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Abstract

A current high-priority phase of human genomics involves the de-
velopment of a full Haplotype Map of the human genome [23]. It will
be used in large-scale screens of populations to associate specific haplo-
types with specific complex genetic-influenced diseases. A key, perhaps
bottleneck, problem is to computationally infer haplotype pairs from
genotype data. This paper follows the talk given at the DIMACS Con-
ference on SNPs and Haplotypes held in November of 2002. It reviews
several combinatorial approaches to the haplotype inference problem
that we have investigated over the last several years. In addition, it
updates some of the work presented earlier, and discusses the current
state of our work.

1 Introduction to SNP’s, Genotypes and Haplo-
types

In diploid organisms (such as humans) there are two (not completely iden-
tical) “copies” of each chromosome, and hence of each region of interest.
A description of the data from a single copy is called a haplotype, while a
description of the conflated (mixed) data on the two copies is called a geno-
type. In complex diseases (those affected by more than a single gene) it is
often much more informative to have haplotype data (identifying a set of
gene alleles inherited together) than to have only genotype data.

The underlying data that forms a haplotype is either the full DNA se-
quence in the region, or more commonly the values of single nucleotide poly-
morphisms (SNP’s) in that region. A SNP is a single nucleotide site where
exactly two (of four) different nucleotides occur in a large percentage of the
population. The SNP-based approach is the dominant one, and high density
SNP maps have been constructed across the human genome with a density
of about one SNP per thousand nucleotides.
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1.1 The biological problem

In general, it is not feasible to examine the two copies of a chromosome
separately, and genotype data rather than haplotype data will be obtained,
even though it is the haplotype data that will be of greatest use.

Data from m sites (SNP’s) in n individuals is collected, where each site
can have one of two states (alleles), which we denote by 0 and 1. For each in-
dividual, we would ideally like to describe the states of the m sites on each of
the two chromosome copies separately, i.e., the haplotype. However, experi-
mentally determining the haplotype pair is technically difficult or expensive.
Instead, the screen will learn the 2m states (the genotype) possessed by the
individual, without learning the two desired haplotypes for that individual.
One then uses computation to extract haplotype information from the given
genotype information. Several methods have been explored and some are
intensively used for this task [6, 7, 12, 33, 17, 31, 28, 29]. None of these
methods are presently fully satisfactory, although many give impressively
accurate results.

1.2 The computational problem

Abstractly, input to the haplotyping problem consists of n genotype vectors,
each of length m, where each value in the vector is either 0,1, or 2. Each
position in a vector is associated with a site of interest on the chromosome.
The position in the genotype vector has a value of 0 or 1 if the associated
chromosome site has that state on both copies (it is a homozygous site), and
has a value of 2 otherwise (the chromosome site is heterozygous).

Given an input set of n genotype vectors, a solution to the Haplotype
Inference (HI) Problem is a set of n pairs of binary vectors, one pair for each
genotype vector. For any genotype vector g, the associated binary vectors
v1, v2 must both have value 0 (or 1) at any position where g has value 0
(or 1); but for any position where g has value 2, exactly one of v1, v2 must
have value 0, while the other has value 1. That is, v1, v2 must be a feasible
“explanation” for the true (but unknown) haplotype pair that gave rise to
the observed genotype g. Hence, for an individual with h heterozygous sites
there are 2h−1 haplotype pairs that could appear in a solution to the HI
problem.

For example, if the observed genotype g is 0212, then the pair of vectors
0110, 0011 is one feasible explanation, out of two feasible explanations. Of
course, we want to find the explanation that actually gave rise to g, and a
solution for the HI problem for the genotype data of all the n individuals.
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However, without additional biological insight, one cannot know which of
the exponential number of solutions is the “correct one”.

1.3 The need for a genetic model

Algorithm-based haplotype inference would be impossible without the im-
plicit or explicit use of some genetic model, either to asses the biological
fidelity of any proposed solution, or to guide the algorithm in construct-
ing a solution. Most of the models use statistical or probabilistic aspects
of population genetics. We will take a more deterministic or combinatorial
approach.

In this paper we will review several combinatorial investigations into
the haplotype inference problem, and in each case, discuss the implicit or
explicit genetic model that is involved.

2 Optimizing Clark’s method

A. Clark, in [6] was the first to propose an algorithm to solve the haplotype
inference problem. It has been widely used, and is still in use today. We
will explain the method is a somewhat more abstract setting.

Abstractly, input consists of n vectors, each of length m, where each
value in the vector is either 0,1, or 2. Each position in a vector is associated
with a site of interest on the chromosome. The state of any site on the
chromosome is either 0 and 1. The associated position in the vector has a
value of 0 or 1 if the chromosome site has that state on both copies (it is a
homozygous site), and it has a value of 2 if both states are present (it is a
hetrozygous site). A position is considered “resolved” if it contains 0 or 1,
and “ambiguous” if it contains a 2. A vector with no ambiguous positions is
called “resolved”, and otherwise called “ambiguous”. haplotype pair. Given
two non-identical resolved vectors R and NR, the conflation of R and NR
produces the ambiguous genotype vector A, with entry 0 (respectively 1) at
each site where both R and NR have 0 (respectively 1) entries, and with
entry 2 at each site where the entries of R and NR differ.

The method of Clark begins by identifying any vector in the input with
zero or one ambiguous sites, since in the first case the original two hap-
lotypes are identical to the genotype vector, and in the second case the
one ambiguous site has a forced resolution, producing two forced haplotype
vectors. These identified haplotypes are called the initial resolved vectors
(haplotypes). Clark’s method requires that some initial resolved haplotypes
are available in this way.
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The main part of Clark’s method resolves remaining ambiguous geno-
types by expanding out from the initial resolved haplotypes. Clark [6] pro-
posed the following rule that infers a new resolved vector NR (or haplotype)
from an ambiguous vector A and an already resolved vector R. The resolved
vector R can either be one of the input resolved vectors, or a resolved vector
inferred by an earlier application of the Inference Rule.

Inference Rule: Suppose A is an ambiguous vector with h, say,
ambiguous positions, and R is a known resolved vector which
equals one of the 2h potential resolutions of vector A (where
each of the ambiguous positions in A is set to either 0 or 1).
Then infer that A is the conflation of one copy of resolved vector
R and another (uniquely determined) resolved vector NR. All
the resolved positions of A are set the same in NR, and all of
the ambiguous positions in A are set in NR to the opposite of
the entry in R. Once inferred, vector NR is added to the set of
known resolved vectors, and vector A is removed from the vector
set.

For example, if A is 0212 and R is 0110, then NR is 0011. The interpre-
tation is that if the two haplotypes in a screened individual are 0110 and
0011, then the observed genotype would be 0212. The inference rule resolves
the vector 0212 using the belief that 0110 is a haplotype in the population,
to infer that 0011 is also a haplotype in the population.

When the Inference Rule can be used to infer the vector NR from the
vectors A and R, we say that R can be applied to (resolve) A. It is easy
to determine if a resolved vector R can be applied to resolve an ambiguous
vector A: R can be applied to A if and only if A contains no resolved position
s such that the values of A and R differ at position s. A resolved position s
in A whose value does differ from that in R is said to block the application
of R to A. For example, 0110 can not be applied to 2012 because position
two (from the left) blocks the application.

Clark’s entire algorithm for resolving the set of genotypes is to first
identify the initial resolved set, and then repeatedly apply the Inference Rule
until either all the genotypes have been resolved, or no further genotypes
can be resolved.

The implicit genetic model (I believe) behind the Inference Rule is that
the genotypes of individuals in the current population resulted from random
mating of the parents of the current population. The sampled individuals are
also drawn randomly from the population, and the sample is small compared
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to the size of the whole population, so the initial resolved vectors likely
represent common haplotypes that that appear with high frequency in the
population. Hence these haplotypes are likely to have been used in the
creation of currently unresolved genotypes. So, if an unresolved genotype A
can be explained the by conflation of two initial resolved haplotypes, or by
using one of the initial resolved haplotypes, it is sensible to resolve A in that
way, and then to deduce that vector NR is also in the population. We can
define the “distance” of an inferred haplotype NR from the initial resolved
vectors, as the number of inferences used on the shortest path of inferences
from some initial resolved vector, to vector NR. The above explanation for
the correctness of an Inference Rule becomes becomes weaker as it is used
to infer vectors with increasing distance from the initial resolved vectors.
However, Clark’s Inference Rule is “globally” justified in [6] by an additional
empirical observation that will be discussed shortly.

Note that in the application of the Inference Rule, there may be choices
for vectors A and R, and since A is removed once it is resolved, a choice that
is made at one point can constrain future choices. Hence, one series of choices
might resolve all the ambiguous vectors in one way, while another execution,
making different choices, might resolve the vectors in a different way, or leave
orphans, ambiguous vectors that cannot be resolved. For example, consider
a problem instance consisting of two resolved vectors 0000 and 1000, and two
ambiguous vectors 2200 and 1122. Vector 2200 can be resolved by applying
0000, creating the new resolved vector 1100 which can then be applied to
resolve 1122. That execution resolves both of the ambiguous vectors and
ends with the resolved vector set 0000, 1000, 1100 and 1111. But 2200 can
also be resolved by applying 1000, creating 0100. At that point, none of
the three resolved vectors, 0000, 1000 or 0100 can be applied to resolve the
orphan vector 1122.

The problem of choices is addressed in [6] by using an implementation
of the method where the choices are affected by the ordering of the data.
For any input, the data is reordered several times, the method is rerun for
each ordering, and the “best” solution over those executions is reported. Of
course, only a tiny fraction of all the possible data orderings can be tried.
We will refer to this as the local inference method.

Without additional biological insight, one cannot know which execution
(or data ordering) gives the solution that is nearest to the truth. However,
simulations discussed in [6] show that the inference method tends to pro-
duce the wrong vectors only when the execution also ends with ambiguous
vectors that cannot be resolved. That is, there is some “global” structure
to the set of true haplotypes that underly the observed genotypes, so that if
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some early choices in the method incorrectly resolve some of the genotypes,
then the method will later become stuck, unable to resolve the remaining
genotypes. The exact nature of this global structure was not made explicit,
but simulations reported in [6] confirmed this expectation. Executions of the
method that resolved all the ambiguous genotypes, more accurately found
the original haplotypes than did executions that got stuck. Clark, therefore
recommended that his method should be run numerous times, randomly re-
ordering the input data each time, and then the execution that resolved the
most genotypes should be the one most trusted.

2.1 The MR problem

Given what was observed and proposed in [6], the major open algorithmic
question from [6] is whether efficient rules exist to break choices in the
execution of Clark’s algorithm, so as to maximize the number of genotypes
it resolves. This leads to the problem studied in [16, 17]

Maximum Resolution (MR): Given a set of vectors (some
ambiguous and some resolved), what is the maximum number of
ambiguous vectors that can be resolved by successive application
of Clark’s Inference Rule?

Stated differently, given a set of vectors, what execution of the inference
method maximizes the number of ambiguous vectors that are resolved? We
want to answer this question, rather than rely on re-running the method
many times, sampling only a miniscule fraction of the possible executions.
An algorithm to solve the MR problem needs to take a more global view
of the data, than does the more local inference method, to see how each
possible application of the Inference Rule influences choices later on.

Unfortunately, in [17], we show that the MR problem is NP-hard, and
in fact, Max-SNP complete. The reduction also shows that two variants of
the MR problem are NP-hard. We next reformulated the MR problem as
a problem on directed graphs, with an exponential time (worst case) reduc-
tion. We will detail this approach below. That graph-theoretic problem can
be solved via integer linear-programming. Experiments with this approach
suggest that the reduction is very efficient in practice, and that linear pro-
gramming alone (without explicit reference to integrality) often suffices to
solve the maximum resolution problem.
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2.2 A graph-theoretic view of the MR problem

Given the NP-hardness and Max-SNP completeness of the MR problem, we
would like a “heuristic” method that feels likely to perform well in practice.
That algorithm might not always find the optimal solution to the MR prob-
lem, but it should correctly know when it has actually found the optimal and
when it has not. To do this, we need an algorithm that takes a more global
view of the data before deciding on where to apply the Inference Rule. One
approach is to translate the MR problem (via a worst-case exponential-time
reduction) to a graph problem as follows.

We create a directed graph G containing a set of nodes N(A), for each
ambiguous vector A in the input, and a set of nodes, I, containing one node
for each resolved vector in the input. In detail, for each ambiguous vector A,
with say h ambiguous positions, R(A) is the set of the 2h distinct, resolved
vectors created by setting the ambiguous positions in A (to zero or one)
in all possible ways. N(A) is a set of 2h nodes, each labeled by a distinct
vector in R(A). Note that two nodes (in different N() sets) can have the
same label, but the nodes are distinguished by the ambiguous vector they
originate from. Then connect a directed edge from any node v to any node
v′ in G if and only v′ is in a set R(A) for some ambiguous vector A (i.e., v′ is
not in I), and the application of resolved vector labeling v to the ambiguous
vector A would create the resolved vector labeling v′.

The application of a resolved vector to an ambiguous vector (if possible)
uniquely determines the inferred resolved vector. Hence, for any ambiguous
vector A and any node v in G, there is at most one edge from v to the
set of nodes N(A). Therefore, any directed tree in G rooted a node v ∈ I
specifies a feasible history of successive applications of the Inference Rule,
starting from node v ∈ I. The non-root nodes reached in this tree specify
the resolved vectors that would be created from ambiguous vectors by this
succession of applications. Therefore, the MR problem can be recast as the
following problem on G.

The Maximum Resolution on G (MRG) Problem Find
the largest number of nodes in G that can be reached by a set of
node-disjoint, directed trees, where each tree is rooted at a node
in I, and where for every ambiguous vector A, at most one node
in N(A) is reached.

Despite the exponential worst-case blowup, this formulation of the MR
problem is appealing because the construction of G in practice is likely to
be efficient, and because without the last constraint, the MRG problem is
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trivial. The construction is efficient because it can be implemented to avoid
enumerating isolated nodes of G, and the expected number of ambiguous
positions in any vector is generally small. Let G denote graph derived from
G where every node that can’t be reached from I has been removed, along
with any incident edges. The implementation given in [17] constructs G in
time proportional to mn2 plus the number of edges in G, which in practice
is a very small fraction of the number of edges in G.

2.3 An Exact Integer Programming formulation for the MRG
problem

The MRG problem can first be formulated by adding simple non-linear con-
straints to a network flow formulation. First, let all the edges in G be given
a huge capacity (larger than the number of genotype in the input). Then,
add a source node and sink node to G; direct an edge of infinite capacity
from the source node to each node in I; direct an edge with capacity one
from each node not in I to the sink node. Clearly, a feasible solution to
the MRG problem that reaches q nodes (and hence resolves q ambiguous
vectors) defines a source-sink flow of value q exactly. However, the converse
does not yet hold, since we have not excluded the possibility of reaching more
than one node in any set N(A). For that, consider a linear programming
formulation (for background see [27, 32]) of the above network flow prob-
lem, and let xe denote the variable for the flow on edge e. Then for every
pair of edges e, e′ that enter nodes in some set N(A), add in the non-linear
constraint xexe′ = 0 to the network flow formulation. An integer solution
to this mathematical program exactly solves the MRG problem. But since
this formulation involves non-linear constraints, it is not clear how we would
solve it in practice.

In [17], we explored a different integer programming formulation, that
is not exact, but that found the exact solution most of the time. However,
recently R. Ravi [?] suggested how to reformulate the non-linear constraints
as linear, integer constraints, which results in making the above formulation
an exact integer, linear-programming formulation of the MRG problem.

Let ce and ce′ denote the capacities on edges e and e′ respectively. Ravi
suggested replacing the constraint xexe′ = 0, with xe ≤ de, xe′ ≤ cede′ and
de + ce′de′ ≤ 1, where de and de′ are 0,1 variables. Since ce and ce′ are
constants, these three inequalities are linear, and their effect is to limit the
flow to at most one of the edges e or e′.
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2.4 Results

The maximum-resolution hypothesis in [6] is that the most accurate solu-
tions tend to come from the executions of the inference method that resolve
the most ambiguous vectors. In the simulations done in [17] we verify the
basic maximum-resolution hypothesis. We consistently observed that the
executions with the most correct resolutions were the ones with the most
resolutions. More informatively, the ratio of correct resolutions to total res-
olutions increases as the total number of resolutions increases, and the dis-
tribution of the number of correct resolutions tends to be more skewed to the
right, as the number of resolutions increases. These simulations are consis-
tent with the basic maximum-resolution hypothesis. However, maximum-
resolution alone is not a sufficient guide to finding the largest number of
correct resolutions, because the distribution of the number of correct res-
olutions have high variance, even among those executions that resolve the
maximum number of vectors.

So, in order to maximize the number of correct resolutions, it is indeed
best to select from those executions that maximize the total number of reso-
lutions (as the maximum-resolution hypothesis states), but in order to decide
which of those execution(s) to use, one still needs some additional criteria.
The most effective secondary criteria to use, in order to find solutions with
a large number of correct resolutions, is to minimize the number of distinct
haplotypes used in the solution. That is, if we first restrict attention to
those executions that maximize the number of resolutions, and then within
that group of executions, restrict attention to the ones that use the smallest
number of distinct haplotypes, the quality of the solution greatly improves.
This will be further discussed in the next section.

3 Supercharging Clark’s method

The observations reported above suggest that maximum resolution is not
enough in order to find the most accurate solution when using Clark’s
method. Certainly, Clark’s method should be run many times, as Clark
suggested, but it is not clear how to use the full set of results obtained
from these executions. (Interestingly, most published evaluations of Clark’s
method only run it once, ignoring the intuition that Clark had, that the
stochastic behavior of his algorithm was an important factor.)

In [30], we examine several variants of Clark’s method, using a set of 80
genotypes, of which 47 were ambiguous; the others were either homozygous
at each site or only had a single hetrozygous site. Each genotype contained
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nine SNP sites in the human APOE gene. Independently, the correct un-
derlying haplotypes were laboratory-determined in order to calibrate the
accuracy of each variation of Clarks’s method (accuracy measured by how
many of the haplotype pairs reported by the algorithm were actually the
original haplotype pairs for that genotype). We observed that most varia-
tions of Clark’s method produce a large number of different solutions, each
of which resolved all of the 47 ambiguous genotypes. The solutions had a
high accuracy variance, and choosing a solution at random from among the
10,000 solutions would give a poor solution with high probability. Hence, an
important issue in using Clark’s method is how to make sense, or exploit,
the many different solutions that it can produce, and that each resolve all
of the ambiguous genotypes.

The main result is that the following strategy works to greatly improve
the accuracy of Clark’s method. First, for the input genotype data, run
Clark’s method many times (we used 10,000 times), each time randomizing
decisions that the method makes. Second, over all the runs, select those
runs which produce a solution using the fewest or close to the fewest num-
ber of distinct haplotypes. The number of such runs was typically in the
tens. In those tens of runs, for each genotype g in the input, record the
most used haplotype pair that was produced to explain g. The set of such
explaining haplotype pairs is called the “consensus solution”. We observed
that the consensus solution had dramatically higher accuracy than the av-
erage accuracy of the 10,000 solutions. For example, in the APOE data, in
one of the variants, out of the 10,000 executions, there were 24 executions
that used 20 or 21 distinct haplotypes, and twenty was the smallest observed
number. The average accuracy of the 10,000 executions was 29 correct hap-
lotype pairs out of the 47 ambiguous genotypes, and the execution with the
highest accuracy in the 10,000 had 39 correct pairs. However, the average
of the 24 selected executions was 36. The consensus solution of those 24
executions had 39 correct pairs. Hence, this simple rule allowed us to home
in on a single solution that was as good as the most accurate solution over
all the 10,000 solutions. In another variant of Clark’s method, the consensus
solution had 42 correct pairs, while the average of all the 10,000 solutions
had 19 correct. For comparison, the program PHASE always got 42 correct
solutions, and the program Haplotyper produced a range of solutions with
most getting either 43 or 42 correct, with one solution getting 44 correct,
and three solutions getting only 37 correct.

We also observed that among the tens of solutions that use few haplo-
types, any haplotype pair that is used with high frequency, say above 85%
of the time, was almost always correct. This allows one to home in on those
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pairs that can be used with high confidence.

4 Perfect Phylogeny

As mentioned earlier, the haplotype inference problem would be impossible
without some implicit or explicit genetic model guiding the method or se-
lecting the most promising solutions. The most powerful such genetic model
is the population-genetic concept of a coalescent, i.e., a rooted tree that de-
scribes the evolutionary history of a set of haplotypes in sampled individuals
[34, 25]. The key observation is that “In the absence of recombination, each
sequence has a single ancestor in the previous generation.” [25].

That is, if we follow backwards in time the history of a single haplotype
H from a given individual I, when there is no recombination, that haplo-
type H is a copy of one of the haplotypes in one of the parents of individual
I. It doesn’t matter that I had two parents, or that each parent had two
haplotypes. The backwards history of a single haplotype in a single indi-
vidual is a simple path, if there is no recombination. That means that the
history of a set of 2n individuals, if we look at one haplotype per individual,
forms a tree. The histories of two sampled haplotypes (looking backwards
in time) from two individuals merge at the most recent common ancestor of
those two individuals. (The reason for using 2n instead of n will be clarified
shortly.)

There is one additional element of the basic coalescent model: the infinite-
sites assumption. That is, the m sites in the sequence (SNP sites in our case)
are so sparse relative to the mutation rate, that in the time frame of interest
at most one mutation (change of state) will have occurred at any site.

Hence the coalescent model of haplotype evolution says that without
recombination, the true evolutionary history of 2n haplotypes, one from
each of 2n individuals, can be displayed as a tree with 2n leaves, and where
each of the m sites labels exactly one edge of the tree, i.e., at a point in
history where a mutation occurred at that site. This is the underlying
genetic model that we assume from here on. Note that we may not know
the ancestral haplotype at the root of the tree, although the algorithms can
be somewhat simplified when we do know it. See [34] for another explanation
of the relationship between sequence evolution and coalescents.

In more computer science terminology, the no-recombination and infinite-
sites model says that the 2n haplotype (binary) sequences can be explained
by a perfect phylogeny [14, 15] which is defined next.

Definition Let M be an 2n by m 0-1 (binary) matrix. Let V be an
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m-length binary vector, called the ancestor vector.
A perfect phylogeny for M and V is a rooted tree T with exactly 2n

leaves that obeys the following properties:
1) Each of the 2n rows labels exactly one leaf of T , and each leaf is

labeled by one row.
2) Each of the m columns labels exactly one edge of T .
3) Every interior edge (one not touching a leaf) of T is labeled by at

least one column.
4) For any row i, the value M(i, j) is unequal to V (j) if and only if j

labels an edge on the unique path from the root to the leaf labeled i. Hence,
that path is a compact representation of row i.

The biological interpretation is that an edge label j indicates the point in
time where a mutation at site j occurred, and so the state of site j changes
from its ancestral value to the opposite value. The motivation for the perfect
phylogeny model is based on recent observations of little or no recombination
in long segments of Human DNA, and the standard infinite-sites assumption.

In the rooted version of perfect phylogeny, V is given as input. There is
also an unrooted version of perfect phylogeny, where V is not specified. In
that case, a binary matrix M is said to have a perfect phylogeny if there
exists a V such that there is a (rooted) perfect phylogeny for M and V .

Formally, the Perfect Phylogeny Haplotype (PPH) Problem is:
Given a set of genotypes, M , find a set of explaining haplotypes, M ′, which
defines an unrooted perfect phylogeny.

What happened to the genotype data?

How does the perfect phylogeny view of haplotypes relate to the problem
of deducing the haplotypes when only the n genotype vectors are given as
input?

The answer is that each genotype vector (from a single individual in a
sample of n individuals) was obtained from the mating of two of 2n haplotype
vectors in an (unknown) coalescent (or perfect phylogeny). That is, the
coalescent with 2n leaves is the history of haplotypes in the parents of the
n individuals whose genotypes have been collected. Those 2n haplotypes
are partitioned into pairs, each of which gives rise to one of the n observed
genotypes.

So, given a set S of n genotype vectors, we want to find a perfect phy-
logeny T , and a pairing of the 2n leaves of T which explains S. In addition to
efficiently finding one solution to the PPH problem, we would like to deter-
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mine if that is the unique solution, and if not, we want to efficiently represent
the set of all solutions, so that each one can be generated efficiently.

4.1 Algorithm and program GPPH

The PPH problem was introduced and first solved in [18]. The algorithm
given in [18] is based on reducing the PPH problem to a well-studied prob-
lem in graph theory, called the graph realization problem. The theoretical
running time of this approach is O(nmα(nm)), where α is the inverse Ack-
erman function, usually taken to be a constant in practice. Hence, the worst
case time for the method is nearly linear in the size of the input, nm. The
reduction in [18] has a small error, and a corrected, simplified reduction is
detailed at:

wwwcsif.cs.ucdavis.edu/~gusfield/recomberrata.pdf.
The time for the reduction is O(nm), and the graph realization problem

can be solved by several published methods. The method in [3] is based on
a general algorithm due to Lofgren, and runs in O(nmα(nm)) time. That
algorithm is the basis for the worst-case time bound established in [18], but
we found it to be too complex to implement. In [18] it was explained that
after one PPH solution is obtained, by whatever method, one can get an
implicit representation of the set of all PPH solutions in O(m) time.

Using a different solution to the graph realization problem [13], this
approach yields a time bound of O(nm2), and that approach has been im-
plemented in a program now called GPPH [5]. GPPH contains within it a
fully general solution to the graph realization problem, even for instances
that do not arise from any PPH problem instance.

4.2 Algorithm and Program DPPH

The second method to solve the PPH problem is called the DPPH method.
The method in DPPH [1, 2] is not based (explicitly or implicitly) on a graph
realization algorithm, but is based on deeper insights into the combinatorial
structure of the PPH problem and its solution. The running time for the
method is also O(nm2), and the algorithm produces a graph that represents
the set of all solutions in a simple way. That approach has been implemented
and is called DPPH.

4.3 Algorithm and program HPPH

A third method to solve the PPH problem was developed in [11]. It also has
worst-case running time of O(nm2), and it can be used to find and represent
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all the solutions. This approach has been implemented and is called HPPH.
Although developed independently of GPPH, one can view the method in
HPPH as a specialization of graph realization method used in GPPH to the
PPH problem, simplifying the general purpose graph realization method to
problem instances coming from the PPH problem.

4.4 Comparing the execution of the programs

All three of the programs GPPH, DPPH and HPPH are available at
http://wwwcsif.cs.ucdavis.edu/~gusfield/.
The three programs have been extensively tested on the same datasets.

Before the methods were tested against one another, we expected that DPPH
would be the fastest, and that HPPH would be faster than GPPH. The rea-
son is the DPPH exploits the deepest insights into the special combinatorial
structure of the PPH problem, GPPH is the most general, and HPPH can be
viewed as a simplification of GPPH obtained by exploiting some structural
properties of the PPH problem.

The empirical testing of the programs exactly matched our expectations,
and details can be found in [4]. The empirical testing also uncovered two
interesting phenomena that we discuss next.

Uniqueness of the solution: a Strong phase transition

For any given input of genotypes, it is possible that there will be more than
one PPH solution. When designing a population screen and interpreting the
results, a unique PPH solution is very important. So the question arises:
for a given number of sites, how many individuals should be in the sample
(screen) so that the solution is very likely to be unique? This is a question
that was raised in [18]. Therefore, we did several experiments which deter-
mine the frequency of a unique PPH solution when the number of sites and
genotypes changes. Intuitively, as the ratio of genotypes to sites increases,
the probability of uniqueness increases. We studied precisely this issue, and
the striking observation is that there is a strong phase transition in the fre-
quency of unique solutions as the number of individuals grows. That is, the
frequency of unique solutions is close to zero for a given number of indi-
viduals, and then jumps to over 90% with the addition of just a few more
individuals.
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Handling haplotypes generated by some recombinations

The PPH problem is motivated by the coalescent model without recombi-
nation. However, the programs can be useful for solving the HI problem
when the underlying haplotypes were generated by a history involving some
amount of recombination. In that case, it is not expected that the entire
data will have a PPH solution, but some intervals in the data might have
one. We can use one of the PPH programs to find maximal intervals in
the input genotype sequences which have unique PPH solutions. Starting
from position 1, we find the longest interval in the genotype data which has
a unique PPH solution. We do this using binary search, running a PPH
program on each interval specified by the binary search. Let us say that the
first maximal interval extends from position 1 to position i. We output that
interval, and then move to position 2 to determine if there is an interval that
extends past i containing a unique PPH solution. If so, we find the maximal
interval starting at position 2, and output it. Otherwise, we move to posi-
tion 3, etc. We continue in this way to output a set of maximal intervals,
each of which contains a unique PPH solution. This also implicitly finds,
for each starting position, the longest interval starting at that position that
contains a unique PPH solution.

In principle, the intervals that are output could overlap in irregular,
messy ways. However, we have observed that this is rarely the case. Gener-
ally, the output intervals do not overlap, or two intervals overlap at one site,
i.e., the right end of one interval may overlap in one position with the left
end of the next interval. This provides a clean decomposition of the data
into a few intervals where in each, the data has a unique PPH solution.

The most striking thing is that when the recombination rate is moder-
ate, the accuracy of the PPH solutions inside each interval, compared to
the original haplotypes, is very high. There are many ways that such a
decomposition can be used. The most obvious is to reduce the amount of
laboratory work that is needed to fully determine the correct haplotypes.
For example, in a problem with 100 sites and 10 intervals, we can form new
shorter genotype vectors based on one site per interval, hence 10 sites. If the
correct haplotype pairs for these shorter genotype sequences are determined,
we can combine that information with the (assumed correct) haplotype pairs
determined in each interval by a PPH program. The lab effort is reduced to
one tenth of what it would be to determine the haplotypes from 100 sites.
That is a huge reduction in laboratory effort.
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5 Pure Parsimony

5.1 The Pure-Parsimony-criteria

One natural approach to the HI problem that is often mentioned in the
literature is called the Pure-Parsimony approach2: Find a solution to the
HI problem that minimizes the total number of distinct haplotypes used.

For example, consider the set of genotypes: 02120, 22110, and 20120.
There are HI solutions for this example that use six distinct haplotypes,
but the solution 00100, 01110; 01110, 10110; 00100, 10110, for the three
genotype vectors respectively, uses only the three distinct haplotypes 00100,
01110, and 10110.

The Pure parsimony criteria reflects the fact that in natural populations,
the number of observed distinct haplotypes is vastly smaller than the num-
ber of combinatorially possible haplotypes, and this is also expected from
population genetics theory. We also saw this in the experiments reported in
[17]. Moreover, the parsimony criteria is to some extent involved in existing
computational methods for haplotype inference. For example, some papers
have tried to explain Clark’s method [6] in terms of parsimony [29], although
the role of parsimony is not explicit in the method, and the haplotyping pro-
gram PHASE [33] has been explained in terms of the parsimony criteria [9].
However, the indirect role of the parsimony criteria in those methods, and
the complex details of the computations, makes it hard to see explicitly how
the parsimony criteria influences the computation. This makes it difficult
to use those methods to evaluate the effectiveness of the parsimony criteria
as a genetic model.

In [19] we detail how to compute, via integer-linear-programming, an HI
solution that minimizes the number of distinct haplotypes, i.e., is guaran-
teed to solve the Pure-Parsimony problem. However, the worst-case running
time increases exponentially with the problem size, so the empirical issue
is whether this approach is practical for problem instances of current in-
terest in population-scale genomics. The paper shows wasy to improve the
practicality of the basic integer programming formulation in a way that is
very effective in practice. Extensive experimentation was done to show the
time and memory practicality of the method, and to compare its accuracy
against existing HI methods that do not explicitly follow the Pure-parsimony
criteria.

Empirically, the end result is that for haplotyping problem instances of
2This approach was suggested to us Earl Hubbell, who also proved that the problem

of finding such solutions is NP-hard [24].
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current interest, Pure-parsimony can be computed efficiently in most cases.
However, it’s accuracy is somewhat inferior to the solutions produced by
the program PHASE, although this depends on the number of sites and the
level of recombination.

In more detail, the practicality and accuracy of our approach depend on
the level of recombination in the data (the more recombination, the more
practical but less accurate is the method). We show here that the Pure-
Parsimony approach is practical for genotype data of up to 30 sites and 50
individuals (which is large enough for practical use in many current hap-
lotyping projects). Up to moderate levels of recombination, the haplotype
calls are 80 to 95 percent correct, and the solutions are generally found in
several seconds to minutes, except for the no-recombination case with 30
sites, where some solutions require a few hours.

These results are a validation of the genetic model implicit in the Pure-
Parsimony objective function, for a Purely randomly picked solution to the
HI problem would correctly resolve only a minuscule fraction of the geno-
types.

Recently the paper [35] gave experimental results on a pure parsimony
approach to the haplotype inference problem, solving it by branch and bound
instead of integer programming. Theoretical results on pure parsimony ap-
pear in [26].

6 Adding Recombination into the model

The perfect phylogeny haplotyping problem is motivated by the assumption
that in some interesting cases (haplotype blocks for example) the evolution
of the underlying haplotypes can be represented on a perfect phylogeny. To
increase the applicability of the model, we want to relax that stringent as-
sumption. This was done in a heuristic way in [10] where they observed
that the haplotypes reported in [8] cannot generally be derived on a perfect
phylogeny, but with the removal of only a small number of individuals, the
remaining sequences can be derived on a perfect phylogeny. Those observa-
tions validate the underlying, ideal perfect phylogeny model and the utility
of having an efficient, clean solution for the PPH problem, but they also
highlight a need to introduce more robust models of haplotype evolution
into the haplotyping model. Probably, the most important modification of
the perfect phylogeny model would be to allow sequences to recombine, as
is common in the real evolution of sequences in populations. When recom-
bination is allowed, the history of the sequences no longer fits a tree-like
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structure, but rather a network is required to represent the derivation of the
haplotypes.

Once recombination is allowed into the underlying model, we can de-
fine the formal analog of the PPH problem: given a set of genotypes whose
underlying haplotypes were believed to have evolved on a network with re-
combination, find a set of explaining haplotypes (for the genotypes) which
can be derived on a phylogenetic network with a small amount of recombina-
tion. We call this the “Phylogenetic Network Haplotyping (PNH) Problem”.
By specifying a small amount of recombination, we limit the number of dis-
tinct haplotypes that can be created on the network. As discussed earlier,
the number of haplotypes observed in real populations tends to be relatively
small.

The solutions to the PPH problem exploit basic theorems about when
a set of haplotypes can be derived on a perfect phylogeny. Those theorems
are relatively simple to state and crucial to the PPH solutions. The PPH
problem has a clean solution partly because of the simplicity of the necessary
and sufficient condition for a set of haplotypes to be derived on a perfect
phylogeny. The PNH problem is harder, because we have no analogous,
simple theorems about phylogenetic networks. Hence, we have recently fo-
cussed attention on the derivation of haplotypes on phylogenetic networks,
with the ultimate goal of applying what we have learned to the PNH prob-
lem. We have focussed mostly on phylogenetic networks with constrained
recombination. Results to date can be found in in [21, 20, 22].
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