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1 Introduction

Computational (Molecular) Biology is a relatively young science, which has ex-
perienced a tremendous growth in the last decade. The seeds for the birth of
Computational Biology were sowed in the end of the Seventies, when computers
became cheaper, easily available and simpler to use, so that some biology labs
decided to adopt them, mainly for storing and managing genomic data. The
use of computers allowed the quick completion of projects that before would
have taken years. With a snowball effect, these projects generated larger and
larger amounts of data whose management required more and more powerful
computers. Recently, the advent of the Internet has allowed all the laboratories
to share their data, and make them available worldwide through some new ge-
nomic data banks (such as GenBank [12], EMBL [79], PDB [13]). Without any
doubt, today a computer is a necessary instrument for doing research in molecu-
lar biology, and is invariably present, together with microscopes and other more
classical instruments, in any biotechnology lab.

Currently, there is not a full agreement on what “Computational Biology”
means. Some researchers use a very loose definition such as “Computer Science
applied to problems arising in Molecular Biology”. This definition encompasses
at least two major types of problems: (i) Problems of storage, organization and
distribution of large amounts of genomic data; (ii) Problems of interpretation
and analysis of genomic data. We would rather call problems of the first type
Bioinformatics problems, and reserve the term Computational Biology for the
study of problems of the second type. Furthermore, although Computer Science
plays a key role in the solution of such problems, other disciplines such as Dis-
crete Mathematics, Statistics and Optimization, are as important. Hence, the
following definition of Computational Biology will be adopted in this survey:
“Study of mathematical and computational problems of modeling biological pro-
cesses in the cell, removing experimental errors from genomic data, interpreting
the data and providing theories about their biological relations”.

The study of a typical problem in Computational Biology starts by a repre-
sentation of the biological data in terms of mathematical objects, such as strings,
graphs, permutations, etc. The biological relations of the data are mapped into
mathematical relations, and the original question is expressed either as a fea-
sibility or an optimization problem P . From this point on, depending on the
nature of P , standard techniques can be adopted for its solution. A first step
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is usually the study of the computational complexity of the problem. This
may possibly lead to a polynomial algorithm, a result that has been obtained,
in particular, with Dynamic Programming for several problems in Computa-
tional Biology. This line of attack is conducted primarily by computer scien-
tists. However, most times the problems turn out to be NP-hard optimization
problems. Their exact solution becomes then work for scientists with a back-
ground in Combinatorial Optimization, and, particularly, Operations Research
(OR). Standard OR techniques, such as Integer Linear or Quadratic Program-
ming, solved by Branch-and-Cut, Branch-and-Price, or Lagrangian Relaxation,
have been increasingly adopted for Computational Biology problems in the last
years. Correspondingly, the recent years have witnessed an increasing number of
scientists with OR background approaching the field of Computational Biology.

In this chapter, we intend to review some of the main results in Computa-
tional Biology that were obtained with the use of Mathematical Programming
techniques. The problems will come from different areas, touching virtually ev-
ery aspect of modern Computational Biology. However, many relevant results
that do not employ Mathematical Programming will not be addressed in this
survey. For a complete coverage of the many beautiful and important results
that have been achieved in Computational Biology, the reader is referred to the
classic textbooks by the pioneers of this field, i.e., Michael Waterman [82], Dan
Gusfield [38] and Pavel Pevzner [72].

Perhaps the main contribution of Computational Biology so far lies in the
key role it played in the completion of the Human Genome Project, which cul-
minated with the 2001 announcement of the completion of the sequencing of
the human genome [45, 80]. This result was obtained thanks to experimental
techniques, such as Shotgun Sequencing, which posed challenging computational
problems. Sophisticated algorithms for these problems (which are mostly vari-
ants of the famous Shortest Superstring Problem, see Garey and Johnson [31]
problem [SR9]) were developed mainly by Myers et al. [67, 68, 84].

The material in this chapter is organized in sections. In each section, we
describe one or more problems of the same nature, and the Mathematical Pro-
gramming approaches that were proposed in the literature for their solution.
Some of these problems are solved via a reduction to very well known optimiza-
tion problems, such as the TSP and Set Covering. For these problems, the core
of the analysis will focus on the modeling and the reduction, while the solving
algorithm can be assumed to be a standard, state-of-the-art, code for the target
optimization problem (e.g., CONCORDE [4] for the TSP). For the remaining
problems, ad hoc algorithms were developed for their solution. Many of these
algorithms are based on Integer Programming formulations with an exponen-
tial number of inequalities (or variables), that are solved by Branch-and-Cut
(respectively, Branch-and-Price).

The chapter is organized as follows:

• Alignment Problems. In Section 3 we review several problems related
with the alignment of genomic objects, such as DNA or RNA sequences
and secondary or tertiary structures. We distinguish three types of align-
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ment:

i) Sequence vs Sequence Alignment. Section 3.1 is devoted to the
problem of aligning genomic sequences. First, we discuss the classical
multiple alignment problem, studied by Reinert et al. [75] and Kececioglu
et al. [50], who developed a Branch-and-Price approach for its solution.
Then, we describe a heuristic approach for the same problem, by Fischetti
et al. [28]. The approach generalizes an approximation algorithm by Gus-
field [37] and uses a reduction to the Minimum Routing Cost Tree problem,
solved by Branch-and-Price. Closely related to the alignment problem,
are the so called “center” problems, in which one tries to determine a
sequence as close or as far as possible from a set of input sequences. For
this problem, we describe an approximation algorithm based on LP relax-
ation and Randomized Rounding, by Ben Dor et al. [11]. We also discuss
some works that, developing similar ideas, obtain Polynomial Time Ap-
proximation Schemes (PTAS) for the consensus and the farthest-sequence
problems (Li et al. [61], Ma [64], Lanctot et al. [54]).

ii) Sequence vs Structure Alignment. In Section 3.2 we describe
the problem of aligning two RNA sequences, when for one of them the
secondary structure is already known. For this problem, we describe a
Branch-and-Price approach by Lenhof et al. [60] and Kececioglu et al. [50].

iii) Structure vs Structure Alignment. In Section 3.3 we consider the
problem of comparing two protein tertiary structures. For this problem,
we review an Integer Linear Programming approach, proposed by Lancia
et al. [53], and another approach, based on a Quadratic Programming
formulation and Lagrangian Relaxation, given by Caprara and Lancia [20].

• Single Nucleotide Polymorphisms. In Section 4 we describe some
combinatorial problems related with human diversities (polymorphisms)
at the genomic level. The Haplotyping problem consists in determining
the values of a set of polymorphic sites in a genome. First, we discuss
the single individual haplotyping problem, for which some Integer Pro-
gramming techniques were employed by Lancia et al. [52] and Lippert et
al. [63]. Then, we review the population version of the problem, as stud-
ied by Gusfield [39, 40]. The approach employs a reduction to a graph
problem, which is then solved by Integer Programming.

• Genome Rearrangements. In Section 5, we describe a successful Branch-
and-Price approach, by Caprara et al. [21, 22] for computing the evolu-
tionary distance between two genomes evolved from a common ancestor.

• Mapping problems and the TSP. In Section 6 we review the Physi-
cal Mapping problem and its connections with the TSP problem and the
Consecutive One property for 0-1 matrices. We first describe an Integer
Programming approach for mapping a set of probes on a set of clones,
proposed by Alizadeh et al. [3]. We then turn to the problem of mapping
radiation hybrids, studied by Ben Dor et al. [9, 10] and by Agarwala et
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al [2]. These papers reduced the problem to a standard TSP, for which
they used the best available software, based on Branch-and-Cut. Finally,
we mention a Branch-and-Cut approach for the physical mapping of probes
coming from the chromosomes ends, by Christof et al. [26].

• Applications of Set Covering. In Section 7 we mention a few problems
of Computational Biology whose solution algorithm consisted mainly in
a reduction to the Set Cover problem. In particular, we review the PCR
primer design problem (Pearson et al. [71] and Nicodeme and Steyaert [70])
and the analysis of microarray expression data (Halldorsson et al. [41, 14]).

The elementary concepts of molecular biology needed to follow the material
are introduced in Section 2 and in the context of the following sections. The web
provides a wonderful source of information for further reading. In particular,
we suggest visiting the sites of National Institute of Health (www.nih.gov) and
the European Molecular Biology Laboratory (www.embl.de).

2 Elementary Molecular Biology Concepts

One of the major problems encountered by researchers coming from mathe-
matical fields and approaching computational biology, is the lack of vocabulary
and of understanding of the biological phenomena underlying the mathematical
models of the problems. This section is intended to provide the reader with
some, very basic, preliminary notions, and many additional biology concepts
will be given in the context of the specific problems described in the following
sections. A nice exposition of molecular biology at an introductory level can
be found in the Human Genome Project Primer [24]. Alternatively, Fitch [29]
has written an introductory paper aimed specifically at mathematicians and
computer scientists. For a comprehensive and deeper analysis of the topic, the
reader is referred to some of the standard textbooks in molecular biology, such
as the one by Watson, Gilman, Witkowski and Zoller [83].

2.1 The DNA

A complete description of each living organism is contained in its genome. This
can be thought of as a “program”, in a very special language, describing the set
of instructions to be followed by the organism in order to grow and fully develop
to its final form. The language used by nature to encode life is represented by
the DNA.

The deoxyribonucleic acid (DNA) is present in each of the organism’s cells,
and consists of two linear sequences (strands) of tightly coiled threads of nu-
cleotides. Each nucleotide is a molecule composed by one sugar, one phosphate
and one nitrogen-containing chemical, called a base. Four different bases are
present in the DNA, namely Adenine (A), Thymine (T), Cytosine (C) and Gua-
nine (G). The particular order of the bases is called the DNA sequence and
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Figure 1: Schematic DNA replication.

varies among different organisms. The sequence specifies the precise genetic
instructions to create a particular form of life with its own unique traits.

The two DNA strands are inter-twisted in a typical helix form, and held
together by bonds between the bases on each strand, forming the so called base
pairs. A complementarity law relates one strand to its opposite, the only admit-
ted pairings being Adenine with Thymine (A ↔ T) and Cytosine with Guanine
(C ↔ G). Thanks to this complementarity, the DNA has the ability to replicate
itself. Each time a cell divides into two new cells, its full genome is duplicated:
First, the DNA molecule unwinds and the bonds between the base pairs break
(figure 2.1). Then, each strand directs the synthesis of a complementary new
strand, by matching up free nucleotides floating in the cell with their comple-
mentary bases on each of the separated strands. The complementarity rules
should ensure that the new genome is an exact copy of the old one. However,
although very reliable, this process is not completely error-free and there is the
possibility that some bases are lost, duplicated or simply changed. Variations
to the original content of a DNA sequence are called mutations and can affect
the resulting organism or its offspring. In many cases mutations are deadly. In
some other cases, they can be completely harmless, or lead, in the long run, to
the evolution of a species.

In humans the DNA in each cell contains about 3 · 109 base pairs. Human
cells are diploid, i.e. their DNA is organized in pairs of chromosomes. The two
chromosomes that form a pair are called homologous. One copy of each pair is
inherited from the father and the other copy from the mother. The cells of some
lower organisms, such as fungi and single-celled algae, may have only a single
set of chromosomes. Cells of this type are called haploid.

2.2 Genes and proteins

The information describing an organism is encoded in its genome by means of
a universal code, called the genetic code. This code is used to describe how to
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build the proteins, which provide the structural components of cells and tissues,
as well as the enzymes needed for essential biochemical reactions.

Not all of the DNA sequence contains coding information (as a matter of
fact, only a small fraction does). The information-coding DNA regions are
organized into genes, where each gene is responsible for the coding of a different
protein. Regions of the DNA sequences containing genes are called exons, since
they are “expressed” by the mechanism which builds the proteins. Conversely,
the introns are non-coding regions whose functions are still obscure.

The gene is the unit of heredity, which, together with many other such
units, is transmitted from parents to offspring. Each gene, acting either alone
or with other genes, is responsible for one or more characteristics of the resulting
organism. Each characteristic can take many distinct values, called alleles. For
a simplistic example, the alleles for the eye-color could be {black, blue, green,
hazel, brown}.

Genes occur on the chromosomes, at specific positions called their loci. In
diploid organisms, for each gene on one chromosome, there is a correspond-
ing similar gene on the homologous chromosome. Thanks to this redundancy,
sometimes an organism may survive even when one copy of a gene is defective,
provided the other is not. A pair of corresponding genes can consist of the same
allele on both chromosomes, or of different alleles. In the first case we say the
organism is homozygous for the gene, while in the second it is heterozygous.
The human genome is estimated to comprise between 30, 000 and 50, 000 genes,
whose size ranges from a thousand to hundreds of thousands of base pairs.

A protein is a large molecule, consisting of one or more linear chains of
amino acids, folded into a characteristic 3-dimensional shape called the protein’s
native state. The linear order of the amino acids is determined by the sequence
of nucleotides in the gene coding for the protein. There exist 20 amino acids,
each of which is identified by some triplets of DNA letters. The DNA triplets
are also called codons and the correspondence of codons with amino acids is the
genetic code. Since there are 43 = 64 possible triplets of nucleotides, most amino
acids are coded by more than one triplet (called synonyms for that amino acid),
whereas a few are identified by a unique codon. For example, the amino acid
Proline (Pro) is represented by the four triplets CCT, CCC, CCA and CCG.
The code redundancy reduces the probability that random mutations of a single
nucleotide can cause harmful effects. For instance, any mutation in the third
base of Proline would result in a codon still correctly identifying the amino acid.

In order to build a protein, the DNA from a gene is first copied onto the
messenger RNA (mRNA), which will serve as a template for the protein syn-
thesis. This process is termed transcription. Only exons are copied, while the
introns are spliced out from the molecule. Then the mRNA moves out of the
cell’s nucleus, and some cellular components named ribosomes start to read
its triplets sequentially, identify the corresponding amino acids and link them
so as to form the protein. The process of translation of genes into proteins,
requires the presence of signals to identify the beginning and the end of each
information-coding region. To this purpose, there are codons that specifically
determine where a gene begins and where it terminates.
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2.3 Some experiments in molecular biology

We now describe some common experiments performed in molecular biology
labs, which are relevant to the problems described in this survey.

• Cloning in-vivo and Polymerase Chain Reaction.

Since most experiments cannot be conducted on a single copy of a DNA
region, the preliminary step for further analysis consists in making a large
quantity of copies (clones) of the DNA to be studied. This process is re-
ferred to as cloning or DNA amplification. There are two basic cloning pro-
cedures, namely cloning in-vivo and Polymerase Chain Reaction (PCR).
Cloning in-vivo, consists in inserting the given DNA fragments into a living
organism, such as bacteria and yeast cells. After the insertion, when the
host cells are are naturally duplicated, the foreign DNA gets duplicated
as well. Finally, the clones can be extracted from the new cells.

PCR is an automatic technique by which a given DNA sequence can be
amplified hundreds of millions of times within a few hours. In order to
amplify a double-stranded DNA sequence by PCR, one needs two short
DNA fragments (primers) from the ends of the region of interest. The
primers are put in a mixture containing the region of interest, free DNA
bases and a specialized polymerase enzyme. The mixture is heated and the
two strands separate. Later, the mixture is cooled and the primers bind
to their complementary sequences on the separated strands. Finally, the
polymerase enzyme synthesizes new complementary strands by extending
the primers. By repeating this cycle of heating and cooling, an exponential
number of copies of the target DNA sequence can be readily obtained.

• Gel Electrophoresis. Gel electrophoresis is an experiment by which
DNA fragments can be separated according to their size, which can then
be estimated with high precision. A large amount of DNA fragments are
put in an agarose gel, to which an electric field is applied. Under the
field, the fragments migrate in the gel, moving with a speed inversely
proportional to their size. After some time, one can compare the position
of the fragments in the gel to the position of a sample molecule of known
size, and derive their size by some simple computation.

• (Fragment) Sequencing. Sequencing is the process of reading out the
ordered list of bases from a DNA fragment. Due to technological limita-
tions, it is impossible to sequence fragments longer than a few hundred
base pairs. One technique for sequencing is as follows. Given a fragment
which has been amplified, say, by PCR, the copies are cut randomly at
all positions. This way one obtains a set of nested fragments, differing
in length by exactly one nucleotide. The specific base at the end of each
successive fragment is then detected, after the fragments have been sep-
arated by gel electrophoresis. The machine to sequence DNA is called a
sequencer. To each output base, the sequencer attaches a value (confidence
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level) which represents the probability that the base has been determined
correctly.

• (Genome) Shotgun Sequencing.

In order to sequence a long DNA molecule (e.g., a whole genome), this
must first be amplified into many copies, and then be broken, at random,
into several fragments, of about 1,000 nucleotides each, which are indi-
vidually fed to a sequencer. The cloning phase is necessary so that the
fragments can have nonempty overlap. From the overlap of two fragments
one may infer a longer fragment, and so on, until the original DNA se-
quence has been reconstructed. This is, in essence, the principle of Shotgun
Sequencing, in which the fragments are assembled back into the original
sequence by using sophisticated algorithms and powerful computers.

The assembly (i.e. overlap and merge) phase is complicated by the fact
that in a genome there exist many regions with identical content (repeats)
scattered all around and due to replicating events during evolution. The
repeats may be confused by the assembler to be all copies of a same,
unique, region. To partly overcome the problems of repeats, some frag-
ments used in shotgun sequencing may have some extra information at-
tached. In particular, some fragments can be obtained by a process that
generates pairs (called mate pairs) of fragments instead of individual ones.
Each pair is guaranteed to come from the same copy of a chromosome and
to have a given distance between its elements. A pair of mates can help
since, even if one of them comes from a repeat region, there is a good
chance that the other does not.

3 Alignment Problems

Oftentimes, in Computational Biology, one must compare objects which consist
of a set of elements arranged in a linearly ordered structure. A typical example
is the genomic sequence, which, as we saw, is equivalent to a string. Another
example is the protein, when this is regarded as a linear chain of amino acids
(and hence with a first and a last amino acid).

Aligning two (or more) such objects consists in determining subsets of corre-
sponding elements in each. The correspondence must be order-preserving, i.e.,
if the i-th element of object 1 corresponds to the k-th element of object 2, no
element following i in object 1 can correspond to an element preceding k in
object 2.

The situation can be described graphically as follows. Given two objects,
where the first has n elements, numbered 1, . . . , n and the second has m ele-
ments, numbered 1, . . . , m, we consider the complete bipartite graph

Wnm := ([n], [m], L) (1)

where L = [n] × [m] and [k] := {1, . . . , k} ∀k ∈ Z+.
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Figure 2: (a) A noncrossing matching (alignment). (b) The directed grid.

We hereafter call a pair (i, j) with i ∈ [n] and j ∈ [m] a line (since it aligns
i with j), and we denote it by [i, j]. L is the set of all lines. Two lines [i, j] and
[i′, j′], with [i, j] 6= [i′, j′], are said to cross if either i′ ≥ i and j′ ≤ j or i′ ≤ i
and j′ ≥ j (by definition, a line does not cross itself). Graphically, crossing
lines correspond to lines that intersect in a single point. A matching is a subset
of lines no two of which share an endpoint. An alignment is identified by a
noncrossing matching, i.e., a matching for which no two lines cross, in Wnm.
Figure 2(a) shows (in bold) an alignment of two objects.

In the following Sections 3.1, 3.2 and 3.3, we will describe Mathematical
Programming approaches for three alignment problems, i.e., Sequences vs. Se-
quences (Reinert et al. [75], Kececioglu et al. [50]), Sequences vs. Structures
(Lenhof et al. [60], Kececioglu et al. [50]), and Structures vs. Structures (Lan-
cia et al. [53], Caprara and Lancia [20]) respectively. All Integer Programming
formulations for these problems contain binary variables xl to select which lines
l ∈ L define the alignment, and constraints to insure that the selected lines are
noncrossing. Therefore, it is appropriate to discuss here this part of the models,
since the results will apply to all the following formulations. We will consider
here the case of two objects only. This case can be generalized to more objects,
as mentioned in Section 3.1.

Let Xnm be the set of incidence vectors of all noncrossing matchings in Wnm.
A noncrossing matching in Wnm corresponds to a stable set in a new graph, GL

(the Line Conflict Graph), defined as follows. Each line l ∈ L is a vertex of GL,
and two vertices l and h are connected by an edge if the lines l and h cross.

The graph GL has been studied in Lancia et al. [53], where the following
theorem is proved:

Theorem 1 ([53]) The graph GL is perfect.

A complete characterization of conv(Xnm) in terms of linear inequalities, is
given –besides non-negativity– by the following clique inequalities :

∑

l∈Q

xl ≤ 1 ∀Q ∈ clique(L). (2)

where clique(L) denotes the set of all cliques in GL. Given weights x∗
l for

each line l, the separation problem for the clique inequalities (2) consists in
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finding a clique Q in GL with x∗(Q) > 1. From Theorem 1, we know that this
problem can be solved in polynomial time by finding the maximum x∗-weight
clique in GL. Instead of resorting to slow and complex algorithms for perfect
graphs, the separation problem can be solved directly by Dynamic Program-
ming, as described in Lenhof et al. [60] and, independently and with a different
construction, in Lancia et al. [53]. Both algorithms have complexity O(nm).
We describe here the construction of [60].

Consider L as the vertex set of a directed grid, in which vertex [1, n] is put in
the lower left corner and vertex [m, 1] in the upper right corner (see Figure 2(b)).

At each internal node l = [i, j], there are two incoming arcs, one directed
from the node below, i.e. [i, j + 1], and one directed from the node on the left,
i.e. [i − 1, j]. Each such arc has associated a length equal to x∗

l .

Theorem 2 ([60, 53]) The nodes on a directed path P from [1, n] to [m, 1] in
the grid correspond to a clique Q, of maximal cardinality, in GL and vice versa.

Then the most violated clique inequality can be found by taking the longest
[1, n]-[m, 1] path in the grid. There is a violated clique inequality if and only if
the length of the path (plus x∗

1n) is greater than 1.

Closely related to the problem of finding a largest-weight clique in GL is the
problem of finding a largest-weight stable set in GL (i.e., a maximum weighted
noncrossing matching in Wnm). Also for this problem, there is a Dynamic
Programming solution, of complexity O(nm). The basic idea is to compute
the matching recursively. Let V (a, b) be the value of the maximum w-weight
noncrossing matching of nodes {1, . . . , a} with nodes {1, . . . , b}, where each line
[i, j] has a weight wij . Then, in the optimal solution, either a is matched with b,
and V (a, b) = wab +V (a−1, b−1), or one of a and b is unmatched, in which case
V (a, b) = max{V (a − 1, b), V (a, b − 1)}. With a look-up table, V (n, m) can be
computed in time O(nm). Incidentally, this algorithm coincides with the basic
algorithm for computing the edit distance of two strings (a problem described
in the next section), rediscovered independently by many authors, among which
Smith and Waterman [78]. In [20], Caprara and Lancia solve the Lagrangian
Relaxation of a model for aligning two protein structures, by reducing it to
finding the largest weighted noncrossing matching in a suitable graph. This is
described in Section 3.3.

3.1 Sequence vs Sequence Alignments

Comparing genomic sequences drawn from individuals of the same or different
species is one of the fundamental problems in molecular biology. In fact, such
comparisons are needed to identify highly conserved (and therefore presumably
functionally relevant) DNA regions, spot fatal mutations, suggest evolutionary
relationships, and help in correcting sequencing errors.

A genomic sequence can be represented as a string over an alphabet Σ con-
sisting of either the 4 nucleotide letters or the 20 letters identifying the 20 amino
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acids. Aligning a set of sequences (i.e., computing a Multiple Sequence Align-
ment) consists in arranging them in a matrix having each sequence in a row.
This is obtained by possibly inserting gaps (represented by the ‘-’ character) in
each sequence so that they all result of the same length. The following is a sim-
ple example of an alignment of the sequences ATTCCGAC, TTCCCTG and ATCCTC.
The example highlights that the pattern TCC is common to all sequences.

A T T C C G A - C

- T T C C C - T G

A - T C C - - T C

By looking at a column of the alignment, we can reconstruct the events
that have happened at the corresponding position in the given sequences. For
instance, the letter G in sequence 1, has been mutated into a C in sequence 2,
and deleted in sequence 3.

The multiple sequence alignment problem has been formalized as an opti-
mization problem. The most popular objective function for multiple alignment
generalizes ideas from optimally aligning two sequences. This problem, called
pairwise alignment, is formulated as follows: Given symmetric costs (or, alter-
natively, profits) γ(a, b) for replacing a letter a with a letter b and costs γ(a,−)
for deleting or inserting a letter a, find a minimum-cost (respectively, maximum-
profit) set of symbol operations that turn a sequence S ′ into a sequence S′′. For
genomic sequences, the costs γ(·, ·) are usually specified by some widely used
substitution matrices (e.g., PAM and BLOSUM), which score the likelihood of
specific letter mutations, deletions and insertions. The pairwise alignment prob-
lem can be solved by Dynamic Programming in time and space O(l2), where l
is the maximum length of the two sequences, by Smith and Waterman’s algo-
rithm [78]. The value of an optimal solution is called the edit distance of S ′ and
S′′ and is denoted by d(S′, S′′).

Formally, an alignment A of two or more sequences is a bidimensional array
having the (gapped) sequences as rows. The value dA(S′, S′′) of an alignment
of two sequences S′ and S′′ is obtained by adding up the costs for the pairs
of characters in corresponding positions, and it is easy to see that d(S ′, S′′) =
minA dA(S′, S′′). This objective is generalized, for k sequences {S1, . . . , Sk}, by
the Sum–of–Pairs (SP) score, in which the cost of an alignment is obtained by
adding up the costs of the symbols matched up at the same positions, over all
the pairs of sequences,

SP (A) :=
∑

1≤i<j≤k

dA(Si, Sj) =
∑

1≤i<j≤k

|A|
∑

l=1

γ(A[i][l],A[j][l]) (3)

where |A| denotes the length of the alignment, i.e., the number of its columns.
Finding the optimal SP alignment was shown to be NP-hard by Wang and

Jiang [81]. A straightforward generalization of the Dynamic Programming from
2 to k sequences, of length l, leads to an exponential-time algorithm of complex-
ity O(2klk). In typical real-life instances, while k can be possibly small (e.g.,
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around 10), l is in the order of several hundreds, and the Dynamic Programming
approach turns out to be infeasible for all but tiny problems.

As an alternative approach to the ineffective Dynamic Programming algo-
rithm, Kececioglu et al. [50] (see also Reinert et al. [75] for a preliminary ver-
sion) proposed an approach based on Mathematical Programming to optimize
an objective function called the Maximum Weight Trace (MWT) Problem. The
MWT generalizes the SP objective as well as many other alignment problems
in the literature. The problem was introduced in 1993 by Kececioglu [49], who
described a combinatorial Branch-and-Bound algorithm for its solution.

3.1.1 Trace and Mathematical Programming approach

The trace is a graph theoretic generalization of the noncrossing matching to
the case of the alignment of more than two objects. Suppose we want to align
k objects, of n1, n2, . . . , nk elements. We define a complete k-partite graph
Wn1,...,nk

= (V, L), where V =
⋃k

i=1 Vi, the set Vi = {vi1, . . . , vini
} denotes

the nodes of level i (corresponding to the elements of the i-th object), and
L =

⋃

1≤i<j≤k Vi × Vj . Each edge [i, j] ∈ L is still called a line. Given an
alignment A of the objects, we say that the alignment realizes a line [i, j] if i
and j are put in the same column of A. A trace T is a set of lines such that there
exists an alignment A that realizes all the lines in T . The Maximum Weight
Trace (MWT) Problem is the following: given weights w[i,j] for each line [i, j],
find a trace T of maximum total weight.

Let A be the set of directed arcs pointing from each element to the elements
that follow it in an object (i.e., arcs of type (vis, vit) for i = 1, . . . , k, 1 ≤ s <
t ≤ ni). Then a trace T is characterized as follows:

Proposition 3 ([75]) T is a trace if and only if there is no directed mixed cycle
in the mixed graph (V, T ∪ A).

A directed mixed cycle is a cycle containing both arcs and edges, in which the arcs
(elements of A) are traversed according to their orientation, while the undirected
edges (lines of T ) can be traversed in either direction.

Using binary variables xl for the lines in L, the MWT problem can be mod-
eled as follows [50]:

max
∑

l∈L

wlxl (4)

subject to

∑

l∈C∩L

xl ≤ |C ∩ L| − 1 ∀ directed mixed cycles C in (V, L ∪ A) (5)

xl ∈ {0, 1} ∀l ∈ L. (6)

The polytope P defined by (5) and 0 ≤ xl ≤ 1, l ∈ L, is studied in [50], and
some classes of facet-defining inequalities are described. Among them, are the
clique inequalities (2), relative to each subgraph Wni,nj

:= (Vi, Vj , Vi × Vj) of
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Wn1,...,nk
, and the following subset of (5), called mixed-cycle inequalities. Given

a directed mixed cycle C, a line l = [i, j] is a chord of C if C1 ∪{l} and {l}∪C2

are directed mixed cycles, where C1 and C2 are obtained by splitting C at i and
j.

Lemma 1 ([50]) Let C be a directed mixed cycle of (V, L ∪ A). Then the
inequality

x(C ∩ L) ≤ |C ∩ L| − 1

is facet-defining for P if and only if C has no chord.

The mixed-cycle inequalities can be separated in polynomial time, via the
computation of at most O(

∑k
i=1 ni) shortest paths in (V, L∪A), [50]. A Branch-

and-Cut algorithm based on the mixed-cycle inequalities and the clique inequal-
ities (as well as other cuts, separated heuristically) allowed Kececioglu et al. [50]
to compute, for the first time, an optimal alignment for a set of 15 proteins of
about 300 amino acids each from the SWISSPROT database, whereas the limit
for the combinatorial version of Kececioglu’s algorithm for this problem was 6
sequences of size 200 [49]. We remark the the optimal alignment of 6 sequences
of size 200 is already out of reach for Dynamic Programming-based algorithms.
We must also point out, however, that the length of the sequences is still a
major limitation to the applicability of the Integer Programming solution, and
the method is not suitable for sequences longer than a few hundred letters.

3.1.2 Heuristics for SP alignment

Due to the complexity of the alignment problem, many heuristic algorithms have
been developed over time, some of which provide an approximation-guarantee on
the quality of the solution found. In this section we describe one such heuristic
procedure, which uses ideas from Network Design and Integer Programming
techniques. This heuristic is well suited for long sequences.

A popular approach for many heuristics is the so called “progressive” align-
ment, in which the solution is incrementally built by considering the sequences
one at a time. The most effective progressive alignment methods proceed by
first finding a tree whose node set spans the input sequences, and then by using
the tree as a guide for aligning the sequences iteratively. One such algorithm is
due to Gusfield [37], who suggested to use a star (i.e., a tree in which at most
one node -the center - is not a leaf), as follows. Let S = {S1, . . . , Sk} be the set
of input sequences. Fix a node (sequence) Sc as the center, and compute k − 1
pairwise alignments Ai, one for each each Si aligned with Sc. These alignments
can then be merged into a single alignment A(c), by putting in the same col-
umn two letters if they are aligned to the same letter of Sc. The following is an
example of the alignments of S1 = ATGTC and S2 = CACGG with Sc = ATCGC and
their merging.

S1 -AT-GTC

S1 AT-GTC S2 CA-CGG S2 CA-CG-G

Sc ATCG-C Sc -ATCGC Sc -ATCG-C
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Note that each Ai realizes the edit distance of Si to Sc, and it is true also
in A(c) that each sequence is aligned optimally with Sc, i.e.

dA(c)(Si, Sc) = dAi
(Si, Sc) = d(Si, Sc) ∀i. (7)

Furthermore, for all pairs i, j, the triangle inequality dA(c)(Si, Sj) ≤ d(Si, Sc)+
d(Sj , Sc) holds, since the distance in an alignment is a metric over the se-
quences (assuming the cost function γ is a metric over Σ). Let c∗ be such
that SP (A(c∗)) = minr SP (A(r)). Call OPT be the optimal SP value, and
HEUR := SP (A(c∗)). By comparing

∑

1≤i<j≤k d(Si, Sj) (a lower bound to
OPT) to

∑

1≤i<j≤k(d(Si, Sc∗) + d(Sj , Sc∗)) (an upper bound to HEUR), Gus-
field proved the following 2-approximation result:

Theorem 4 ([37]) HEUR ≤ (2 − 2
k
) OPT.

In his computational experiments, Gusfield showed that the above approx-
imation ratio is overly pessimistic on real data, and that his star-alignment
heuristic was finding solutions within 15% from optimum on average.

Gusfield’s algorithm can be generalized so as to use any tree, instead of just
a star, and still maintain the 2-approximation guarantee. The idea was first
described in Wu et al. [85], in connection to a Network Design problem, i.e., the
Minimum Routing Cost Tree (MRCT). Given a complete weighted graph of k
vertices, and a spanning tree T , the routing cost of T is defined as the sum of the
weights of the

(

k
2

)

paths, between all pairs of nodes, contained in T . This value
is denoted by r(T ). Computing the minimum routing cost tree is NP-hard, but
a Polynomial Time Approximation Scheme (PTAS) is possible, and is described
in [85].

To relate routing cost and alignments, we start by considering the set of
sequences S as the vertex set of a complete weighted graph G, where the weight
of an edge SiSj is d(Si, Sj). The following procedure, attributed by folklore
to Feng and Doolittle, shows that, for any spanning tree T , we can build an
alignment A(T ) which is optimal for k − 1 of the the

(

k
2

)

pairs of sequences. A
sketch of the procedure is as follows: (i) pick an edge SiSj of the tree and align
recursively the two sets of sequences induced by the cut defined by the edge,
obtaining two alignments, say Ai and Aj ; (ii) align optimally Si with Sj ; (iii)
merge Ai and Aj into a complete solution, by aligning the columns of Ai and
Aj in the same way as the letters of Si are optimally aligned to the letters of
Sj .

From this procedure, the validity of the next theorem follows.

Theorem 5 For any spanning tree T = (S, E) of G, there exists an alignment
A(T ) such that dA(T )(Si, Sj) = d(Si, Sj) for all pairs of sequences SiSj ∈ E.

Furthermore, the alignment A(T ) can be easily computed, as outlined above.
By triangle inequality, it follows

Corollary 6 For any spanning tree T = (S, E) of G, there exists an alignment
A(T ) such that SP (A(T )) ≤ r(T ).
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From Corollary 6, it follows that a good tree to use for aligning the sequences
is a tree T ∗ such that r(T ∗) = minT r(T ). This tree does not guarantee an op-
timal alignment, but guarantees the best possible upper bound to the alignment
value, for an alignment obtained from a tree (such as Gusfield’s alignment).
In [28], Fischetti et al. describe a Branch-and-Price algorithm for finding the
minimum routing cost tree in a graph, which is effective for up to k = 30
nodes (a large enough value for alignment problems). The algorithm is based
on a formulation with binary variables xP for each path P in the graph, and
constraints that force the variables set to 1 to be the

(

k
2

)

paths induced by a
tree. The pricing problem is solved by computing O(k2) nonnegative shortest
paths. Fischetti et al. [28] report on computational experiments of their algo-
rithm applied to alignment problems, showing that using the best routing cost
tree instead of the best star produces alignments that are within 6% of optimal
on average.

3.1.3 Consensus Sequences

Given a set S = {S1, . . . , Sk} of sequences, an important problem consists in
determining their consensus i.e., a new sequence which agrees with all the given
sequences as much as possible. The consensus, in a way, represents all the
sequences in the set. Let C be the consensus. Two possible objectives for C are
either min-sum (the total distance of C from all sequences in S is minimum)
or min-max (the maximum distance of C from any sequence in S is minimum).
Both objectives are NP-hard ([30, 77]).

Assume all input sequences have length n. For most consensus problems
instead of using the edit distance, the Hamming distance is preferable (some
biological reasons for this can be found in [54]). This distance is defined for
sequences of the same length, and weighs all the positions at which there is
a mismatch. If C is the consensus, of length n, the distance of a sequence S
from C is defined as

∑n

i=1 γ(S[i], C[i]), where X [i] denotes the i–th symbol of
a sequence X .

One issue with the min-sum objective is that, when the data are biased, the
consensus tends to be biased as well. Consider the following situation. A biolo-
gist searches a genomic data base for all sequences similar to a newly sequenced
protein. Then, he computes a consensus of these sequences to highlight their
common properties. However, since genomic data bases contain mostly human
sequences, the search returns human sequences more than any other species,
and they tend to dominate the definition of the consensus. In this case, an
unbiased consensus should optimize the min-max objective. For this problem,
an approximation algorithm based on an Integer Programming formulation and
Randomized Rounding has been proposed by Ben-Dor et al [11].

The Integer Programming formulation for the consensus problem has a bi-
nary variable xi,σ , for every symbol σ ∈ Σ, and every position i, 1 ≤ i ≤ n, to
indicate whether C[i] = σ. The model reads:

min r (8)
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subject to

∑

σ∈Σ

xi,σ = 1 ∀i = 1, . . . , n (9)

n
∑

i=1

∑

σ∈Σ

γ(σ, Sj [i]) xi,σ ≤ r ∀j = 1, . . . , k (10)

xi,σ ∈ {0, 1} ∀i = 1, . . . , n, ∀σ ∈ Σ. (11)

Let OPT denote the value of the optimum solution to the program above.
An approximation to OPT can be obtained by Randomized Rounding [74].
Consider the Linear Programming relaxation of (8)-(11), obtained by replacing
(11) with xi,σ ≥ 0. Let r∗ be the LP value and x∗

i,σ be the LP optimal solution,
possibly fractional. An integer solution x̄ can be obtained from x∗ by randomized
rounding : independently, at each position i, choose a letter σ ∈ Σ (i.e., set
x̄i,σ = 1 and x̄i,τ = 0 for τ 6= σ) with probability of x̄i,σ = 1 given by x∗

i,σ .
Let HEUR be the value of the solution x̄, and Γ = maxa,b∈Σ γ(a, b). The first
approximation result for the consensus was given in [11], and states that, for
any constant ε > 0,

Pr

(

HEUR > OPT + Γ

√

3 OPT log
k

ε

)

< ε. (12)

This probabilistic algorithm can be de-randomized using standard techniques
of conditional probabilities ([73]). Experiments with the exact solution of (8)-
(11) are described in Gramm et al. [35].

The above IP model is utilized in a string of papers on consensus as well as
other, related, problems [54, 61, 64], such as finding the farthest sequence (i.e.,
a sequence “as dissimilar as possible” from each sequence of a given set S).

The main results obtained on these problems are PTAS based on the above
IP formulation and Randomized Rounding, coupled with random sampling.
In [61] and [64], Li et al. and Ma respectively, describe PTAS for finding the
consensus, or a consensus substring. The main idea behind the approach is the
following. Given a subset of r sequences from S, line them up in an r × n ar-
ray, and consider the positions where they all agree. Intuitively, there is a high
likelihood that the consensus should also agree with them at these positions.
Hence, all one needs to do is to optimize on the positions where they do not
agree, which is done by LP relaxation and randomized rounding.

A PTAS for the farthest sequence problem, by Lanctot et al., is described
in [54]. Also this result is obtained by LP relaxation and Randomized Rounding
of an IP similar to (8)-(11).

3.2 Sequence vs Structure Alignments

Contrary to DNA molecules, which are double-stranded, RNA molecules are
single-stranded and the exposed bases tend to form hydrogen bonds within the
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same molecule, according to Watson-Crick pairing rules. This bonds lead to
structure formation, also called secondary structure of the RNA sequence. As
an example, consider the following RNA sequence, S = UCGUGCGGUAACUUCCACGA.
Since the two ends of S are self-complementary, part of the sequence may self-
hybridize, leading to the formation of a so-called loop, illustrated below:

G G

C U

U C G U G A

A G C A C A

C C

U U

Determining the secondary structure from the nucleotide sequence is not an
easy problem. For instance, complementary bases may not hybridize if they are
not sufficiently apart in the molecule. It is also possible that not all the feasible
Watson-Crick pairings can be realized at the same time, and Nature chooses the
most favorable ones according to an energy minimization which is not yet well
understood.

All potential pairings can be represented by the edge set of a graph GS =
(VS , ES). The vertex set VS = {v1, . . . , vn} represents the nucleotides of S,
with vi corresponding to the i-th nucleotide. Each edge e ∈ ES connects two
nucleotides that may possibly hybridize to each other in the secondary structure.
For instance, the graph of Figure 3 describes the possible pairings for sequence
S, assuming a pairing can be achieved only if the bases are at least 8 positions
apart from each other. Only a subset E ′

S ⊆ ES of pairings is realized by the
actual secondary structure. This subset is drawn in bold in Figure 3. The graph
G′

S = (VS , E′
S) describes the secondary structure. Note that each node in G′

S

has degree ≤ 1.

AA AA C C A C G AAUG UG U G G UCU C C

Figure 3: Graph of RNA secondary structure.

Two RNA sequences that look quite different as strings of nucleotides, may
have similar secondary structure. A generic sequence alignment algorithm, such
as those described in the previous section, would not spot the structure similar-
ity, and hence a different model for comparison is needed for this case.

One possible model was proposed in Lenhof et al. [60] (see also Kececioglu
et al. [50]). In this model, a sequence U of unknown secondary structure is
compared to a sequence K of known secondary structure. This is done by
comparing the graph GU = (VU , EU ) to G′

K = (VK , E′
K).
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Assume VU = [n] and VK = [m]. An alignment of GU and G′
K is defined by

a noncrossing matching of Wnm (which, recalling (1), is the complete bipartite
graph (VU , VK , L)) Given an edge e = ij ∈ EU and two noncrossing lines l =
[i, u] ∈ L, h = [j, v] ∈ L, we say that l and h generate e if uv ∈ E ′

K . Hence,
two lines generate a possible pairing (edge of EU ) if they align its endpoints to
elements that hybridize to each other in the secondary structure of K.

For each line l = [i, j] ∈ L let wl be the profit of aligning the two endpoints
of the line (i.e., wl = γ(U [i], K[j])). Furthermore, for each edge e ∈ EU , let we

be a nonnegative weight associated to the edge, measuring the “strength” of the
corresponding bond. The objective of the RNA Sequence/Structure Alignment
(RSA) problem is to determine an alignment which has maximum combined
value: the value is given by the sum of the weights of the alignment lines (as
for a typical alignment) and the weights of the edges in EU that these lines
generate.

Let ≺ be an arbitrary total order defined over the set of all lines L. Let G be
the set of pairs of lines (p, q) with p ≺ q, such that each pair (p, q) ∈ G generates
an edge in EU . For each (p, q) ∈ G, define wpq := we, where p = [i, u], q = [j, v]
and e = ij ∈ EU .

The Integer Programming model in [60] for this alignment problem has vari-
ables xl for lines l ∈ L and ypq for pairs of lines (p, q) ∈ G:

max
∑

l∈L

wl xl +
∑

(p,q)∈G

wpq ypq (13)

subject to
xl + xh ≤ 1 ∀ l, h ∈ L | l and h cross (14)

ypq ≤ xp ∀ (p, q) ∈ G (15)

ypq ≤ xq ∀ (p, q) ∈ G (16)

xl, ypq ∈ {0, 1} ∀l ∈ L, ∀(p, q) ∈ G. (17)

The model can be readily tightened as follows. First, the clique inequali-
ties (2) can be replaced for the weaker constraints (14). Secondly, for a line
l ∈ L, let Gl = {(p, q) ∈ G | p = l ∨ q = l}. Each element (i, j) of Gl identifies
a pairing e ∈ EU such that l is one of the generating lines of e. Note that if
an edge e ∈ EU can be generated by l and a ∈ L and, alternatively, by l and
b 6= a ∈ L, then a and b must cross (in particular, they share an endpoint).
Hence, of all the generating pairs in Gl, at most one can be selected in a feasible
solution. The natural generalization for constraints (15) and (16) is therefore

∑

(a,b)∈Gl

yab ≤ xl ∀l ∈ L. (18)

These inequalities are shown in [60] to be facet-defining for the polytope

conv{(x, y) | (x, y) satisfies (14)-(17)}.
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A Branch-and-Cut procedure based on the above inequalities is described
in [60, 50]. The method was validated by aligning RNA sequences of known
structure to RNA sequences of known structure, but without using the struc-
ture information for one of the two sequences. In all cases tested, the algorithm
retrieved the correct alignment, as computed by hand by the biologists. For
comparison, a “standard” sequence alignment algorithm (which ignores struc-
ture in both sequences) was used, and failed to retrieve the correct alignments.

In a second experiment, the method was used to align RNA sequences of un-
known secondary structure, of up to 1,400 nucleotides each, to RNA sequences
of known secondary structure. The optimal solutions found were compared with
alternative solutions found by “standard” alignment, and their merits were dis-
cussed. The results showed that structure information is essential in retrieving
biologically relevant alignments.

It must however be remarked that, in aligning large sequences, not all the
variables were present in the model. In particular, there were variables only for
a relatively small subset of all possible lines (which would otherwise be more
than a million). This subset was determined heuristically in a pre-processing
phase meant at keeping only lines that have a good chance of being in an optimal
solution.

3.3 Structure vs Structure Alignments

As described in Section 2.2, a protein is a chain of molecules known as amino
acids, or residues, which folds into a peculiar 3-D shape (called its tertiary struc-
ture) under several molecular forces (entropic, hydrophobic, thermodynamic).
A protein’s fold is perhaps the most important of all protein’s features, since
it determines how the protein functions and interacts with other molecules.
In fact, most biological mechanisms at the protein level are based on shape-
complementarity, and proteins present particular concavities and convexities
that allow them to bind to each other and form complex structures, such as
skin, hair and tendon.

The comparison of protein structures is a problem of paramount importance
in structural genomics, and an increasing number of approaches for its solution
have been proposed over the past years (see Lemmen and Lengauer [59] for a
survey). Several protein structure classification servers (the most important of
which is the Protein Data Bank, PDB [13]) have been designed based on them,
and are extensively used in practice.

Loosely speaking, the structure comparison problem is the following: Given
two 3-D protein structures, determine how similar they are. Some of the reasons
motivating the problem are:

1. Clustering. Proteins can be clustered in families based on structure similarity.
Proteins within a family are functionally and evolutionarily closely related.

2. Function determination. The function of a protein can oftentimes be deter-
mined by comparing its structure to some known ones, whose function is already
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(a) (b) (c)

Figure 4: (a) An unfolded protein. (b) After folding. (c) The contact map
graph.

understood.

3. Fold Prediction Assessment. This is the problem faced by the CASP (Critical
Assessment of Structure Prediction [65, 66]) jurors, in a bi-annual competition
in which many research groups try to predict a protein structure from its amino
acid sequence. Given a set of “tentative” folds for a protein, and a correct one
(determined experimentally), the jurors need to decide which guess comes clos-
est to the true answer.

Comparing two structures implies to “align” them in some way. Since, by
their nature, three-dimensional computational problems are inherently more
complex than the similar one-dimensional ones, there is a dramatic difference
between the complexity of two-sequences alignment and two-structures align-
ment. Not surprisingly, various simplified versions of the structure comparison
problems were shown NP-hard [34].

Pairwise structure comparison requires a structure similarity scoring scheme
that captures the biological relevance of the chemical and physical constraints
involved in molecular recognition. Determining a satisfactory scoring scheme
is still an open question. The most used schemes, follow mainly three themes:
RMSD (Root Mean Square Deviation) of rigid-body superposition [47], distance
map similarity [44] and contact map overlap (CMO) [32]. All these similarity
measures use distances between amino acids and raise computational issues that
at present do not have effective solutions.

Due to the inherent difficulty of the problem, most algorithms for structure
comparison in the literature are heuristics of some sort, with a notable exception,
as far as the the CMO measure is concerned. In fact, the CMO measure is
the only one for which performance-guarantee approximation algorithms, as
well as exact algorithms based on Mathematical Programming techniques, were
proposed over the last few years. In the remainder of this subsection we will
overview the main ideas underlying the exact algorithms for the CMO problem.

3.3.1 Contact Maps

A contact map is a 2-D representation of a 3-D protein structure. When a
proteins folds, two residues that were not adjacent in the protein’s linear se-
quence, may end up close to each other in the 3-D space (Figure 4 (a) and (b)).
The contact map of a protein with n residues is defined as a 0-1, symmetric,
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G 1

G 2

Figure 5: An alignment of value 5.

n× n matrix, whose 1–elements correspond to pairs of residues that are within
a “small” distance (typically around 5Å) in the protein’s fold, but are not adja-
cent in the linear sequence. We say that such a pair of residues are in contact.
It is helpful to regard the contact map of a protein as the adjacency matrix of a
graph G. Each residue is a node of G, and there is an edge between two nodes
if the corresponding residues are in contact (see Figure 4 (c)).

The CMO problem tries to evaluate the similarity in the 3-D folds of two
proteins by determining the similarity of their contact maps (the rationale being
that a high contact map similarity is a good indicator of high 3-D similarity).
This measure was introduced in [33], and its optimization was proved NP-hard
in [34], thus justifying the use of sophisticated heuristics or enumerative meth-
ods.

Given two folded proteins, the CMO problem calls for determining an align-
ment between the residues of the first protein and of the second protein. The
alignment specifies the residues that are considered equivalent in the two pro-
teins. The goal is to find the alignment which highlights the largest set of
common contacts. The value of an alignment is given by the number of pairs of
residues in contact in the first protein which are aligned with pairs of residues
that are also in contact in the second protein. Given the graph representation
for contact maps, we can phrase the CMO problem in graph–theoretic language.
The input consists of two undirected graphs G1 = (V1, E1) and G2 = (V2, E2),
with V1 = [n] and V2 = [m]. For each edge ij, with i < j, we distinguish a
left endpoint (i) and a right endpoint (j), and therefore we denote the edge by
the ordered pair (i, j). A solution of the problem is an alignment of V1 and
V2, i.e., a noncrossing matching L′ ⊆ L in Wnm. Two edges e = (i, j) ∈ E1

and f = (i′, j′) ∈ E2 contribute a sharing to the value of an alignment L′ if
l = [i, i′] ∈ L′ and h = [j, j′] ∈ L′. In this case, we say that l and h generate
the sharing (e, f). The CMO problem consists in finding an alignment which
maximizes the number of sharings. Figure 5 shows two contact maps and an
alignment with 5 sharings.

From the compatibility of lines one can derive a notion of compatible shar-
ings. Let e = (i, j), e′ = (i′, j′) ∈ E1 and f = (u, v), f ′ = (u′, v′) ∈ E2. The
sharings (e, f) and (e′, f ′) are said compatible if the following lines are noncross-
ing: [i, u], [j, v], [i′, u′] and [j′, v′]. After defining a new graph GS (the Sharings
Conflict Graph), the CMO problem can be reduced to the STABLE SET (SS)
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problem. In GS , there is a node Nef for each e ∈ E1 and f ∈ E2 and two nodes
Nef and Ne′f ′ are connected by an edge if the sharings (e, f) and (e′, f ′) are
not compatible. A feasible set of sharings is a stable set in GS , and the optimal
solution to CMO is identified by the largest stable set in GS .

3.3.2 Mathematical Programming approaches to the CMO problem

Attacking the CMO problem as a SS problem is not viable, since the graph GS

is very large for real proteins, even of moderate size. In fact, a small protein
has about 50 residues and 100 contacts, giving rise to a graph GS with about
10,000 nodes, beyond the capabilities of the best codes for the SS problem [46].

The most successful approaches for the CMO solution rely on formulating
the problem as an Integer Program and solving it by Branch-and-Bound. In
two different approaches, the bound has been obtained either from the Linear
Programming relaxation [53] of an Integer Linear Programming formulation,
or from a Lagrangian relaxation of a Integer Quadratic Programming formula-
tion [20]. Both formulations are based on binary variables xl for each line l, and
ypq, for pairs of lines p, q which generate a sharing.

The first formulation of the problem was given by Lancia et al. [53]. This
formulation is very similar to the formulation for the RSA problem, described
in Section 3.2. For completeness, we restate it here. We denote with G the
set of all pairs of lines that generate a sharing. For each pair (l, t) ∈ G, where
l = [i, i′], and t = [j, j′], the edge (i, j) ∈ E1 and the edge (i′, j′) ∈ E2. For a
line l ∈ L, let G−

l = {(p, l) ∈ G} and G+
l = {(l, p) ∈ G}. The model in [53] reads

max
∑

(l,t)∈G

ylt (19)

subject to the clique inequalities (2) and the constraints

∑

(p,l)∈G−

l

ypl ≤ xl ∀l ∈ L (20)

∑

(l,p)∈G+

l

ylp ≤ xl ∀l ∈ L (21)

xl, ypq ∈ {0, 1} ∀l ∈ L, ∀(p, q) ∈ G. (22)

In fact, the CMO problem can be seen as a special case of the RSA prob-
lem (13)-(17), in which each line l has weight wl = 0 and each pair (p, q) of
generating lines have weight wpq = 1. Another difference between the two prob-
lems is that in the RSA problem the degree of each node in G1 is at most 1,
while for the CMO problem this is not necessarily true.

A Branch-and-Cut procedure based on the above constraints, as well as
other, weaker, cuts, was used in [53] to optimally align, for the first time, real
proteins from the PDB. The algorithm was run on 597 protein pairs, with sizes
ranging from 64 to 72 residues. Within the time limit of 1 hour per instance,

22



55 problems were solved optimally and for 421 problems (70 percent) the gap
between the best solution found and the upper bound was ≤ 5, thereby pro-
viding a certificate of near-optimality. The feasible solutions, whose value was
used as a lower bound to prune the search tree, were obtained via heuristics
such as Genetic Algorithms and fast Steepest Ascent Local Search, using several
neighborhoods. The solutions found by the genetic algorithms resulted close to
optimum on many runs, and in general their quality prevailed over the local
search solutions.

In a second experiment, the CMO measure was validated from a biological
point of view. A set of 33 proteins, known to belong to four different families,
were pairwise compared. The proteins were then re-clustered according to their
computed CMO value. In the new clustering, no two proteins were put in the
same cluster which were not in the same family before (a 0% false positives
rate) and only few pairs of proteins that belonged to the same family were put
in different clusters (a 1.3% false negatives rate).

3.3.3 The Lagrangian approach

Although the approach in [53] allowed to compute, for the first time, the optimal
structure alignment of real proteins from the PDB, the method had several
limitations. In particular, due to the time required to solve many large and
expensive LPs, the method could only be applied to problems of moderate
size (proteins of up to 80 residues and 150 contacts each). To overcome these
limitations, in [20] Caprara and Lancia described an alternative formulation for
the problem, based on a Quadratic Programming formulation and Lagrangian
Relaxation.

The theory of Lagrangian Relaxation is a well established branch of Com-
binatorial Optimization, and perhaps the most successful approach to tackle
very large problems (such as large instances of the well known Set Covering
Problem, the Optimization problem most frequently solved in real-world appli-
cations [19, 69]).

The CMO algorithm proposed in [20] is based on an approach which was
successfully used for Binary Quadratic Programming problems, such as the
Quadratic Assignment Problem [23]. This problem bears many similarities with
the structure alignment problem. In particular, there are profits pij in the ob-
jective function which are attained when two binary variables xi and xj are both
set to 1 in a solution. Analogously, in the alignment problem, there may be a
profit in aligning two specific residues of the proteins and some other two.

For (p, q) ∈ L × L, let bpq denote a profit achieved if the lines p and q are
both in the solution. Two lines p and q such that xp = 1 and xq = 1 contribute
bpq + bqp to the objective function. Hence, the value of an alignment can be
computed as

∑

p∈L

∑

q∈L bpqxpxq , provided that bpq + bqp = 1 when either
(p, q) ∈ G or (q, p) ∈ G, and bpq + bqp = 0 otherwise. Given such a set of profits
b, the problem can be stated as

max
∑

p∈L

∑

q∈L

bpq xp xq (23)
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subject to
∑

l∈Q

xl ≤ 1 ∀Q ∈ clique(L) (24)

xl ∈ {0, 1} ∀l ∈ L. (25)

Problem (23), (24), (25) is a Binary Quadratic Program. The formulation
shows how the problem is closely related to the Quadratic Assignment Problem.
The difference is that the CMO problem is in maximization form, the matching
to be found does not have to be perfect and it must be noncrossing.

The objective function (23) can be linearized by introducing variables ypq ,
for p, q ∈ L, and replacing the product xpxq by ypq. By adopting a standard
procedure used in the convexification of ILPs [1, 7], a linear model for the
problem is obtained as follows. Each constraint (24) associated with a set Q is
multiplied by xp for some p ∈ L and xlxp is replaced by ylp, getting

∑

l∈Q

ylp ≤ xp.

By doing the above for all constraints in (24) and variables xm, m ∈ L, we get
the model in [20]:

max
∑

p∈L

∑

q∈L

bpq ypq (26)

subject to
∑

l∈Q

xl ≤ 1 ∀Q ∈ clique(L) (27)

∑

l∈Q

ylp ≤ xp ∀Q ∈ clique(L), ∀p ∈ L (28)

ypq = yqp ∀p, q ∈ L | p ≺ q (29)

xl, ypq ∈ {0, 1} ∀l, p, q ∈ L. (30)

The constraints (29) can be relaxed in a Lagrangian way, by associating
a Lagrangian multiplier λpq to each constraint (29), and adding to the objec-
tive function (26) a linear combination of constraints (29), each weighed by its
Lagrangian multiplier.

By defining for convenience λqp := −λpq for p ≺ q, and by letting cpq :=
bpq + λpq , the objective function of the Lagrangian relaxation becomes

U(λ) := max
∑

p∈L

∑

q∈L

cpq ypq (31)

and we see that, intuitively, the effect of the Lagrangian relaxation is to re-
distribute the profit bpq + bqp between the two terms in the objective function
associated with ypq and yqp.

In [20] it is shown how the Lagrangian relaxed problem (31) subject to (27),
(28) and (30) can be effectively solved, via a decomposition approach. In this
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problem, besides the integrality constraints (30), each variable ylp appears only
in the constraints (28) associated with xp. For each p ∈ L, this implies that, if
xp = 0, all variables ylp take the same value, whereas, if variable xp = 1, the
optimal choice of ylp for l ∈ L amounts to solving the following:

max
∑

l∈L

clpylp (32)

subject to
∑

l∈Q

ylp ≤ 1 ∀Q ∈ clique(L) | p 6∈ Q (33)

∑

l∈Q

ylp ≤ 0 ∀Q ∈ clique(L) | p ∈ Q (34)

ylp ∈ {0, 1} ∀l ∈ L. (35)

In other words, the profit achieved if xp = 1 is given by the optimal solution
of (32)–(35). Let dp denote this profit. Interpreting clp as the weight of line
l and ylp as the selection variable for line l, we see that the problem (32)–
(35) is simply a maximum weight noncrossing matching problem. This problem
can be solved in quadratic time by Dynamic Programming, as explained in the
introduction of Section 3.

Once the profits dp have been computed for all p ∈ L, the optimal solution
to the overall Lagrangian problem can be obtained by solving one more max-
weight noncrossing matching problem, in which d are the weights of the lines
and x are the selection variables.

As far as the overall complexity, we have the following result:

Proposition 7 ([20]) The Lagrangian relaxation defined by (31) subject to
(27), (28) and (30) can be solved in O(|E1||E2|) time.

Let U(λ∗) := minλ U(λ) be the best upper bound that can be obtained by
Lagrangian relaxation. By denoting with U0 the upper bound obtained in [53],
corresponding to the LP relaxation of (19)-(22) and (2), it can be shown that

U0 ≥ U(λ∗) (36)

and the inequality can be tight.
In order to determine the optimal multipliers λ∗, or at least near-optimal

multipliers, the approach of [20], employs a standard subgradient optimization
procedure (see Held and Karp [43]).

The exact algorithm for CMO proposed in [20] is a Branch-and-Bound proce-
dure based on the above Lagrangian relaxation. Furthermore, a greedy heuristic
procedure is also described in [20], which performed very well in practice. The
procedure constructs a solution by choosing a line which maximizes a suitable
score, fixing it in the solution and iterating. As to the score, the procedure
chooses the line p such that the value of the Lagrangian relaxed problem, with
the additional constraint xp = 1, is maximum.
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In their computational experiments, Caprara and Lancia showed how the
Lagrangian Relaxation approach can be orders of magnitude faster than the
Branch-and-Cut approach of [53]. For instance, a set of 10,000 pairs of moderate-
size proteins were aligned optimally or near-optimally in about a day. The op-
timal solution can be readily found if the two proteins have a similar enough
structure. In this case, optimal alignments can be computed even for proteins
of very large size, within few seconds. For instance, in less than one minute,
the algorithm in [20] could find, for the first time, an optimal alignment of two
large proteins from the same family, with about 900 residues and 2000 contacts
each.

It must be remarked, however that the optimal solution of instances associ-
ated with substantially different proteins appears to be completely out of reach
not only for this algorithm, but also for the other methods method currently
known in Combinatorial Optimization. Such a situation is analogous to the case
of the Quadratic Assignment Problem, for which instances with 40 nodes are
quite far from being solved to optimality.

4 Single Nucleotide Polymorphisms

The recent whole-genome sequencing efforts [80, 45] have confirmed that the
genetic makeup of humans is remarkably well conserved, with different people
sharing some 99% identity at the DNA level. A DNA region whose content
varies in a statistically significant way within a population is called a genetic
polymorphism. The smallest possible region consists of a single nucleotide, and
hence is called a Single Nucleotide Polymorphism, or SNP (pronounced “snip”).
A SNP is a nucleotide site, in the middle of a DNA region which is otherwise
identical for everybody, at which we observe a statistically significant variability
in a population. For some reasons still unclear, the variability is restricted to
only two alleles out of the four possible (A, G, C, G). The alleles can be different
for different SNPs. It is believed that SNPs are the predominant form of human
genetic variation [25], so that their importance cannot be overestimated for
medical, drug-design, diagnostic and forensic applications.

Since DNA of diploid organisms is organized in pairs of chromosomes, for
each SNP one can either be homozygous (same allele on both chromosomes)
or heterozygous (different alleles). The values of a set of SNPs on a particular
chromosome copy define a haplotype. Haplotyping consists in determining a
pair of haplotypes, one for each copy of a given chromosome, that provides full
information of the SNP fingerprint for an individual at that chromosome. In
Figure 6 we give a simplistic example of a chromosome with three SNP sites.
This individual is heterozygous at SNPs 1 and 3 and homozygous at SNP 2.
The haplotypes are CCA and GCT.

In recent years, several optimization problems have been defined for SNP
data. Some of these were tackled by Mathematical Programming techniques,
which we recall in this section. Different approaches were also followed, aimed,
e.g., at determining approximation algorithms, dynamic programming proce-
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Chrom. c, paternal: ataggtccCtatttccaggcgcCgtatacttcgacgggActata

Chrom. c, maternal: ataggtccGtatttccaggcgcCgtatacttcgacgggTctata

Haplotype 1 → C C A

Haplotype 2 → G C T

Figure 6: A chromosome and the two haplotypes

dures, and computational complexity results. However, these approaches do
not fall within the scope of this survey.

We consider the haplotyping problems relative to a single individual and to
a set of individuals (a population). In the first case, the input is inconsistent
haplotype data, coming from sequencing, with unavoidable sequencing errors.
In the latter case, the input is ambiguous genotype data, which specifies only
the multiplicity of each allele for each individual (i.e., it is known if individual
i is homozygous or heterozygous at SNP j, for each i and j).

4.1 Haplotyping a single individual

As discussed in Section 2.3, sequencing produces either single fragments or pairs
of fragments (mate pairs) from the same chromosome copy. As of today, even
with the best possible technology, sequencing errors are unavoidable. These
consist in bases which have been miscalled or skipped altogether. Further, there
can be the presence of contaminants, i.e. DNA coming from another organism
which was wrongly mixed with the one that had to be sequenced. In this
framework, the Haplotyping Problem For an Individual can be informally stated
as: “given inconsistent haplotype data coming from fragment sequencing, find
and correct the errors so as to retrieve a consistent pair of SNPs haplotypes.”
The mathematical framework for this problem is as follows. Independently of
what the actual alleles at a SNP are, in the sequel we denote the two values
that each SNP can take by the letters A and B. A haplotype, i.e. a chromosome
content projected on a set of SNPs, is then a string over the alphabet {A, B}. Let
S = {1, . . . , n} be a set of SNPs and F = {1, . . . , m} be a set of fragments. Each
SNP is covered by some of the fragments, and can take the values A or B. For a
pair (f, s) ∈ F × S, denote with the symbol “-” the fact that fragment f does
not cover SNP s. Then, the the data can be represented by an m × n matrix
over the alphabet {A, B,−}, called the SNP matrix, where each row represents
a fragment and each column a SNP.

A gapless fragment is one covering a set of consecutive SNPs (i.e., in the row
corresponding to the fragment, between any two entries in {A,B} there is no “-”
entry), otherwise, the fragment has gaps. There can be gaps for two reasons: (i)
thresholding of low-quality reads (i.e., when the sequencer cannot call a SNP A

or B with enough confidence, it is marked with a -); (ii) mate-pairing in shotgun
sequencing (one pair of mates is the same as a single fragment with one gap in
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  1 2 3 4 5 6
1 A B − A A B
2 B A − − B −
3 − A B A B A
4 − A B − B A
5 B − A B A −
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(a) M (b) GF (M)

Figure 7: A SNP matrix M and its fragment conflict graph.

the middle).
Two fragments i and j are said to be in conflict if there exists a SNP k

such that M [i, k] = A and M [j, k] = B or M [i, k] = B and M [j, k] = A. This
implies that either i and j are not from the same chromosome copy, or there
are errors in the data. Given a SNP matrix M , the fragment conflict graph is
the graph GF(M) = (F , EF ) with an edge for each pair of fragments in conflict
(see Figure 7).

The data are consistent with the existence of two haplotypes (one for each
chromosome copy) if and only if GF (M) is a bipartite graph. In the presence
of contaminants, or of some “bad” fragments (fragments with many sequencing
errors), to correct the data one must face the problem of removing the fewest
number of rows from M so that GF (M) becomes bipartite. This problem is
called the Minimum Fragment Removal (MFR) problem. The problem was
shown to be polynomial when all fragments are gapless, by Lancia et al. [52].
When the fragments contains gaps, however, it was shown that the problem is
NP-hard. In order to solve the problem in the presence of gaps [63], the following
IP formulation can be adopted so as to minimize the number of fragments
(nodes) removed from GF (M) until it is bipartite. Introduce a 0-1 variable xf

for each fragment. The variables for which xf = 1 in an optimal solution define
the nodes to remove. Let C be the set of all odd cycles in GF (M). Since a graph
is bipartite if and only if there are no odd cycles, one must remove at least one
node from each cycle in C. For a cycle C ∈ C, let V (C) denote the nodes in C.
We obtain the following Integer Programming formulation:

min
∑

f∈F

xf (37)

s.t.
∑

f∈V (C)

xf ≥ 1 ∀C ∈ C (38)

xf ∈ {0, 1} ∀f ∈ F . (39)

To solve the LP relaxation of (37)-(39), one must be able to solve in poly-
nomial time the following separation problem: Given fractional weights x∗ for
the fragments, find an odd cycle C, called violated, for which

∑

f∈V (C) x∗
f < 1.
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This problem can be solved as follows. First, build a new graph Q = (W, F )
made, roughly speaking, of two copies of GF . For each node i ∈ F there are two
nodes i′, i′′ ∈ W , and for each edge ij ∈ EF , there are two edges i′j′′, i′′j′ ∈ F .
Edges in F are weighted, with weights w(i′j′′) = w(i′′j′) := x∗

i /2 + x∗
j /2. By

a parity argument, a path P in Q of weight w(P ), from i′ to i′′, corresponds
to an odd cycle C through i in GF , with

∑

j∈V (C) x∗
j = w(P ). Hence, the

shortest path corresponds to the “smallest” odd cycle, and if the shortest path
has weight ≥ 1 then there are no violated cycles (through node i). Otherwise,
the shortest path represents a violated cycle.

To find good solutions of MFR in a short time, Lippert et al. [63] have also
experimented with a heuristic procedure, based on the above LP relaxation and
randomized rounding. First, the LP relaxation of (37)-(39) is solved, obtaining
an optimal solution x∗. If x∗ is fractional, each variable xf is rounded to 1
with probability x∗

f . If the solution is feasible, stop. Otherwise, fix to 1 all the
variables that were rounded so far (i.e., add the constraints xf = 1) and iterate
a new LP. This method converged very quickly on all tests on real data, with a
small gap in the final solution (an upper bound to the optimum) and the first
LP value (a lower bound to the optimum).

4.2 Haplotyping a population

Haplotype data is particularly sought after in the study of complex diseases
(those affected by more than one gene), since it can give complete information
about which set of gene alleles are inherited together. However, because poly-
morphism screens are conducted on large populations, in such studies it is not
feasible to examine the two copies of each chromosome separately, and geno-
type, rather than haplotype, data is usually obtained. A genotype describes the
multiplicity of each SNP allele for the chromosome of interest. At each SNP,
three possibilities arise: either one is homozygous for the allele A, or homozy-
gous for the allele B, or heterozygous (a situation denoted by the symbol X).
Hence a genotype is a string over the alphabet {A, B, X}, where each position
of the letter X is called an ambiguous position. A genotype g ∈ {A, B, X}n is
resolved by the pair of haplotypes h, q ∈ {A, B}n, written g = h ⊕ q, if for each
SNP j, g[j] = A implies h[j] = q[j] = A, g[j] = B implies h[j] = q[j] = B, and
g[j] = X implies h[j] 6= q[j]. A genotype is called ambiguous if it has at least
two ambiguous positions (a genotype with at most one ambiguous positions can
be resolved uniquely). A genotype g is said to be compatible with a haplotype
h if h agrees with g at all unambiguous positions. The following inference rule,
given a genotype g and a compatible haplotype h, defines q such that g = h⊕ q:

Inference Rule: Given a genotype g and a compatible haplotype h, obtain
a new haplotype q by setting q[j] 6= h[j] at all ambiguous positions and
q[j] = h[j] at the remaining positions.

The Haplotyping Problem For a Population is the following: given a set G of
m genotypes over n SNPs, find a set H of haplotypes such that each genotype
is resolved by one pair of haplotypes in H.
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To turn this problem into an optimization problem, one has to specify the
objective function, i.e., the cost of each solution. One such objective has been
studied by Gusfield [39, 40], and is based on a greedy algorithm for haplotype
inference, also known as Clark’s rule.

This rule was was proposed by the biologist Andy Clark in 1990 [27], with
arguments from theoretical population genetics in support of its validity. The
goal is to derive the haplotypes in H by successive applications of the inference
rule, starting from the set of haplotypes obtained by resolving the unambiguous
genotypes (of which it is assumed here there is always at least one).

In essence, Clark proposed the following, nondeterministic, algorithm: Let
G′ be the set of non-ambiguous genotypes. Start with setting G := G − G ′ and
H to the set of haplotypes obtained unambiguously from G ′. Then, repeat the
following: take a g ∈ G and a compatible h ∈ H and apply the inference rule,
obtaining q. Set G := G − {g}, H := H ∪ {q} and iterate. When no such g and
h exist, the algorithm has succeeded if G = ∅ and failed otherwise.

For example, suppose G = {XAAA, XXAA, BBXX}. The algorithm starts by
setting H = {AAAA, BAAA} and G = {XXAA, BBXX}. The inference rule can be
used to resolve XXAA from AAAA, obtaining BBAA, which can, in turn, be used to
resolve BBXX, obtaining BBBB. However, one could have started by using BAAA

to resolve XXAA obtaining ABAA. At that point, there would be no way to resolve
BBXX. The non-determinism in the choice of the pair g, h to which we apply the
inference rule can be settled by fixing a deterministic rule based on the initial
sorting of the data. Clark in [27] used a large (but tiny with respect to the
total number of possibilities) set of random initial sortings to run the greedy
algorithm on real and simulated data sets, and report the best solution overall.
To find the best possible order of application of the inference rule, Gusfield
considered the following optimization problem: find the ordering of application
of the inference rule that leaves the fewest number of unresolved genotypes in
the end. Gusfield showed the problem to be APX-hard in [40].

As for practical algorithms, Gusfield [39, 40] proposed a graph-theoretic for-
mulation of the problem and an Integer Programming approach for its solution.
The problem is first transformed (by an exponential-time reduction) into a prob-
lem on a digraph G = (N, A), defined as follows. Let N =

⋃

g∈G N(g), where
N(g) := {(h, g) |h is compatible with g}. N(g) is (isomorphic to) the set of pos-
sible haplotypes obtainable by setting each ambiguous position of a genotype g
to one of the 2 possible values. Let N ′ =

⋃

g∈G′ N(g) be (isomorphic to) the
subset of haplotypes unambiguously determined from the set G ′ of unambiguous
genotypes. For each pair v = (h, g′), w = (q, g) in N , there is an arc (v, w) ∈ A
iff g is ambiguous, g′ 6= g and g = h ⊕ q (i.e., q can be inferred from g via
h). Then, any directed tree rooted at a node v ∈ N ′ specifies a feasible history
of successive applications of the inference rule starting at node v ∈ N ′. The
problem can then be stated as: Find the largest number of nodes in N − N ′

that can be reached by a set of node–disjoint directed trees, where each tree is
rooted at a node in N ′ and where for every ambiguous genotype g, at most one
node in N(g) is reached.
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The above graph problem was also shown to be NP-hard [40] (note that the
reduction of the haplotyping problem to this one is exponential–time, and hence
it does not imply NP–hardness trivially). For its solution Gusfield proposed the
following formulation. Let xv be a 0-1 variable associated to node v ∈ N .

max
∑

v∈N−N ′

xv

subject to
∑

v∈N(g)

xv ≤ 1 ∀g ∈ G − G′

xw ≤
∑

v∈δ−(w)

xv ∀w ∈ N − N ′

with xv ∈ {0, 1} for v ∈ N .
Gusfield [39] used this model to solve the Haplotyping problem. To reduce

the problem dimension and make the algorithm practical, he actually defined
variables only for nodes in a subgraph of G, i.e. the nodes reachable from nodes
in N ′. He observed that the LP solution, on real and simulated data, was almost
always integer, thus requiring no branching in the branch and bound search.
He also pointed out that, although there is a possibility of an integer solution
containing directed cycles, this situation never occurred in the experiments, and
hence he did not need to add subtour elimination-type inequalities to the model.

5 Genome Rearrangements

Thanks to the large amount of genomic data that has become available in the
past years, it is now possible to compare the genomes of different species, in
order to find their differences and similarities. This is a very important problem
because, when developing new drugs, we typically test them on animals before
humans. This motivates questions such as determining, e.g., how close to a
human a mouse is, or, in a way, how much evolution separates us from mice.

In principle, a genome can be thought of as a (very long) sequence and
hence one may want to compare two genomes via a sequence alignment algo-
rithm. Besides the large time needed to obtain an optimal alignment, there
is a biological reason why sequence alignment is not the right model for large-
scale genome comparisons. In fact, at the genome level, differences should be
measured not in terms of insertions/deletions/mutations of single nucleotides,
but rather rearrangements (misplacements) of long DNA regions which occurred
during evolution.

Among the main evolutionary events known are inversions, transpositions,
and translocations. Each of these events affects a long fragment of DNA on a
chromosome. When an inversion or a transposition occurs, a DNA fragment
is detached from its original position and then is reinserted, on the same chro-
mosome. In an inversion, it is reinserted at the same place, but with opposite
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ATTGTTataggttagAATTG ATTgtttataGGCTAGATCCGCCAGA CTGGATgcaggcat TCATTGAaata

↓ ↓ ↓

ATTGTTgattggataAATTG ATTGGCTAGATCCGCgtttataCAGA CTGGATaata TCATTGAgcaggcat

(Inversion) (Transposition) (Translocation)

Figure 8: Evolutionary events

orientation than it originally had. In a transposition, it keeps the original ori-
entation but ends up in a different position. A translocation causes a pair of
fragments to be exchanged between the ends of two chromosomes. Figure 8
illustrates these events, where each string represents a chromosome.

Since evolutionary events affect long DNA regions (several thousand bases)
the basic unit for comparison is not the nucleotide, but rather the gene.

The general Genome Comparison Problem can be informally stated as: Given
two genomes (represented by two sets of ordered lists of genes, one list per
chromosome) find a sequence of evolutionary events that, applied to the first
genome, turn it into the second. Under a common parsimony principle, the
solution sought is the one requiring the minimum possible number of events.
Pioneering work in the definition of genome rearrangement problems is mainly
due to Sankoff and colleagues [76].

In the past decade, people have concentrated on evolution by means of some
specific event alone, and have shown that even these special cases can be already
very hard to solve. Since inversions are considered the predominant of all types
of rearrangements, they have received the most attention. For historical reasons,
they have become known as reversals in the computer science community.

In the remainder of this section, we will outline a successful Mathematical
Programming approach for the solution of computing the evolutionary distance
between two genomes evolved by reversals only, a problem known as Sorting by
Reversals. The approach is due to Caprara et al [21, 22].

Two genomes are compared by looking at their common genes. After num-
bering each of n common genes with a unique label in {1, . . . , n}, each genome
is a permutation of the elements {1, . . . , n} (we assume here to focus on a single,
specific chromosome). Let π = (π1 . . . πn) and σ = (σ1 . . . σn) be two genomes.
By possibly relabeling the genes, we can always assume that σ = ι := (1 2 . . . n),
the identity permutation. Hence, the problem becomes turning π into ι, i.e.,
sorting π.

A reversal is a permutation ρij , with 1 ≤ i < j ≤ n, defined as

ρij = (1 . . . i − 1 j j − 1 . . . i + 1 i j + 1 . . . n).

reversed

By applying ρij to π, one obtains (π1 . . . πi−1, πj πj−1 . . . πi, πj+1 . . . πn), i.e.,
the order of the elements πi, . . . , πj has been reversed. Let R = {ρij , 1 ≤ i <
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j ≤ n}. Each permutation π can be expressed (non-uniquely) as a product
ιρ1ρ2 . . . ρD with ρi ∈ R for i = 1 . . .D. The minimum value D such that
ιρ1ρ2 . . . ρD = π is called the reversal distance of π, and denoted by d(π). Sorting
by Reversals (SBR) is the problem of finding d(π) and a sequence ρ1ρ2 . . . ρd(π)

satisfying the previous equation.
The first optimization algorithm for computing the reversal distance was a

branch-and-bound procedure, due to Kececioglu and Sankoff [51], based on a
combinatorial bound. This algorithm is only suitable for small problems (n ≤
30), and becomes quickly impractical for larger values of n (note that, as of this
writing, the data for real-life genome comparison instances involve a number n
of common genes in the range 50 ≤ n ≤ 200). The algorithm was developed at
a time when the complexity of the problem was still unknown, although it was
conjectured that SBR was NP-hard. Settling the complexity of SBR became a
longstanding open question, eventually answered by Caprara [18] who showed
that in fact, SBR is NP-hard.

A major step towards the practical solution of the problem was made by
Bafna and Pevzner [6], who found a nice combinatorial characterization of π in
terms of its breakpoints. A breakpoint is given by a pair of adjacent elements
in π that are not adjacent in ι — that is, there is a breakpoint at position i, if
|πi − πi−1| > 1. Let b(π) denote the number of breakpoints. A trivial bound
is d(π) ≥ db(π)/2e, since a reversal can remove at most two breakpoints, and
ι has no breakpoints. However, Bafna and Pevzner showed how to obtain a
much better bound from the breakpoint graph G(π). G(π) has a node for each
element of π and edges of two colors, say red and blue. There is a red edge
between πi and πi−1 for each position i at which there is a breakpoint, and a
blue edge between each h and k such that |h− k| = 1 and h, k are not adjacent
in π. Each node has the same number of red and blue edges incident on it (0, 1
or 2), and G(π) can be decomposed into a set of edge-disjoint color-alternating
cycles. Note that this cycles are not necessarily simple, i.e., they can repeat
nodes. Let c(π) be the maximum number of edge-disjoint alternating cycles in
G(π). Bafna and Pevzner [6] proved the following

Theorem 8 ([6]) For every permutation π, d(π) ≥ b(π) − c(π).

The lower bound b(π)− c(π) turns out to be very tight, as observed first exper-
imentally by various authors and then proved to be almost always the case by
Caprara [17], who showed in [18] that determining c(π) is essentially the same
problem as determining d(π), and hence, NP-hard as well.

Since computing c(π) is hard, the lower bound b(π) − c(π) should not be
used directly in a branch-and-bound procedure for SBR. However, for any up-
per bound c′(π) to c(π), also the value b(π) − c′(π) is a lower bound to d(π),
which may be quite a bit easier to compute. Given an effective Integer Linear
Programming (ILP) formulation to find c(π), a good upper bound to c(π) can
be obtained by LP relaxation. Let C denote the set of all the alternating cycles
of G(π) = (V, E), and for each C ∈ C define a binary variable xC . The following
is the ILP formulation of the maximum cycle decomposition:
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c(π) := max
∑

C∈C

xC (40)

subject to

∑

C3e

xC ≤ 1 ∀e ∈ E (41)

xC ∈ {0, 1} ∀C ∈ C. (42)

The LP relaxation to the above problem is obtained by replacing the con-
straints xC ∈ {0, 1} with xC ≥ 0, ∀C ∈ C (it is easy to see that the constraints
xC ≤ 1 can be omitted). Caprara et al showed in [21] how to solve the exponen-
tially large LP relaxation of (40)-(42) in polynomial time by column-generation
techniques. To price-in the variables, the solution of some non-bipartite min-
cost perfect matching problems is required.

Consider the dual of the LP relaxation of (40)-(42), which reads

c′(π) := min
∑

e∈E

ye (43)

subject to
∑

e∈C

ye ≥ 1 ∀C ∈ C (44)

ye ≥ 0, ∀e ∈ E. (45)

The separation problem for (43)-(45) is the following: given a weight y∗
e for

each e ∈ E, find an alternating cycle C ∈ C such that

∑

e∈C

y∗
e < 1, (46)

or prove that none exists. Call an alternating cycle satisfying (46) a violated
cycle. To solve (43)-(45) in polynomial time, one must be able to identify
a violated cycle in polynomial time, i.e., an alternating cycle of G(π) having
weight < 1, where each edge e ∈ E is given the weight y∗

e .
We illustrate the idea for doing this, under the simplifying assumption that

the decomposition contains only cycles that are simple (i.e., they do not go
through the same node twice). Consider the following construction, analogous
to one used by Grötschel and Pulleyblank for finding minimum-weight odd and
even paths in an undirected graph [36]. Define the graph H , depending on G(π),
with H = (VR ∪ VB , LR ∪ LB ∪ LV ), as follows. For each node i of G(π), H
contains two twin nodes iR ∈ VR, iB ∈ VB . For each red edge ij in G(π), H has
an edge iRjR ∈ LR; for each blue edge ij in G(π), H has an edge iBjB ∈ LB .
Each edge in LR ∪ LB is given the same weight as its counterpart in G(π).
Finally twin nodes are connected in H by means of edges iRiB ∈ LV , for each
i ∈ V , each having weight 0.

The following proposition justifies the use of H .
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Proposition 9 ([21]) There is a bijection between perfect matchings of H and
(possibly empty) sets of node-disjoint simple alternating cycles of G(π).

From this proposition it follows

Proposition 10 There is a simple alternating cycle in G of weight < 1 if and
only if there exists a perfect matching M 6= LV in H of weight < 1.

Accounting for alternating cycles that are not simple requires to first break
up the nodes of degree 4 in G into pairs of nodes, and then apply the above
reduction to the resulting graph (technical details can be found in [21]). Note
that the graph H obtained is, in general, non-bipartite.

Although polynomial, the solution of the weighted matching problem on
general graphs is computationally expensive to find. In [22] Caprara et al.
describe a weaker bound, obtained by enlarging the set C in (40)-(42) to include
also the pseudo-alternating cycles, i.e., cycles that alternate red and blue edges
but may possibly use an edge twice. With this new set of variables, the pricing
becomes much faster, since only bipartite matching problems must be solved.

Let P be the set of pseudo-alternating cycles. Similarly to before, one can
now formulate the problem of finding the decomposition of G(π) into a set of
edge-disjoint pseudo-alternating cycles. The associated column generation prob-
lem requires finding, given a weighting u∗ for the edges, a pseudo-alternating
cycle C ∈ P of weight u∗(C) < 1. The weight of C is the sum of the weights of
its edges, where each edge e which is traversed twice by the cycle, contributes
2u∗(e) to the sum. We next show how to solve this problem.

Construct an arc-weighted directed graph D = (V, A) from G(π) and u∗ as
follows. D has the same node set as G(π) and, for each node pair i, j ∈ V ,
D has an arc (i, j) ∈ A if there exists k ∈ V such that ik is a blue edge of
G(π) and kj is a red edge. The arc weight for (i, j) is given by u∗

ik + u∗
kj (if

there exist two such k, consider the one yielding the minimum weight of arc
(i, j)). Call dicycle a simple (i.e. without node repetitions) directed cycle of D.
Then, each dicycle of D corresponds to a pseudo-alternating cycle of G(π) of
the same weight. Vice versa, each pseudo-alternating cycle of G(π) corresponds
to a dicycle of D whose weight is not larger.

It follows that, for a given u∗, G(π) contains a pseudo-alternating cycle
C ∈ P of weight < 1 if and only if D contains a dicycle of weight < 1.

To find such a cycle, introduce loops in D, i.e. arcs of the form (i, i) for all
i ∈ V , where weight of the loops is initially set to 0. The Assignment Problem
(i.e., the perfect matching problem on bipartite graphs) can then be used to
find a set of dicycles in D, spanning all nodes, and with minimum total weight.

From this proposition it follows

Proposition 11 There is a pseudo-alternating cycle in G(π) of weight < 1 if
and only there is a solution to the assignment problem on D not containing only
loops and with weight < 1.

Although weaker than the bound based on alternating cycles, the bound
based on pseudo-alternating cycles turns out to be still very tight. Based on
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this bound, Caprara et al. developed a branch-and-price algorithm [22] which
can routinely solve, in a matter of seconds, instances with n = 200 elements, a
large enough size for all real-life instances available so far. Note that no effective
ILP formulation has ever been found for modeling SBR directly. Finding such
a formulation constitutes an interesting theoretical problem.

With this branch and price algorithm, SBR is regarded as practically solved,
being one of the few NP-hard problems for which a (worst-case) exponential
algorithm is fairly good on most instances.

We end this section by mentioning a closely related problem, for which an
elegant and effective solution has been found by Hannenhalli and Pevzner. How-
ever, this solution does not employ Mathematical Programming techniques and
hence falls only marginally within the scope of this survey.

Since a DNA molecule has associated a concept of “reading direction” (from
the so-called 5’-end to the 3’-end), after a reversal, not only the order of some
genes is inverted, but also of the nucleotide sequence of each such gene. To
account for this situation, a genome can be represented by a signed permutation,
i.e. a permutation in which each element is signed either ’+’ or ’−’. For a
signed permutation, the effect of a reversal is not only to flip the order of some
consecutive elements, but also to complement their sign. For instance, the
reversal ρ24 applied to the signed permutation (+1 − 4 +3 − 5 +2) yields the
signed permutation (+1 + 5 − 3 + 4 + 2). The signed version of Sorting by
Reversals (SSBR) consists in determining a minimum number of reversals that
turn a signed permutation π into (+1 + 2 . . . + n).

With a deep combinatorial analysis of the cycle decomposition problem for
the permutation graph of a signed π, SSBR was shown to be polynomial, by
Hannenhalli and Pevzner [42]. The original O(n4) algorithm of Hannenhalli and
Pevzner for SSBR was improved over the years to an O(n2) algorithm for finding
the optimal solution [48] and an O(n) algorithm [5] for finding the optimal value
only (i.e., the signed reversal distance).

6 Genomic Mapping and the TSP

In the last years (especially prior to the completion of the sequencing of the
human genome), a great deal of effort has been devoted to determining genomic
maps, of various detail.

Similarly to a geographic map, the purpose of a genomic map is to indicate
the location of some landmarks in a genome. Each landmark (also called a
marker) corresponds to a specific DNA region, whose content may or may not
be known. Typical markers are genes, or short DNA sequences of known content
(called STSs, for Sequence Tagged Sites), or restriction-enzyme sites (which are
short, palindrome, DNA sequences).

At the highest resolution, to locate a marker one needs to specify the chro-
mosome on which it appears and the distance in base pairs, from one specific
end of the chromosome. A map of lower resolution, instead of the absolute po-
sition of the markers, may give their relative positions, e.g., in the form of the
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order with which the markers appear on a chromosome.
The construction of genomic maps gives us the opportunity to describe a

Computational Biology problem for which the solution proposed consists in
a reduction to a well-known optimization problem, in this case the TSP. In
particular, we will discuss the mapping problem for either clones vs. probes or
radiation hybrids vs. markers. For both problems, the input data consists of a
0-1, m × n, matrix M .

In the first problem considered, there are m clones and n probes. Both clones
and probes are DNA fragments, but of quite different length. In particular, a
clone is a long DNA fragment (several thousand bases), from a given chromo-
some, while a probe is a short DNA fragment (a few bases), also from the same
chromosome. An hybridization experiment can tell, for each clone i and probe
j, if j is contained in i. The experiment is based on the Watson-Crick pairing
rules, according to which j finds its complement in i, if present, and forms strong
bonds with it. By attaching to it a fluorescent label, it is possible to determine
if j has hybridized with its complement in i.

The results of the experiments are stored in the 0-1 matrix M , which can be
interpreted as follows: Mij = 1 if and only if probe j appears in clone i. Due
to experimental errors, some clones may be chimeric. A chimeric clone consists
of two or more distinct fragments from the chromosome instead of only one.
Other experimental errors are false positives (Mij = 1 but i does not contain
j) and false negatives (Mij = 0 but i contains j). The Probe Mapping Problem
consists in: given a clone vs probe matrix M , determine in which order the
probes occur on the chromosome. The solution corresponds to a permutation
of the columns of M . Note that, when there are no chimeric clones and no
false positive/negatives, the correct ordering of the probes is such that, after
rearranging the columns, in each clone (row of M) the elements “1” appear
consecutively. Such a matrix is said to have the consecutive 1 property. Testing
if a matrix has the consecutive 1 property, and finding the order that puts the
1s consecutively in each row, is a well known polynomial problem [16].

Under the assumption of possible errors in the data, the problem of deter-
mining the correct probe order is NP-hard, and Alizadeh et al. [3] have described
an optimization model in which the best solution corresponds to the order min-
imizing

v(M ′) =

n−1
∑

j=1

c(M ′
j , M

′
j+1). (47)

Here, M ′ is a matrix obtained by permuting the columns of M , M ′
k denotes the

k-th column of M ′ and c(x, y) is the cost of following a column x with a column y,
both viewed as binary vectors. Assuming there are no false positive/negatives,
and that there is a low probability for a clone to be chimeric, c(x, y) can be
taken as the Hamming distance of x and y. Then, the objective becomes that of
minimizing the total number of times that a block of consecutive 1s is followed
by some 0s and then by another block of consecutive 1s, on the same row (in
which case, the row would correspond to a chimeric clone).
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It is easy to see that the optimization of v(M ′) is a TSP problem (in fact, a
Shortest Hamiltonian Path problem). In their code, Alizadeh et al. used some
standard TSP heuristics, such as 2-OPT and 3-OPT neighborhood search, and
a Simulated Annealing approach. The procedure was tested on simulated data,
for which the correct solution was known, as well as real data for chromosome
21. The experiments showed that, for several cost functions c, depending on the
simulation model adopted, the TSP solutions approximate very well the correct
solutions.

A very similar problem concerns the construction of Radiation Hybrid (RH)
maps. Radiation hybrids are obtained by (i) breaking, by radiation, a human
chromosome into several random fragments (the markers) (ii) fusing the radiated
cells with rodent normal cells. The resulting hybrid cells, may retain one, none
or many of the fragments from step (i).

For each marker j and each radiation hybrid i, an experiment can tell if j
was retained by i or not. Hence, the data for m radiation hybrids and n markers
can be represented by a 0-1 matrix M . As before, the problem consists in or-
dering the markers, given M . The problem is studied in Ben Dor et al. [9, 10].
Two different measures are widely used to evaluate the quality of a possible
solution. The first is a combinatorial measure, called Obligate Chromosome
Breaks (OCB), while the second is a statistically based, parametric method of
maximum likelihood estimation (MLE). For a solution π, let M ′ be the matrix
obtained from M after rearranging the columns according to π. The first mea-
sure is simply given by the number of times that, in some row of M ′, a 0 is
followed by a 1, or vice versa. As we already saw, the objective of minimizing
this measure is achieved by minimizing v(M ′), defined in (47), when c(x, y) is
the Hamming distance.

In the MLE approach, the goal is to find a permutation of the markers and
estimate the distance (breakage probability) between adjacent markers, such
that the likelihood of the resulting map is maximized. The likelihood of a map
(consisting of a permutation of the markers, and distances between them) is the
probability of observing the RH data, given the map.

The reduction of MLE to TSP is carried out in three steps, as described in
Ben Dor [8]. First, the retention probability is estimated. Then, the breakage
probability between each pair of markers is estimated. Finally, the costs c(x, y)
are defined such that the total value of (47) is equal to the negative logarithm of
the likelihood of the corresponding permutation. Therefore, minimizing v(M ′)
is equivalent to maximizing the logarithm of the likelihood, and hence, to max-
imizing the likelihood.

Although the OCB and MLE approaches are different, it can be shown that,
under the assumption of evenly spaced markers, these two criteria are roughly
equivalent. As a result, in this case it is enough to optimize the OCB objective,
and the order obtained will optimize MLE as well. However, if the assumption
is not met, the two objectives differ. At any rate, the optimization of both
objectives corresponds to the solution of a TSP problem. In their work, Ben
Dor at al. [9, 10] used Simulated Annealing, with the 2-OPT neighborhood
structure of Lin and Kernighan [62], for the solution of the TSP.
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The software package RHO (Radiation Hybrid Optimization), developed by
Ben Dor et al., was used to compute RH maps for the 23 human chromosomes.
For 18 out of 23 chromosomes, the maps computed with RHO were identical
or nearly identical to the the corresponding maps computed at the Whitehead
Institute, by experimental, biological, techniques. For the remaining 5 chromo-
somes, the maps computed by using RHO were superior to the Whitehead maps
with respect to both optimization criteria [10].

In [2], Agarwala et al. describe an improvement of the RHO program, ob-
tained by replacing the simulated annealing module for the TSP with the state-
of-the-art TSP software package, CONCORDE [4]. In a validating experiment,
public data (i.e., the panels Genebridge 4 and Stanford G3) were gathered from
a radiation hybrid databank, and new maps were computed by the program.
The quality of a map was accessed by comparing how many times two markers,
that appear in some order in a published sequence deposited on GenBank, are
put in the opposite order by the solution (i.e., the map is inconsistent with the
sequence). It was shown that the public maps for Genebridge 4 and G3 were
inconsistent for at least 50% of the markers, while the maps computed by the
program were far more consistent.

We end this section by mentioning one more mapping problem, the Physical
Mapping with end-probes, for which a Branch-and-Cut approach was proposed
by Christof et al. [26]. The problem has a similar definition that the problems
discussed above. The main difference is that some probes are known to be
end-probes, i.e., coming from the ends of some clone.

7 Applications of Set Covering

Together with the TSP, the Set Covering (SC) problem is perhaps the only
other notorious Combinatorial Optimization problem to which a large number
of Computational Biology problems have been reduced. In this section we will
review a few applications of this problem to areas such as primer design for
PCR reactions and tissue classification in microarrays.

As described in Section 2.3, PCR is an experiment by which a DNA region
can be amplified several thousand of times. In order to do so, two short DNA
fragments are needed, one which must precede, and the other which must fol-
low, the region to be amplified. These fragments are called primers, and their
synthesis is carried on by specialized laboratories. The preparation of primers
is delicate and expensive and hence, in the past years, an optimization problem
concerning primer design has emerged. The goal is to determine the least ex-
pensive set of primers needed to perform a given set of reactions. The problem,
in its most simplified version, can be described as follows.

Given a set S = {S1, . . . , Sn} of strings (DNA sequences), find a set P =
{p1, . . . , pn} of pairs of strings, where each pi = (si, ei). For each i ∈ {1, . . . , n},
si and ei must be substrings of Si, of length at least k (a given input parameter).
The objective requires to minimize |P|.

The problem can be readily recognized as a SC, where the strings in S are
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the elements to be covered. Let A be the set of all substrings of length k.
Viewing each pair (ai, aj) ∈ A ×A as a set Aij , consisting of all strings which
contain both ai and aj , the primer design problem corresponds the SC problem
with sets Aij and universe S.

A heuristic approach to this problem was proposed by Pearson et al. [71] who,
instead of solving once the SC described above, solved two times a different SC,
to find both ends of each primer-pair. In their SC reduction, each element a ∈ A
is viewed as a set, consisting of all strings which contain it. One of the main
uses of PCR is that it provides an effective membership test for a sequence (e.g.,
a protein) and a certain family. The idea is that, given a set of primers designed
for a family F and a new sequence s, if one of the primer-pairs amplifies part
of s, then s belongs to F , and otherwise it does not. In many cases (e.g., by
performing a multiple alignment of the known family sequences) it is possible
to find a short sequence common to all the elements of F (but perhaps also to
elements not in F), which can be used as one of the primers in each primer-pair.
In this case, the SC reduction described by Pearson et al. correctly minimizes the
total number of primers to synthesize. Finally, a heuristic, greedy, approach to
minimize the number of primers to use in multiplex PCR reactions was employed
by Nicodeme and Steyaert [70].

A second application of the SC problem arises in the context of microarrays,
also called DNA chips. A microarray is a device which allows for a massively
parallel experiment, in which several samples (targets) are probed at once. The
experiment can determine, for each sample, the amount of production of mRNA
for each of a given set of genes. The production of mRNA is directly proportional
to the level of expression of a gene. In an application of this technology, one may
compare samples from healthy cells and cancer cells, and highlight an excess in
the expression of some genes, which may hint at the cause of the disease.

Physically, a microarray is an array on a chip, in which the rows (up to some
hundreds) are indexed by a set of samples (e.g. tissues), while the columns
(some thousands) are indexed by a set of genes. To each cell of the chip are
attached a large number of identical short DNA sequences (probes). The probes
along each column (corresponding to a gene g) are designed specifically to bind
(under Watson-Crick complementarity) to the mRNA sequence encoded by the
gene g.

After letting a set of fluorescently-labeled samples hybridize to each of the
chip cells, an image processing software detects the amount of DNA that has
been “captured” in each cell. The result is a matrix M of numbers, where
M [s, g] represents the amount of expression of gene g in sample s. The matrix
is usually made binary by using a threshold, so that M [s, g] = 1 if and only if
a gene g is expressed (at a sufficiently high level) by a sample s.

Given a binary matrix M containing the results of microarray hybridization,
several optimization problems have been studied which aim at retrieving useful
information from M . One such problem concers the use of gene expression to
distinguish between several types of tissues (e.g., brain cells, liver cells, etc.).
The objective is to find a subset G of the genes such that, for any two tissues s 6=
s′, there exists at least a gene g ∈ G with M [s, g] 6= M [s′, g], and the cardinality

40



of G is minimum. This problem is equivalent to a well known NP-hard problem,
the Minimum Test Collection (problem [SP96], Garey and Johnson [31]), and
has been studied by Halldorsson et al. and De Bontridder et al.[41, 15, 14]. In
order to solve the problem, Haldorsson et al. propose the following reduction to
the SC. Each pair of tissues (s, s′) is an element of the universe set, and each gene
g corresponds to the subset of those pairs (s, s′) for which M [s, g] 6= M [s′, g].

A variant of this problems, that is also of interest to Computational Biology,
is the following: the input tissues are partitioned in k classes, and the problem
consists again in finding a minimum subset of genes G such that, whenever
two samples s and s′ are not from the same class, there is a gene g ∈ G with
M [s, g] 6= M [s′, g]. The special case of k = 2 is very important in the following
situation: Given a set of healthy cells and a set of tumor cells, we want to find
a set of genes G such that there is always always a gene g ∈ G whose expression
level can distinguish any healthy sample from any tumor one. The knowledge of
the expression levels for such a set of genes would constitute a valid diagnostic
test to determine the presence/absence of a tumor in a new input sample.

8 Conclusions

In this survey we have reviewed some of the most successful Mathematical
Programming approaches to Computational Biology problems of the last few
years. The results described show, once more, how profitably the sophisti-
cated optimization techniques of Operations Research can be applied to a non-
mathematical domain, provided the difficult phase of problem modeling has been
successfully overcome. Clearly, the help of a biology expert is vitally needed in
the modeling phase. However, we cannot stress hardly enough how important
it is for the optimization expert to learn the language of molecular biology, in
order to become a more active player during the critical problem-analysis phase.

Although this survey has touched many problems from different application
areas, the number of new results which employ Mathematical Programming
techniques is steadily increasing, and it is easy to foresee applications of these
techniques to more and more new domains of Computational Biology. For in-
stance, very recently a Branch-and-Cut approach was proposed for the solution
of a protein fold prediction problem. The approach, by Xu et al. [86], tries to de-
termine the best “wrapping”(called threading) of a protein sequence to a known
3-D protein structure, and bears many similarities to the models described in
Section 3.2 and Section 3.3 for structure and sequence alignments.

Finally, besides the problems described in this survey, we would like to men-
tion that Mathematical Programming techniques have been also successfully
applied to related problems, arising in clinical biology and medicine. Some of
these problems are concerned with the optimization of an instrument’s use, or
the speed-up of an experiment. Among the most effective approaches for this
class of problems, we recall the works of Eva Lee et al., who developed Inte-
ger Programming models for the optimal schedule of clinical trials, and for the
radiation treatment of prostate cancer [58, 56, 55, 57].
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