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1 Systems and Jacobians

The two mathematical descriptions of the models are reported here for simplicity. The short distance
shuttle system is {

ẋ1 = −x1h(x4, x5)− x1f1(u1) + x2f2(u2) + s1 − αx1

ẋ2 = x1h(x4, x5) + x1f1(u1)− x2f2(u2)− βx2{
ẋ3 = κx4 − x3g1(x2) + s3 − γx3

ẋ4 = −κx4 + x3g1(x2)− δx4
ẋ5 = λx6 − x5g4(x4) + s5 − εx5

ẋ6 = −λx6 + x7g2(x2)− ζx6

ẋ7 = x5g4(x4)− x7g2(x2)− ηx7

(1)

while the neck swinging system is{
ẋ1 = −x1g7(x7)− x1f1(u1) + x2f2(u2) + s1 − αx1

ẋ2 = x1g7(x7) + x1f1(u1)− x2f2(u2)− βx2{
ẋ3 = κx4 − x3g1(x2) + s3 − γx3

ẋ4 = −κx4 + x3g1(x2)− δx4
ẋ5 = −νx5 + λx6 + s5 − εx5

ẋ6 = νx5 − λx6 − x6g4(x4) + x7g2(x2)− ζx6

ẋ7 = x6g4(x4)− x7g2(x2)− ηx7

(2)

The Jacobian matrix corresponding to system (1) is

JSDS =



−(α+ ϑ+ ξ) π 0 −ν −µ 0 0
ϑ+ ξ −(β + π) 0 ν µ 0 0
0 −ρ −(γ + σ) κ 0 0 0
0 ρ σ −(δ + κ) 0 0 0
0 0 0 −ψ −(ε+ ϕ) λ 0
0 τ 0 0 0 −(ζ + λ) ω
0 −τ 0 ψ ϕ 0 −(η + ω)


(3)

where ϑ = h(x̄4, x̄5), µ = x̄1 ∂h(x4, x5)/∂x5|(x̄4,x̄5), ν = x̄1 ∂h(x4, x5)/∂x4|(x̄4,x̄5), ξ = f1(ū1), π =
f2(ū2), ρ = x̄3 ∂g1(x2)/∂x2|x̄2

, σ = g1(x̄2), τ = x̄7 ∂g2(x2)/∂x2|x̄2
, ω = g2(x̄2), ψ = x̄5 ∂g4(x4)/∂x4|x̄4

,
ϕ = g4(x̄4).

The Jacobian matrix for system (2) is

JNS =



−(α+ ϑ+ ξ) π 0 0 0 0 −µ
ϑ+ ξ −(β + π) 0 0 0 0 µ
0 −ρ −(γ + σ) κ 0 0 0
0 ρ σ −(δ + κ) 0 0 0
0 0 0 0 −(ε+ ν) λ 0
0 τ 0 −ψ ν −(ζ + λ+ ϕ) ω
0 −τ 0 ψ 0 ϕ −(η + ω)


(4)

where ϑ = g7(x̄7), µ = x̄1 ∂g7(x7)/∂x7|x̄7
, ξ = f1(ū1), π = f2(ū2), ρ = x̄3 ∂g1(x2)/∂x2|x̄2

, σ = g1(x̄2),
τ = x̄7 ∂g2(x2)/∂x2|x̄2

, ω = g2(x̄2), ψ = x̄6 ∂g4(x4)/∂x4|x̄4
, ϕ = g4(x̄4).



Giulia Giordano, CERT-mediated ceramide transfer is a structurally tunable flow-inducing mechanism... 4

2 Structural Steady-State Input-Output Influences

Given a generic nonlinear system, a certain variable of the system can be seen as the system output and
another relevant variable or parameter of the system as the system input. Then, the steady-state input-
output influence is the ensuing variation of the steady state of a certain variable of the system (seen as
the system output), upon a variation in a relevant variable or parameter (which can be seen as an input
for the system). Of course, different variables of the system may respond with a steady-state variation
that has the same sign as the input variation, the opposite sign, or is zero. The steady-state input-output
influence is structurally signed if it always has the same sign (positive, negative, or zero), regardless of
the choice of parameter values [5].

To assess the steady-state input-output influence in the system

ẋ(t) = f(x(t), u(t)), (5)

y(t) = g(x(t)), (6)

where f and g are continuously differentiable, x ∈ Rn, u is a scalar input and y a scalar output, assume
that there exists an asymptotically stable equilibrium point x̄, corresponding to ū, such that f(x̄, ū) = 0.
Then, both the state asymptotic value x̄(u) and the output asymptotic value ȳ(u) = g(x̄) are functions of
u. If the considered input variation is small enough to ensure that asymptotic stability of x̄(u) is preserved
(being the eigenvalues of the Jacobian matrix continuously dependent on the entries, which are in turn
continuous functions of u), then the implicit function theorem provides an analytic expression for the
derivative of the steady-state input-output map that relates y to u in system (5)–(6):

∂ȳ

∂ū
=
∂g

∂x

∣∣∣∣
x̄

(
− ∂f

∂x

∣∣∣∣
(x̄,ū)

)−1
∂f

∂u

∣∣∣∣
(x̄,ū)

.

Consider the linear approximation of the nonlinear system in a neighborhood of the equilibrium x̄, with
z(t) = x(t)− x̄, v(t) = u(t)− ū, w(t) = y(t)− ȳ:

ż(t) = Jz(t) + Ev(t),

w(t) = Hz(t),

where Jij = ∂fi
∂xj

∣∣∣
(x̄,ū)

, Ei = ∂fi
∂u

∣∣
(x̄,ū)

and Hi = ∂g
∂xi

∣∣∣
x̄
: J is the Jacobian matrix computed at the

equilibrium, while E and H are a column and a row vector that represent, respectively, how the input acts
on the system state and how the output depends on the system state in the linearised system.

Then, following [5], the input-output influence can be expressed as

∂ȳ

∂ū
= H(−J)−1E =

n(0)

d(0)
,

where d(0) = det(−J) > 0 if the Jacobian is computed at a stable equilibrium, while

n(0) = det

[
−J −E
H 0

]
. (7)

The above expression can be used to evaluate input-output influences for a given choice of parameters.
However, it is particularly interesting to assess the structural (parameter-free) input-output influence,
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namely to check if, upon a perturbation due to a constant input, for any feasible choice of the model
parameters, the ensuing variation of the steady-state input value has the same sign of the influence, the
opposite sign, or is zero (and in this case the influence is structurally signed), or if the sign of the variation
depends on the choice of parameter values. To structurally evaluate the sign of steady-state input-output
influences, the vertex algorithm proposed in [5] can be applied if the system admits the so-called BDC-
decomposition [1, 2, 3, 5], namely, its Jacobian can be written in the form J =

∑q
i=1 diMi, where the

Mi’s are rank-one matrices and the di’s are positive scalars related to the system partial derivatives (see
[3, 5] for details).

Systems (1) and (2) do admit a BDC-decomposition, where the di’s correspond to the Greek letters
in the expressions (3) and (4). Hence, the vertex algorithm can be applied to structurally evaluate the
sign of steady-state input-output influences in these systems.

The influence matrix, whose (i, j) entry expresses the sign of the overall steady-state influence on the
ith system variable of an external persistent additive input applied to the dynamic equation of the jth
system variable, can be evaluated as follows. As shown in [5], given a system of the form

ẋ(t) = f(x(t)) + Eu(t), (8)

y(t) = Hx(t), (9)

with Jacobian

J =
∂f(x)

∂x

∣∣∣∣
x=x̄

,

where x̄ is an asymptotically stable equilibrium, it is enough to take vectors E = Ej and H = Hi with a
single non-zero entry equal to one

Ej = [0 . . . 0 1︸︷︷︸
position j

0 . . . 0]>, Hi = [0 . . . 0 1︸︷︷︸
position i

0 . . . 0].

Then, if the system admits a BDC-decomposition, the vertex algorithm in [5] can be used to evaluate
each entry [Σ]ij of the structural influence matrix Σ ∈ Rn×n, thus obtaining:

• ‘+1’ if the influence is positive for any feasible choice of the parameters;
• ‘0’ if there is perfect adaptation for any feasible choice of the parameters;
• ‘−1’ if the influence is negative for any feasible choice of the parameters;
• ‘?’ if the influence can have a different sign depending on the chosen parameters.

As mentioned earlier, the determinant det(−J) must be positive if the equilibrium is stable. If the
system is structurally stable, with det(−J) > 0 for any possible value of the parameters, the signs provided
by the computation of the steady-state influence matrix, or of any steady-state input-output influence,
are valid no matter how the parameters are chosen. However, even when det(−J) is not sign determined,
the influences can still be computed based on the vertex algorithm, with the caution that the provided
outcome will be valid only around stable equilibrium points. This is the case for the considered two models,
since det(JSDS) and det(JNS) are indeed not sign determined.
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3 Flow-Inducing Networks: System Reformulation

Formally, the mathematical framework in [4] requires that all the interconnected subsystems are compart-
mental, namely, subject to mass conservation. This becomes true for both system (1) and system (2)
if the external inflows si and the self-degradation terms for each species are neglected: this amounts to
assuming that an external production rate compensates degradation, which is a standard assumption in
the analysis of biomolecular systems. Under this assumption, the short distance shuttle system becomes{

ẋ1 = −x1h(x4, x5)− x1f1(u1) + x2f2(u2)

ẋ2 = x1h(x4, x5) + x1f1(u1)− x2f2(u2){
ẋ3 = κx4 − x3g1(x2)

ẋ4 = −κx4 + x3g1(x2)
ẋ5 = λx6 − x5g4(x4)

ẋ6 = −λx6 + x7g2(x2)

ẋ7 = x5g4(x4)− x7g2(x2)

(10)

and the neck swinging system becomes{
ẋ1 = −x1g7(x7)− x1f1(u1) + x2f2(u2)

ẋ2 = x1g7(x7) + x1f1(u1)− x2f2(u2){
ẋ3 = κx4 − x3g1(x2)

ẋ4 = −κx4 + x3g1(x2)
ẋ5 = −νx5 + λx6

ẋ6 = νx5 − λx6 − x6g4(x4) + x7g2(x2)

ẋ7 = x6g4(x4)− x7g2(x2)

(11)

It is now apparent that the total concentrations of PKD, PI4KIIIβ and CERT remain constant, hence
in each subsystem there is total mass conservation: x1 + x2 = PKDtot, x3 + x4 = PI4KIIIβtot and
x5 + x6 + x7 = CERTtot. Although just systems (10) and (11) exactly fit in the mathematical framework
proposed in [4], since they are composed of compartmental systems, the very same flow-inducing effects
can be identified in the original systems (1) and (2). Hence, just the original systems have been studied
for the purpose of the present work.
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4 Structural Flow-Inducing Mechanisms

This section provides more details on the computation of structurally signed influences that reveal the
structural flow-inducing mechanism in the two models.

In the short distance shuttle system, if ΦSDS is chosen as the system output, then the structural
influence on this output can be computed from (7) by setting

H =
[
0 τ 0 ψ ϕ λ ω

]
.

In the neck swinging system, if ΦNS is chosen as the system output and a persistent input is applied
to the equation of x2 (concentration of active PKD), then the structural influences can be computed by
plugging into (7) an output matrix

H =
[
0 τ 0 ψ 0 ϕ ω

]
.

In both models, if the persistent input is u1, then the input matrix in (7) is

E =
[
−ς ς 0 0 0 0 0

]>
,

where ς = x̄1∂f1(u1)/∂u1|ū1 . Conversely, if a persistent input is applied, for instance, to the equation of
x2 (concentration of active PKD), then

E =
[
0 1 0 0 0 0 0

]>
.
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