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Dynamical networks: graph representation
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Structure

Graph:

Hypergraph:
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Graph representation: nodes

Nodes: Agents

Giulia Giordano Structural Analysis and Control of Dynamical Networks



Graph representation: arcs

Arcs: Interactions
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Local interactions ⇒ Global behaviour

Local Interactions

Global Behaviour
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Dynamical networks: structural analysis and control

A twofold goal

Structural Analysis 
of Dynamical 

Networks

...especially meant for...

Network-
Decentralised 

Control Synthesis

Natural Systems Man-made Systems
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Structural analysis of dynamical networks

Structural analysis
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Structural properties

Parameter-free approach: system structure

Structural analysis

Explain behaviours based on the system inherent structure (graph)

Structurally assess fundamental properties

Structural properties
Satisfied by all the systems of a family specified by a structure,
without numerical bounds.

Applications to biochemical systems

Structural properties in nature
Biological systems → extremely robust: fundamental properties
preserved despite huge uncertainties and parameter variations.
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The BDC-decomposition

ẋ(t) = Sg(x(t)) +g0, g monotonic functions

Local BDC-decomposition
The Jacobian can be decomposed as:

J(x) =
∂Sg(x)

∂x
= B∆(x)C , ∆(x)� 0.

Global BDC-decomposition

Given the equilibrium x̄ , z .
= x− x̄ . The system can be rewritten as:

ż(t) = [BD(z)C ] z(t), D(z)� 0.
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ẋ(t) = Sg(x(t)) +g0, g monotonic functions

Local BDC-decomposition
The Jacobian can be decomposed as:

J(x) =
∂Sg(x)

∂x
= B∆(x)C , ∆(x)� 0.

Global BDC-decomposition

Given the equilibrium x̄ , z .
= x− x̄ . The system can be rewritten as:
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BDC-decomposition: example ȧ

ḃ
ċ

=

 −1 −1 0
1 0 −1
1 −1 −1

 ga(a)
gac(a,c)
gb(b)

+

 a0
0
0


B

C

A
a0 ż = BDCz

D = diag
{

∂ga
∂a

,
∂gac
∂a

,
∂gac
∂c

,
∂gb
∂b

}
� 0

B =

 −1 −1 −1 0
1 0 0 −1
1 −1 −1 0

 and C =


1 0 0
1 0 0
0 0 1
0 1 0



Structure: parameter free, no numerical bounds.
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Structurally assess stability: polyhedral Lyapunov functions

Absorb the nonlinear system in a Linear Differential Inclusion

D(z(t))→ D(t)

ż(t) = [BD(t)C ] z(t), D(t)� 0.

Iterative algorithm to compute
the unit ball of the polyhedral Lyapunov function (if any).

x1

x2

x3

x4

X = [ x1  x2  x3  x4 ]

F. Blanchini and G. Giordano, “Piecewise-linear Lyapunov Functions for Structural
Stability of Biochemical Networks”, Automatica, 2014
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Structurally assess stability: example
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Structurally assess stability: polyhedral... why?

A

B

a0

b0   

Claim
The only structural Lyapunov function is polyhedral!
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Structural steady-state analysis: the influence matrix

Structural influence of variable j on variable i

Assuming stability, Σij ∈ {+,−,0,?}: sign of the steady-state
variation of xi (∞) due to a step input acting on xj .

G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, “Computing the Structural
Influence Matrix for Biological Systems”, J. Math. Biol., 2015
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The structural influence matrix

For systems admitting a BDC decomposition

Σij = Hi (−BDC )−1Ej ,

H output matrix, E input matrix → efficient vertex algorithm

Network from Shinar&Feinberg (2010)

G. Giordano, C. Cuba Samaniego, E. Franco, F. Blanchini, “Computing the Structural
Influence Matrix for Biological Systems”, J. Math. Biol., 2015
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Oscillatory/multistationary systems: structural classification

Sign-definite systems, globally bounded

Candidate 
oscillator

Candidate 
multistable

F. Blanchini, E. Franco and G. Giordano, “A Structural Classification of Candidate
Oscillators and Multistationary Biochemical Systems”, Bull. Math. Biol., 2014
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Oscillatory/multistationary aggregate monotone systems

Analogous results for the sign-definite interconnection
of Structurally Stable Monotone Subsystems

F. Blanchini, E. Franco and G. Giordano, “Structural Conditions for Oscillations and
Multistationarity in Aggregate Monotone Systems”, IEEE CDC, 2015
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Network-decentralised control of dynamical networks
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Decoupled subsystems interact due to control agents

System consisting of N subsystems, connected by control agents

ẋ(t) = Ax(t) +Bu(t) +d(t)

A = diag{A1,A2, . . .AN} block-diagonal; B block-structured

A centralised control can be too expensive or infeasible
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Network-decentralised control: the concept

Local control agents govern global behaviour

Network-decentralised state-feedback control
Agents control a subset of subsystems with a strategy based on
information about those subsystems only. Linear case: the
feedback matrix has a structure (B>) given by the graph.

K =


K11 0 0 0 0
K21 K22 0 0 0
0 K32 K33 0 0
0 0 K43 K44 0
0 0 0 K54 K55
0 K62 0 0 K65


Restricted structure: 0 blocks must be zero!

F. Blanchini, E. Franco, G. Giordano, “Structured-LMI Conditions for Stabilizing
Network-Decentralized Control”, IEEE CDC, 2013
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Stabilisability: a general theorem

Theorem (Network-decentralised stabilisability)

Assume that there are no common eigenvalues with
nonnegative real part between two distinct blocks Ai and Ak .
Then the system can be stabilised by a network-decentralised
control if and only if it can be stabilised.
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The result holds also for extended buffer systems
(Ai asymptotically stable/marginally stable with λ = 0).

F. Blanchini, E. Franco, G. Giordano, “Network-Decentralized Control Strategies for
Stabilization”, IEEE Trans. Autom. Control, 2015
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Network-decentralised robustness and optimality

Saturated network-decentralised control
In the presence of control constraints (limited flow)
→ asymptotically optimal in norm

Minimum norm means
fairness, equi-distribution

F. Blanchini, E. Franco,
G. Giordano, V. Mardanlou,
P. L. Montessoro, “Compartmental
Flow Control: Decentralisation,
Robustness and Optimality”,
Automatica, 2016
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Learn from network-decentralised control in nature

Collective animal behaviour ⇐⇒ Swarm robotics
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Thank you!

Structural Analysis 
of Dynamical 

Networks

Network-
Decentralised 

Control Synthesis

Natural Systems Man-made Systems
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