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ABSTRACT

Protein structure comparison is a fundamental problem for structural genomics, with appli-
cations to drug design, fold prediction, protein clustering, and evolutionary studies. Despite
its importance, there are very few rigorous methods and widely accepted similarity measures
known for this problem. In this paper we describe the last few years of developments on the
study of an emerging measure, thecontact map overlap (CMO), for protein structure com-
parison. A contact map is a list of pairs of residues which lie in three-dimensional proximity
in the protein’s native fold. Although this measure is in principle computationally hard to
optimize, we show how it can in fact be computed with great accuracy for related proteins
by integer linear programming techniques. These methods have the advantage of providing
certificates of near-optimality by means of upper bounds to the optimal alignment value.
We also illustrate effective heuristics, such as local search and genetic algorithms. We were
able to obtain for the first time optimal alignments for large similar proteins (about 1,000
residues and 2,000 contacts) and used the CMO measure to cluster proteins in families. The
clusters obtained were compared to SCOP classification in order to validate the measure.
Extensive computational experiments showed that alignments which are off by at most 10%
from the optimal value can be computed in a short time. Further experiments showed how
this measure reacts to the choice of the threshold defining a contact and how to choose this
threshold in a sensitive way.
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1. INTRODUCTION

The comparison of protein structures is a problem of paramount importance in structural ge-
nomics, and an increasing number of approaches for its solution were proposed over the past years.

Several protein structure classification servers based on these methods were designed (e.g., SCOP [Murzin
et al., 1995], DALI [Holm and Sander, 1993], CATH [Orengoet al., 1997], FSSP [Holm and Sander,
1996]), and are extensively used in practice. This area of research continues to be very active, being ener-
gized biannually by the CASP folding competitions (Moultet al., 1997, 1999), but despite the extraordinary
international research effort, progress is slow. A fundamental dimension of this bottleneck is the absence
of rigorous algorithmic methods. A recent excellent survey on structure comparison (Eidhammeret al.,
2000) records the state of the art of the area:In structure comparison, we do not even have an algorithm
that guarantees an optimal answer for pairs of structures.

This situation is due to several reasons, which include the following.

1. By their nature, three-dimensional computational problems are inherently more complex than the similar
one-dimensional ones for which we have effective solutions. The mathematics that can provide rigorous
support in understanding models for structure prediction and analysis is almost nonexistent, as the
problems are a blend of continuous, geometric and combinatorial, discrete mathematics.

2. Various simplified versions of the problems were shown NP-hard; e.g., for structure comparison see
Goldman (2000) and Goldmanet al. (1999).

3. There is a dramatic difference between sequence alignment and structure alignment. As opposed to
the protein sequence alignment, where we are certain that there is a unique alignment to a common
ancestor sequence, in structure comparison the notion of a common ancestor does not exist. Similarity
in folding structure is due to a different balance in folding forces, and there is not necessarily a one-
to-one correspondence between positions in both proteins. In fact, for two homologous proteins that
are distantly related, it is possible for the structural alignment to be entirely different from the correct
evolutionary alignment (Godzik, 1996).

Pairwise structure comparison requires a structure similarity scoring scheme that captures biological
relevance of the chemical and physical steric constraints involved in molecular recognition. The most used
scoring schemes are based on three themes:RMSD of rigid-body superposition (Kabash, 1978),distance
map similarity (Holm and Sander, 1995) andContact Map Overlap (CMO) (Godzik and Skolnick, 1994).
All these measures of similarity use distances between residues and raise computational issues that at
present do not have effective computational solutions. The first two measures require a preset alignment
for the equivalenced residues in the two proteins to be given. In contrast, the CMO measure does not
require a preset alignment.

CMO is based on the basic notion ofcontact between two residues, a notion of fundamental statistical
mechanics and chemical significance and at the core of many scoring schemes used in applications of protein
structure analysis and simulation. These applications include validation of protein models, identification of
native folding motifs among many incorrect alternatives, identification of possible folds for a sequence of
unknown structure, and detection of sequences compatible with given structures.

This paper focuses on the CMO scoring scheme, which was extensively studied and empirically validated
by the Godzik–Skolnick group at the Scripps Institute (Godzik and Skolnick, 1994; Godziket al., 1992).
The work recorded here is part of our research program started in 1999 on CMO optimization. Its goal is
the development of the underlying mathematical structure of CMO, which will lead to practical rigorous
algorithms for structure comparison, prediction and analysis (Goldmanet al., 1999; Goldman, 2000; Lucas
et al., in preparation).

In this article, we describe our work on the CMO problem which culminated in two papers, presented at
the ACM Conference on Computational Molecular Biology in 2001 (Lanciaet al., 2001) and 2002 (Caprara
and Lancia, 2002). We have developed aninteger linear programming (ILP) formulation of the protein
structure CMO and have studied two approaches for its solution, i.e.,branch-and-cut (B&C) and La-
grangian relaxation (LR). This is the first effective use of ILP methods in protein structure comparison;
the biomolecular structure literature contains only one other effective B&C method devoted to RNA com-
parison due to (Lenhofet al., 1998). Furthermore, to the best of our knowledge, LR techniques have never
been used before either for structure or for sequence alignments. We remark that LR techniques have
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proved very powerful for the solution of very large combinatorial optimization problems (Nemhauser and
Wolsey, 1988; Fisher, 1981).

We tested our algorithm on real proteins from the Protein Data Bank (PDB) (Bermanet al., 2000).
A comparison of B&C to LR shows how the latter outperforms the former, being capable of computing
upper bounds of similar quality within computing times that are orders of magnitude smaller. By using
the LR approach, we were able to solve optimally for the first time alignment problems for proteins with
about 1,000 residues and 2,000 contacts. Furthermore, we were able to compare all 780 pairs in a testbed
of 40 large proteins, suggested by Jeffrey Skolnick, within a few hours. In 150 cases, our method found the
optimal solution. The same proteins were then used in a clustering experiment aimed at determining the
best distance-threshold to define a contact. From our results, it appears that by using a threshold smaller
than 7Å the clusters in this dataset cannot be retrieved with sufficient precision. Finally, we considered
the 269 proteins from the literature (Lanciaet al., 2001) and compared within a few days all the (about)
36,000 corresponding pairs.

On the negative side, it has to be remarked that the optimal solution of instances associated with
substantially different proteins seems completely out of reach not only for our algorithm, but also with
the other methods method currently known in combinatorial optimization. (On the other hand, finding a
provably optimal solution for completely different proteins appears to be of no practical interest.) Such a
situation is analogous to the case of the quadratic assignment problem, for which instances with 40 nodes
(the “counterpart" of residues) are quite far from being solved to optimality. The quadratic assignment
problem (Carraresi and Malucelli, 1994) bears many similarities with the structure alignment problem. In
particular, there are profitspij in the objective function which are attained when two binary variablesxi
andxj areboth set to 1 in a solution.

As will be shown in the sequel, the CMO problem can be reduced to a (very large)maximum independent
set (MIS) problem on a suitable graph. Anindependent set is a set of vertices such that there is no edge
between any two of them. The MIS is a classical problem in combinatorial optimization, with a large
literature. Despite its simple definition, this problem is one of the toughest to solve exactly. Many papers
over the years have dealt with the exact solution of MIS or, equivalently, maximum clique (Nemhauser and
Trotter, 1975; Balas and Yu, 1986; Johnson and Trick, 1996), but the state of the art for this problem is
that we cannot practically solve instances on dense graphs of more than a couple hundred nodes (Johnson
and Trick, 1996). Our work shows that we can solve the MIS on instances with 10,000 nodes and larger
(i.e., proportional to the product of the number of contacts of the two maps), on the graphs derived from
the CMO problem. Clearly, this approach is not general but exploits the particular characteristics of the
problem at hand.

The mathematical analysis and the algorithmic methods employed in this paper for the maximum CMO
problem have feasible generalizations to other basic problems in structure comparison and annotation that
do not have at present have rigorous algorithms. These include (1) the computation of the minimal distance
similarity measures (used in the DALI classification), (2) the computation of optimal fit of contact-based
structural patterns in protein structures, and (3) the development of rigorous assessment tools for analyzing
predictions in the new competing category “contacts” at CASP 2000.

The remainder of the paper is organized as follows. In Section 2, we describe contact maps and two
possible strategies for optimizing their overlap, i.e., B&C and LR. In Section 3, we state an integer quadratic
programming formulation of the problem and show how to linearize and strengthen it. Section 4 is devoted
to describing the B&C approach, with a characterization of the clique inequalities and a description of a
polynomial algorithm for their separation. Section 5 is devoted to describing the LR-based approach. We
show how to decompose the problem and reduce it to a sequence of standard alignment problems, solved
by dynamic programming. In Section 6, we describe the heuristic procedures designed for finding good
feasible solutions, namely steepest ascent local search and genetic algorithms. Finally, in Section 7, we
report the results of our computational experiments.

2. CONTACT MAPS

A contact map (Havelet al., 1979) of a protein ofn residues is a 0-1, symmetricn×n matrixC, whose
1–elements correspond to pairs of amino acids in three–dimensional “contact.” A contact can be defined in
many ways. Typically (Mirny and Domany, 1996), one considersCij = 1 when the distance of two heavy
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FIG. 1. An optimal alignment of two 4Å threshold contact maps of proteins1bpi and1knt.

atoms, one from thei–th amino acid and one from thej–th amino acid of the protein, is smaller than a
given threshold (e.g., 5Å) in the protein’s native fold. The intuitive and simple contact map representation
of proteins is already complex enough to capture the most important properties of the folding phenomenon.
It was shown that it is relatively easy to go from a map to a set of possible structures to which it may
correspond (Havelet al., 1979; Vendruscoloet al., 1997). This result opened the possibility of using contact
maps to predict protein structure from sequence, by predicting contact maps from sequence instead.

Besides their use for protein fold prediction, contact maps are exploited to compare 3D structures. The
basic idea is that, when two structures are similar, one should expect their contact maps to be similar as
well. Hence, one can use an indirect method for structure comparison, i.e., contact map comparison.

We can regard the contact map of a proteinp as the adjacency matrix of a graphGp. Each residue is a
node ofGp, and there is an edge between two nodes if the the corresponding residues are in contact. The
CMO problem calls for determining an ordered (i.e.,noncrossing) alignment of some residues in the first
protein (nodes inG1) and the second protein (nodes inG2). The alignment specifies the residues that are
considered equivalent in the two proteins. The goal is to find the alignment which highlights the largest
set of common contacts, where the value of an alignment is given by the number of contacts (edges) in
the first protein whose endpoints (residues) are aligned with residues that are also in contact in the second
protein. This value is called theoverlap for the two contact maps, and the optimization problem is to find
the maximum overlap. Figure 1 shows two contact maps and an alignment.
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The CMO problem tries to evaluate the similarity in the 3D folds of two proteins by determining the

similarity of their contact maps (a high contact map similarity is a good indicator of high 3D similarity).
This measure was introduced by Godziket al. (1992), and its optimization was proved NP-hard by Goldman
et al. (1999), thus justifying the use of sophisticated heuristics or enumerative methods.

2.1. CMO optimization and integer linear programming

Some of the most powerful algorithms for finding exact solutions of combinatorial optimization problems
are based on ILP, which has been applied profitably in very many cases (Nemhauser and Wolsey, 1988; Cook
et al., 1998). The ILP approach consists in formulating a problem as the maximization of a linear function
of some integer variables subject to linear inequalities and then solving it via branch–and–bound. When the
gap between the upper bound and the optimum is small, the pruning of the search space is effective. The
upper bound can be derived mainly in two ways, linear programming relaxation and Lagrangian relaxation.

2.1.1. Linear programming relaxation. In linear programming (LP) relaxation, the bound is obtained
by relaxing the integrality constraint on the variables, which are allowed to take fractional values. The
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resulting LP is solvable in polynomial time (Kachian, 1979; Karmarkar, 1984). The success of this approach
is witnessed by an enormous amount of applications, and there is a whole branch of applied mathematics,
known aspolyhedral theory, completely devoted to this topic. The key step in effectively solving a difficult
problem by ILP lies in its formulation, i.e., in the choice of the variables and constraints. In order to obtain
tight formulations (i.e., such that the gap between the LP optimum and the true optimum is small), it is
often useful to introduce additional constraints, calledcuts. These are constraints that do not eliminate any
feasible integer solution, but make the space of fractional solutions smaller, this way decreasing the value
of the LP bound. The B&C approach is essentially a branch-and-bound in which cut constraints are added
at each node of the search tree.

Oftentimes, there is an exponential number of possible inequalities, either in the basic formulation or
in a family of cuts. For instance, in the formulations that we propose for CMO, there is an exponential
number of so-calledclique inequalities. These are constraints saying that, out of a number of mutually
incompatible ways of aligning two residues, at most one can be chosen in a solution. An exponential
number of constraints must be dealt with only implicitly. The standard strategy for doing so is via a
separation algorithm, a procedure which, given a fractional solution, finds a violated inequality, if one
exists. If the inequality is found, it becomes a cut to add to the LP formulation. By a fundamental result
of Grötschelet al. (1981), a polynomial time separation algorithm leads to a polynomial time algorithm to
solve an exponential-size LP relaxation. For CMO, separation of clique inequalities can be done in time
O(n1n2) (wheren1 andn2 are the number of residues in the two proteins).

2.1.2. Lagrangian relaxation. The LR approach is particularly well suited for those cases in which
the formulation of a problem consists of two sets of constraints: a set of “nice” constraints and a set of
“bad” constraints, whose removal makes the resulting problem, called the Lagrangian relaxed problem,
easily solvable. The strategy then consists in removing the bad constraints from the formulation and putting
them in the objective function, each weighed by some coefficient (Lagrangian multiplier). The weight for
a constraint represents a penalty incurred by a solution which does not satisfy that constraint. To any
choice of weights there corresponds a (relatively easy) problem whose solution yields an upper bound to
the original problem. In the CMO case, this problem reduces toO(n1n2) standard sequence alignment
problems, each solvable inO(n1 n2) time by dynamic programming. The core question of LR is then
to determine the optimal weights, i.e., the Lagrangian multipliers yielding the best upper bound. In most
cases, the determination of these multipliers is equivalent to solving a suitable LP, which would be too
time consuming in practice. On the other hand, near-optimal multipliers can be found by a simple iterative
procedure known assubgradient optimization, in which, at each iteration, the Lagrangian relaxed problem
is solved and the multipliers are updated based on the corresponding solution.

Besides yielding an upper bound on the optimal solution of the original problem, the Lagrangian multi-
pliers can be used to drive simple heuristic procedures (in most cases of greedy nature). These procedures
typically produce substantially different solutions for different Lagrangian multipliers. Accordingly, if they
are embedded within an iterative procedure to define near-optimal multipliers, namely, they are called
at each iteration with the current multipliers, the best solution found over all iterations tends to be near
optimal.

The theory of LR is a well established branch of combinatorial optimization and has been used success-
fully in a large number of applications in different domains (Nemhauser and Wolsey, 1988). Nowadays,
LR is the most successful tool to tackle very large problems. For instance, the state of the art algorithms
for the well known set covering problem, one of the combinatorial optimization problems most frequently
solved in real-world applications, are based on LR (Capraraet al., 1999). These algorithms are capable of
finding near-optimal solutions to instances with millions of variables and thousands of constraints within
minutes on a PC. However, to the best of our knowledge, this is the first time that a similar approach is
used for an alignment problem arising in computational molecular biology.

3. THE MATHEMATICAL FORMULATION

As described in Section 2, we can use a graph to represent a protein (where each edge is a contact and
each node is a residue), and so we will rephrase the CMO problem in graph–theoretic language. We are
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given two undirected graphsG1 = (V1, E1) andG2 = (V2, E2), with Vi = {1, . . . , ni} for i = 1,2. We
draw such a graph with the vertices arranged increasingly on a line. We distinguish a tail and a head for
each edge{i, j}, where the tail is the left endpoint and the head is the right endpoint. Therefore, we denote
an edge by an ordered pair(i, j). For i in Vk, we denote byδ+(i) the set{j ∈ i +1, . . . , nk : (i, j) ∈ Ek},
by δ−(i) the set{j ∈ 1, . . . , i − 1 : (j, i) ∈ Ek}, and we letNk(i) := δ−(i)∪ δ+(i) be the set of neighbors
of i in Gk.

To avoid confusion with theedges in G1 and G2, we hereafter call a pair{i, j} with i ∈ V1 and
j ∈ V2 a line (since it aligns i with j ), and we denote it by[i, j ]. Let L = V1 × V2 be the set of all
lines. An alignment of V1 andV2 is defined by a subset of lines{[i1, j1], . . . , [ip, jp]} ⊂ V1 × V2. An
alignment is feasible if, forq 
= r, either iq < ir and jq < jr or ir < iq and jr < jq , i.e., a feasible
alignment corresponds to anoncrossing matching in the complete bipartite graph(V1 ∪V2, L). Two edges
(h1, l1) ∈ E1 and(h2, l2) ∈ E2 areshared by an alignment if there areq, r ≤ k such thath1 = iq , l1 = ir ,
h2 = jq , and l2 = jr . Each pair of shared edges contributes asharing to the objective function. The
problem consists of finding a feasible alignment which maximizes the number of sharings. It is easy to
see that CMO is NP-hard since, ifG1 is a complete graph onk = n1 vertices, the problem has a solution
of valuek if and only if G2 contains aclique of sizek. More precisely, the problem calls for thedensest
subgraph of sizek of G2 in this case. NP-hardness for special classes of graphs, closer to contact maps
coming from real-life instances, is proved by Goldmanet al. (1999).

We say that two linesl = [i1, j1] andm = [i2, j2] in L arecompatible if there exists a feasible alignment
that contains both lines (andincompatible otherwise). We say that incompatible linescross, and strictly
cross if they have no endpoint in common. We callI the (exponentially large) collection of all maximal
sets of pairwise incompatible linesI ⊂ L.

3.1. A quadratic model

For l = [i, j ] ∈ L, we introduce a binary variable, which we denote either asxl or xij , equal to 1 if
and only if i is aligned withj . We let X be the set of incidence vectorsx ∈ {0,1}L of all noncrossing
matchings inL. For l = [i1, i2],m = [j1, j2] ∈ L, let alm = 1 if (i1, j1) ∈ E1 and (i2, j2) ∈ E2; alm = 0
otherwise. The objective function in our first formulation contains terms of the formalmxlxm, indicating
that a contribute of a sharing is achieved if the three terms in the product take the value 1. In fact, in order
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to illustrate our method, it is necessary to introduce separately productsxlxm and xmxl in the objective
function. To this end, we define separate profitsblm for xlxm and bml for xmxl . Of course, we have to
ensureblm+bml = alm(= aml) for all l, m ∈ L. For instance, a valid (initial) choice isblm = bml = alm/2.
Later, it will be clear how crucial it is for our method to splitalm into blm andbml “optimally,” even if
we will not fix this splitting a priori, but rather use an iterative method to find it.

The problem can now be stated as

max
∑
l∈L

∑
m∈L

blmxlxm (1)

subject to

x ∈ X. (2)

Actually, we know how to representX with linear constraints. Recalling the definition ofI, (2) is equiv-
alent to

∑
l∈I

xl ≤ 1, ∀I ∈ I (3)

xl ≥ 0, integer, ∀l ∈ L. (4)

Problems (1), (3), (4) are abinary quadratic program. Note in passing that, although theconvex hull of
✄
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the vectors inX is given by (3) and the nonnegativity constraints, as illustrated in Section 4, and therefore
the integrality conditions could be removed if (1) were linear (see, e.g., Nemhauser and Wolsey [1988]),
in this case we must keep these conditions (it is false in general that the maximization of a quadratic
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function over a polytope has a solution which is a vertex of the polytope). The formulation shows that the
problem is closely related to the quadratic assignment problem. Here, the difference is that the problem is
in maximization form, the matching to be found does not have to be perfect, and it must be noncrossing
(see, e.g., Çela [1998]).

3.2. Linearization and strengthening

To linearize (1), we use a standard technique, introducing variablesylm, for l, m ∈ L, and replacing the
productxlxm by ylm. Note that we introduce separatelyylm andyml . (In practice, the number ofy variables
that we will have to introduce explicitly is much smaller, namely 2|E1||E2|, as it can be assumed without
loss of generality that the remaining variables take the value 0. However, for the sake of illustration, we
will describe the model as if all they variables were present.) The new (linear) objective function becomes

max
∑
l∈L

∑
m∈L

blmylm.

Moreover, the nonlinear relationylm = xlxm can be replaced by the linear constraints

ylm ≤ xm, ∀l, m ∈ L (5)

ylm = yml, ∀l, m ∈ L, l < m, (6)

where “<” denotes an (arbitrarily defined) total ordering of the lines in order to avoid repeating the same
constraint twice. In particular, note that no condition is required to enforceylm (andyml) to 1 if both xl
and xm are 1, since the maximization will guarantee this condition (actually, ifalm = 0, xl = xm = 1,
and ylm = yml = 0, settingylm = yml = 1 yields a feasible solution of the same value). In fact, we do
not use (5) but stronger linear conditions. For this purpose, we adopt a standard procedure used in the
convexification of ILPs (Adams and Sherali, 1986; Lovász and Schrijver, 1991; Balaset al., 1993).

If we multiply a constraint (3) associated with setI by xm for somem ∈ L and replacexlxm by ylm,
we get

∑
l∈I

ylm ≤ xm.

Note that, ifm ∈ I , we can writexm instead ofymm, since the variables are restricted to be binary, getting∑
l∈I\{m} ylm ≤ 0, i.e., the condition that allyml must be 0 ifl and m are incompatible. By doing the

above for all constraints in (3) and variablesxm, m ∈ L, we get our new model:

max
∑
l∈L

∑
m∈L

blmylm (7)

subject to

∑
l∈I

xl ≤ 1, ∀I ∈ I (8)

∑
l∈I

ylm ≤ xm, ∀I ∈ I, m ∈ L (9)

ylm = yml, ∀l, m ∈ L, l < m (10)

xl, ylm ≥ 0, integer, ∀l, m ∈ L. (11)

Note that relations (5) are not required, as they are implied by (9). An interesting property of formulation
(7)–(11) is that the problem obtained by removing constraints (10) is as difficult as the maximization of
a linear function subject to (2) (or, equivalently, (3) and (4)). This property is common to other integer
quadratic programs, such as the quadratic assignment problem (Carraresi and Malucelli, 1994).

See Fig. 2 for an alignment of value 5.
✞
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FIG. 2. An alignment of value 5.

4. THE BRANCH-AND-CUT APPROACH

In this section we describe the B&C approach to the solution of CMO, which originally appeared
in Lanciaet al. (2001).

The formulation of the problem is given by (7)–(11), but with the constraints (9) replaced by

∑
l∈I

ylm ≤ xm, ∀I ∈ I ′, m ∈ L (12)

whereI ′ ⊆ I is the collection of sets given by{{i}×V2 | i ∈ V1}∪ {V1 ×{i} | i ∈ V2}. Moreover, we only
have variablesylm for pairs(l, m) of lines such thatalm = 1 and identify variablesylm andyml removing
constraints (10). A similar formulation was adopted by Lenhofet al. (1998) for the solution of the RNA
sequence-structure alignment problem.

Since the number of inequalities (12) isO(n1n2 max{n1, n2}), we have them all explicitly in the LP.
As to inequalities (8), their number is�(2n1+n2) (Lanciaet al., 2001; Lenhofet al., 1998), and we have
to resort to a separation algorithm. Both Lanciaet al. (2001) and Lenhofet al. (1998) present dynamic
programming basedO(n1n2) algorithms for separation of these inequalities. The algorithm of Lenhofet al.
(1998), which is simpler to describe, is reported in Section 4.1. In Section 4.2, we illustrate a formulation
of the CMO problem as a MIS problem. This formulation suggests some valid inequalities, which we used
in our B&C approach. The overall B&C algorithm is briefly outlined in Section 4.3.

4.1. Separation of clique inequalities

Recall thatX is the set of incidence vectors of all noncrossing matchings inL (see Fig. 3(a)). A
✄
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noncrossing matching inL corresponds to a stable set in a new graph,GL (the conflict graph of lines),
defined as follows. Each linel ∈ L is a vertex ofGL, and two verticesl andh are connected by an edge
if the lines l andh cross.

We now show that the graphGL is perfect, by proving that in fact it belongs to a special class of perfect
graphs, i.e., its complementGL is a comparability graph. Acomparability graph is an unoriented graph
for which there exists a way to orient the edges which yields a transitive and acyclic digraph. I.e., there

  

 

 

FIG. 3. (a) A noncrossing matching (bold). (b) The directed grid.
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are no directed cycles and, if (i, j) and (j, k) are arcs of the digraph, also (i, k) is an arc of the digraph.
For a definition of perfectness and a proof that comparability graphs are perfect, see Golumbic (1980).

Theorem 1. The graph GL is a comparability graph.

Proof. Two lines l and m are connected by an edge in GL if and only if they are compatible. Let ≺
be the partial ordering on L defined by [a, b] ≺ [c, d] if a < c and b < d. Note that for compatible lines
l and m, either l ≺ m or m ≺ l. Orient each edge {l, m} in GL such that l ≺ m from l to m, obtaining a
set of arcs A. Then, if (l, m) ∈ A and (m, q) ∈ A, it follows that l and q are compatible, and l ≺ q, so
that (l, q) ∈ A. Hence, GL is a comparability graph.

The perfectness implies that a complete characterization of the convex hull of X in terms of linear
inequalities is given by nonnegativity inequalities and (8). Note that each set I ∈ I corresponds to a
maximal clique in GL.

Given weights x∗
l for each line l, the separation problem for (8) consists in finding a clique I in GL

such that
∑

l∈I x∗
l > 1. Since GL is perfect, this problem can be solved in polynomial time by finding

the maximum x∗-weight clique in GL. Instead of resorting to general algorithms for comparability graphs,
based on network flow techniques, one can solve the separation problem directly by dynamic programming,
as described by Lenhof et al. (1998) and, independently and with a different construction, by Lancia et al.
(2001). Both algorithms have complexity O(n1n2). We describe here the construction of Lenhof et al.
(1998), which appears to be simpler.

Consider L as the vertex set of a directed grid, in which vertex [1, n1] is put in the lower left corner
and vertex [n2, 1] in the upper right corner (see Fig. 3(b)). At each internal node l = [i, j ], there are two
incoming arcs, one directed from the node below, i.e., [i, j + 1], and one directed from the node on the
left, i.e., [i − 1, j ]. Each such arc has associated a length equal to x∗

l .

Theorem 2 (Lenhof et al., 1998; Lancia et al., 2001). The nodes on a directed path P from [1, n1]
to [n2, 1] in the grid correspond to a maximal clique I in GL and vice versa.

Then the most violated clique inequality can be found by taking the longest [1, n1]-[n2, 1] path in the
grid. There is a violated clique inequality if and only if the length of the path (plus x∗

1n1
) is greater than 1.

Closely related to the problem of finding a largest-weight clique in GL is the problem of finding a
largest-weight stable set in GL (i.e., a maximum-weight noncrossing matching in L). Although not needed
in the B&C approach, this problem is instrumental to the LR approach, described in Section 5. Also for
this problem, there is a dynamic programming solution, of complexity O(n1n2), discussed in detail in
Section 5.6. Incidentally, this algorithm coincides with the basic algorithm for computing the edit distance
of two strings, rediscovered independently by many authors (see, e.g., Needleman and Wunsch [1970] and
Smith and Waterman [1981]).

4.2. A connection to MIS

Two variables ylm and yl′m′ can both be 1 in a noncrossing map if and only if no two of the lines in
{l, m, l′,m′} cross. Let M = {(l, m) ∈ L × L : l < m, alm = 1} be the set of line pairs associated with
variables in the LP. We define a graph GM = (M,EM) by putting an edge between the node corresponding
to two variables ylm and yl′m′ if they cannot both be 1 in a noncrossing matching. Then the CMO problem
is nothing other than the MIS problem in GM .

Although it would be possible to formulate and solve a standard ILP corresponding to this MIS problem,
i.e.,

max
∑

(l,m)∈M
ylm (13)

subject to
✄

✂

�

✁AU6

ylm + yl′m′ ≤ 1, ∀{(l, m), (l′,m′)} ∈ EM (14)

ylm ≥ 0, integer ∀(l, m) ∈ M, (15)



36 CAPRARA ET AL.

the resulting LP bound would be very weak unless we strengthen it with cuts, which are often hard to
separate. This formulation would also have too many constraints, i.e., �(|E1|2|E2|2).

Since this MIS formulation uses the same variables as the original CMO formulation that we outlined
in (7)–(11), all valid inequalities for the MIS formulation can be used as cuts for the CMO. The most
notable classes of inequalities are derived from odd holes and cliques in GM .

An odd hole is an odd cycle with no chords. By Theorem 1, GL has no odd holes, while GM may
contain them. The odd-hole inequalities for the MIS problem say that for any odd hole H there can be at
most �|H |/2� nodes in an independent set, i.e.,

∑
(l,m)∈H

ylm ≤ �|H |/2�, ∀H ∈ H, (16)

where H denotes the (exponentially large) collection of the odd holes in GM . There is a known poly-
nomial-time algorithm for separating odd holes (Nemhauser and Wolsey, 1988), whose time complexity is
O(|E1|3|E2|3), that is in practice much better than in the worst case since only the nodes corresponding
to strictly positive y variables can be considered in the separation. This algorithm was tried in our code.
However, the improvement in the upper bound due to the addition of these constraints is negligible.

The clique inequalities say that the sum of y variables for a clique in GM cannot be greater than 1, i.e.,

∑
(l,m)∈C

ylm ≤ 1, ∀C ∈ C, (17)

where C denotes the (exponentially large) collection of maximal cliques in GM . The solution of the LP
relaxation obtained by adding these inequalities seems at present completely out of reach even for very
small size instances. Accordingly, we next describe a specific class of clique inequalities for our case that
we tried in our algorithm since they can be separated within reasonable time. Consider two edges both in
the same graph, say, G1 (the same conclusions and inequalities will apply to G2 as well). They can either
have no endpoint in common and not intersect (cases A1 and A2 in Fig. 4) or have one common endpoint

✄

✂

�

✁F4
(cases B1, B2, B3), or have no endpoint in common and intersect (case C). For an edge e1 ∈ E1 and R

one of A1, A2, A3, B1, B2, C, call R(e1) the set of edges which are in the relation R with e1. In any
feasible solution in which e1 and e2 ∈ E2 are shared and f1 ∈ E1, f2 ∈ E2 are shared, f2 must be in the
same relationship to e2 as f1 is to e1. Therefore, considering edges e1 = (i1, j1) ∈ E1, f1 = (h1, l1) ∈ E1
such that f1 ∈ R(e1), and e2 = (i2, j2) ∈ E2, the following is a valid clique inequality:

y[i1,i2][j1,j2] +
∑

(h2,l2)∈E2\R(e2)

y[h1,h2][ll ,l2] ≤ 1, ∀e1, f1 ∈ E1, f1 ∈ R(e1), e2 ∈ E2. (18)

As already mentioned, the same inequalities hold if the roles of G1 and G2 are exchanged. It can be easily
proved that the clique inequalities relative to the cases B1, B2, B3, and C are implied by constraints (8)
and (9) and hence cannot be used as cuts in our formulation. The remaining inequalities however are not
implied. Consider, for instance, the case e1 = (2, 3) ∈ E1 and e2 = (2, 5) ∈ E2. The edge f1 = (1, 4) ∈ E1
is in relation A2 with e1. However, f2 = (1, 4) ∈ E2 and g2 = (3, 6) ∈ E2 are not in the relation A2 with
e2. The solution y[2,2][3,5] = y[1,1][4,4] = y[1,3][4,6] = 1/2 and x11 = x13 = x22 = x35 = x44 = x46 = 1/2

FIG. 4. Relationships between edges.
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is feasible for constraints (8) and (9), but violates a constraint (18). It is possible to describe a similar
example for the case R=A1. Inequalities (18) can be separated by simply cycling over all possible e1, f1, e2,
considering then each edge f2 ∈ E2 and verifying if f2 ∈ R(e2). The corresponding running time is
O(|E1|2|E2|2).

Our computational experiments have shown that these clique inequalities in the y variables are actually
very weak, and very seldom does their use give an improvement to the bound value. For instance, in
the above example, adding the clique inequality does not change the objective function value (3/2) but
simply the solution, which becomes x1i = x2i = x3j = x4j = 1/4 for i = 1, 2, 3 and j = 4, 5, 6, and
y[2,1][3,4] = y[2,3][3,6] = y[2,2][3,5] = y[1,1][4,4] = y[1,3][4,6] = y[1,2][4,5] = 1/4. This solution is now feasible
for all cliques in both x and y variables.

4.3. The overall B&C algorithm

In the following, we give the basic features of our overall B&C algorithm, referring to Nemhauser and
Wolsey (1988) for details about the general structures of these algorithms.

The initial LP contains all variables and, besides nonnegativity inequalities, constraints (12), recalling
that (10) are implicitly imposed. Constraints (8) are separated as described above, whereas, as already
discussed, constraints (16) and (18) are not particularly useful and hence not used in the final version.
Branching is performed by choosing the most fractional x variable and generating two subproblems by
fixing it to 1 and 0, respectively. At each B&C node, we use a greedy heuristic that considers the x

variables according to decreasing LP values and, for each variable xl , it sets it to 1 with probability equal
to the associated value. If xl is set to one, all the incompatible variables (corresponding to lines crossing
l) are set to 0. The final solution obtained is then used as starting point for the local search procedures
illustrated in Section 6. The B&C nodes are considered according to a best first policy.

5. THE LAGRANGIAN RELAXATION APPROACH

In this section, we show how the Lagrangian relaxation of constraints (10) leads to a problem that is
efficiently solvable, yielding upper bounds that are generally better than those found by the B&C method.
In Section 5.1, we show how to solve the problem defined by (7), (8), (9), and (11). We then address
in Section 5.2 the Lagrangian relaxation of constraints (10), as opposed to their removal, discussing how
to find near-optimal Lagrangian multipliers in Section 5.3. Sections 5.4 and 5.5 describe a heuristic and
an exact enumerative algorithm based on LR, whereas Section 5.6 shows how these algorithms can be
implemented efficiently.

5.1. Eliminating constraints (10)

Theorem 3. The problem defined by (7), (8), (9), and (11) can be solved in O(|E1||E2|) time.

Proof. After the removal of Equations (10), each variable ylm appears only in the constraints (9)
associated with xm (besides being constrained to be nonnegative and integer by (11)). For each m ∈ L, this
implies that, if variable xm takes the value 0, all variables ylm take the same value, whereas, if variable
xm takes the value 1, the optimal choice of ylm for l ∈ L amounts to solving the following:

max
∑
l∈L

blmylm (19)

subject to
∑
l∈I

ylm ≤ 1, ∀I ∈ I such that m 
∈ I (20)

∑
l∈I

ylm ≤ 0, ∀I ∈ I such that m ∈ I (21)

ylm ≥ 0, integer, ∀l ∈ L. (22)
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In other words, the profit achieved if xm = 1, say pm, is given by the optimal solution of (19)–(22). This
is a simple alignment problem that can be solved by dynamic programming, as explained in Section 4.1.
Once profits pm have been computed for all m ∈ L, we can find the optimal solution to our problem
(without (10)) by solving

max
∑
m∈L

pmxm (23)

subject to

∑
l∈I

xm ≤ 1, ∀I ∈ I (24)

xm ≥ 0, integer, ∀m ∈ L, (25)

which is again an alignment problem.
Overall, an optimal solution (x, y) of the relaxed problem is obtained by

(i) for each m ∈ L, computing an optimal solution ŷlm (l ∈ L) to problem (19)–(22), letting pm be the
associated profit;

(ii) computing an optimal solution x to problem (23)–(25);
(iii) letting ylm := ŷlm · xm (l,m ∈ L).

In particular, note that variable ylm takes the value 1 in the solution of the overall problem if and only if
it takes the value 1 in the solution of (19)–(22) and xm takes the value 1 in the solution of (23)–(25).

We conclude the proof by analyzing the running time of the method. Of course, we can explicitly consider
ylm with l = [i1, j1] and m = [i2, j2] only if l and m are compatible, (i1, i2) ∈ E1, and (j1, j2) ∈ E2, since
the other ylm’s can be assumed to be 0 without loss of generality. Accordingly, for each m = [i, j ] ∈ L,
we can solve (19)–(22) by simply considering the subgraphs of G1 and G2 induced, respectively, by N1(i)

and N2(j)—the sets of neighbors of i and j . For these subgraphs, we have to find the maximum weight
(with respect to weights b) matching, without taking any line incompatible with m.

For each m = [i, j ] ∈ L, we should find (separately) the maximum-weight noncrossing matching
among the “ left” neighbors of i and j as well as among the “ right” neighbors of i and j . This can be
done in time O(|N1(i)||N2(j)|) by dynamic programming, as explained in detail in in Section 5.6. The
solution of (23)–(25) can be derived in time O(n1n2) again by dynamic programming, leading to an overall
complexity of

O(n1n2 +
∑
i∈V1

∑
j∈V2

|N1(i)||N2(j)|) = O(|E1||E2|).

5.2. Lagrangian relaxation

Although the quality of the upper bound that we obtain by solving the relaxation without constraints
(10) is typically quite poor, we can get much better bounds with a perfectly identical approach by relaxing
these constraints in a Lagrangian way. This amounts to assigning a Lagrangian multiplier λlm to each
constraint (10) and adding to the original objective function (7) a linear combination of constraints (10),
each weighed by the associated Lagrangian multiplier, obtaining the Lagrangian objective function

max
∑
l∈L

∑
m∈L

blmylm +
∑
l∈L

∑
m∈L:
l<m

λlm(ylm − yml). (26)

The corresponding Lagrangian relaxed problem requires the maximization of (26) subject to (8), (9), and
(11). The resulting value is an upper bound on the optimal value of (7)–(11) since, for each feasible
solution of the latter, the contribution to (26) of the new term is null.
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Defining for convenience λml := −λlm for l < m (and λmm := 0), (26) can be rewritten as

max
∑
l∈L

∑
m∈L

(blm + λlm)ylm. (27)

Then, one can see immediately that the effect of Lagrangian relaxation is to redistribute the profit alm
between the two terms in the objective function associated with ylm and yml . Clearly, the Lagrangian
relaxed problem can be solved as before, after replacing blm by blm + λlm for l, m ∈ L. Let U(λ) be the
resulting upper bound.

The best upper bound that can be obtained by Lagrangian relaxation is U(λ∗) := minλ U(λ), where λ∗
denotes the best Lagrangian multiplier vector. By the above discussion, finding λ∗ is the same as splitting
profits alm between blm and bml so that the optimal value of the relaxation considered in Theorem 3 is
minimized.

It is interesting to compare upper bound U(λ∗) to the upper bounds obtainable by the B&C approach.
The first, denoted by U1, is the one that is actually computed by the final version of the B&C algorithm
and is associated with LP relaxation (7), (8), (10), (12), and the nonnegativity constraints. The second,
denoted by U2, is the value of the LP relaxation of (13)–(15) with the addition of (17). Recall that this LP
relaxation is (at present) apparently impossible to solve for realistic-size instances.

Theorem 4. U1 ≥ U(λ∗) ≥ U2.

Proof. It is easy to observe that the optimal solution of the relaxed problem (26), (8), (9), and (11) does
not change if the integrality constraints are removed. In this case, it is known (Fisher, 1981) that U(λ∗)
coincides with the optimal solution value of the LP relaxation defined by (7)–(9) plus the nonnegativity
conditions. This bound is stronger than U1 since (12) are a subset of (9). This shows U1 ≥ U(λ∗).

To show that U(λ∗) ≥ U2, we prove that every feasible solution of the LP relaxation yielding U2 is also
feasible for the LP relaxation yielding U(λ∗). Indeed, consider a nonnegative y satisfying (17) and define

xm := max
I∈I:
m
∈I

∑
l∈I

ylm (m ∈ L).

Clearly, all constraints (9) are satisfied by (x, y). What remains to be shown is that all constraints (8) are
satisfied by x. For a generic I ∈ I, we have

∑
l∈I

xl =
∑
l∈I

max
Q∈I:
l 
∈Q

∑
q∈Q

yql.

To see that this cannot be more than 1, consider for each l ∈ L an arbitrary clique Q(l) ∈ I with l 
∈ Q(l).
It is easy to check that the set defined by {(q, l) : l ∈ I, q ∈ Q(l)} belongs to the collection C of cliques
in GM . Since y satisfies (17), the claim follows.

5.3. Finding near-optimal multipliers

Our approach determines a near-optimal λ by a standard subgradient optimization procedure; see Held
and Karp (1971). The procedure generates a series λ0, λ1, λ2, . . . of multiplier vectors, where λ0 := 0 (with
blm = bml = alm/2 for l, m ∈ L), and, for k ≥ 0, λk+1 is defined from λk as follows. Let (x, y) denote
an optimal solution of the Lagrangian relaxed problem associated with λk . The corresponding subgradient
vector is given by

slm := ylm − yml, l, m ∈ L, l < m.

Using the technique proposed in Held and Karp (1971), we compute the new multipliers by

λk+1
lm :=




λk
lm if slm = 0

max(λk
lm − γ,−blm) if slm = 1

min(λk
lm + γ, bml) if slm = −1
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for l, m ∈ L, l < m. Here, the step size γ is defined by

γ = µ
UB − LB∑

l,m

s2
l,m

where µ is a suitable parameter, while UB and LB are the values of the best upper bound and feasible
solution found so far, respectively. In our implementation, µ is initially set to 1 and halved if the upper
bound does not decrease within 50 iterations (halving µ is customary within subgradient optimization).
The number of iterations is limited by max{1000, 10 · max{|E1|, |E2|}}, since we experimentally observed
that afterwards no substantial improvement occurs. The overall complexity of the upper bound computation
is therefore O(|E1||E2| max{|E1|, |E2|}).

A first heuristic procedure that we use to compute feasible solutions to the problem is very simple: we
simply take the x vector corresponding to the Lagrangian relaxed solution, found at each iteration. The
associated value is of course given by (1).

In the following, we illustrate methods to find better solutions, namely a more sophisticated greedy
heuristic, also applicable at every iteration of the procedure, and a branch–and–bound algorithm based on
the Lagrangian relaxation. In both methods, we will fix some lines in the solution and solve the Lagrangian
relaxed problem (26), (8), (9), (11) keeping into account this choice (and without changing the Lagrangian
multipliers). We will let U(S) denote the corresponding upper bound, where S ⊂ L is the set of (pairwise
compatible) lines fixed in the solution. We will also consider in S “pseudo” lines of the form [i,∅], meaning
that we fixed that no node in V2 will be aligned with node i in V1 in the solution.

Since the computational bottleneck of both procedures is the determination of U(S), we will also discuss
how to perform this efficiently.

5.4. A Lagrangian greedy heuristic

A natural way to proceed in the construction of a solution is to choose a line which maximizes a suitable
“score,” fi x it in the solution, and iterate. As to the score, a natural decision would be to use the Lagrangian
profit pm for each line m. For our problem, solutions of much better quality are obtained if the score is
computed in a more accurate way as follows: choose the line m such that U({m}) is maximum, i.e., the line
that, fixed in the solution, produces the smallest decrease in the value of the Lagrangian relaxed problem.

Another crucial choice is whether to consider the addition of any line (compatible of course with those
previously fixed) to the solution or to follow some order in the construction of the solution. For our
instances, we found that constructing the solution “ from left to right” (or, equivalently, “ from right to left” )
is faster and produces solutions which, on average, are as good as those obtained without following any
particular order.

Based on the two main issues above, our greedy heuristic proceeds like this: first of all, we decide
whether node 1 in V1 should be aligned with some node j in V2, computing U({[1, j ]}) for j = 1, . . . , n2
and for j = ∅. The choice corresponding to the best value is fixed, and the procedure is iterated with
node 2 in V1, and so on. If line [i, j ] is added to the solution S, we have that, for each node l < j in V2,
either l is already incident with a line in S, or it will not be aligned in the solution. The corresponding
pseudo–code implementation is given in Fig. 5. There, S is the set of lines in the solution, and f2 is the

✄

✂

�

✁F5
leftmost node in V2 which is not aligned and may still be aligned.

The greedy heuristic is called at each iteration of the subgradient optimization procedure.

5.5. A Branch–and–bound algorithm

The branch–and–bound algorithm is organized in a simple way. First of all, the current solution is
constructed “ from left to right” as in the greedy heuristic, fixing first the node j ∈ V2 aligned with node
1 ∈ V1 (possibly 1 is not aligned), then the node l ∈ V2 aligned with node 2 ∈ V1, and so on. After each
choice, the upper bound U(S) corresponding to the lines already fixed in the solution is computed, and
backtracking is performed if �U(S)� is not larger than the best feasible solution found so far.

Actually, since the main purpose of branch–and–bound is to provide tighter upper bounds, letting U(∅)
denote the upper bound when nothing is fixed (computed by the subgradient optimization procedure), we
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FIG. 5. Pseudo-code implementation of the greedy heuristic.

initially call the procedure with a target solution value t := �U(∅)�, backtracking as soon as �U(S)� ≤ t .
If a solution of value t is found, it is clearly optimal; otherwise, no such solution exists, and we can call
the procedure with t := �U(∅)� − 1, and so on. Each time the procedure finds no solution of value t , we
have a valid upper bound on the optimum which is one unit smaller.

In Fig. 6 we report the pseudo–code recursive implementation of the procedure. The procedure is called
✄

✂

�

✁F6
initially as branch–and–bound(1, 1,∅), specifying the value of t . The status successmeans that a solution
of value t was found. Moreover, f1 and f2 denote, respectively, the leftmost node in V1 and V2 that are
not aligned but may still be aligned in the solution.

In our implementation, in order to further speed up the procedure, we compute a simple upper bound
on U(S ∪ {[f1, j ]}) before the first recursive call as follows. For each node l > j in V2, let h(l) be
the node in V1 such that h(l) > f1 and the Lagrangian profit p[h(l),l] is maximum. A solution whose
Lagrangian value is certainly not worse than U(S ∪ {[f1, j ]}) is obtained by adding to S ∪ {[f1, j ]} the
lines {[h(l), l] : l = j + 1, . . . , n2}. If the associated (rounded-down) value is not larger than t , we can
skip the recursive call. Once all h(l)s have been determined in O(n1n2) time before the for loop, this test
can be performed in constant time for each value of j , and we can exit the for loop as soon as the answer
to the test is positive.

5.6. Parametric solution of the Lagrangian relaxed problem

As discussed above, both in the greedy heuristic and in the branch–and–bound procedure, we keep on
doing the following: add a line [i, j ] to the leftmost part of the solution S and compute U(S) (without

FIG. 6. Pseudo-code implementation of the branch-and-bound procedure for a given target solution value t .
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changing the Lagrangian multipliers). In this section, when we refer to subproblem (19)–(22), it is under-
stood that we mean the version with objective function modified according to the Lagrangian multipliers.

We next show how to skip the explicit solution of each subproblem (19)–(22), finding the associated
optimal value pm in constant time. This means that the bottleneck in the parametric determination of U(S)

is the solution of (23)–(25) that takes O(n1n2) time, which is much better than O(|E1||E2|), the time that
would be required to compute it from scratch.

We first illustrate the simple dynamic programming procedure to solve problem (23)–(25). In particular,
letting πi,j denote the maximum profit that can be achieved by selecting (pairwise compatible) noncrossing
lines whose endpoints are ≤ i in V1 and ≤ j in V2, for i = 0, . . . , n1 and j = 0, . . . , n2, we have π0,0 := 0
and

πi,j := max{πi,j−1, πi−1,j , πi−1,j−1 + p[i,j ]},
for i = 1, . . . , n1 and j = 1, . . . , n2. The optimal solution is given by πn1,n2 . In graph theoretic terms,
finding an optimal solution corresponds to finding the longest path from vertex {0, 0} to vertex {n1, n2} in
the directed acyclic graph A = (W, F ) with vertex set

W := (V1 ∪ {0}) × (V2 ∪ {0})
and arc set F := FV ∪ FH ∪ FD where

FV := {({i − 1, j}, {i, j}) : i ∈ V1, j ∈ V2 ∪ {0}}
is the set of vertical arcs,

FH := {({i, j − 1}, {i, j}) : i ∈ V1 ∪ {0}, j ∈ V2}
is the set of horizontal arcs, and

FD := {({i − 1, j − 1}, {i, j}) : i ∈ V1 ∪ {0}, j ∈ V2 ∪ {0}}
is the set of diagonal arcs (elements in W are called vertices to distinguish them from the nodes in G1
and G2). Arcs in FV ∪ FH have no profit, whereas the profit of each arc ({i − 1, j − 1}, {i, j}) ∈ FD is
equal to p[i,j ]. We let

d({h, l}, {i, j}), (0 ≤ h ≤ i ≤ n1; 0 ≤ l ≤ j ≤ n2)

denote the length of the longest path from {h, l} to {i, j} in A. The optimal value of (23)–(25) is then
d({0, 0}, {n1, n2}).

The above discussion implies that the optimal solution of subproblem (19)–(22) associated with line
m = [i, j ] is obtained by defining the profits for the arcs in FD according to (19) and computing the
longest paths in A from {0, 0} to {i − 1, j − 1} and from {i, j} to {n1, n2}, the corresponding value being

d({0, 0}, {i − 1, j − 1}) + bmm + d({i, j}, {n1, n2}).
Suppose now the leftmost part of the solution is fixed, namely, lines [h1, l1], [h2, l2], . . . , [hq, lq ], with

h1 < h2 < · · · < hq and l1 < l2 < · · · < lq . Considering again subproblem (19)–(22) associated with line
m = [i, j ] (i > hq, j > lq ), its optimal solution keeping into account the lines fixed has value

q∑
r=1

b[hr ,lr ],m + d({hq, lq}, {i − 1, j − 1}) + bmm + d({i, j}, {n1, n2}).

This value can be found in constant time if a table with the longest path value from every vertex {h, l}
with h ≤ i − 1 and l ≤ j − 1 to {i − 1, j − 1} is available (along with the scalar d({i, j}, {n1, n2})).
Actually, we can compute and store only the values for h ∈ N1(i) and l ∈ N2(j), since the value for a
generic vertex {h, l} coincides with the one for vertex {h′, l′} where h′ = min{r ∈ V1 : r ≥ h, r ∈ N1(i)}
and l′ = min{r ∈ V2 : r ≥ l, r ∈ N2(j)}. This implies that computation and storage of the tables for all
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lines m ∈ L, which is done once for all when the Lagrangian multipliers have been fixed, has an overall
time and space complexity of O(|E1||E2|).

6. METAHEURISTICS

Several different heuristics based on genetic algorithms and steepest ascent local search were found to
be effective. The effectiveness of each heuristic varies based on the size of the problem (small or large
contact maps) and on the level of similarity between the two maps. In particular, heuristics that perform
well for aligning similar (dissimiliar) contact maps do not perform well for aligning dissimilar (similiar)
contact maps. A good alignment between two similar contact maps will generally map a contiguous set of
residues in the first graph to a contiguous set of residues in the second graph, whereas between dissimilar
contact maps the alignment has fewer edges and is less structured. Figure 1 shows an optimal alignment
of two similar proteins.

6.1. Genetic algorithm

The genetic algorithm (Holland, 1992; Goldberg, 1989) mimics an evolutionary process whereby there
is a population of individuals that, by the process of mutation and recombination, gradually improve over
time. For optimization problems, an individual is a candidate solution, mutation is a slight perturbation
of the solution parameters, and recombination is a “merge” of two candidate solutions to form a new
candidate solution.

Classical applications of the genetic algorithm encode candidate solutions as bit strings, which would
then be decoded to form the solution parameters for evaluation. The genetic operators are simple and
independent of the problem—mutation is a bit-flip and recombination copies blocks of bits from existing
candidate solutions to form new candidate solutions. However, unless great care is taken in choosing an
encoding scheme, doing so will frequently produce infeasible solutions.

Our application of the genetic algorithm avoids infeasible solutions by using the alignment edge, not
the bit, as the fundamental element and using special mutation and recombination operators. An alignment
edge associates a residue in one contact map graph with a residue in the other. A mutation will slightly shift
one edge, while recombination will pick edges out of two candidate solutions and create a new candidate
solution using those edges.

The mutation operator shifts one side of a set of alignment edges. Any shifted edges that intersect un-
shifted edges are removed, and edges are randomly added in any available space. The edges to apply the
shift to are determined as follows. For each edge, the probability of mutation is tested. If the test passes,
we randomly choose four things: (1) the contact map to shift in (the top or bottom graph); (2) a set of
nodes (all nodes to the left or right of the current edge); (3) a direction to shift (left or right); and (4) a
distance to shift.

Figure 7(a) shows a candidate solution before two mutation events. The first mutation shifts the align-
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ment edges on the circled nodes in Fig. 7(a) to the right by one position, causing the right-most edge to be
removed and a new edge to be be inserted. The result of this mutation is in Fig. 7(b). The second mutation
shifts the circled edges in Fig. 7(b) to the left by one position, causing the leftmost shifted edge to be re-
moved and a new edge to be randomly inserted on the right end—exactly one of the dashed lines is inserted.

The recombination operator creates a new candidate solution (the child) from two existing solutions
(the parents). The parents are selected by a standard genetic algorithm method, i.e., randomly, but biased
towards good solutions. A set of contiguous edges is randomly selected from one of the parents and is
copied directly to the child. Next, all edges from the second parent that do not cross edges in the child
are copied to the child. Finally, new edges are added in any available positions, as done for the mutation
operator. In Fig. 8(d), the dashed edges came from the first parent, the dotted edges from the second parent,
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and the thick edge was added randomly.

The genetic algorithm seems to be stable across a wide range of sizes; however, it needs to be tuned
specifically for similar or dissimilar contact maps. Two heuristics are formed:

GA similiar has a small population, initialized by several applications of the mutation operator to the
identity alignment, with a high probability of crossover and low rate of mutations.

GA dissimiliar has a large population, initialized by inserting random alignment edges until no more
edges can be added, with a small probability of crossover and a high rate of mutation.
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FIG. 7. The mutation operator. Dotted lines are edges that have been removed by a mutation; dashed lines are edges
that have been added after a mutation is performed.

6.2. Local search

The local search heuristic algorithms follow the standard approach: Let s be a feasible current solution.
The neighborhood of s is the set of solutions which can be obtained by applying a move to s. If all
solutions in the neighborhood are no better than the current solution s, the solution s is a local optimum,
and the search is terminated. Otherwise, the move that results in the best solution value is applied to s,
and the search continues. Since converging to a local optimum is very fast, the search can be repeated
many times, each time starting from a random feasible solution.

A feasible contact map alignment solution is identified by a pair of lists of the same size, (A,B), each
containing an increasing sequence of vertices in a contact map graph. We denote by A = (a1 < · · · < ak)

the list of vertices in G1 and by B = (b1 < · · · < bk) the list of vertices in G2. The contact map
graph alignment is found by mapping residue ai in the first graph to residue bi in the second graph.
Figure 9(a) shows a feasible solution, with A = (1, 3, 4, 6, 8) and B = (2, 3, 6, 7, 8). The fourth line is

✄
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[a4, b4] = [6, 8].

Our two local search algorithms differ only in the definition of the moves that generate a neighborhood.
LS dissimilar uses one move that adds a single specific line to the solution and removes any lines

that cross the new line. The move results in big “ jumps” in the solution space, i.e., by introducing very
skewed lines and by removing many lines at once. The move M(a, b) is defined for all a ∈ G1 − A and

FIG. 8. The recombination operator. (a) The first parent, showing the set of edges selected for inclusion in the child.
(b) The second parent. (c) The partially constructed child, showing the edges from the first parent and all edges from
the second parent. (d) The fully constructed child, with conflicting edges from the second parent removed and a single
new edge added.
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FIG. 9. Moves for the two algorithms. (a) Starting solution s. (b) A move from the LS dissimiliar algorithm applied
to s. (c) An increasing move applied to s. (d) A decreasing move applied to s.

b ∈ G2 − B and will add the line [a, b], removing all crossing lines [aj , bj ]. Figure 9(b) shows the line
[7, 4] being added, which forces the removal of two lines, [a2, b2] and [a3, b3]. The resulting solution is
A = (1, 3, 7, 8) and B = (2, 3, 4, 8).

LS similar uses two moves, a decreasing move and an increasing move, both of which do not introduce
very skewed lines easily and are thus suited for similar proteins, in which good solutions are made of
many parallel lines. The decreasing move, M−(a, b), defined for a ∈ A and b ∈ B, removes a from A

and b from B. Figure 9(d) shows the decreasing move M−(6, 3), which removes a4 and b2 from their
respective lists. This has the effect of modifying all lines [ai, bi], 2 ≤ i ≤ 4 in the original solution. The
increasing move, M+(a, b), where a ∈ G1 − A and b ∈ G2 − B, adds a into A and b into B. Figure 9(c)
shows the increasing move M+(7, 4) which will insert 7 into A before a5 and 4 into B after b2, similarly
to the decreasing move; this modifies all lines [ai, bi], 3 ≤ i ≤ 4 in the original solution.

7. COMPUTATIONAL RESULTS

The algorithms were implemented in C and run on a Pentium PC. For our tests, we used protein structures
from the Protein Data Bank (PDB) (Berman et al., 2000).

In a first experiment, we selected a set of small proteins (about 70 residues each) which were compared using
the B&C and LR approaches. The results, discussed in Section 7.1, show how the latter outperforms the former.

Our second experiment explores how well the CMO measure correlates with other parameters used to
determine if two protein structures are similar, e.g., those adopted by the SCOP protein structure server.
The CMO itself has a “hidden” parameter, the contact threshold δ below which two residues are considered
in contact, and to use the CMO value as a classifier, we define a similarity threshold τ , above which two
proteins are considered to belong to the same family. In our experiment, we used a set of proteins chosen
from four SCOP families and studied for which values of τ and δ our program was able to correctly
classify pairs of proteins. This experiment is described in detail in Section 7.2.

Finally, we use the pairwise classification from the previous experiment to retrieve the four protein
families. This experiment is described in Section 7.3.

7.1. Selected proteins from PDB

We ran our methods on a set of 269 proteins with 64 to 72 residues and 80 to 140 contacts each, using a
contact threshold δ of 5Å. The set was chosen to contain a large number of similar proteins (alpha helices),
as well as a large number of dissimilar proteins (small beta sheets). An all-against-all computation would
require 36,046 alignments; however, we selected a subset of 597 alignments, so as to have approximately
the same number of similar and dissimilar pairs.

For the B&C approach, we set a maximum limit of one hour or 15 nodes in the search tree per instance.
We also set a minimum limit of one node in the search tree, so that in every instance we solved the LP
relaxation at the root node even if took more than one hour. The heuristics were applied at every node and
were limited to at most five minutes per node.
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Table 1. Branch–and–Cut Performancea

Optimality gap 0 1 2 3 4 5 >5

N. instances 55 62 80 75 77 72 176
9.2% 10.4% 13.4% 12.6% 12.9% 12.1% 29.5%

Avg n. residues 66.4 66.8 66.7 67.0 67.03 66.8 66.8
Max n. residues 69 72 71 72 71 72 72
Avg n. contacts 61.1 56.3 57.3 59.7 61.5 64.7 71.4
Max n. contacts 92 89 93 95 88 89 133

GA similar 23 14 19 17 10 11 41
GA dissimilar 52 59 77 73 76 69 161
LS similar 25 20 35 31 33 35 82
LS dissimilar 5 0 0 1 5 12 53

aNumber of instances solved and the number of times each heuristic found the best solution. More than one heuristic can find the
best solution.

We found that the LP time at each search node could take from one minute to two hours, depending on
the instance size and similarity of the proteins; the more similar, the easier the LP is to solve.

In Table 1, we sort the instances by the value of the gap between the best solution found from a heuristic
✄
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and the upper bound, where 0 represents instances solved optimally. For each gap level, we report the
total instances solved, average and maximum number of residues and contacts, and the performance of
the heuristics. For each heuristic, we report for how many instances it found the best solution. The “GA
dissimilar” heuristic is clearly superior to the others, finding 52 of the 55 optimal solutions, and finding
more than twice as many best solutions as the other heuristics at all gap levels.

The same 597 pairs were then compared by using the LR approach. For each instance, we allowed
a maximum running time of one minute. Despite the smaller running time, the LR method solved 72
instances to optimality and only for 172 was the gap larger than 5. For all instances, the upper bound
computed by LR was at least as good as that computed by B&C; however, most of the time the bounds
were equal. Note that we are not finding the best Lagrangian multipliers (Sections 5.2 and 5.3) and hence,
in principle, our upper bound may be worse than U1.

By using the LR approach, we then compared, in a weekend on a desktop PC, all 36,046 pairs. To speed
up the computation, we only explored the root node of the search tree and we did not apply the greedy
heuristic. Note that running the B&C method on all these instances, with a time limit of one hour/problem,
would have taken about four years.

For 14,912 pairs of proteins, the gap between the upper and lower bounds was 10 or less, with 1,680
instances solved to optimality.1 Table 2 shows the gap distribution.
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✁T2The fact that for most instances the gap is larger than 10 reflects the present difficulty to solve instances
associated with substantially different proteins, even of relatively small size. On the other hand, the LR
method can find optimal maps for pairs of similar proteins, even of very large size, within few seconds. For
instance, in less than one minute we have optimally aligned 1hkbA to 1hkcA, with 891 and 887 contacts
and 1944 and 1973 contacts, respectively.

7.2. Setting the thresholds: The Skolnick clustering test

In order to assess the quality of the CMO as a protein family classifier, we define a function sim(i, j) ∈
{true, f alse} that decides whether a pair of proteins is in the same family or not. For the CMO measure,
we have chosen to use

sim(i, j) = CMO(i, j)

min{ci, cj } > σ

1Thereby justifying the title of this paper!
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Table 2. LR Results for 36,046 Pairs of Small Proteins

Optimality gap 0 1 2 3 4 5 6 7 8 9 10 >10

N. instances 1680 215 373 491 640 937 1233 1701 2235 2558 2849 21134
4.6% 0.5% 1.0% 1.3% 1.7% 2.6% 3.4% 4.7% 6.2% 7.1% 7.9% 58.5%

Avg n. residues 57.2 55.6 55.6 55.6 55.5 55.6 55.7 55.9 56.0 56.2 56.4 57.7
Max n. residues 68 66 66 68 68 68 68 68 68 68 68 68
Avg n. contacts 98.1 81.6 81.1 80.1 79.1 81.5 83.2 85.3 87.3 89.6 92.2 101.4
Max n. contacts 137 137 137 137 137 137 137 137 137 137 137 137

GA similar 1240 179 316 435 585 851 1121 1565 2046 2313 2601 18678
GA dissimilar 707 30 45 80 65 116 130 188 246 276 280 2217
LS similar 723 18 21 31 29 31 57 78 116 145 157 1698
LS dissimilar 406 3 4 3 3 8 24 33 48 77 126 1845
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Table 3. The Skolnick Set

Seq.
Fold Family Residues sim. RMSD Proteins

1 Flavodoxin-like CheY-related 124 15–30% < 3Å 1b00, 1dbw, 1nat, 1ntr, 1qmp (A,B,C,D),
1rn1 (A,B,C), 3chy, 4tmy (A,B)

2 Cupredoxins Plastocyanin/ 99 35–90% < 2Å 1baw, 1byo (A,B), 1kdi, 1nin, 1pla, 2b3i,
azurin-like 2pcy, 2plt

3 TIM beta/alpha- Triosephosphate 250 30–90% < 2Å 1amk, 1aw2, 1b9b, 1btm, 1hti, 1tmh,
barrel isomerase 1tre, 1tri, 1ydv, 3ypi, 8tim

4 Ferratin-like Ferritin 170 7–70% < 4Å 1b71, 1bcf, 1dps, 1fha, 1ier, 1rcd

where CMO(i, j) is the CMO value of proteins i and j , and ci and cj are the number of contacts of the
two maps.

A first question arises about how robust this threshold is across various inputs, that is, how strongly
does σ depend on the proteins being classified? This issue deserves further investigation, possibly from
those with a more sophisticated knowledge of what it means for two proteins to be biologically similar.

Instead, we focus on how such a classifier can be used to assess a very delicate parameter, on whose
setting the whole utility of the CMO measure ultimately depends, the contact threshold δ. To the best of
our knowledge, the setting of this critical threshold has never been studied in a parametric way before.

It is clear that for a very small δ there are no contacts, and all contact maps are the same—the empty
graph. The same phenomenon happens at the opposite extreme: for large δ, all pairs of residues are in
contact, and again all contact maps are the same—the complete graph. Values of δ between these extreme
cases start differentiating contact maps for different proteins and want to find the best δ, for which dissimilar
proteins produce dissimilar contact maps, while similar proteins produce similar contact maps.

Our experiment used a test set of large proteins suggested to us by Jeffrey Skolnick (2000). The set
contains 33 proteins with a total of 40 domains classified by SCOP into four families, as shown in Table 3.
The CMO score for all 780 pairs of proteins, for 4.5 ≤ δ ≤ 8.75, was computed using the LR method and
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the four heuristics. At each contact threshold δ, we found the similarity threshold σ that minimized the
total number of classification errors. The result of the experiment is that contact thresholds δ smaller than
5.5Å are too small to limit the classification error to less than 10%. The best contact threshold δ is 7.5Å
paired with a contact similarity of σ of .636. The full results are shown in Table 4.
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In the above experiment, a different similarity threshold σ was obtained for each contact threshold δ.

In order to check how well a constant similarity threshold would have performed, we reran our analysis
using a σ of .636. The results, reported in Table 5, show that for all maps with a δ of at least 6.25Å the
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error is below 10% and for maps with δ at least 7.0Å the error is below 5%. We conclude that the choice
of σ is not strongly dependent on the choice of a contact threshold δ.

7.3. Retrieving the families

Given a perfect classifier sim(i, j), recovering the family clustering from a set of proteins is a trivial
task. One can form a new cluster using some protein a from the set of unclustered proteins, add all proteins
i such that sim(a, i) is true to the cluster, remove the proteins in the cluster from the data, and repeat until
there are no unclustered proteins.

Unfortunately, the classifier we described in the previous section gives only an approximation of the
perfect classifier. In the presence of false positives and false negatives, the transitive property sim(i, j) ∧
sim(j, k) �→ sim(i, k) may not apply, and hence there is a computational problem of retrieving the clusters
from the pairwise classifications. One way of doing this is to use any of the many known algorithms for
clustering in the literature, which we will not describe here.

Instead, we experimented with the following reduction to the Hamming TSP problem. For a δ of 7.5Å
and σ of .636, we obtain a 0-1 matrix A, with rows and columns indexed by the proteins, such that
A[i, j ] = 1 if proteins i and j are classified in the same family, and 0 otherwise. The matrix A can then
be used to cluster the proteins. Under a perfect clustering, there would exist a permutation for the rows
(and columns) which exhibits a block-diagonal structure and hence also the consecutive-1 property in each
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Table 4. The Number of Errors for the Best Similarity Threshold σ at Each Contact Threshold δ

False False True True
δ σ Errors Correct positives negatives positives negatives

4.50 .925 231 (29%) 549 60 171 26 523
4.75 .930 188 (24%) 592 0 188 9 583
5.00 .730 157 (20%) 623 2 155 42 581
5.25 .545 128 (16%) 652 34 94 103 549
5.50 .569 66 (8%) 714 9 57 140 574
5.75 .517 68 (6%) 712 6 62 135 577
6.00 .533 50 (6%) 730 1 49 148 582
6.25 .538 51 (6%) 729 1 50 147 582
6.50 .564 45 (5%) 735 0 45 152 583
6.75 .559 41 (5%) 739 0 41 156 583
7.00 .593 36 (4%) 744 0 36 161 583
7.25 .596 38 (4%) 742 1 37 160 582
7.50 .636 34 (4%) 746 0 34 163 583
7.75 .624 37 (4%) 743 0 37 160 583
8.00 .630 37 (4%) 743 0 37 160 583
8.25 .637 37 (4%) 743 0 37 160 583
8.50 .663 37 (4%) 743 0 37 160 583
8.75 .636 37 (4%) 743 0 37 160 583

Table 5. Performance for σ = .636

False False True True
δ σ Errors Correct positives negatives positives negatives

4.50 .636 424 (54%) 356 382 42 155 201
4.75 .636 321 (41%) 459 239 82 115 344
5.00 .636 202 (25%) 578 97 105 92 486
5.25 .636 145 (18%) 635 2 143 54 581
5.50 .636 103 (13%) 677 1 102 95 582
5.75 .636 130 (16%) 650 0 130 67 583
6.00 .636 81 (10%) 699 0 81 116 583
6.25 .636 72 (9%) 708 0 72 125 583
6.50 .636 57 (7%) 723 0 57 140 583
6.75 .636 56 (7%) 724 0 56 141 583
7.00 .636 43 (5%) 737 0 43 154 583
7.25 .636 41 (5%) 739 0 41 156 583
7.50 .636 34 (4%) 746 0 34 163 583
7.75 .636 39 (5%) 741 0 39 158 583
8.00 .636 38 (4%) 742 0 38 159 583
8.25 .636 39 (5%) 741 0 39 160 581
8.50 .636 37 (4%) 743 0 37 160 583
8.75 .636 37 (4%) 743 0 37 160 583

row. In presence of errors, the best arrangement, the one that minimizes the number of times that a false
positive is put in a cluster or a false negative is not put in a cluster, can be found by solving a TSP in
which the distance between two columns of A is given by their hamming distance.

As the instance size was small, such a TSP could be defined and solved to optimality The result,
reported in Fig. 10, shows how the clusters are neatly defined in the resulting best arrangement for rows
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and columns. By a close inspection of the solution, we can also see how 33 of the 34 false negatives are,
in fact, due to just one protein, 1rn1, that has three domains. The remaining false negative is due to only
one pair, 1dps-1b71.
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FIG. 10. Clustering the proteins of the Skolnick dataset. The permutation found by TSP (shown for the rows) is
applied to both rows and columns.
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