that considers the number of total samples, thus weight-

11



Classifiers Q Disagreement | Double-fault KwW 1A K-Entropy GD CDF
Fusion 50 0.7229324 | 0.364998302 | 0.358010273 | 0.1786713 | 0.2177219 | 0.557193 | 0.3492194 | 0.4603597
Selection 40 0.6230744 | 0.336695437 | 0.293208884 | 0.1651576 | 0.2824598 | 0.5142377 | 0.3773269 | 0.5046003
Selection 30 0.6539402 | 0.310079894 | 0.254807716 0.15195 0.32608 0.4650826 | 0.3949907 | 0.5446884
Selection 20 0.7101704 | 0.266458311 | 0.236832892 | 0.1305718 | 0.3852162 | 0.3912897 | 0.3913218 | 0.5503507
Selection 10 0.821047 | 0.209955754 | 0.241106812 | 0.1028703 | 0.4772937 | 0.3079584 | 0.3398989 | 0.5072013
Random 40 0.7318032 | 0.361005864 | 0.364304365 0.17689 0.2194946 | 0.5500875 | 0.3418601 | 0.4549045
Random 30 0.7244863 | 0.361579078 | 0.362899317 | 0.1771755 | 0.2018598 | 0.5428053 | 0.3483006 | 0.4609183
Random 20 0.7078846 | 0.352907253 | 0.337046693 | 0.1729102 | 0.2062155 | 0.5341722 | 0.3611044 | 0.4637577
Random 10 0.7399543 | 0.339880291 | 0.285892967 | 0.1665662 | 0.233773 | 0.5203848 | 0.3842826 | 0.5107142
Table 17: Summary of diversity outcomes averaged on all datasets.

Combination Rule | Nr Classifiers | Precision Recall F-measure | Accuracy

Fusion 50 0.82946 0.6219801 | 0.6765221 | 0.730289

Selection 40 0.7968174 | 0.7704365 | 0.7756557 | 0.782335

Selection 30 0.7535848 | 0.8438196 | 0.7908597 | 0.777698

Selection 20 0.7263741 | 0.8868461 | 0.7889864 | 0.761201

Selection 10 0.7546138 | 0.8726134 | 0.8017182 | 0.78343

Random 40 0.5988719 | 0.3709227 | 0.3985109 | 0.538415

Random 30 0.4699716 | 0.3769675 | 0.3947987 | 0.540041

Random 20 0.4624363 | 0.379589 | 0.3982385 | 0.536094

Random 10 0.5296547 | 0.4597489 | 0.4784186 | 0.532392

Table 18: Summary of precision, recall, F-score and accuracy values averaged on all datasets.

ing more the larger datasets. From the comparison with the
random set results, we can see that the selection brings a sig-
nificant improvement in performances, both due to increased
accuracy, and also because less classifiers means that the en-
semble is faster. Analysing Table 18 more in depth, after a
certain point the improvement is shown to be not significant;
this point can be a candidate for an automatic thresholding the
number of classifiers, and it will be subject of our future inves-
tigations. Table 17 shows another interesting fact: the diversity
of a large selection set is not very far from the disagreement
among the random set members. The diversity starts to dete-
riorate when the F-score has no significant improvement; until
then, its values are comparable with those of the random set.
The sum-up table seems to suggest a trend in which recall
is favoured at the expense of precision as the number of clas-
sifiers decreases; this trend is not always confirmed in the ex-
periments, and it will be subject of future analysis. In gen-
eral, this behaviour can be explained with the fact that sepa-
rability issues in the data arise at some points, when the clas-
sifiers are too few. Precision and recall are in fact related to
-respectively- False Positive and False Negative errors, which
are a trade off when classifying a non-separable dataset: privi-
leging the classification rate for the positive class often implies
decreasing the False Negatives and augmenting the True Posi-
tives, but also raising the False Positives, since more negative
samples are classified as positive. The lesser classifiers we have
in the ensemble, the more they seem to face separability prob-
lems between classes; empirically, a bigger ensemble provides
richer and sharper boundaries to divide false and negative sam-
ples. However, no matter the size, any ensemble can comprise
redundant members, thus it is important to select them accu-
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rately by diversity means.

To draw a conclusion, we can say that the results show that
the F-score ranking-based is an valid approach to select clas-
sifiers, since it presents higher accuracy in classifying the test
samples from the UCI datasets if compared to the full pool (fu-
sion), and also to randomly selected sets. At the same time, it
maintains a good level of diversity among the members of the
ensemble which is generally associated to better generalization
capability [27].

5. Application to video tracking

Video tracking is the process of locating an object in a scene
through time. A robust and accurate tracking process is the
fundamental step that precedes high-level reasoning for scene
understanding and situation assessment, as following an ob-
ject constitute a piece of information from which semantics and
events can be inferred. To track an object that freely moves in a
scene different techniques, developed in the last few years, can
be applied [35]. However, no definitive solution has been pro-
posed, and tracking remains a challenging task, especially when
illumination and appearance variation occur in unconstrained
video sequences.

5.1. Tracking as a classification problem

When treating tracking as a classification problem, a single
classifier or classifier ensemble aims at separating the target
from the background in the frames of a video sequence. The
problem is reduced to a binary task, and involves the target, la-
belled as positive, and the remaining part of the image, that is



Image Feature space

Figure 4: Tracking via classifiers: the components of the object and the back-
ground are projected in the features space, where the classifiers operate.

labelled as negative. Each low-level feature (color histograms,
Haar wavelets, LBPs, HOGs, etc.) can be associated with a
simple Bayes classifier, which chooses in a Bayesian fashion
the right boundary for labelling a sample positive or negative
according to the feature’s outcome and previously learned mar-
gins. The idea, pioneered by Avidan in [2], relies on train-
ing a binary classifier, in his case a support vector machine
(SVM), to distinguish a given object in the scene from the
background and follow it into subsequent frames. More re-
cently, the tracking via classification concept has received a
boost [3, 8, 18, 45, 53, 38], as it is considered more robust to
occlusions and illumination changes [19]. Moreover, greater
system robustness and performance is achievable with an en-
semble of classifiers through data fusion techniques [8, 45].

The idea is the following: an ensemble of classifiers, or a sin-
gle strong classifier, is trained with a few samples representing
the object (positive samples), and several random background
patches (negative samples). While tracking, at each frame the
classifier locates the most probable position of the object in the
image. The target is, thus, extracted from the foreground and
used as a new training sample and the process is repeated for the
next frame. In real-time video streams, the frames are processed
one-by-one; for each each frame, a considerable number of im-
age patches are tested by the selection ensemble (see Figures 5
and 6), and the one with the highest confidence is chosen as the
target (see [2]). It must be noted that the final decision (label)
is taken by the selection ensemble, but the so-labelled positive
sample, together with a randomly chosen negative background
patch, is used for re-ranking ALL the classifiers. The selected
ensemble thus influences the ranking of the all the classifiers in
the pool, since it provides the next training samples.

The approach can be considered unsupervised, when no hu-
man operators intervene in the dynamic labelling process, or,
semi-supervised, if we consider that a minimal initial training
of the classifiers is provided by human knowledge (or by some
other algorithm, for example motion detection [51]).

To each feature is associated a Bayesian classifier, that “in-
terprets” the output of the descriptor and assigns a label to it,
as shown in Figure 4. Each Bayesian classifier is trained to
discriminate between the same feature extracted both from the
foreground and the background. Several weak Bayesian classi-
fiers are, then, aggregated and their union provides the classifier
ensemble. To find the best combination to separate the data, the
F-score is calculated to select the best K classifiers and form
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(b)

Figure 5: Tracking via classifiers: (a) At time 7 the model of the object is built
(b) At time ¢ + 1 the template is applied to a dense region around the previous
object location (c) The confidence map is drawn from every classifier output.
The source images are taken from [49]

a new ensemble. This selection set will search for the object
in the next frame, as shown in Figure 5, speeding up the com-
putation. During the search for the target, a confidence map
is maintained to indicate the zones of high probability for the
object’s occurrence.

The confidence of the ensemble H on a pattern x can be de-
fined as

P(w = +DPH)w = +1)
P(H(x))

conf(H(x)) = 22)

If the object is found, the target is used to update the en-
semble. In fact, from the labels assigned to the target and to
the background patches, it is possible to update & and p as per
(11). The loop of the process is pictured in Figure 6, adapting
to the visual-tracking case the general architecture proposed in
Figure 1. With respect to standard trackers, where at each time
instant the system needs to recursively estimate and predict the
object’s state including positions and velocities, and thus the
transition from one state to another, the tracking via classifi-
cation approach differs in the sense that there is no filtering as
known in the traditional sense. No predicted position at the next
time instant is provided, but only detection and localization (via
classification) of the target, frame by frame.

In our case, the object is firstly projected into the features
space, to reduce the dimensionality of the data and to speed up
the learning process. Several heterogeneous features, as Haar
wavelets, LBP and color features, are extracted from the region
of the image where the target is present.

Algorithm 2 describes the application of the classifier ensem-
ble to a video tracking task. The selection ensemble A (Eq.
(21)) is used to search for the object in the frames (samples
selection module) scanning each frame in a template-matching
fashion: each subregion of the video frame F, is processed by
the selection ensemble H, which returns a confidence on each
subregion. This is the most time consuming step, as each sub-
region of the image has to be processed; with the selection set,
only § classifiers are used during this phase, thus saving com-
putational time. As it can be seen in the “search” phase of Fig-
ure 6, the source frame is scanned searching for the target in
subregions of the same dimension of the target. The remaining
part of the loop is the same as described in (1), with the image
subregion representing the object used as the ground truth, and
a random patch from the background constituting the negative
sample. At each frame, the localization of the object strictly
depends on the output (confidence) of the ensemble H. The
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Figure 6: Architecture of the tracking via classification process: the object is decomposed into features, that are used by a classifier to maintain the representation
of the target appearance. The classifier searches for the object into a new frame, and, if the object is found, the target model is updated.

Algorithm 2: Tracking via classifier selection

Require: Fixed classifier set H
Require: Randomly initialized selection set A
Require: Frame F of size I X J
while x « subregion(F, i, j) do
// Test the ensemble A onx
// and save results in a temporary map
map(i, j) « conf(H(x))
// Get the positive sample x..
X4 « argmax(map)
// Get the negative sample x_
X_ « subregion(map, randX, randY)
/] Apply Algorithm1 to create
// a new selection classifier ensemble A
H = Algorithm1(x,, H, H, B)
end while

sample x, that has been classified as positive with the maxi-
mum confidence by the ensemble A at time 7, becomes the new
positive training sample to test the whole classifiers set. The
tracking loop, in fact, behaves like an unsupervised system that
searches for a positive sample into a set of possible candidates
(patches of the image). At each computation round (at least)
one positive sample and one negative counterpart are unsuper-
visedly chosen from the video stream.

It is important to notice that, as before, the performance of
each single classifier will lead to a ranking that will influence all
the other ensemble members, and only the selection ensemble
will search for the object in the next frame. The selection rule
is, thus, required to be fast and accurate to allow a robust real-
time tracking, and the F-score measure seems to fit the purpose.
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5.2. Experimental setup

In this section we want to study the effect of the F-score rank-
ing on the performance of tracking via classification.

The hardware employed was an AMD Athlon64 3500+ with
1GB of RAM. All the algorithms have been implemented in
C++ using optimized structures, i.e. integral images and inte-
gral histograms, to reduce the computational requirements. The
set-up time for initialization, occuring before the actual track-
ing is performed, is not included in the computation.

As classifiers, we employed M Naive Bayes classifiers that
use maximum a posteriori to decide which class to assign to the
pattern x. Every classifier maintains two distributions on the
training data, regarding positive and negative samples. Thus

h(x) arg max P(wc|h(x)

We

P(w)P(h(x)|w.)

23
P(h(x) 23)

arg max
with w,. € {—1, +1}. The classes’ priors are assumed equiprob-
able.

5.2.1. Choice of B

Here we discuss how the § parameter in (13) was chosen.
After several tests on the CAVIAR? sequences, where we boot-
strapped a pool of 500 classifiers with only 20 positive hand-
labelled samples, the trackers were compared.

In our experiments the pool of classifiers consisted of 500 el-
ements out of which we chose to select 100. In particular, we
decided to maintain a static pool of experts without replacing
the worst performing classifiers. The rationale is to keep the
experimental protocol as simple as possible to show the effec-
tiveness of our solution compared with other methods, but the
possibility to remove and substitute the classifiers in the global

2http://homepages.inf.c:d.ac.uk/rbf/CAVIAR/
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Figure 7: Centre image: Trajectories of the F-score tracker when varying 8. Yellow: 8 = 0.5, red: 8 = 1, blue: 8 = 1.5, black: 8 = 2. Left image: error in pixels on
the X coordinate compared with the ground truth. Right: error (in pixels) on the Y coordinate.

pool is a concrete opportunity and it is fully supported by the
proposed framework.

In Figure 7 the trajectories of the proposed tracker on the
video Browsel.mpg when varying 3 are shown. In the sequence,
a man approaches the information point, walks toward the bot-
tom of the scene, and goes back to the leftmost side. As shown
in the left and right graphs of Figure 7, compared with the
ground truth the most accurate tracker was the one with 8 = 1.5.
This setting obtained overall good performance on numerous
clips of the same dataset. This observation brought us to set
B = 1.5 for the rest of the experiments.

5.2.2. Tracking algorithms

In our experiments we tried to consider other similar feature
selection/fusion methods that work both in the (online) learn-
ing field and the tracking area. The approach can be compared
with different tracking algorithms (kernel or model based, par-
ticle filters, etc.), but we concentrate to show how our criterion
outperforms similar methods.

We decided to compare the proposed method with different
fusion and selection approaches. In particular, we tested three
different algorithms, referred as

e PR: Precision/Recall based tracker (proposed solution)
e OB: Online Boosting based tracker [39]
e COL: COLour tracker [10]

The Online Boosting algorithm was selected because it is a
weighted fusion strategy and can be exploited to linearly com-
bine learning classifiers to track an object. It is a learning-based
approach, but has the drawback that it can not swap in and out
classifiers, and it is not a selection method but a (weighted) fu-
sion one. To compare the Online Boosting and our technique,
that both combine or select members from a pool of classifiers,
we kept the number of the pool members fixed at 500; the num-
ber of classifiers in the selection set was limited to 100. To guar-
antee fairness, we performed the experiments using a fixed car-
dinality ensemble even though our approach could have adapted
the number dynamically. Moreover, this fixed threshold facili-
tates the understanding of the behaviour of the selected classi-
fiers when analysing the swap in/swap out trend.
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We employed four different types of features to describe
moving objects: Haar features, Local Binary Patterns (LBP),
Histograms of Gradients (HOG), and colour histograms. To
speed up the search step, we limited the search area to a 50% in
excess of the target’s dimensions.

The colour tracker [10] selects the best discriminative colour
features and uses them to track the target; we have chosen the
first 15 (out of 49) most precise features to form the selection.
This method (COL) used a selection criterion (variance ratio)
to discriminate between features. We used classifiers instead
of features, that means that we fused together several heteroge-
neous features or classifiers at high level, and a fast selection
rule that is aimed to save time keeping the performances com-
parable to similar approaches.

5.3. CAVIAR sequences

Tracker || Mean X | Mean Y
PR 3.241 4.445
OB 5.596 2.506
COL 24.126 15.614

Table 19: Average error (in pixels) on the CAVIAR sequence for the proposed
approach (PR), the Online Boosting (OB) and the Color tracker (COL).

Tracker || 50 feat. | 100 feat. | 200 feat. | 500 feat.
PR 21.03 29.37 38.45 76.94
OB 28.80 32.44 43.05 75.67

Table 20: Application time (in milliseconds) per frame on the CAVIAR se-
quence (Fig.8) for the proposed approach and the Online Boosting tracker.

We used the CAVIAR dataset and the video sequence pro-
posed in [49] to prove the effectiveness of our approach
on standard data. Figure 8 shows some frames from the
Fight_RunAwayl.mpg CAVIAR video sequence. In the video,
two men meet inside a building, have a brief fight and leave sep-
arately. This video represents an interesting case study due to
the ambiguity caused by the two men with similar appearance.
The video comprises 552 frames at 384 x 288 pixels resolution.
The target was initialized at frame 267 with a change detection
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Figure 9: Centre image: Trajectories of the F-score tracker (said PR, blue), Online Boosting tracker (OB, red), and Colour tracker [10] (Col, yellow) compared with
ground truth (GT, light green). Left image: error in pixels on the X coordinate for the previous trackers compared with the ground truth. Right: error (in pixels) on

the Y coordinate.

algorithm. In this case no bootstrapping was required: in the
first frame where the target appears, a model of the foreground
is built using random features. As already discussed in Section
5.1, the training procedure at time ¢ uses unsupervised samples
coming from the search phase performed at time ¢ — 1.

The output of the proposed technique is shown in the first
row of Figure 8 where the target is correctly tracked even when
the two men are very close, without drifting. In this sequence,
the difference in the illumination conditions and in the target’s
appearance can be critical conditions for colour histograms. In
fact, the Colour tracker drifted after the men’s collision (bottom
row), while the Online Boosting detector (second row of Fig-
ure 8) correctly followed the target, exploiting other features as
shape and texture. Figure 9 shows the errors with respect to
the ground truth. The average shift in pixels from the ground
truth for the PR tracker, the OB method and the Color tracker is
presented in Table 19. The PR and OB trackers obtained simi-
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lar results with a slight advantage of the former, while the Color
tracker’s drift resulted in higher average error with respect to the
ground truth. Table 20 presents the average application time for
the aforementioned trackers on the CAVIAR video sequence.
The Colour tracker took an average of 136.67 msecs to process
a frame. In the case of the PR and OB trackers, as we can see
from Table 20, the time of computation strictly depends on the
number of classifiers considered; when the classifiers amount
included in the selection set is strictly less than the pool cardi-
nality, the proposed approach outperforms the others. Remem-
ber from Section 5.2.2 that the number of classifiers used for
tracking was 100 out of a pool of 500.

Figure 10 shows the number of classifiers used per each fea-
ture type along the frames of the CAVIAR video sequence.
Since the ensemble is randomly initialized, in the very first
frames the ensemble undergoes significant changes. The sub-
sequent behaviour (i.e. after frame 10) shows a preference for
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Figure 10: Number of classifers used (per feature type) on the CAVIAR se-
quence.

the classifiers based on colour features in the first half of the se-
quence, while this preference loses ground in the second half in
favour of non colour-based classifiers, in particular LBP ones.
This turns to be supporting the actual content in the video, since
the second half of the sequence shows the fight and thus the oc-
clusions of the tracked person with the attacker. While in the
first half colour was determinant for discriminating the target
from the background, in the following frames this less signifi-
cant.

5.4. Sylvester sequence

In the second experiment, we tested three trackers on the
Sylvester black and white video sequence [49]. The video com-
prises 1340 frames at 320 x 240 pixels resolution; the content
of the sequence is a puppet that is moved under a light bulb,
suddenly changing pose and illumination. The target was man-
ually initialized in the first frame on the puppet’s muzzle with a
40 x 40 pixels square.

Our approach has been compared with the OB tracker only
since in this case Haar, LBP and HOG features only could be
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Tracker || 50 feat. | 100 feat. | 200 feat. | 500 feat.
PR 17.52 26.34 33.52 68.14
OB 22.46 30.11 38.18 67.59

Table 21: Comparison of computation time (in milliseconds per frame) of the
F-score based tracker (PR) and the Online Boosting algorithm (OB) on the
Sylvester sequence.

Tracker || Mean X | Var X | MeanY | VarY
PR 0.947 2.262 0.427 0.423
OB 1.948 5.288 0.574 0.601

Table 22: Error mean and variance (in pixels) on the Sylvester sequence for
both Online Boosting (OB) and the proposed approach (PR).

used. The statistics on the error consider the shift in pixels with
respect to the provided ground truth; from the first and third
graphs of Figure 12, we can see that the most troublesome part
of the sequence is from the half till the end of it, where the pup-
pet starts to rotate and changes very rapidly in its pose and the
error increases. The error is expressed as the distance in pixels
between the center of the detected target and the ground truth.
Ground truth location for the center of the bounding box is con-
sidered to be the puppet’s nose. Example trajectories of the cen-
ter of the bounding box are shown in the central images of Fig-
ure 12. The error means with their variance (in pixels) for both
the OB and PR trackers are presented in Table 22.Considering
the computation time for both algorithms (Table 21) and their
performance (Table 22), we see that the proposed solution is
faster and slightly more accurate on this sequence. It depends
on the fact that our method cuts the classifier number, while the
Online Boosting fuses the classifiers without discarding any, but
simply reducing their weight in the linear combination. The se-
lection instead picks a small subset with the most performing
classifiers, maintaining the accuracy as high as possible, saving
at the same time a lot of computation time.

Figure 13 shows several significant frames of the video se-
quence (bottom row) along with a trace of the classifiers used
by the proposed PR tracker (top row). The trace of the has the
classifiers ordered by feature type: Haar from 1 to 166, LBP
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Figure 12: Centre image: example of trajectories of the F-score tracker (PR’ blue) and Online Boosting tracker (OB’, red) compared with the ground truth (GT,
light green). Left image: error in pixels on the X coordinate. Right: error on the Y coordinate.

from 167 to 333 while remaining is composed of HOG fea-
tures.The chart in middle row of the Figure shows the Ham-
ming distance between subsequent columns of the trace graph.
This means that the Hamming distance is calculated on two bi-
nary vectors indicating which classifiers in the pool are in use
in two subsequent frames. The greater the Hamming distance,
the greater the number of classifiers changed between two sub-
sequent frames. A change in the composition of the ensemble
indicates that (as per Algorithm 1) the selection process has
found more promising classifiers to better detect the target, and
is discarding some of those used previously. This can be shown
also in Figure 14 where the percentage of swapped classifiers
is shown per feature type. Starting from a random selection,
the highest swapping activity is at the beginning until a suitable
enough configuration is found. It is interesting to note the ac-
tivity of the graphs in Figure 13 and Figure 14 along with those
of Figure 12: the algorithm seems to adapt to the changes in the
target modifying the ensemble accordingly.

5.5. Parking lot

We acquired a 251 frames video sequence from the top of
a building in our university campus at 360 X 288 pixels res-
olution. The difficulty of this sequence is constituted by the
ambiguity generated by the appearance of a pedestrian wearing
black clothes that walks occluded by cars of similar colour.

We can say that in this case only colour histograms are weak
decision makers, because the foreground (target) and the back-
ground (car) have a very similar colour. Other features, like
contours, edges or shape based, could perform better, and their
fusion could improve the classification.

As we can see in Figure 15, the Mean Shift and the colour
features based trackers get stuck on a region of the background
(and for this reason their accuracy results are not numerically
shown in the following). On the contrary, the proposed tech-
nique and the Online Boosting successfully follow the target
while the critical occlusion occurs. This is also confirmed in
Figure 11 where the F-score tracker ("PR’) based on a selection
of 100 classifiers out of 500 and the Online Boosting tracker
(’OB’) formed by 500 fused classifiers are compared with the
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Figure 16: Confidence of the selection ensemble in the parking lot sequence.
The salient points are when the pedestrian approaches the black cars (around
frame 60), and crosses the dark area. The system recovers quickly, forcing the
classifiers to learn the new situation.

ground truth (GT) coordinates manually labelled. The errors
in pixels on the X and Y coordinates are shown in the two
charts. Their statistics can be found in Table 24 where the mean
and variance of both algorithms are provided, confirming that
the two approaches are comparable and similar in performance,
even though the proposed PR-tracker is using 1/5 of the clas-
sifiers used by the OB tracker. Of course, this has an impact
on classification speed as we can see from Table 23 indicat-
ing better results for our approach. We tested the application
time for the OB algorithm on a progressively augmenting set of
classifiers, and for the F-score based ensemble with an increas-
ing number of selected elements, drawn from a fixed size set
of 500 classifiers. When the two algorithms work on the same
set size (that is the cardinality of the selection set matches the
pool’s size, therefore no selection is performed), PR is clearly
slower due to the overhead given by the selection step. The



Tracker || 50 feat. | 100 feat. | 200 feat. | 500 feat.
PR 21.09 29.44 38.52 77.01
OB 29.96 33.60 44.22 76.84

Table 23: Application time (in milliseconds per frame) of the proposed tech-
nique (PR) compared with the Online Boosting (OB) on the sequence of Fig.15.

Tracker || Mean X | Var X | MeanY | VarY
PR 1.088 0.520 3.251 2.459
OB 2.018 1.532 1.795 2.032

Table 24: Error means and variance (in pixels) on the parking lot sequence
(Figure 11) for the F-score based tracker (PR) and the Online Boosting algoritm
(OB).

result is presented only to show the computational overhead of
the selection procedure. The colour tracker and Mean Shift took
131.011 and 47.57 milliseconds per frame respectively to pro-
cess the sequence of Figure 15.

In Figure 18, we see the percentage of swapped classifiers
between pairs of frames. After the initialization phase and cor-
responding high activity, ensemble changes can be seen while
the target is undergoing partial occlusion.

In Figure 17 the trace of the selection of the 100 classifiers
from a pool of 500 is displayed for this sequence. The salient
points are marked with the correspondent frame and a red line
that indicates the time. Comparing this graph with the con-
fidence one (Figure 16), we notice that in the frames where
the pedestrian approaches the black cars (around frame 60), the
confidence suddenly decreases. In the subsequent instants the
system recovers quickly, forcing the classifiers to learn the new
appearance and picking the most suitable features for the clas-
sification.

6. Conclusions

The novelty of the paper is focused on the use of the F-score
measure as a means to select classifiers of an online trained en-
semble. The F-score served as a selection rule to discriminate,
without weights adjustments, between several classifiers that
employ heterogeneous features. On standard datasets, we have
observed a general improvement in classification accuracy and
a general tendency in redundancy reduction among the mem-
bers of an f-score optimized ensemble, this could hint at a way
to obtain both accurate and diverse ensembles.

Also, this new technique allows the fast application of a small
number of selected classifiers for real-time applications such as
target tracking for video surveillance, where the proposed ap-
proach achieves an improvement in terms of speed and accu-
racy with respect to similar state-of-the art algorithms on both
standard and real-world video sequences.

As future work, the study of an expanded version of the
accuracy-diversity balance, which is a three-way tradeoff in-
volving bias, variance and covariance is a natural follow-up
to provide another means for describing the ensemble perfor-
mance.
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Figure 14: Sylvester sequence. Percentage of Haar (left), LBP (center), and HOG (right) features swapped per frame. The activity in the graphs can be put in
relation with the errors shown in Figure 12.

Figure 15: Comparison of the accuracy of the proposed tracker (first row), Online Boosting (second row), Colour based tracker (third row), and Mean Shift (bottom
row).
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