Università degli Studi di Udine

Dottorato di Ricerca in Ingegneria Industriale e dell'Informazione

Ph.D. Thesis

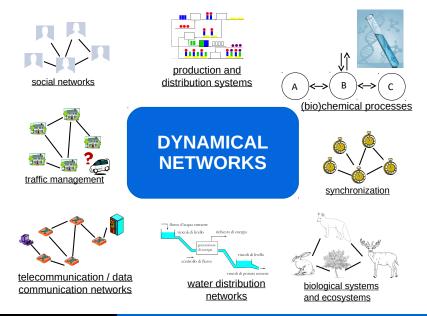
STRUCTURAL ANALYIS AND CONTROL OF DYNAMICAL NETWORKS

Giulia Giordano

Supervisor: Prof. Franco Blanchini

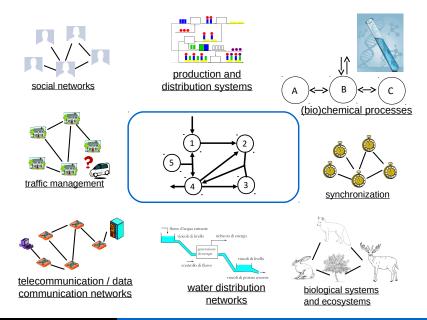
Udine, April 8, 2016

Dynamical networks



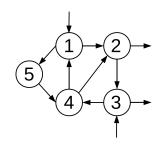
Giulia Giordano

Dynamical networks: graph representation



Structure

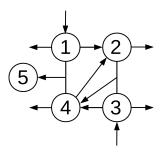
Graph:



Structure

Graph:

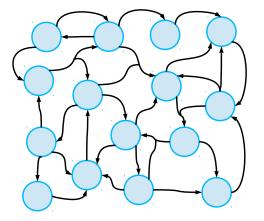
Hypergraph:



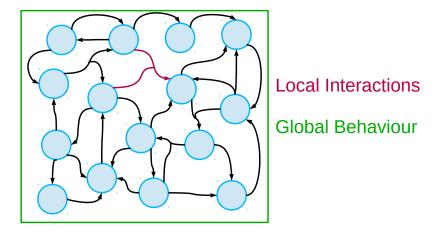
Graph representation: nodes

Nodes: Agents

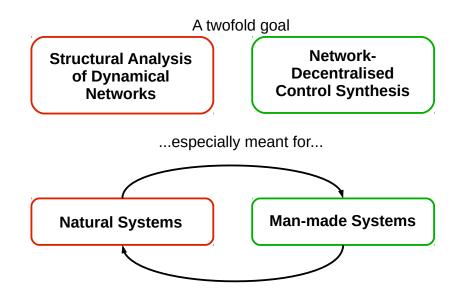
Graph representation: arcs



Arcs: Interactions



Dynamical networks: structural analysis and control



Structural analysis of dynamical networks

Structural analysis

Structural properties

• Parameter-free approach: system structure

Structural analysis

Explain behaviours based on the system inherent structure (graph)

Structural properties

• Parameter-free approach: system structure

Structural analysis

Explain behaviours based on the system inherent structure (graph)

• Structurally assess fundamental properties

Structural properties

Satisfied by **all** the systems of a **family** specified by a **structure**, without numerical bounds.

Structural properties

• Parameter-free approach: system structure

Structural analysis

Explain behaviours based on the system inherent structure (graph)

• Structurally assess fundamental properties

Structural properties

Satisfied by all the systems of a family specified by a structure, without numerical bounds.

• Applications to biochemical systems

Structural properties in nature

Biological systems \rightarrow extremely robust: fundamental properties preserved despite huge uncertainties and parameter variations.

Giulia Giordano

The BDC-decomposition

$$\dot{x}(t) = Sg(x(t)) + g_0, \qquad g \text{ monotonic functions}$$

The BDC-decomposition

$$\dot{x}(t) = Sg(x(t)) + g_0, \qquad g \text{ monotonic functions}$$

Local BDC-decomposition

The Jacobian can be decomposed as:

$$J(x) = \frac{\partial Sg(x)}{\partial x} = B\Delta(x)C, \qquad \Delta(x) \succ 0.$$

The BDC-decomposition

$$\dot{x}(t) = Sg(x(t)) + g_0, \qquad g \text{ monotonic functions}$$

Local BDC-decomposition

The Jacobian can be decomposed as:

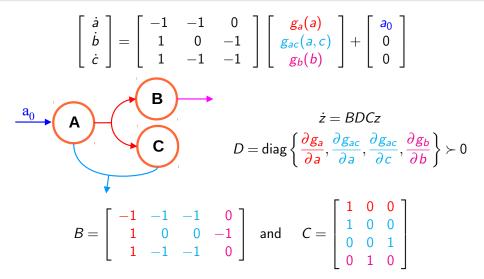
$$J(x) = \frac{\partial Sg(x)}{\partial x} = B\Delta(x)C, \qquad \Delta(x) \succ 0.$$

Global BDC-decomposition

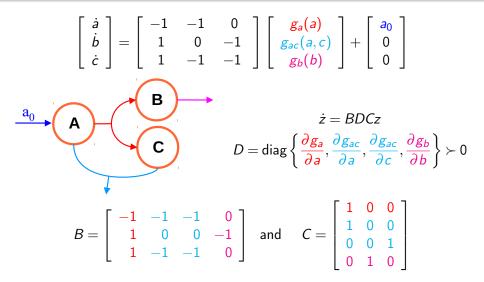
Given the equilibrium \bar{x} , $z \doteq x - \bar{x}$. The system can be rewritten as:

$$\dot{z}(t) = [BD(z)C] z(t), \qquad D(z) \succ 0.$$

BDC-decomposition: example



BDC-decomposition: example



Structure: parameter free, no numerical bounds.

Giulia Giordano

Structurally assess stability: polyhedral Lyapunov functions

Absorb the nonlinear system in a Linear Differential Inclusion

$D(z(t)) \rightarrow D(t)$ $\dot{z}(t) = [BD(t)C] \ z(t), \quad D(t) \succ 0.$

F. Blanchini and G. Giordano, "Piecewise-linear Lyapunov Functions for Structural Stability of Biochemical Networks", *Automatica*, 2014

Giulia Giordano

Structurally assess stability: polyhedral Lyapunov functions

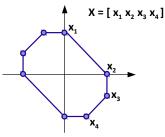
Absorb the nonlinear system in a Linear Differential Inclusion

$\dot{z}(t) = [BD(t)C] z(t), \quad D(t) \succ 0.$

Iterative algorithm to compute

 $D(z(t)) \rightarrow D(t)$

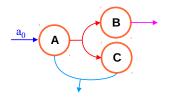
the unit ball of the polyhedral Lyapunov function (if any).



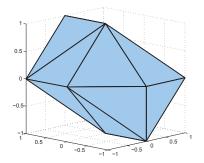
F. Blanchini and G. Giordano, "Piecewise-linear Lyapunov Functions for Structural Stability of Biochemical Networks", *Automatica*, 2014

Giulia Giordano

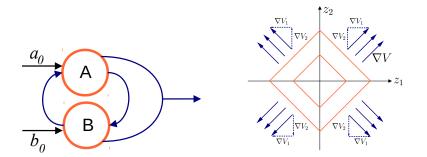
Structurally assess stability: example



The procedure converges \implies structurally stable



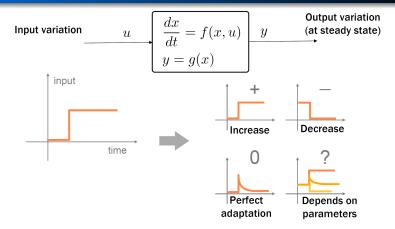
Structurally assess stability: polyhedral... why?



Claim

The only structural Lyapunov function is polyhedral!

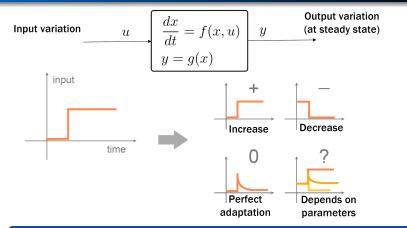
Structural steady-state analysis: the influence matrix



G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, "Computing the Structural Influence Matrix for Biological Systems", *J. Math. Biol.*, 2015

Giulia Giordano

Structural steady-state analysis: the influence matrix



Structural influence of variable j on variable i

Assuming stability, $\Sigma_{ij} \in \{+, -, 0, ?\}$: sign of the steady-state variation of $x_i(\infty)$ due to a step input acting on x_j .

G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, "Computing the Structural Influence Matrix for Biological Systems", *J. Math. Biol.*, 2015

Giulia Giordano

$$\Sigma_{ij}=H_i(-BDC)^{-1}E_j,$$

H output matrix, *E* input matrix \rightarrow efficient vertex algorithm

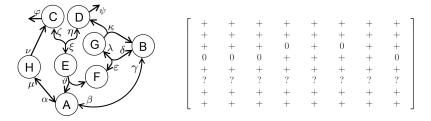
G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, "Computing the Structural Influence Matrix for Biological Systems", *J. Math. Biol.*, 2015

Giulia Giordano

$$\Sigma_{ij}=H_i(-BDC)^{-1}E_j,$$

H output matrix, *E* input matrix \rightarrow efficient vertex algorithm

Network from Shinar&Feinberg (2010)



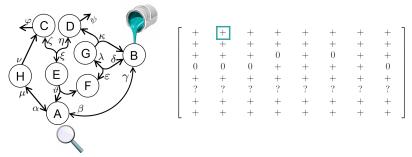
G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, "Computing the Structural Influence Matrix for Biological Systems", *J. Math. Biol.*, 2015

Giulia Giordano

$$\Sigma_{ij}=H_i(-BDC)^{-1}E_j,$$

H output matrix, *E* input matrix \rightarrow efficient vertex algorithm

Network from Shinar&Feinberg (2010)

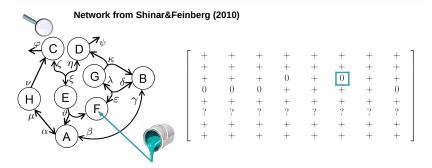


G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, "Computing the Structural Influence Matrix for Biological Systems", *J. Math. Biol.*, 2015

Giulia Giordano

$$\Sigma_{ij}=H_i(-BDC)^{-1}E_j,$$

H output matrix, E input matrix \rightarrow efficient vertex algorithm



G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, "Computing the Structural Influence Matrix for Biological Systems", *J. Math. Biol.*, 2015

Giulia Giordano

Oscillatory/multistationary systems: structural classification

Sign-definite systems, globally bounded

	Candidate oscillator	Candidate multistationary
Weak	A negative cycle exists	A positive cycle exists
Strong	All cycles are negative	All cycles are positive

F. Blanchini, E. Franco and G. Giordano, "A Structural Classification of Candidate Oscillators and Multistationary Biochemical Systems", *Bull. Math. Biol.*, 2014

Giulia Giordano

Oscillatory/multistationary systems: structural classification

Sign-definite systems, globally bounded

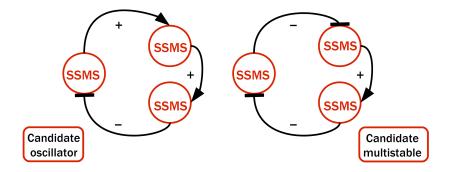
	Candidate oscillator	Candidate multistationary
Weak	A negative cycle exists	A positive cycle exists
Strong	All cycles are negative	All cycles are positive
	didate illator P_2 - P_1 + r_2 - P_1 + r_2 - P_1 • stable equ • unstable e	

F. Blanchini, E. Franco and G. Giordano, "A Structural Classification of Candidate Oscillators and Multistationary Biochemical Systems", *Bull. Math. Biol.*, 2014

Giulia Giordano

Oscillatory/multistationary aggregate monotone systems

Analogous results for the sign-definite interconnection of Structurally Stable Monotone Subsystems



F. Blanchini, E. Franco and G. Giordano, "Structural Conditions for Oscillations and Multistationarity in Aggregate Monotone Systems", *IEEE CDC*, 2015

Giulia Giordano

Network-decentralised control of dynamical networks

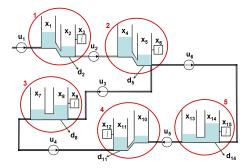
Network-decentralised control

Decoupled subsystems interact due to control agents

System consisting of N subsystems, connected by control agents

$$\dot{x}(t) = Ax(t) + Bu(t) + d(t)$$

 $A = diag\{A_1, A_2, \dots, A_N\}$ block-diagonal; *B* block-structured

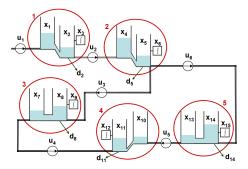


Decoupled subsystems interact due to control agents

System consisting of N subsystems, connected by control agents

$$\dot{x}(t) = Ax(t) + Bu(t) + d(t)$$

 $A = diag\{A_1, A_2, \dots, A_N\}$ block-diagonal; *B* block-structured



• A centralised control can be too expensive or infeasible

Giulia Giordano

Network-decentralised control: the concept

Local control agents govern global behaviour

Network-decentralised state-feedback control

Agents control a **subset of subsystems** with a strategy based on information about **those subsystems only**. Linear case: the feedback matrix has a structure (B^{\top}) given by the graph.

F. Blanchini, E. Franco, G. Giordano, "Structured-LMI Conditions for Stabilizing Network-Decentralized Control", *IEEE CDC*, 2013

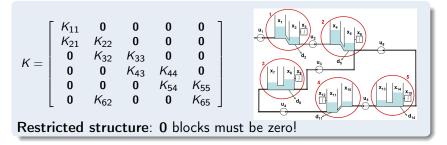
Giulia Giordano

Network-decentralised control: the concept

Local control agents govern global behaviour

Network-decentralised state-feedback control

Agents control a subset of subsystems with a strategy based on information about those subsystems only. Linear case: the feedback matrix has a structure (B^{\top}) given by the graph.



F. Blanchini, E. Franco, G. Giordano, "Structured-LMI Conditions for Stabilizing Network-Decentralized Control", *IEEE CDC*, 2013

Giulia Giordano

Theorem (Network-decentralised stabilisability)

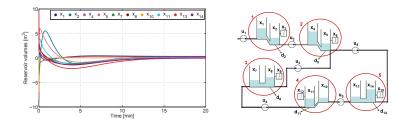
Assume that there are no common eigenvalues with nonnegative real part between two distinct blocks A_i and A_k . Then the system can be stabilised by a network-decentralised control if and only if it can be stabilised.

F. Blanchini, E. Franco, G. Giordano, "Network-Decentralized Control Strategies for Stabilization", *IEEE Trans. Autom. Control*, 2015

Giulia Giordano

Theorem (Network-decentralised stabilisability)

Assume that there are no common eigenvalues with nonnegative real part between two distinct blocks A_i and A_k . Then the system can be stabilised by a network-decentralised control if and only if it can be stabilised.

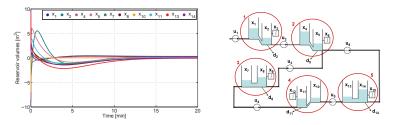


F. Blanchini, E. Franco, G. Giordano, "Network-Decentralized Control Strategies for Stabilization", *IEEE Trans. Autom. Control*, 2015

Giulia Giordano

Theorem (Network-decentralised stabilisability)

Assume that there are no common eigenvalues with nonnegative real part between two distinct blocks A_i and A_k . Then the system can be stabilised by a network-decentralised control if and only if it can be stabilised.



The result holds also for extended buffer systems $(A_i \text{ asymptotically stable/marginally stable with } \lambda = 0).$

F. Blanchini, E. Franco, G. Giordano, "Network-Decentralized Control Strategies for Stabilization", *IEEE Trans. Autom. Control*, 2015

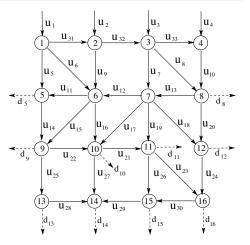
Giulia Giordano

Network-decentralised robustness and optimality

Saturated network-decentralised control

In the presence of control constraints (limited flow)

 \rightarrow asymptotically optimal in norm



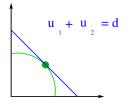
F. Blanchini, E. Franco, G. Giordano, V. Mardanlou, P. L. Montessoro, "Compartmental Flow Control: Decentralisation, Robustness and Optimality", *Automatica*, 2016

Network-decentralised robustness and optimality

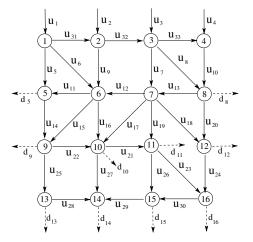
Saturated network-decentralised control

In the presence of control constraints (limited flow)

 \rightarrow asymptotically optimal in norm



F. Blanchini, E. Franco, G. Giordano, V. Mardanlou, P. L. Montessoro, "Compartmental Flow Control: Decentralisation, Robustness and Optimality", *Automatica*, 2016



Collective animal behaviour \iff Swarm robotics

