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Biometric Palmprint Verification: A
Dynamical System Approach

David Palma, Pier Luca Montessoro , Giulia Giordano, and Franco Blanchini

Abstract—Most of the existing techniques for palmprint recog-
nition rely on metrics, typically based on static functions, which
evaluate the distance between a pair of features. In this paper,
we propose a new technique for palmprint verification based on
a dynamical system approach for principal palm lines matching.
The proposed dynamic algorithm is recursive and involves a pos-
itive linear dynamical system, whose evolution depends on the
matching level between the two input images. In a preprocessing
phase, the procedure iteratively erodes both of the images to be
compared, by eliminating points in each image that do not have
enough close neighboring points both in the image itself and the
comparison image. As a result of the iterations, only the points
that have enough neighboring points in both the image itself and
in the comparison image can survive. Thus, the output of the
dynamical system converges either to zero, when a deep mis-
match exists between the two images, or to a high value, when a
good matching is observed. The results, in terms of verification,
are in line with the state-of-the-art results in the current litera-
ture. The main advantage of the approach is its robustness when
dealing with low-resolution and noisy images. The impact of noise
(e.g., salt and pepper noise) is effectively reduced: images cor-
rupted with such noise are easily recognized, while a randomly
generated image is rejected even when compared with itself.

Index Terms—Biometrics, dynamic algorithm, dynamical sys-
tem, line matching, palmprint, principal lines.

I. INTRODUCTION

W ITH the increasing demand of automated systems
based on person identification, the importance of bio-

metric systems is growing. These systems are based on
the measurable biological (anatomical and physiological) or
behavioral characteristics used for the identification of an indi-
vidual. Different features are used in biometric systems, such
as fingerprints [20], [23], palmprint [4], [7]–[9], [12]–[14],
[16], [17], [19], [21], [24], [25], [28]–[32], [35]–[42], [44],
[46], [47], [52]–[63], hand geometry [26], [31], [45], [49],
iris [1], [10], [51], and face [11], [18], [33], [48], [50]. Unlike
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conventional methods for personal identification, such as per-
sonal identification number, password, and key, these features
cannot be duplicated, lost or stolen. Hence, biometric systems
are suitable to be used in various fields, such as high security,
forensic, and commercial applications.

Palmprint recognition, a relatively novel but promising bio-
metric technology, has recently received considerable interest,
mostly for its importance in forensics [7] (about 30% of the
latents found in crime scenes are from palms [22]) and for sev-
eral potential civil applications [27]. Compared with the other
physical biometric characteristics, palmprint authentication has
several advantages: low-resolution imaging, low-intrusiveness,
stable line features, and low-cost capturing device. Indeed,
since the principal lines and wrinkles can be observed under
low-resolution images (e.g., 100 dpi or lower), palmprint sys-
tems do not require high resolution capturing devices [42].
However, palmprint recognition techniques based on both low-
and high-resolution features are proposed in the literature (see
the survey in Section II); such methods use as local fea-
tures, respectively, principal lines and ridges. The approach
discussed in this paper is based on low-resolution features,
since it uses as local features the principal lines of the palm,
which are very important physiological characteristics to dis-
tinguish between different individuals because of their stability
and uniqueness. Compared with ridges and wrinkles, principal
lines are usually the consequence of genetic effects: there-
fore, they are the most significant features in palmprint images
and have good permanence. However, principal lines may be
similar in different individuals, which makes their distinctive-
ness relatively low; for this reason, palmprint recognition is a
challenging problem [60].

To address this challenge, we propose a method consisting
of the following.

1) A region of interest (ROI) extraction phase, which fol-
lows the typical sequence of steps used in [35] and [60],
to face different issues mainly due to nonlinear distor-
tion, such as rotation and translation of the palm with
respect to the image and nonuniform illumination.

2) An unconventional feature extraction phase based on the
principal lines of the palmprint [63].

3) A novel approach to palmprint matching based on a
dynamic algorithm. The algorithm involves a positive
linear dynamical system [3], whose evolution is deter-
mined by the matching level between the two input
images: its output converges to zero when the two
images have a deep mismatch, while it reaches a high
value in the case of good matching.
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Methods based on dynamical systems have been successfully
exploited to improve the performance of algorithms (see [2]).
Here, we show that the proposed dynamic algorithm, included
as a step in the matching phase, confers more robustness
to palmprint recognition techniques, especially when low-
resolution and noisy images are involved: the impact of noise,
such as salt and pepper noise, is effectively reduced, avoiding
both false rejection of images corrupted by noise and false
acceptance of randomly generated images.

The results obtained by means of this novel algorithm are
promising, and comparable to existing palmprint recognition
algorithms. Furthermore, in order to allow implementation on
mobile devices for online user authentication, each step has
been specifically designed to limit memory requirement and
computational complexity.

Section II of this paper provides an overview of the related
work. Then, Section III presents the new approach to palmprint
verification based on a noise-rejecting dynamic algorithm,
while Section IV describes the main steps of the preprocessing
phase and feature extraction phase that is based on the princi-
pal lines of the palmprint. Section V reports and discusses the
experimental results of the developed palmprint verification
system. Section VI draws conclusions.

II. RELATED WORK

In recent years, palmprints have been investigated exten-
sively in automated personal authentication, because of their
advantages with respect to other physical biometric character-
istics. Therefore, a number of interesting palmprint recognition
techniques have been proposed in the literature, which can
be grouped in two categories: 1) approaches based on low-
resolution features and 2) approaches based on high-resolution
features, which use creases and ridges, respectively, as local
features. The former approach analyzes the structure of the
palmprint, where generally only principal lines, wrinkles, and
texture are well evident, while the latter approach tries to find
the ridges or minutiae-like point features to represent the palm
pattern. Palm lines include both principal lines and wrinkles,
but principal lines get more attention because of their stable
and highly distinctive nature [5], [34]. Hence, most authors
focus on palm lines when analyzing palmprint images, and
we will also focus on low-resolution methods in the following.
In line-based approaches, the extracted palm lines are either
matched directly or represented in other formats through some
feature transformations for matching.

Zhang and Shu [62] used the datum point invariant prop-
erty and the line feature matching technique to conduct the
verification process via the palmprint features. This approach,
in which the authors inked the palmprints on to paper and
then scanned them to obtain images, is not suitable for many
online security systems. Wu et al. [54] used the Canny oper-
ator [6] to detect palm lines and the orientations of the edge
points are passed into four membership functions representing
four directions. For each direction the energy is computed,
then the feature value is normalized. Finally, Euclidean dis-
tance is used for matching. Wu et al. [57] also proposed
an algorithm based on the hidden Markov models (HMMs).

This approach uses Sobel masks to compute the magnitude
of palm lines, then the projections along both x and y direc-
tions are used to obtain the inputs of the HMMs. A third
approach proposed by Wu et al. [55] is based on the design of
two masks which compute the vertical first- and second-order
derivatives obtained by rotating the two standard masks. They
identify the edge points and corresponding directions by using
the zero-crossing of the first-order derivative, then the pos-
itive magnitude of the corresponding second-order derivative
is considered as the magnitude of the lines. The feature vector,
consisting of the weighted sum of the local directional magni-
tude, is normalized by its maximum and minimum elements.
Finally, as in [54], Euclidean distance is used for matching.
Boles and Chu [4] used Sobel masks and thresholds to con-
struct binary edge images and then the Hough transform to
detect the palm features as approximated straight lines for
matching. Huang et al. [21] and Jia et al. [25] used the mod-
ified finite Radon transform (MFRAT) to extract the principal
lines, then a matching algorithm based on pixel-to-area com-
parison measures the similarity between two palmprint images.
Fei et al. [16] used a double half-orientation-based method
for feature extraction and palmprint recognition, while in [17]
they propose a double-orientation code (DOC) algorithm to
represent the orientation of palmprint features, evaluating
the similarity between the DOC through a nonlinear angular
matching scheme. Gao and Leung [18] and Leung et al. [36]
made use of Sobel masks to extract line-like features from
the palmprints and then of line segment Hausdorff distance
to compare two palmprints. Han et al. [19] employed Sobel
and morphological operations to extract line-like features from
palmprint images obtained using a scanner, and then a cor-
relation function to measure the similarity between the two
feature vectors. Similarly, for verification, Kumar et al. [31]
used other directional masks to extract line-like features from
the palmprints captured using a digital camera, then use a
normalized correlation for matching. Diaz et al. [12] used
Sobel masks and morphologic operator as two separated fea-
ture extractors to obtain the gradient of the images, which are
then classified by neural networks. Kung et al. [33] designed a
decision-based neural network classifier and applied it to face
recognition and to palmprint verification. Other approaches
based on low-resolution features are named subspace-based
approaches, which usually adopt principal component analysis
(PCA), linear discriminant analysis (LDA), and indepen-
dent component analysis (ICA). Zhang et al. [60] used 2-D
Gabor filters to extract texture features from low-resolution
palmprint images captured using a CCD camera: two palm-
print images are compared in terms of their Hamming dis-
tance. Connie et al. [8] made use of PCA and ICA to
extract the palmprint texture features, then compare palm-
prints based on three types of classifiers: 1) Euclidean distance;
2) cosine measure; and 3) probabilistic neural network meth-
ods. Ekinci and Aykut [14] used a wavelet-based kernel PCA
method by integrating the Daubechies wavelet representation
of palm images and the kernel PCA method for palmprint
recognition; similarity measurement is accomplished by using
a weighted Euclidean linear distance-based nearest neighbor
classifier.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PALMA et al.: BIOMETRIC PALMPRINT VERIFICATION: DYNAMICAL SYSTEM APPROACH 3

Apart from neural networks, to the best of the authors’
knowledge, dynamic algorithms have never been employed for
palmprint matching. The novel method we propose is based
on the evolution of a suitable dynamical system that erodes
nonmatching features and enhances matching features.

III. DYNAMIC ALGORITHM FOR MATCHING

This section highlights the main idea of the proposed noise-
rejecting dynamic (iterative) algorithm for palmprint matching.

Given two images (matrices of Boolean values) X, Y ∈
{0, 1}s×s, of equal dimensions, we consider the operator

(
X′, Y ′) = f (X, Y) (1)

which provides two new images X′, Y ′ ∈ {0, 1}s×s, having the
same size as X and Y . For our palmprint verification purposes,
the operator f must be chosen to assess the “matching level”
between the two initial images. To simply explain the idea,
let us consider a simple (non dynamic) mismatch function.
Denoting by �(·) the number of 1 (active) pixels in an image,
we define the matching index between X and Y as

α(X, Y) = γ (X, Y)

2

[
�

(
X′)

�(X)
+ �

(
Y ′)

�(Y)

]

(2)

where the coefficient γ is lower when the difference of active
pixels in the input images is higher

γ (X, Y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − logs

(
�(X)

�(Y)

)
if �(X) ≥ �(Y)

1 + logs

(
�(X)

�(Y)

)
otherwise.

(3)

With this choice of γ , for large differences in the number of
active pixels between the two initial images, the coefficient
quickly tends to a low value, thus reducing α(X, Y).

To assess the matching level of two images, a simple option
is to consider the intersection X′ = Y ′ = X∩Y , associated with
the AND logic function

[
X

⋂
Y
]

ij
= xij AND yij.

However, the approach based on this choice of (1) is clearly
not noise-rejecting, since it evaluates the correspondence
between single pixels (isolated from their context), which may
be noisy. Conversely, to avoid a misleading recognition, noisy
pixels that are accidentally matching in the two images should
not provide a positive contribution to the matching index.

We pursue an approach that rejects noise and, to this aim,
we assume that the matching of “isolated spots” is not as sig-
nificant as the matching of wide “stripes” or “islands,” even
if the number of matching isolated spots is very high. The
operator f must then be chosen so as to set to 0 all the pixels
without a sufficient number of neighboring 1 pixels, both in
the image itself and in the comparison image: only signifi-
cant clusters of pixels that have a corresponding cluster in the
complementary image must remain active.

The desired behavior is illustrated in Fig. 1.
1) In the first example, two significant sets of active pixels

are surrounded by 0 pixels in both images X and Y ,
which show a good matching. Actually, almost all of the

Fig. 1. Desired matching patterns: 1 good matching; 2 partial matching;
and 3 no matching. X and Y are the initial images, Z = X′ and W = Y ′ the
desired transformed images.

active pixels should survive in the transformed images
Z = X′ and W = Y ′.

2) In the second example, there is a just partial superposi-
tion. Hence, in both of the transformed images, the sets
of active pixels should be partially eroded.

3) In the third example, there is a perfect superposition
between isolated points. In this case, the transformed
images should be almost empty.

As is experimentally shown later, the behavior in Fig. 1 can
be achieved with the proposed dynamic (iterative) algorithm.

Remark 1: In view of the iterative nature of the algorithm,
we only need to emphasize the presence of neighborhoods in
the comparison image, since in at most two steps this indirectly
emphasizes neighborhoods in the image itself.

We assume that the images A and B, provided as inputs,
have already undergone a preliminary processing (thoroughly
described in Section IV). Given the set

N ij = {h, l : |h − i| ≤ ν, |l − j| ≤ ν, h, l ∈ Z}
of neighboring points of (i, j) within a “radius” of integer
amplitude ν > 0, the “fading factor” 0 < λ < 1, the coef-
ficient μ > 0 that emphasizes the presence of neighbors in
the comparison image and the tolerance ε > 0, Algorithm 1
works as follows.

Note that the images are processed as real-valued matrices,
in view of step 1. Due to the componentwise product at step 4,
all the pixels that are initially 0 remain 0: the procedure can
“inactivate” active pixels, but cannot “activate” inactive pixels.
As a consequence, the index α is always a number 0 ≤ α ≤ 1.
The rationale of step 3 (the core of the procedure) is the fol-
lowing. Assume that a pixel has no match on the other image.
Then the corresponding equation becomes

xij(k + 1) = λxij(k).

Hence, being λ < 1, the value of pixels having no match on
the other image quickly converges to zero: typically, in few
iterations xij(k) goes below the threshold ε. We stress that, if
a pixel has no match at the beginning, this status is preserved
for all the steps of the procedure, due to step 4.

Conversely, the value of pixels having a large neighbor-
hood in the comparison image diverges. If the same condition
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Algorithm 1 Matching Index Computation
Input: Boolean images A and B.
Parameters: Number of steps N, positive constants λ < 1 and
μ, integer neighborhood amplitude ν > 0, a small tolerance
ε > 0.
Outputs: Matching index α(A, B).

1) Convert the two input images from boolean into real
matrices X := A and Y := B.

2) Set k = 0.
3) At each iteration, compute the updated values for each

pixel in both images

xij(k + 1) = λxij(k) + μ
∑

hl∈Nij

yhl(k) (4)

yij(k + 1) = λyij(k) + μ
∑

hl∈Nij

xhl(k) (5)

4) At each iteration, set X := X × A, Y := Y × B, where ×
denotes the componentwise product (i.e., xij := xij × aij

for all i, j).
5) Set k = k + 1 and, IF k < N, GOTO step 3.
6) Convert the matrices to boolean, [A′, B′] = logic(X, Y),

as follows: IF xij < ε, THEN a′
ij := 0; ELSE a′

ij := 1
(resp. IF yij < ε, THEN b′

ij := 0; ELSE b′
ij := 1).

7) Compute the matching index α as in (2).

(a) (b) (c)

Fig. 2. Dynamic algorithm behavior. (a) and (b) Similar principal lines
extracted from two different subjects, provided as input, and (c) image
resulting from the application of the dynamic algorithm.

is true in the complementary neighborhood, then we are in
the presence of two matching groups that “cooperate” by
increasing each other. In this case, the values of xij and yij

significantly increase in few iterations. The exponential con-
vergence/divergence of the procedure assures that, in few
iterations, some pixels become practically zero (eventually set
to 0), and others achieve large values (eventually set to 1).

To exemplify the algorithm behavior, suppose that the two
input images A and B are those shown in Fig. 2(a) and (b).
Then, the result of the dynamic algorithm, A′ = B′, is shown in
Fig. 2(c). In both images, the algorithm has iteratively elimi-
nated points that do not have enough close neighboring points
in the comparison image; the number of survived pixels is
very limited, even when starting from images having similar
principal lines.

A considerable advantage of our dynamic approach is its
robustness with respect to noise. Images corrupted, e.g., with
salt and pepper noise are easily recognized, while an image
randomly generated is rejected even if compared with itself.

(a)

(b)

Fig. 3. Salt-and-pepper noise. (a) A and B (A = B). (b) A′ and B′ (A′ = B′).

Fig. 4. Dynamic algorithm example: (top) pairs of isolated points and (bot-
tom) clusters of points. Points in the same positions are connected through
solid lines, whereas points in different positions but close enough (the radius
is ν = 1) are connected through dashed lines.

Example 1 (Salt-and-Pepper Noise): To explain a peculiar
feature of the algorithm, we compare a salt-and-pepper noisy
image with itself (see Fig. 3). The algorithm eliminates almost
all of the pixels and the resulting matching index is extremely
low.

The idea of the procedure can be described as follows.
Consider a family of bipartite graphs, whose nodes are the
active pixels in the two images (A and B) to be compared. An
arc connects each pair of active pixels that occupy neighboring
positions in the two images. In this way, we form clusters of
active pixels. A cluster is preserved only if it includes enough
pixels, otherwise it fades away. In the case of perfect matching
of two images with isolated points (as in Fig. 4, top), there
are just isolated pairs of nodes, which disappear when the
dynamic algorithm evolves1 (local stability and convergence
to 0). Conversely, in the presence of partially matching blobs

1Although the term “to evolve” is used, the algorithm is not based on
machine-learning models. We want to emphasize the iterative nature of the
dynamic algorithm that converges to the final state by eroding the pixels that
do not match within a neighborhood.
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(as in Fig. 4, bottom), the clusters of nodes are numerous
enough to survive (local instability with saturation to 1).

A. Properties of the Algorithm and Parameter Tuning

We analyze here the algorithm based on the linear recursive
equations (4) and (5), to better understand its behavior.

First of all, the parameters λ and μ in the procedure need
to be tuned. We remind that:

1) the fading parameter λ < 1 cancels “isolated pixels”;
2) the emphasis parameter μ increases “surrounded pixels.”

Consider a generic neighborhood N of size ν and assume that
all the points in N are initially active (set to 1) in both A and
B. Then, their values should “blow up.” Given the updating
equation for xij

xij(k + 1) = λxij(k) + μ
∑

hl∈Nij

yhl(k)

let m be the number of pixels in the considered neighborhood.
Being all the pixels initially set to 1, a blow-up condition is

λ + μm > 1 (6)

(the lower bound in Fig. 9). Therefore, at step k = 1, all the
surrounded pixels reach a value greater than 1; at step k = 2,
the value becomes even bigger; an so on.

Let us now consider a partial superposition, in which only
a percentage p < 1 of the pixels in the neighborhood are
1. We may take p as a threshold fraction, so that 1-pixels
with less than a fraction p of 1-pixels in the complementary
neighborhood tend to fade. This leads to the criterion

λ + pμm < 1 (7)

(the upper bound in Fig. 9). Therefore, given the neighborhood
radius ν and the number of iterations N, a criterion to choose
the parameters λ and μ is the following.

1) Fix λ based on the desired fading speed.
2) Compute m, the neighborhood size, in terms of pixels.
3) Fix p, the desired threshold fraction.
4) Compute μ which satisfies (6) and (7).
Property 1 (Decoupling): Different regions that are not con-

nected in either A or B do not interact and have separate
evolutions, as illustrated in Fig. 5. Hence, isolated spots can
be analyzed separately.

Property 2 (Convergence/Divergence): Two overlapping
spots in A (containing q pixels) and in B (containing s pixels)
give rise to a positive linear system, as described next. Let us
group in a vector x(k) ∈ R

q the variables xij of the spot in A
and in a vector y(k) ∈ R

s the variables yij of the spot in B.
The system evolves as follows:

[
x(k + 1)

y(k + 1)

]
=

[
λI μ�

μ�� λI

][
x(k)
y(k)

]
(8)

where I is the identity matrix (of the proper dimension), λ and
μ are the previously fixed constants and � is a connection
matrix defined as

�ij =
{

1, if pixel yj is in the neighborhood of pixel xi

0, otherwise.

Fig. 5. Two sets of pixels with separate evolutions.

Note that the matrix

M =
[

λI μ�

μ�� λI

]

appearing in (8) is symmetric. In fact, if pixel yj is in the
neighborhood of pixel xi, also xi is in the neighborhood of yj.

Then, the fading or the permanence of the two connected
spots is doomed by the convergence or divergence of the lin-
ear system (8). The linear system converges (i.e., is stable)
if and only if the dominant eigenvalue σmax (i.e., the eigen-
value with maximum modulus) of matrix M is smaller than 1.
Conversely, the linear system diverges (i.e., is unstable) if and
only if σmax is greater than 1. Since matrix M is non-negative,
its dominant eigenvalue σmax is real and positive. Moreover,
σmax is an increasing function of both λ and μ, and increases
if the number of 1 entries in matrix � increases.

This explains why the pair of identical images with salt and
pepper noise leads to a poor matching index: even if there is
actually a good (or perfect) matching between the two images,
there are not enough connections between the active pixels of
one image and the active pixels of the other.

Since in the average, for the salt and pepper noise, half of
the pixels in the complementary neighborhood are inactive,
we recommend to choose

p ≈ 1/2.

Then, in view of (6) and (7), this leads to the conditions

1

2
<

1 − λ

μm
< 1.

IV. PALMPRINT IMAGE PROCESSING

Fig. 6 shows the overall block diagram of palmprint image
processing that consists of two main phases: 1) preprocessing
and 2) feature extraction.

A. Preprocessing

Before the feature extraction step, a preprocessing is essen-
tial in order to obtain a subimage denominated ROI from the
captured palmprint image. In fact, usually palmprint images
can have different orientation and size, and are also subject
to noise. Moreover, the region of not-interest (e.g., fingers,
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Fig. 6. Block diagram of palmprint image processing.

wrist, and image background) may affect the accuracy in pro-
cessing and verification performance. First of all, noise is
reduced by proper filters, then the ROI is extracted. In order
to align the different palmprint images, 1) binarization and
2) edge detection are executed. After alignment 3) ROI is
extracted and 4) normalized to have a specific mean and vari-
ance for all images [20]. These four steps are shown in Fig. 7
and described more in detail below.

1) Binarization: Binarization converts a gray level image
I(x, y) into a binary image B(x, y), where the hand is the fore-
ground and the rest is background. Thus, a local adaptive
thresholding can be applied to binarize the image.

After partitioning the image into nonoverlapping sub-blocks
of size N×N, for each sub-block we compute a threshold value
by using Otsu’s method [43]: the image pixels are split into
two classes (background and object), and the best threshold
value t is obtained based on the maximum value of the variance
between the two classes [15]. Then, for each sub-block, we
apply a global thresholding as follows:

B(x, y) =
{

1 if I(x, y) ≥ t

0 otherwise.
(9)

The image after the binarization phase is shown in Fig. 7(b).
2) Edge Detection: To detect the hand edge, the segmented

binary image is filtered by using the Canny operator [6]. This
edge detector ensures good noise immunity and at the same
time detects true edge points with minimum error [15]. A
practical approximation of the Canny filter is the following.

1) Convolve the input image I(x, y) with a 2-D Gaussian
filter G(x, y)

H(x, y) = I ∗ G(x, y). (10)

In order to reduce the computational cost, a convolu-
tion with a 2-D Gaussian can be separated into two
convolutions with 1-D Gaussians.

2) Apply the gradient operator and calculate the gradient
magnitude M and orientation 
 as follows:

Hx(x, y) = ∂H(x, y)

∂x
Hy(x, y) = ∂H(x, y)

∂y
(11)

M(x, y) =
√

H2
x (x, y) + H2

y (x, y) (12)


(x, y) = arctan

(
My(x, y)

Mx(x, y)

)
. (13)

3) Apply the nonmaximum suppression algorithm that
removes the nonmaximum pixels, while preserving the
connectivity of the contours, as follows: for each pixel

(a) (b) (c)

(d) (e) (f )

Fig. 7. Main steps of preprocessing. (a) Original palmprint image. (b) Noise
reduction and binarization by using local adaptive thresholding. (c) Edge
detection. (d) Scaling, alignment and ROI location. (e) ROI extraction.
(f) Normalization.

(x, y), if one of the neighboring pixels in the orthogonal
directions to edge orientation is greater than the current
pixel, then discard it.

4) The last step is the hysteresis thresholding, which uses
two thresholds: TH , calculated by using Otsu’s algo-
rithm [15], and TL = (1/2)TH . This algorithm sets a
pixel (x, y) to 0 if it has a value less than TL, and to 1
if it has a value greater than TH or it is connected to a
pixel that has a value greater than TH .

The image after the edge detection phase is in Fig. 7(c).
3) Region of Interest Extraction: In this last step, the palm-

print image is aligned in a standard pose, to reduce issues due
to nonlinear factors, such as nonuniform illumination, rota-
tion, and translation. In order to extract the central part of
the palmprint images, we detect two reference points between
the fingers, as shown in Fig. 7(d). These points are used to
construct a reference line for aligning the different palmprint
images, and the middle point between them is used to deter-
mine the central position of the ROI. Finally, the ROI can be
extracted as shown in Fig. 7(e).

4) Normalization: In order to have a prespecified mean and
variance for all palmprint images, the extracted ROI images
are normalized to reduce the possible nonuniform illumination
and noise, as suggested in [23]. Therefore, given the input ROI
image I(x, y), the normalized image is defined as follows:

I′(x, y) =
{

μn + ρ if I(x, y) > σ 2

μn − ρ if I(x, y) ≤ σ 2 (14)

where

ρ =
√

σ 2
n (I(x, y) − μ)2

σ 2
. (15)

The parameter values μn and σ 2
n used for the computation

are the same suggested in [23], thus we set both the mean and
variance values to 100. The result is shown in Fig. 7(f).

B. Feature Extraction

Once the central part (ROI) is segmented, features can be
extracted for matching. The feature extraction phase plays an
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important role in image identification and verification. There
are many features exhibited in a palm, such as the three princi-
pal lines caused by flexing hand and wrist in the palm, which
are denominated as heart line, head line, and life line, respec-
tively. We use a principal line extraction method based on [63],
whose main steps are illustrated in Fig. 6: 1) conversion to
a negative image; 2) sharpening of the image with Top-Hat
filter and gradient magnitude computation; 3) linear contrast
adjustment; 4) binarization with Otsu’s method; and 5) noise
cleaning with median filter.

1) Negative: After normalization in the last step of the pre-
processing phase, the resulting enhanced ROI image I(x, y) is
converted to its negative as follows:

I′(x, y) = max{I(x, y)} − I(x, y). (16)

In this way, the principal lines of the palm have high intensity.
2) Sharpening: To correct uneven illumination we use a

Top-Hat transform, then apply a linear contrast enhancement to
the output image. The Top-Hat transform enables us to extract
small bright objects from a varying background and is defined
as the difference between the input image and its morpholog-
ical opening by using a defined structuring element ρ. The
opening of I(x, y) by ρ is obtained by the erosion of I(x, y)
by ρ, followed by dilation of the resulting image by ρ:

I ◦ ρ = (I � ρ) ⊕ ρ =
⋃

I(x,y)⊂ρ

I(x, y). (17)

Hence, the opening of I(x, y) by ρ is the union of all sets
I(x, y) contained in ρ. Then, the opening Top-Hat transforma-
tion of image I, denoted by TH, is given by

TH = I − (I ◦ ρ) (18)

that represents the difference set of the domain of I(x, y) and
the opening domain of I(x, y). After the morphological oper-
ations, the gradient magnitude is computed as described in
the preprocessing phase: this sharpening operation returns the
bright spots of the image that are smaller than the structuring
element.

3) Contrast Adjustment: In order to improve the contrast of
the image, a linear contrast enhancement is applied by stretch-
ing the range of intensity values it contains to a specific range
of values. Before applying the linear scaling function it is
necessary to identify the lower and upper bounds from the
histogram, which are the minimum and maximum brightness
values in the image, and to apply a transformation to stretch
this range to fill the full range (0, 255). Let min and max be
the lower and the upper limits of the histogram, respectively,
then each pixel of the image is scaled to the range (0, 255)

through the following equation:

I′(x, y) = (I(x, y) − min)

(
255

max − min

)
. (19)

4) Binarization: A global thresholding is applied at the
gray level image resulting from the previous sharpening fil-
ter and linear contrast adjustment. The threshold is calculated
with Otsu’s method [43] described in the preprocessing phase.

(a)

(b)

Fig. 8. Some results of palm line extraction. (a) Feature extraction on CASIA
database. (b) Feature extraction on PolyU database (lower resolution).

5) Noise Cleaning: As a last step in the feature extraction
phase, a median filter is used in order to remove noise and triv-
ial lines from the image. Fig. 8 shows examples of extracted
feature with the algorithm described above.

V. EXPERIMENTAL RESULTS

A. Databases Used in Simulation

The performance of the proposed palmprint verification
system has been tested upon two databases that have been
worldwide shared for research purposes: 1) CASIA palmprint
database [65] and 2) PolyU palmprint database II [64].

The first database contains 5502 palmprint images with 8
bit gray-level of size 640 × 480 pixels at 96 dpi resolution
captured from 312 subjects by a low resolution CCD-based
device. For each subject there are palmprint images from both
left and right hand captured eight times at different times from
people of different ages. The second database, which has a
lower resolution, contains 7752 palmprint images with 8 bit
gray-level of size 384×284 pixels at 75 dpi resolution captured
from 386 palms of 193 subjects: these palmprint images have
been collected in two sessions with the average interval over
two months, where about ten samples have been captured from
each palm for each session.

We have performed experiments by taking: 1) 16 sample
palmprint images of the left and right hands (eight images for
hand) of all 312 subjects, for a total of 4992 images, from the
CASIA palmprint database and 2) ten sample palmprint images
of 381 individuals related to the first and second sessions, for
a total of 7620 images, from the PolyU palmprint database II.
This setup constitutes a total number of experiments equal
to: 1)

(4 992
2

) = 12 457 536, including 312 × (16
2

) = 37 440
genuine experiments (the others are impostor experiments),
for the CASIA palmprint database and 2)

(7 620
2

) = 29 028 390,
including 381 × (20

2

) = 72 390 genuine experiments, for the
PolyU palmprint database.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

B. Criteria for Performance Evaluation

To evaluate the verification accuracy of the proposed
method, each palmprint image in the database has been
matched against the other palmprint images. The matching
between palmprints captured from the same palm is defined
as a genuine matching or intraclass matching, otherwise as an
impostor matching or interclass matching.

The general method to evaluate the performance of a palm-
print authentication system is based on the false acceptance
rate (FAR) and the false rejection rate (FRR) [41]. The FAR
is defined as the percentage of invalid inputs which are incor-
rectly accepted and is computed as the number of accepted
imposter claims over the total number of imposter accesses.
The FRR is defined as the percentage of valid inputs which are
incorrectly rejected and is computed as the number of rejected
genuine claims over the total number of genuine accesses. FAR
and FRR are closely related because the increase of the one
implies the decrease of the other. Mathematically these two
indices are expressed as follows:

FAR = 1

N

N∑

k=1

FAR(k) (20)

FRR = 1

N

N∑

k=1

FRR(k) (21)

where

FAR(k) = number of FARs

number of impostor accesses
(22)

FRR(k) = number of FRRs

number of genuine accesses
. (23)

Other evaluation parameters are as follows.
1) Receiver Operating Characteristic (ROC): A graphical

plot that illustrates the tradeoff between the FAR and
the FRR.

2) Equal Error Rate (EER): The error rate at the spe-
cific threshold s for which both acceptance and rejection
errors are equal, which can be easily obtained from the
ROC curve.

3) Genuine Acceptance Rate (GAR):

GAR = 1 − FRR. (24)

4) GAR at a Specific FAR (GARx):

GARx = GAR
∣∣
FAR=10−x (25)

for example, considered an FAR = 0.01, then GAR2 =
GAR

∣∣
FAR.

C. Parameter Tuning for Performance Evaluation

Since the verification rate of the system varies depending on
the values of λ and μ in the dynamic algorithm, these parame-
ters need to be properly set, as discussed in Section III. Thus,
given the set Ni,j of neighboring points of the generic point
p(i, j) we can choose the fading factor 0 < λ < 1 and the coef-
ficient μ > 0. Fig. 9 depicts the region of convergence of the
system according to (6) and (7), which represent the upper and
lower bounds of the region, respectively. Since the thickness

Fig. 9. Region of convergence of the system delimited by 6 and 7 [with
m = 25 and p = (1/2)], and values of the parameter pairs (λ, μ). Best results
have been obtained by the highlighted pair of values.

Fig. 10. Matching value against number of iterations for two palmprint
features in the case of true positive recognition and true negative recognition.

of the palm lines consists of a few pixels, it is reasonable to
consider a square matrix with radius ν = 2 (which amounts to
considering a number of neighboring pixels equal to m = 25)
for a perfect coverage of a palm line avoiding excessive over-
laps with other palm lines—or background—contained in the
image to be compared.

Therefore, to determine the value of the parameters that
guarantees the best performance, a test over a subset of the
CASIA palmprint database for many different values of the
parameter pairs has been performed. In this phase, we have
verified every test pair for each of the palmprint images in the
database and for each pair of the parameter values.

The subset of the CASIA palmprint database consists of 360
palmprint images and the number of parameter pairs (λ, μ)

inside the region of convergence is equal to 70, thus the
amount of the tests performed is 4 523 400. As a result of
these tests we found that λ = 0.465 and μ = 0.042 provide
the best results. These values have been used in the experi-
ments for both the databases in order to test the performance
of the proposed method, even without parameter retuning for
the PolyU database.

It is also important to choose a fixed number of iterations,
after which we can rely on convergence of the dynamic system.

From Fig. 10 it is clear that, after few iterations, the reached
matching value can be considered good enough with respect
to the highest value achieved. Thus, to save computation time,
the number of iterations for the tests has been fixed to 20.
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Fig. 11. Comparative GAR against FAR graphs, for the proposed approach
and for other methods on PolyU palmprint database.

TABLE I
COMPARISON OF VERIFICATION RESULTS FOR

DIFFERENT METHODS [16], [40]

D. Performance Comparison

The performance results of the developed palmprint recogni-
tion system are here compared with other algorithms by using
the datasets as previously described.

For comparison purposes, some representative techniques in
palmprint recognition have been used.

1) CompCode [29], which uses six real parts of the Gabor
filters to obtain orientation information from palm lines
and subsequently applies Hamming distance for feature
matching.

2) PalmCode [60], which uses 2-D Gabor phase encoding
scheme to extract the feature, then Hamming distance is
used for matching.

3) OrdiCode [52], that compares two line-like image
regions, which are orthogonal in orientation and it gen-
erates one bit feature code, then for matching is also
used the Hamming distance.

4) Huang et al. algorithm [21], which uses the MFRAT
to extract palmprint principal lines, then a matching
algorithm based on pixel-to-area comparison has been
designed to measure the similarity.

5) DOC [17] which stands for double-orientation code used
to represent the orientation feature of palmprint which
are compared with a nonlinear angular matching score
method.

Table I lists the verification results, expressed in terms
of EER, for different approaches, on databases that contain

(a) (b) (c)

Fig. 12. Dynamic algorithm behavior on different principal line images from
the same subject. (a) First image affected by white Gaussian noise with μ = 0
and σ 2 = 0.05, (b) second image to be compared, and (c) surviving points
after the algorithm evolution.

TABLE II
ROC COMPARISON ON BOTH THE DATABASES WITH NORMAL

PALMPRINTS AND PALMPRINTS CORRUPTED BY

ADDITIVE WHITE GAUSSIAN NOISE

palmprints captured through touch-based (PolyU) and touch-
less (CASIA) devices. From the results, it is clear that
the CASIA database is more challenging than the PolyU
database in terms of palmprint verification. The proposed
method achieves good results, outperforming some of the other
approaches.

To better illustrate the verification performances, the ROC
curves of the previous five methods and the proposed algo-
rithm are illustrated in Fig. 11: the ROC curves are obtained
by plotting GAR against FAR. The dynamic algorithm obtains
a GAR2 that is almost 100% and a GAR3 that is greater
than 97%.

E. Robustness to Noise

To conduct experiments on noisy palmprints and demon-
strate the robustness of the dynamic algorithm with respect to
noise, the system has been tested by comparing palmprints cor-
rupted by white Gaussian noise against normal palmprints. The
experiments are carried out by corrupting the images with a
white Gaussian noise of mean μ = 0 and variance σ 2 = 0.05.
Fig. 12 depicts an example of the dynamic algorithm behavior:
it can be seen from the output image that the subject is easily
recognized, validating the noise rejection property described
in Section III.

Table II reports the result of noise rejection experiments and
shows that the performance of the system is not that much
degraded: even in presence of noise, the GAR1 is greater than
98.6%. However, we have obtained better results on the PolyU
database achieving a GAR of 97.8% with an EER equal to
0.022 against a GAR of 96.9% with an EER equal to 0.031 on
the CASIA database. Therefore, the experiments show that the
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proposed algorithm can recognize palmprints even in presence
of a reasonable amount of noise.

F. Computation Time

The experiments for the proposed approach have been con-
ducted on a virtualized machine equipped with two dedicated
processors and 2048 MB RAM hosted on an Intel Core i7-
4510U CPU (2.6 GHz), 8 GB RAM running a 32-bit Microsoft
Windows 10. The code has been implemented using MATLAB
8.0 and to get the following results each part of code has
been performed for 200 times, then the average time has been
considered. Thus, the computational times required for pre-
processing, palm line extraction, and palmprint matching are
376, 49, and 295 ms, respectively, thus the average response
time for verification is about 0.72 s, which is more suitable
for a real-time biometric verification system rather than a real-
time biometric identification system. However, it is possible to
further reduce the computation time, since the program codes
have not completely optimized.

VI. CONCLUSION

In this paper, a novel approach has been presented to authen-
ticate individuals based on their palmprint features. As a main
contribution, a new recursive, dynamic algorithm has been
applied for the matching of features. A noticeable advantage
of such an approach is its robustness with respect to noise:
for instance, images corrupted with salt and pepper noise are
easily recognized, whereas an image randomly generated is
rejected even when compared with itself [44]. The images pro-
vided as an input to the dynamic algorithm have undergone an
image processing based on two phases: the first involving pre-
processing operations to make the system invariant to rotation
and translation of the palm with respect to the image and the
second consisting of a sequence of robust feature extraction
steps that allow to detect the principal lines of the palm without
introducing noise. Extensive experiments have been conducted
to evaluate the performance of the system and the results
obtained from the tests clearly demonstrate the effectiveness
of the proposed technique, which is able to produce promising
result. As a matter of fact, the experimental results presented
in Section V show that the level of GAR1 obtained is 100% on
both the databases, whereas in the noisy test GAR1 can still
be considered greater than 98.6% for the CASIA database and
equal to 100% for the PolyU database. Thus, the system is
comparable with existing biometric recognition systems based
on palmprint recognition and other hand-based biometric tech-
nologies, including hand geometry and fingerprint verification.
In particular, the achieved level of GAR is compliant with the
strict requirements of high security applications.
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