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Supplemental Information

S1 Electrostatic energy

We here further discuss the expressions for Ugr reported in Sec.2 for either a MFMIM or a MFIM capacitor. For
both systems the starting point is the Ugy definition in Eq.3.

As already mentioned in the main text, in the MEMIM capacitor the ferroelectric and dielectric fields are in-
dependent of f:(x,y) and we have EFVT:(CDVT—PAv)/(l‘FC()), Vp= (CFVT—I-PA\/)/C(), where Py = (Z j)/l’lD
is the average polarisation. By substituting the Er 7 and Vp expressions in Eq.3 we obtain
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where the total device area is A=np d* and we grouped terms proportional to va, V2 and V7 Pyy. Eq.S1 coincides
with Eq.6, with the depolarisation energy Uy, for the MEMIM system defined in Eq.7.

In the MFIM structure the calculation of the ferroelectic and dielectric field is a three-dimensional problem,
that we can approach by recalling that Vyr and each spontaneous polarisation P, are the sources of the electric
fields. Because the system is linear, the superposition of effects allows us to write
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where Gpr;(7) is the Green’s function for the field Erp7(F)=Er,(7,—tr) of a unitary charge per unit area in
domain &, while the effect of Vy is simply described by a capacitor divider. We can similarly write the potential
Vp(F) as
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where Gp ;(7) is the Green’s function for Vp(7) of a unitary charge in domain 4. By substituting Eqs.S2, S3 in
Eq.3 we recognise that the calculation of Ugr entails the evaluation of the integral of any Gp j, over any domain
area Dj, and of any Gpr ,(7) over the device area A. Consequently we introduce the capacitances
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as well as the adimensional coefficients
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which allow us to write the Ugy of the MFIM system as
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By the definition of C;;, we see that by summing over 7 we obtain the Green’s function for Vp(7) in domain j of
a uniform charge in the entire device area, so that we have
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where the second equality is due to the fact that the first sum is independent of the domain j.



In consideration of the Neumann boundary conditions used for the electric field at the edges of the MFIM
structure (see Supplementary Section S7), analytical derivations suggest and numerical calculations confirm
that the B, defined in Eq.S5 evaluates to B,~—Cr/Cp and it is independent of & (not shown). By substituting
Bj~—Cr/Cy in Eq.S6, we obtain the Ug expression for the MFIM capacitor given by Eq.6, with the depolarisa-
tion energy Uy, defined in Eq.7.

For all the MIFM systems analysed in this work the capacitances C;;, were evaluated numerically and then
used in all analyses. More details about the three-dimensional calculations of the capacitances are given in Sup-
plementary Section S7.

S2 Conditions for a stable NC operation in a MFMIM system

For convenience of notation we here introduce 6 = (¢rk)/(dw) and n = 1/Cp. Given the Laplacian matrix L and
the all-one matrix Oy, both having size np, we prove that
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where 0,,;,[M] denotes the smallest eigenvalue of matrix M and o} (L) denotes the second smallest eigenvalue of
the Laplacian L.
The eigenvalues of matrix OC’;I’ are 1, and 0 with multiplicity np — 1. Since the graph is connected, L has an

eigenvalue 0 with multiplicity 1, while all the other eigenvalues o;(L) < 6»(L) < --- < o,,—1(L) are real and
Odep

L,
positive. Matrix L and matrix share the normalised eigenvector v = \ﬁ (where 1,,, denotes an all-one vector

of size np), which is associated w1th the O eigenvalue of L (i.e. Lv = 0) and with the 1 eigenvalue of nLI;’” (i.e.

Ouep, _ ).
np
Let us complement vector v with matrix V € R">*"~1 to obtain an orthonormal matrix T = [v V] (such that
T—! =T7T). We can then apply this transformation to simultaneously diagonalise both matrices:
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where 0,,,_; denotes an all-zero vector of size np — 1, 0,,,—1 an all-zero matrix of size np — 1, and

A =diag{oi(L),...,0,,-1(L)} is the diagonal matrix carrying on the diagonal the nonzero eigenvalues of L. It
is then clear that the spectrum of 0L +n OHL[‘;” is the union of 1 and of the nonzero scaled Laplacian eigenvalues
0oi(L),...,00,,-1(L). Therefore, the smallest eigenvalue is the minimum between 1 and 6o, (L). By recalling
that, for the Laplacian matrix corresponding to a rectangular grid, o1(L)=[2sin(r/(2\/np))]*, we obtain
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that proves the stability condition in Eq.12.

S3 Conditions for a stable NC operation in a MFIM system

In the MFIM case the condition for a stable NC operation is given by Eq.11c, where Cy,,, is defined in Eq.10. We
argue that Cg,, has a large influence on the spectrum of the Jacobian matrix for the MFIM system, in fact Cy,;, can

trk
modify all the eigenvalues of Cy,, + uL, where u = dF_ We have a necessary condition for stability in terms of
w

the entries of Cy,p. In fact, we notice that Eq.11c requires that the inequality PT[Cgep+ULIP > 2|0t|tp || P|* > 0
be fulfilled for all nonzero P vectors. We now take P=1" =[1 11 ...1]T, such that |P||*> = np. Exploiting the
fact that 1T LT = 0, we obtain
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In view of the sum rule in Eq.S7, ):;.’3:1 Cyep(i, j) = np/Cy, the above inequality becomes
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Eq.S13 provides a necessary condition for a stable NC operation of the MFIM system.

S4 Stability of the equilibrium for V; £ 0

Here we discuss how the stability conditions discussed in Sec.3 for the condition all £,=0 and V=0, in fact ensure
stability for any Vr and corresponding P; configurations. All the dynamic systems in Eqs.8a, 8b and 8c can be

recast into the common form P
I = AP+1(P) +1u, (S14)

where A is a symmetric matrix, the vector function f(P) has polynomial components
fi(P) = — (2P +4BP +6YP) /p,

1 is a vector of all ones, and the constant u can be either u = #VT (in the MFM case) or u = # (Cp/Co)Vr (in
the MFMIM and MFIM cases). The Jacobian of the system in Eq.S14, computed at the generic equilibrium point
P, is

J(P) = A —2a/pI—diag{12BP> +30P*} /p = J(0) — D,
where the symmetric matrix J(0) = A —20/p] is the Jacobian computed at the equilibrium P = 0 (shown in
Eqs.9a, 9b and 9c for the three different cases), while the diagonal matrix D = diag{ 12[3131-2 + 301'3,-4 } has nonneg-
ative diagonal entries because 8 > 0 and y > 0.

Now, assume that the symmetric Jacobian J(0) has negative eigenvalues or, equivalently, that it is negative
definite: x" J(0)x < 0 for any vector x # 0. Then, also matrix J(P) is negative definite, because x " Jx = x" J(0)x —
x"Dx < x"J(0)x < 0 for x # 0. Therefore, J(P) has negative eigenvalues.

Hence, to ensure the stability of all possible equilibria with a generic V7, it is enough to guarantee the stability
of the equilibrium P, = 0 corresponding to V7 = 0, which is discussed in the main paper.

SS Statistical dispersion of the ferroelectric anisotropy constants

In actual ferroelectric materials the anisotropy constants &,  and ¥ may have domain to domain variations, and it
has been argued also that, by accounting for such a statistical dispersion, simulations can improve the agreement
with experiments in the analysis of metal-ferroelectric-metal systems.’

A straightforward extension of the stability analysis in Sec.3 shows that, in the presence of a statistical dis-
persion of ¢, stability conditions can still be expressed as in Eqs.11 if we substitute |a| in right hand side of the
equations with 0y,.y, here defined as the maximum |o;|, with i = 1,2... np being an index identifying domains.
If we consider a system consisting of many domains with an average value, |a|,y, of the |o;| constants, the in-
troduction of @i, in the inequalities of Egs.11 inherently implies a more stringent requirement for a stable NC
operation compared to the same system with a negligible dispersion.

We introduced in our analysis a randomness of o, 3; constants (still keeping y=0) and revisited some of the
results in Fig.2 for a MFIM system. In order to have a clear physical interpretation of the statistical dispersion in
the system, our starting point is a statistical dispersion of the ferroelectric coercive field Ec. More precisely, we
used a random generation of the coercive field Ec; in each domain by using a gaussian distribution of E¢ with a
mean value Ec ,,=0.54 MV/cm (corresponding to a=—4.6-108 m/F and $=9.8-10° m>/C?/F, see the beginning
of Sec.3), and for different standard deviations Ec 4.,. Then for each E¢; we calculated the corresponding o, f;
by using the analytical expressions o;=—3+/3E./(2F,), Bi=3v/3E./(2P3), which hold for y=0;> no dispersion
of the remnant polarisation P, was considered in the calculations. The eigenvalues of the Jacobian matrices were

calculated numerically in the condition of all P,=0.
Fig.S1(a) shows an analysis similar to Fig.2(b) but for a fixed Ta;Os thickness tp=13.5 nm and accounting

for a statistical dispersion of @;, B;. In the presence of such a statistical dispersion, each MFIM capacitor is a
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Figure S1: Eigenvalues of the Jacobian matrix and design space for stable NC operation in the presence of statistical dispersion
of the anisotropy constants: a. Maximum eigenvalue G, of the Jacobian matrix for a Hfy 5Zry 50, —Tay;O5 MFIM structure (in the
condition of all P,=0) versus the domain wall coupling factor k. Calculations account for a statistical dispersion of a,  stemming from
a standard deviation Ec 4.,=0.2 MV/cm of the coercive field and correspond to 100 realizations of the MFIM structure. Lines show the
Omax averaged between the realizations, while the error bar symbols indicate the range between minimum and maximum G, among the
different realizations at some k values. Results are shown for different values of the domain number np, and all parameters other than np,
a, B3 are the same as in calculations for zp=13.5 nm in Fig.2(c). b. Regions for stable NC operation for a MFIM structure in the 71 versus
k plane and for different standard deviation E¢ 4, of the coercive field. All parameters other than np, @, f are the same as in Fig.2 for the
case tp=13.5 nm, tp=11.6 nm. Area A=2500nm? and np=100.

statistical realization of a stochastic process and has a distinct set of eigenvalues of the Jacobian matrix, whose
values depend also on the number np of domains. Fig.S1(a) illustrates 0,4, for a standard deviation Ec 4,,=0.2
MV/cm of the coercive field, for 100 realizations and for different np values. For each domain wall coupling
factor k the figure reports the 6,,,, averaged between the realizations (lines), and for some k values the figure also
shows the range between minimum and maximum O, among the different realizations. As it can be seen the
average O,y converges quite quickly by increasing np. Fig.S1(a) also shows that larger k values are required for
a stable NC operation for increasing Ec 4.,. This latter aspect is better illustrated in Fig.S1(b), that revisits the
analysis in Fig.2(d) for t7=11.6nm and for different standard deviation Ec 4., of the coercive field.

The results in Fig.S1(b) show a qualitative trend indicating that a statistical dispersion of the anisotropy con-
stants results in more stringent requirements for the k values necessary for a stable NC operation. In the presence
of such a statistical dispersion, one should more appropriately discuss the probability of a stable NC operation in
a given MFIM system, however such a statistical analysis of the stability properties goes beyond the scope of the
present work.

S6 Influence of interface traps on the stability conditions of a MFIM system

The possible presence of traps at the ferroelectric-dielectric interface has an influence on NC stabilization be-
cause traps can partly screen the ferroelectric polarisation, which has an inherently destabilizing effect. Let us
consider a number, Ng, of discrete trap levels in each domain, denote with E7,; a trap energy in the domain i
(with Tr=1,2,...,Ng and i=1,2,...,np), and indicate with Qr the charge density per unit area due to traps. The
present analysis is developed for a MFIM system, so that we can use a straightforward modification of Eq.8c and
write the overall dynamic system as
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where nr,; is the density of electrons trapped at energy Er, in domain i, while /V; is the corresponding trap density.
Here the emission rate is e,=e,0 Fo[(Er 3—Er,)/KpT], Where e, is a bias independent rate and Fy(n) is the Fermi-
Dirac equilibrium occupation function®. Hence e, depends on the external bias Vr via the position of Ep, with

3The Fermi-Dirac occupation function Fy(1) is defined as Fo(17)=1/[1+exp(1)].
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respect to Ey g and, in particular, it is equal to e,o when Er, is at least a few KT above Ey g, whereas it decays
exponentially for decreasing E7, when E7, is below E;p. The capture rate ¢, is expressed as ¢,=e,exp[(Esp —
Err)/KpT] so that, according to Eq.S15b, the steady-state occupation of traps is in thermodynamic equilibrium
with Erp. The system in Eqs.S15 consists of np+np - Ng equations, hence the inclusion of traps substantially
increases the size of the problem.

The e,, ¢, expressions couple Eq.S15b to Eq.S15a because E7,; depends on the average voltage Vp; at the
ferroelectric-dielectric interface in the domain i. An explicit expression of the coupling between Eq.S15a and
Eq.S15b is given by

Ng
Qri=AE Y (—q)nz; (Sl6a)
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where Er,; is the trap energy referred to Eyp (see Fig.4(e)). Here ®)y and yp are respectively the metal gate
work-function and dielectric electron affinity, Ey is the depth into the dielectric bandgap of the deepest trap, AE
is the energy step between the discrete trap levels, and Eq.S16a assumes traps are acceptor type.

Eqs.S15 and S16 summarize the model that we used for the simulations in Fig.4(f), and in this section we more
formally study the stable NC operation by inspecting the sign of the Jacobian matrix of Eqs.S15. In this respect,
Fig.S2(a) shows an analysis similar to Fig.2(c) but for a fixed Ta;Os thickness tp=5nm and different uniform trap
densities Ny at the Hfjy 5Zrg 50,—Ta,Os interface. As it can be seen, by increasing Nr the Oy, at large k values
progressively increase and the system is eventually driven to instability for a large enough Nr. It is worth noting
that the impact on o,,,, of an increase of Ny in Fig.S2(a) is qualitatively similar to the impact of a 7p reduction
in Fig.2(c). This can be intuitively explained by arguing that the trap capacitance C;=¢*>Nr goes in parallel to
Cp, thus increasing the effective dielectric capacitance and eventually precluding the NC stabilization. This is
confirmed by Fig.S2(b), showing that the charge versus ferroelectric field curves of the MFIM capacitor tend to
deviate from the NC region when N7 increases, with a behavior qualitatively similar to the results in Fig.4(f)
where the pulse width of the trapezoidal input waveform was varied at fixed Ny.
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Figure S2: Eigenvalues of the Jacobian matrix and stable NC operation in the presence of interface traps: a. Maximum eigenvalue
Omax Of the Jacobian matrix (for all P,=0) of a Hf( 5Zry 50, —TayO5 MFIM system versus the domain wall coupling factor k for a uniform
distribution acceptor type traps (extending for 3.2eV below the Ta;Os conduction band minimum) and for an energy spacing AE=7.5
meV. The bias independent emission rate is ¢,0=5.0-107 s~ 1. All other parameters are as in Fig.2(c), except for the Ta, O thicknesses that
is set to tp=5nm. Area A=2500nm? and np=100. b. Charge versus ferroelectric field of the Hf 5Zry 50, —Ta;Os MFIM system for two
different oxide thicknesses, tp, and different trap densities N7.

S7 Numerical methods

Numerical integration of Landau-Ginzburg-Devonshire dynamic equations. In this work the integration
of the LGD equations is obtained with a specifically tailored implicit integrator with an adaptive error control.



The implicit method has been chosen for two main reasons: a) the inherent numerical stability that allows us
to use larger time steps compared to an explicit method; b) the robustness and effectiveness for the solution of
numerically stiff problems having largely different time constants.> The problem at study is in fact numerically
stiff for simulations including interface traps, whose time constants vary in a large range depending on the trap
energy and applied bias, and can be very different compared to the ferroelectric time constants.*

More specifically, we employed a second-order algorithm, namely the trapezoidal numerical integration

d
method (also known as Crank—Nicolson method), that solves a differential equation d—: =f(t,x) in time domain by

using x,.1 = x, + %[ F(tu, Xn) 4 f(tas1,%:41)],> where f is a generic function of time and of a state variable x, and
h=t,y1 —t, is the time step. Because the above expression for x| involves variables evaluated at the instant 7, |
both at the right- and at the left-hand side, at each integration step it is also required to solve a non-linear system
of equations with a Newton—Raphson method, which involves itself the computation of the Jacobian matrix.

The error control, based on the number of the iterations of the Newton—Raphson algorithm, efficiently and
automatically adapts the time-step & to achieve a given accuracy for the results, thus allowing very fast simulations
and overcoming the computational burden introduced by the resolution of the non-linear system.

Three-dimensional electrostatics simulations. For the MFIM capacitor sketched in Fig.1(a) the polarisation in
each domain and the external voltage Vr are the electric field sources of a three-dimensional (3D) electrostatic
problem. In order to tackle such a 3D problem and eventually calculate the capacitances defined in Eq.S4, we
used an on purpose developed simulation tool.

More precisely, we solve the following electrostatic problem in a connected region Q of the 3-D Euclidean
space

0
divD =p (S17)
)

where € is the electric permittivity, £ and D are the electric field and the electric displacement vectors, respectively.
The material parameter € is assumed to be a positive scalar value which is piecewise uniform in each material
region. The region boundary dQ is partitioned into a set of N°+ 1 disjoint equipotential surfaces (electrodes) of
perfect metals JQf and a set of N ! surfaces where the normal component of the electric field vanishes:

N¢ N
Q=Y 00;+ Y 0q. (S18)
k=0 k=1

Electrode d€ is considered as reference for all the voltages of the remaining electrodes, that are supposed to be
assigned. D -7 = 0 is set as boundary conditions on each Q! , where 7 is the outwards oriented normal unit vector
of Q.

The solver implements an electrostatic formulation based on the electric scalar potential,® that expresses phys-
ical laws directly in an algebraic form by using tools from algebraic topology. Physical variables are defined as
fluxes or circulations on oriented geometric elements of a pair of dual interlocked computational grids, while
physical conservation laws are enforced strongly in a metric-free fashion by means of incidence matrices between
grid elements. The metric and the material information are encoded in the discrete counterpart of the constitutive
laws of materials, also referred to as material matrices. The stability and consistency of the method are guaran-
teed by precise properties (symmetry, positive definiteness, geometric consistency) that material matrices have to
fulfill.

The main advantage of this approach with respect to the conventional Finite Element Method is that the mate-
rial matrices for arbitrary polyhedral elements can be geometrically defined, by simple closed-form expressions,
in terms of the geometric elements of the primal and dual grids.
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