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Abstract— Genetic oscillators have a fundamental role in the
regulation not only of intracellular, but also of intercellular
functions: for instance, in the segmentation clock, the syn-
chronised oscillation of neighbouring cells generates spatial
travelling waves that induce segmentation of precursors of
the vertebral column. To investigate this type of phenomena,
we consider the behaviour of two genetic negative feedback
oscillators, each operating in a different cell, coupled by
an intercellular positive-feedback interconnection with delays.
The two coupled systems are nominally identical, but can be
different due to noise and cell-to-cell variability. When they can
be different in general, we study the effect of positive-feedback
and of delay in inducing an oscillatory behaviour. When they
are identical, we study how the intercellular feedback delay
affects the phase difference between the two oscillators.

I. INTRODUCTION

Biomolecular oscillations arise in diverse phenomena,
ranging from circadian rhythms [4], [29] to cell-cycle regu-
lation [18] and single-molecule clocks [23]. Several architec-
tures for biomolecular oscillators are possible, all including
a negative feedback loop, which is necessary for the onset
of sustained oscillations (see [5], [7], [18], [31] and the ref-
erences therein). Negative-feedback oscillators are the most
common [6], [9], [12], [13], [21], but an additional positive
feedback can be beneficial to destabilise the system and
yield robust oscillations [4], [14], [31], [37]. In many cases,
these within-cell oscillations are spatially coupled to their
counterparts in neighbouring cells, leading to population-
level phenomena, such as synchronisation and travelling
waves. Such population-level synchronisation arising from
cell-autonomous oscillators has been an intense area of both
experimental and theoretical research [15], [26], [34], [38].

Synchronisation of the segmentation clock that operates
during vertebrate embryonic development is crucial for the
proper formation of the segmented vertebral column [1], [3],
[17], [22], [25], [32], [39], [40], [42]. The segmentation
clock is implemented by a negative feedback loop, where
a key class of proteins (Hes proteins in mouse, and Her
proteins in zebrafish) inhibit their own expression. While
this intracellular negative feedback yields oscillations within
a cell, cell-to-cell coupling based on notch-delta signalling
connects neighboring oscillators. This cell-to-cell coupling

This research was partially supported by the Aspasia grant and the DTF
grant awarded to G.G. at the TU Delft.

1Delft Center for Systems and Control, Delft University of Technology,
The Netherlands. g.giordano@tudelft.nl

2Electrical and Computer Engineering, Biomedical Engineering
and Mathematical Sciences, University of Delaware, Newark, USA.
absingh@udel.edu

3Department of Mathematics, Computer Science and Physics, University
of Udine, Italy. blanchini@uniud.it

can be modelled as a delayed intercellular positive feedback
loop [25]. This interplay of an intracellular negative feedback
loop and an intercellular positive feedback gives rise to
spatial travelling waves that lead to segmentation of the
precursors of the vertebral column. The phenomenon has
been widely studied in zebrafish [2], [11], [27], [28], but is
fundamental for somitogenesis in all vertebrates and strongly
motivates the study of coupled genetic oscillators [16], [24].

Here, we study a system composed of two interconnected
genetic oscillators, with two questions in mind. First, we
wonder whether non-homogeneity of the two coupled sys-
tems promotes or inhibits oscillations: numerical experiments
show that both cases are possible, and we investigate the phe-
nomenon to understand when oscillations are favoured and
when they are inhibited. Second, when two homogeneous
oscillators are interconnected, we study how their phase shift
depends on the values of the loop delay.

The contributions of this paper are the following.
• We study the linearisation of a nonlinear model for two
coupled genetic oscillators, each based on an intracellular
negative feedback, that are interconnected through a delayed
intercellular positive feedback (Section II).
• When the two subsystems are heterogeneous, we investi-
gate the role of the intercellular feedback strength and of the
delay in the onset of oscillations (Section III). We show that
the interconnection can either promote or inhibit oscillations,
depending on the delay values and on the relation between
the resonance frequencies of the two subsystems.
• When the two oscillators are identical, we give conditions
depending on the intercellular feedback delay to ensure that
the oscillations are in phase or in phase opposition, based on
a regular pattern that depends on the delay (Section IV).

II. COUPLING OF TWO GENETIC OSCILLATORS:
NONLINEAR AND LINEARISED MODEL

Two coupled genetic Goodwin oscillators [20] can be
described by the following nonlinear dynamical system:

ṁ1(t) = f(x1(t), v2(t))− α1m1(t) (1)
ṗ1(t) = β1m1(t)− ε1p1(t)− ζ1p1(t) (2)
ẋ1(t) = ε1p1(t)− δ1x1(t) (3)
ṁ2(t) = f(x2(t), v1(t))− α2m2(t) (4)
ṗ2(t) = β2m2(t)− ε2p2(t)− ζ2p2(t) (5)
ẋ2(t) = ε2p2(t)− δ2x2(t) (6)

where mi are mRNA concentrations, pi protein concentra-
tions, xi active protein concentrations, αi mRNA degradation
rates, βi protein production rates, εi activation rates, while ζi



and δi are protein degradation rates. The feedback strength
is quantified by the Hill function

f(x(t), v(t)) =
k0 + k1v(t)

1 + k1v(t) + k2xh1 (t)

with Hill coefficient h > 0, where k0 is related to mRNA
transcription rates, k1 to intercellular positive feedback and
k2 to intracellular negative feedback. Differently from [41],
the two systems are coupled by the signals

v1(t) = x1(t− τ1) and v2(t) = x2(t− τ2), (7)

delayed because a protein from a cell can activate production
of the protein in the neighbouring cell only after going
through multiple conversion steps that are not instantaneous.

Since f is decreasing with respect to the first argument
(and increasing with respect to the second), the intracellu-
lar feedback is negative. The intercellular feedback due to
delayed signals is instead positive.

The system corresponds to the delayed interconnection of
two nonlinear dynamical subsystems (cf. Fig. 1, top), the first
with input v2 and output y1

.
= x1, and the second with input

v1 and output y2
.
= x2. The state, input and output matrices

for the linearised subsystem, i = 1, 2, are

Ai =

−αi 0 −φi
βi −γi 0
0 εi −δi

 , Bi =

ψi0
0

 ,
Ci =

[
0 0 1

]
,

where γi = εi + ζi, while φ1 and ψ1 (respectively, φ2 and
ψ2) are the absolute values of the derivatives of f(x1, v2)
with respect to x1 and to v2 (respectively, of f(x2, v1) with
respect to x2 and to v1), computed at the equilibrium.

After Laplace transformation, the transfer function from
v2(s) to y1(s) is G̃1(s) = ψ1G1(s), while the transfer
function from v1(s) to y2(s) is G̃2(s) = ψ2G2(s), where

Gi(s) =
βiεi

(s+ αi)(s+ γi)(s+ δi) + βiεiφi
(8)

for i = 1, 2. Then, for (i, j) ∈ {(1, 2); (2, 1)},

yi(s) = ψiGi(s)vj(s), (9)
vi(s) = e−sτiyi(s). (10)

To highlight the intracellular negative feedback loop, we
can write the transfer function Gi(s), i = 1, 2, as the negative
feedback of the transfer function

Fi(s) =
βiεi

(s+ αi)(s+ γi)(s+ δi)
(11)

and the feedback coefficient φi, as shown in Fig. 1, bottom.
We can also define u1(s) = ψ2v1(s) and u2(s) = ψ1v2(s),
so that the coupled oscillators are described by the following
relations in the Laplace domain:

yi(s) = Gi(s)uj(s) =
Fi(s)

1 + φiFi(s)
uj(s), (12)

ui(s) = ψje
−sτiyi(s). (13)
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Fig. 1: Two coupled genetic oscillators. Top: two negative (intra-
cellular) feedback loops coupled by a positive delayed (intercellular)
feedback loop. Bottom: block diagram with the negative loops of
transfer functions Fi and φi and the positive loop with delays e−τis.

with (i, j) ∈ {(1, 2); (2, 1)}. Equivalently, we can write:

yi(s) = Fi(s)
(
−φiyi(s) + ψie

−sτjyj(s)
)
, (14)

with
Fi(s) =

βiεi
(s+ αi)(s+ γi)(s+ δi)

. (15)

III. ROLE OF INTERCELLULAR FEEDBACK AND DELAYS
IN YIELDING OSCILLATIONS

The two coupled subsystems are nominally identical: they
represent oscillations occurring in identical cells belonging to
the same population. However, biologically this is unlikely to
be perfectly satisfied, due to noise and cell-to-cell variability.

Hence, we consider two possibly non-homogeneous sub-
systems and we investigate the effect of the positive feedback
interconnection on their oscillatory behaviour. As observed
in simulation, coupling can have an unpredictable effect on
oscillations, which can be either promoted or inhibited. Here,
we explain why we can have these two possible outcomes.

In the absence of the positive feedback loop (i.e., when
ψ1 = ψ2 = 0), the characteristic polynomials of the two
(decoupled) subsystems are:

pi(s) = (s+ αi)(s+ γi)(s+ δi) + βiεiφi, i = 1, 2. (16)

When ψ1, ψ2 6= 0, the characteristic equation is

p(s)− κe−sτ = 0, (17)

where

p(s) = p1(s)p2(s), (18)
κ = β1β2ε1ε2ψ1ψ2, (19)
τ = τ1 + τ2. (20)
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Fig. 2: Nyquist diagram of the polynomial p(jω) (blue curve),
with its tangent vector at the point where p(jω) = 0 (blue arrow).
Favourable directions are in the green half circle, unfavourable
directions in the red half circle.

To mathematically formulate our question, we assume that:
(I) the first subsystem has one negative real pole and two
purely imaginary poles, p1(jω̄) = p1(−jω̄) = 0 for some
ω > 0;
(II) the second subsystem is stable: p2(s) is Hurwitz.
The first subsystem is in its “limit oscillatory conditions”, i.e.
its linearisation has purely imaginary eigenvalues associated
with oscillatory modes, and we wish to see whether inter-
connecting it with the second subsystem inhibits or promotes
oscillations. We consider favourable an interconnection that
leads to oscillatory instability, which is fundamental, e.g., for
embryonic development in the segmentation clock.

Definition 1: Given τ = τ1 + τ2, the positive feedback
interconnection is:
• favourable if there exists a gain κ∗ such that, for any

gain κ with 0 ≤ κ ≤ κ∗, the two imaginary roots of
the interconnected system transit to the complex right
half plane, hence the system becomes unstable, while
all other roots remain stable (with negative real part);

• unfavourable if there exists a gain κ∗ such that, for any
gain κ with 0 ≤ κ ≤ κ∗, the two imaginary roots of the
interconnected system transit to the complex left half
plane, hence the system becomes stable.

An interconnection can be either favourable or unfavourable,
depending on τ and ω̄.

Let us first visualise our main idea with the help of Fig. 2.
Consider the Nyquist diagram of the polynomial

p(jω) = p1(jω)p2(jω), (21)

which is the blue curve in Fig. 2, at the point ω̄, where
p(jω) = 0. The vector tangent to the Nyquist diagram at
this point is

dp(jω)

dω
= j

dp(jω)

d(jω)
= jp′(jω), (22)

represented in Fig. 2 as the blue arrow.
Now, consider the green half circle centered in zero with

radius 1, which is on the opposite side with respect to the
concavity of the Nyquist diagram, and the complementary
red half circle, on the same side as the concavity. We can

observe that, when the positive feedback loop is added,
the Nyquist diagram of p(jω) is shifted in the direction of
−e−jω̄τ . Then:
• if e−jω̄τ is in the green half circle, then the interconnec-

tion is favourable, because the diagram is locally shifted
to not encircle the origin.

• conversely, if e−jω̄τ is in the red half circle, then the
interconnection is unfavourable, because the diagram is
locally shifted to encircle the origin.

We can also look at how the roots of the closed-loop
polynomial

p(s)− κe−τs (23)

vary depending on κ. The closed-loop polynomial has the
root λ(κ) such that λ(0) = jω̄. The expression

p(λ(κ))− κe−τλ(κ) = 0 (24)

gives us the root λ as an implicit function of k. Then, we can
consider the derivative of λ(κ) with respect to κ, computed
at κ = 0:

dλ(κ)

dκ

∣∣∣∣
κ=0

= − −e−λ(κ)τ

p′(λ) + κλ(κ)e−λ(κ)τ

∣∣∣∣
κ=0

=
e−jω̄τ

p′(jω̄)
.

(25)
For the interconnection to be favourable, the root λ(κ)

must move towards the right half plane. Hence, the phase of
the derivative must satisfy the relation

e−jω̄τ

p′(jω̄)
= e−jω̄τ − p′(jω̄) ∈ (−π

2
,
π

2
), (26)

corresponding to the inequalities

−π
2
< p′(jω̄)− ω̄τ <

π

2
. (27)

A. Fast and slow critical system

Another qualitative reasoning, useful for design purposes,
can be discussed with the help of Fig. 3, for delay values
that are negligible with respect to the period: τ1, τ2 ≈ 0.

Let us denote by critical system the first subsystem G1(s)
with the imaginary poles. Assume that the non-critical
system G2(s), instead, is stable with a negative real pole
and a pair of complex poles with negative (but small in
absolute value) real part. Assume that, in both cases, the real
pole is much larger in magnitude than the pair of complex
poles. Then, the qualitative behaviour of the transfer function
G2(s) (non-critical system) can be seen in Fig. 3, top
panel, which shows its Bode diagram. The magnitude of the
transfer function has a peak corresponding to the frequency
associated with the pair of complex poles. At that frequency,
the phase of the transfer function quite abruptly decreases
from zero degrees to −180 degrees (it will further decrease
to −270 degrees after the frequencies associated with the
real pole). On the other hand, the transfer function G1(s) of
the critical system has a resonance peak corresponding to
the frequencies of the oscillatory (purely imaginary) poles.
The behaviour of the closed-loop system, in the presence
of the positive feedback interconnection, will be different
depending on whether the critical system is slower or faster
than the non-critical system. We denote an oscillatory system
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Fig. 3: Bode diagrams of the transfer functions: G2 as in (28),
is the non-critical system (blue, top panel); Gslow1 as in (29), is a
slower critical system (red, central panel); Gfast1 as in (30), is a
faster critical system (red, bottom panel).

as slow (respectively, fast) if its resonance peak occurs at low
(respectively, high) frequencies. Then, if the critical system is
slow, and in particular if the magnitude of its complex poles
is smaller than the magnitude of the complex poles of the
non-critical system, the situation is the one depicted in Fig. 3,
central panel: the resonance peak of the oscillatory system
G1(s) occurs when the phase of the transfer function G2(s)
is zero. Therefore, when we close the loop, the critical system
“sees” a positive gain with a zero phase, hence an overall
positive gain, which suppresses oscillations. Conversely, if
the critical system is fast, and in particular if the magnitude
of its complex poles is larger than the magnitude of the

complex poles of the non-critical system, then the situation is
the one depicted in Fig. 3, bottom panel: the resonance peak
of the oscillatory system G1(s) occurs when the phase of the
transfer function G2(s) is −180 degrees. Therefore, when
we close the loop, the critical system “sees” a positive gain
with a −180 degree phase, hence an overall negative gain
that favours sustained oscillations. In particular, in Fig. 3, the
top panel shows the Bode diagram of the transfer function

G2(s) =
143

s3 + 1501s2 + 770s+ 30000
, (28)

the central panel shows the Bode diagram of the transfer
function

Gslow1 (s) =
1

s3 + 1250s2 + s+ 1250
, (29)

and the bottom panel shows the Bode diagram of the transfer
function

Gfast1 (s) =
10

s3 + 2400s2 + 400s+ 960000
. (30)

To summarise, when the delays are small, having a faster
critical system is favourable for oscillations, while having a
slower critical system is unfavourable. The analysis can be
generalised to the case of non-negligible delays: the outcome
depends on whether the delay is closer to an even, 2kπ/ω
(k ∈ N), or odd, (2k + 1)π/ω (k ∈ N), multiple of the
semi-period π/ω.

IV. SYNCRONISATION FOR IDENTICAL OSCILLATORS:
PHASE-SHIFT PATTERNS

Here we study the effect of the intercellular delay on the
synchronisation between the two coupled genetic oscillators,
assumed to be equal (which is nominally the case).

When the two subsystems are exactly equal, both p1 and
p2 in the previous section have the root jω̄, hence p′(jω̄) =
0. Then the buttonhole in Fig. 2 becomes a cusp and the
theory becomes more involved. We do not investigate this
case in detail, for space reasons. However, we stress that it
is always possible to find a value of the negative feedback
ensuring that the individual system is an oscillator. Then, if
the two oscillators are equal, the resulting oscillations will
have the same frequency and it is very interesting to look at
the resulting phase shift.

The main question now is how the positive feedback
can induce synchronisation. We provide a qualitative insight
based on heuristic arguments, which is then corroborated by
simulation results. With the support of Fig. 1 (bottom), we
can make the following observations.
• For each oscillator, if there are permanent sustained

oscillations, the phase shift between u2 and y1 (respec-
tively, between u1 and y2) is −π.

• Accordingly we expect that, in the absence of the delays
(τ1 = τ2 = 0), assuming that the two oscillators have
limit cycles (of the same frequency), the coupling due to
intercellular positive feedack yields a stable limit circle
with y1 and y2 in phase opposition, namely with a phase
shift equal to −π. This happens because the signal u2



arrives in phase with the local negative feedback signal
−φ1y1 (respectively, u1 arrives in phase with −φ2y2).

• The fact that the signals −φ1y1 and u2 are in phase
(respectively, −φ2y2 and u1 are in phase) excites the
oscillations.

How does the phase shift change when the delay is non-
zero? First consider the case in which

τ1 = τ2 =
τ

2
. (31)

With a heuristic approach, we consider the first harmonic of
the oscillations. Assume that the period is T = 2π

ω , and let
the first harmonic of the first oscillator be

y1(t) = µ sin(ωt). (32)

The second oscillator is

y2(t) = µ sin(ωt+ ∆), (33)

where either ∆ = 0 (in phase), or ∆ = π (in phase
opposition). The signal received by the first oscillator is

yshift2 (t) = µ sin[ω(t− τ1) + ∆]. (34)

Between the two options ∆ = 0 or ∆ = π, it is chosen
the one that enables y1(t) and yshift2 (t) to be as much as
possible in phase opposition, namely the one that minimises∫ T

0

y1(t)yshift2 (t)dt =

∫ T

0

µ2 sin(ωt) sin[ω(t− τ1) + ∆]dt

= cos(−ωτ1 + ∆)

∫ T

0

µ2 sin(ωt)2dt

= µ2 π

ω
cos(−ωτ1 + ∆),

where we used the facts that sin(ω(t − τ1) + ∆) =
sin(ωt) cos(−ωτ1 + ∆) + cos(ωt) sin(−ωτ1 + ∆) and that∫ T

0
sin(ωt) cos(ωt)dt = 0, while

∫ T
0

sin(ωt)2dt = π/ω.
For a given delay τ1, the resulting choice between ∆ = 0

and ∆ = π is the one that minimises cos(−ωτ1+∆), leading
to the phase-shift pattern:

0 ≤ τ1 ≤ T
4 ⇒ ∆ = π

T
4 ≤ τ1 ≤ 3T

4 ⇒ ∆ = 0
3T
4 ≤ τ1 ≤ 5T

4 ⇒ ∆ = π
5T
4 ≤ τ1 ≤ 7T

4 ⇒ ∆ = 0
. . .

If the positive feedback interaction between the two oscil-
lators is strong enough, we can reproduce this pattern. In fact,
Fig. 4 shows the simulated evolution of the nonlinear system
(1)–(6) in the case of identical subsystems that are oscillators
when they evolve independently, with parameter values taken
from the literature of segmentation clocks [3]. When the
two identical oscillators are coupled by a strong enough
positive feedback, the period of the oscillations is T ≈ 12
minutes. Consistently with our theoretical expectation, when
the delay is τ1 = τ2 = 24 minutes, namely 7T

4 ≤ τ1 ≤ 9T
4 ,

then ∆ = π; when the delay is τ1 = τ2 = 30 minutes,
namely 9T

4 ≤ τ1 ≤ 11T
4 , then ∆ = 0; when the delay is

τ1 = τ2 = 36 minutes, namely 11T
4 ≤ τ1 ≤ 13T

4 , then

∆ = π; when the delay is τ1 = τ2 = 42 minutes, namely
13T

4 ≤ τ1 ≤
15T

4 , then ∆ = 0.
If the two delays τ1 and τ2 are not identical, the two

signals will be shifted accordingly.
These alternating phase shifts have been referred to in

literature as Arnold tongue, and have been observed in the
context of entrainment of circadian rhythms [8] and coupling
of synthetic oscillators [30].
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(c) τ1 = τ2 = 36 minutes
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(d) τ1 = τ2 = 42 minutes

Fig. 4: Simulated evolution of system (1)–(6) with random initial
conditions, α1 = α2 = 0.4 min−1, β1 = β2 = 10 min−1, ζ1 =
ζ2 = 0.11 min−1, ε1 = ε2 = 0.25 min−1, δ1 = δ2 = 0.25 min−1,
k0 = 60, k1 = 200, k2 = 2 · 10−6, h = 12. The period of the
oscillations is T ≈ 12 minutes.

V. CONCLUDING DISCUSSION

A delayed positive-feedback coupling between two non-
homogeneous negative-feedback oscillators can have a ben-
eficial or negative effect on the onset of oscillations: we
have explained the reason and provided a condition (27),
depending on the value of the delay τ and on the resonance
frequency ω, to ensure that the positive-feedback inter-
connection favours oscillatory instability of the linearised
system, thus leading to sustained oscillations. We have also
given qualitative indications on the resonance frequencies of
the two coupled subsystems, to facilitate oscillations.

For identical oscillators, the interconnection does not
affect the onset of oscillations, but the coupling can deter-
mine whether the two oscillators are in phase or in phase
opposition: we have shown that this depends on the delay
and follows a precise pattern. Hence, by tuning the delay we
can tune the phase shift between the two oscillatory signals.

Our results can provide useful guidelines for the design of
digitally coupled single cell oscillators [10].

Most importantly, they also provide a starting point for
the analysis of travelling waves in the segmentation clock,
which of course are driven by coupled oscillators in many
more than two cells.

Future directions include a stochastic analysis of this class
of coupled oscillators. Indeed, single-cell measurements in



zebrafish embryos have revealed that the molecular com-
ponents of the segmentation clock are present at low-copy
numbers per cell [25]. These findings motivate a stochas-
tic formulation and analysis of coupled genetic oscillators
through a combination of Monte Carlo simulations [19], and
moment closure schemes [35], [36]. Indeed, recent stochastic
analysis of circadian clock models have shown trade-offs
between clock precision and molecular noise [33]. As part of
future work, we will tailor these results to the segmentation
clock and uncover design principles for robust oscillations
in spite of low-copy number noise.

Another future challenge comes from the fact that the
actual segmentation-clock system always yields sustained
oscillation that are in phase, despite significant changes in
the parameters, including time delays. Conversely, in this
paper we have shown that alternative patterns of in-phase and
in-phase-opposition oscillations can arise, depending on the
delay value (cf. Fig. 4). Therefore, more research is needed
to reveal the additional mechanisms, not captured by the
current model, that enable this biological system to exhibit
in-phase oscillations that are so extraordinarily robust in
spite of parameter variations.
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