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1 Introduction

Theoretical ecology aims at providing both a qualitative and a quantitative understanding of the dynamics
of communities and food webs. As a common way to gain insight into this dynamics, ecologists carry
out press perturbation experiments, where they alter the density of a species and observe how the density
of other species in the community changes when the new equilibrium is reached [2]. Responses to press
perturbations are the result of both direct and indirect effects [29, 32, 35, 42], while the community matrix
(which is the Jacobian matrix of the system of growth equations evaluated at an equilibrium [25], analysed
qualitatively in terms of signed entries, graphs and loops since [26, 27]) only describes direct interactions
among species in a community near equilibrium. However, responses to press perturbations are difficult
to interpret and counterintuitive when indirect effects are not properly taken into account.

In fact, when species i and j are dynamically coupled through intermediary species, a j-species press
affects species i through a complex network of direct and indirect interactions. If the perturbation is small
enough and the community has a stable equilibrium point, the net steady-state effect (combining all direct
and indirect effects) is then given by the negative adjoint of the community matrix [8, 9, 10, 11, 12, 26,
27, 28], whose (i, j) entry predicts the overall effect of a j-species press on species i. The negative inverse
of the community matrix can be equivalently considered [2, 23, 35, 42], since, under stability assumptions,
the inverse and the adjoint of a matrix have the same sign pattern.

The entries of the community matrix are highly uncertain, due to the lack of knowledge about direct
species interactions, and the huge uncertainties that affect ecological network models [33, 22] often prevent
from predicting even the sign of the variation. We would like to be able to assess whether, after the press
perturbation, the population density at the new equilibrium increases or decreases or remains the same,
with respect to the previous equilibrium. In particular, the response of species i to a j-species press
perturbation is ‘0’ if the ensuing steady-state variation in the amount of i is zero, or ‘+1’ if the sign of
the variation is concordant and ‘-1’ if it is discordant with the sign of the press, regardless of the system
parameters. Conversely, adopting a qualitative (or structural, parameter-free) approach, the response
is indeterminate (‘?’) if the sign of the steady-state variation depends on the chosen parameters, see
Fig. 1(b) of the Main Paper. In this Supplementary Information file,

• following [18, 19] we discuss how the response to a press perturbation can be mathematically seen
as a steady-state input-output influence, we introduce the steady-state influence matrix of a stable
system, whose (i, j) entry represents the sign of the steady-state variation of the ith system variable
due to a persistent step input applied to the jth system equation (namely, the sign of the shift in
the equilibrium of species i after a j-species press) and we point out that the steady-state influence
matrix is the sign pattern of the adjoint of the negative of the community matrix of the system
(Section 2);
• we point out that, for some relevant classes of ecological networks (including all mutualistic and

monotone networks, regardless of their topological structure), responses to press perturbations can
be evaluated based on a qualitative approach that exclusively relies on the knowledge of the sign
pattern of the community matrix or, equivalently, of the species direct-interaction graph (Section 3);
• for other classes of networks, we propose semi-qualitative (Section 4) or quantitative (Section 5)

approaches that provide useful information on the sign of press perturbation responses;
• we discuss a computational test to assess whether the sign of a press perturbation response is always

the same, even in the presence of parametric uncertainties, by exploiting the multi-affine structure
of the problem (Section 6);
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• we analyse in detail some of the examples discussed in the Main Paper (Section 7).

2 Responses to press perturbations are input-output steady-state
influences

2.1 Ecological networks, press perturbations and influence matrix

An ecological network that includes all biological interactions occurring in an ecosystem can be seen as a
compendium of elementary interactions among species. Hence, it can be effectively visualised as a graph,
where the nodes represent species and the edges represent interactions among species. Single and pairwise
interactions that normally appear in this context are shown in Fig. 1(a) of the Main Paper, along with their
graph representation. The signed graph G(S), which includes all the elementary interactions occurring
among the n species involved, represents the whole ecological network: matrix S ∈ Rn×n has entries [S]ij
equal to +1 if a positive edge goes from j to i, −1 if a negative edge goes from j to i, and 0 otherwise.

The overall nonlinear dynamical system that represents the evolution of an n-species community is

ẋ(t) = f(x(t)), (1)

where the ith component of vector
x(t) = [x1(t) . . . xn(t)]>

represents the population density of species i and the ith component of the vector function

f(x(t)) = [f1(x(t)) . . . fn(x(t))]>

is the corresponding overall growth rate, which depends on (some or all of) the species densities.

Assumption 1 The system admits an asymptotically stable equilibrium point x̄, such that

f(x̄) = 0.

The community matrix

J =
∂f(x)

∂x

∣∣∣∣
x=x̄

(2)

is the Jacobian matrix of system (1) evaluated at the equilibrium x̄. The entry [J ]ij of the community
matrix expresses the direct effect of species j on the growth rate of species i.

If we consider the signs of J , we can say that each species has a positive/negative direct influence,
or no direct influence, on each of the other species. This is visually represented in the associated graph
by a positive/negative edge, or no edge, between the two corresponding nodes. Therefore, there is an
equivalence between the overall network graph G(S) and the sign pattern of the community matrix J :
denoting by sgn(·) the elementwise sign function (sgn(k) = +1 if k > 0, sgn(k) = −1 if k < 0,
sgn(k) = 0 if k = 0), we have sgn(J) = S.

Assumption 2 Each species has a negative self-loop ( e.g., due to a density-dependent growth rate).

The above assumption is needed to guarantee stability of the dynamical system (1) at x̄.
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Remark 1 Since we work under asymptotic stability assumptions, we have that det(−J) > 0 (this is a
necessary condition, see e.g. [17]), and therefore matrix J is invertible.

While J includes direct effects only, the net steady-state influence, combining all direct and indirect
effects, is given by the negative adjoint matrix of the community matrix [8, 9, 10, 11, 12, 26, 27, 28]:

M = adj(−J).

Entry [M ]ij predicts the response of species i to a press perturbation on species j: if the density of species
j is experimentally altered and held at a higher level, then, at the new equilibrium, the density of species
i will be higher if [M ]ij > 0, lower if [M ]ij < 0 and unchanged if [M ]ij = 0. Since

adj(−J) = (−J)−1 det(−J),

and det(−J) > 0 in view of the stability assumption, we can equivalently consider the sign pattern of
−J−1 [2, 35, 42]. The influence matrix is indeed the sign pattern matrix

K = sgn(−J−1) = sgn[adj(−J)], (3)

expressing the qualitative effect of all species presses on all other species.

2.2 Steady-state input-output influences and the influence matrix

Here, for the sake of completeness, we report material from [19] to show how responses to press perturba-
tions can be seen, more in general, as steady-state input-output influences. This provides a useful insight
that helps assess them, even in case of uncertainties (this aspect will be addressed in Section 6).

Given a generic nonlinear system, we can see a certain variable of the system as the system output
and another relevant variable or parameter of the system as the system input. Then, the steady-state
input-output influence is the ensuing variation of the steady state of the system output, upon a variation
in the system input. Of course, different outputs (chosen as different variables of the system) may respond
with a steady-state variation that has the same sign as the input variation, the opposite sign, or is zero.
We say that the steady-state input-output influence is qualitatively signed if it always has the same sign
(positive, negative, or zero), regardless of the choice of parameter values in the system (see [19]).

To assess the steady-state input-output influence in the nonlinear system

ẋ(t) = f(x(t), u(t)), (4)

y(t) = g(x(t)), (5)

where f(·, ·) and g(·) are continuously differentiable, x ∈ Rn, u ∈ R is an input and y ∈ R is an output,
we make the following assumptions.

Assumption 3 There exists an asymptotically stable equilibrium point x̄, corresponding to ū, such that
f(x̄, ū) = 0.

Then, both the state asymptotic value x̄(u) and the output asymptotic value ȳ(u) = g(x̄) are functions
of u.

Assumption 4 The considered input perturbation u is small enough to ensure that the stability of x̄(u)
is preserved.
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Note that the eigenvalues of the Jacobian matrix (based on which the local linearised stability of the equi-
librium point is assessed) are continuously dependent on the matrix entries, which are in turn continuous
functions of u.

Then, the implicit function theorem provides an analytic expression for the derivative of the steady-state
input-output map that relates y to u in system (4)-(5):

∂ȳ

∂ū
=
∂g

∂x

∣∣∣∣
x̄

(
−∂f
∂x

∣∣∣∣
(x̄,ū)

)−1
∂f

∂u

∣∣∣∣
(x̄,ū)

. (6)

Consider the linear approximation of the nonlinear system in a neighbourhood of the equilibrium x̄.
Then, denoting by z(t) = x(t)− x̄, v(t) = u(t)− ū, w(t) = y(t)− ȳ, the linearised system is

ż(t) = Jz(t) + Ev(t),

w(t) = Hz(t),

where [J ]ij = ∂fi
∂xj

∣∣∣
(x̄,ū)

, [E]i = ∂fi
∂u

∣∣
(x̄,ū)

and [H]j = dg
dxj

∣∣∣
x̄
. J is the community matrix, while E and H

are a column and a row vector representing, respectively, how the input acts on the system state and how
the output depends on the system state in the linearised system.

Then, the input-output influence can be expressed as [19]

∂ȳ

∂ū
= H(−J)−1E =

n(0)

d(0)
, (7)

where
d(0) = det(−J)

is always positive, in view of stability, and

n(0) = det

[
−J − E
H 0

]
. (8)

Remark 2 From a control-theoretic perspective, n(0) and d(0) are the numerator and the denominator
of the system transfer function F (s) = n(s)/d(s) = H(sI − J)−1E, computed at s = 0 (for further
information concerning Laplace transform and transfer functions, see for instance [20]).

The above expression can be used to evaluate input-output influences for a given choice of the sys-
tem parameters. To evaluate the qualitative (parameter-free) input-output influence, [19] proposes an
efficient vertex algorithm. Such an algorithm is applicable to all systems that admit the so-called BDC-
decomposition (see [5, 6, 18, 19]); remarkably, this broad class includes the class of systems with a
sign-definite Jacobian matrix.

As discussed in [19], a qualitative influence is identified whenever, upon a perturbation due to a constant
input, the ensuing variation of the steady-state output value has the same sign as the input (positive
influence), the opposite sign (negative influence), or is zero (perfect adaptation),1 for any feasible choice
of the model parameters; otherwise, the influence is indeterminate. This is visually represented in Fig. 1(b)

1A variable is adaptive if, when a persistent input is applied, after a transient it reverts to its pre-perturbation value.
Adaptation is perfect if the pre-perturbation value is exactly recovered at steady state [13, 38, 41].
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of the Main Paper. Consistently, the algorithm in [19] yields a “+1” if increasing the input structurally
results in an increase in the steady-state value of the considered variable, a “−1” if it structurally results
in a decrease, a “0” if the steady-state of the considered variable is unchanged, and a “?” if the behaviour
is parameter-dependent.

When a persistent additive input is applied to a single state equation and a single state variable is taken
as the system output, the results for all the possible input-output pair combinations can be visualised in
the influence matrix, whose (i, j) entry expresses the sign of the overall steady-state influence on the ith
system variable of an external persistent additive input applied to the dynamic equation of the jth system
variable [19]. Consider a system (4)–(5) of the form

ẋ(t) = f(x(t)) + Eu(t), (9)

y(t) = Hx(t), (10)

with community matrix

J =
∂f(x)

∂x

∣∣∣∣
x=x̄

,

where x̄ is an asymptotically stable equilibrium, and take vectors E = Ej and H = Hi with a single
non-zero entry equal to one

Ej = [0 . . . 0 1︸︷︷︸
position j

0 . . . 0]>, Hi = [0 . . . 0 1︸︷︷︸
position i

0 . . . 0].

Each entry [K]ij of the qualitative influence matrix K ∈ Rn×n (which can be evaluated by the vertex
algorithm in [19] for any system that admits a BDC-decomposition) can be:

• ‘+1’ if the influence is positive for any choice of the parameters;

• ‘0’ if there is perfect adaptation for any choice of the parameters;

• ‘−1’ if the influence is negative for any choice of the parameters;

• ‘?’ if the influence can have a different sign depending on the chosen parameters.

Note that, as we have mentioned earlier, the influence matrix K corresponds to the sign pattern of the
adjoint matrix of the negative of the community matrix J , adj(−J). Since det(−J) is positive in view of
the stability assumption [17], J is invertible,

(−J)−1 =
1

det(−J)
adj(−J),

and the influence matrix has the same sign pattern as −J−1:

sgn(K) = sgn[adj(−J)] = sgn[(−J)−1]. (11)

The so-called structural (i.e., qualitative) influence matrix, which expresses the overall direct and
indirect influences, at steady-state, among the state variables of a dynamical network, regardless of the
chosen parameter values, can then be computed by means of the vertex algorithm proposed in [19] for all
systems admitting the BDC-decomposition described in [5, 6, 18, 19].
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3 Qualitative responses to press perturbations

For particular classes of systems, the signed influence matrix can have special properties that help us
evaluate it without any quantitative knowledge about the system. For instance, as pointed out in [18, 19]
based on [15], the influence matrix associated with a system whose matrix J is Metzler has exclusively
‘+1’ or ‘0’ entries; it has exclusively ‘+1’ entries if, besides being Metzler, matrix J is irreducible. This
result can be generalised to the class of monotone systems, based on classical results [36, 37, 39]. Indeed,
the community matrix of any monotone system becomes Metzler after a so-called “gauge transformation”
[14], i.e., a diagonal similarity transformation with diagonal elements ±1.

3.1 Mutualistic systems

Given matrix A ∈ Rn×n, G(A) denotes the digraph with adjacency matrix A, while Q[A] is the qualitative
class of all matrices having the same sign pattern as A. In particular, Q[A] always contains a signature
matrix S = sgn(A) whose entries are in {0, −1, +1}. Clearly, G(A), G(S) and G(B) ∀B ∈ Q[A] all
have the same (signed) graph, but possibly different numerical weights.

A matrix A is said irreducible if no permutation matrix P exists such that

P>AP =

[
A1 0
A2 A3

]
with A1 and A3 square matrices; equivalently, G(A) is strongly connected. Clearly, if A is irreducible, any
matrix B ∈ Q[A] is irreducible, since G(A) and G(B) have the same topology.

A mutualistic network has a community matrix J which is Metzler, i.e., the species-species interactions
are all mutually beneficial or commensal (see Fig. 1 (a) of the Main Paper) and only self-loops are negative.
For Metzler community matrices we have the following.

Theorem 1 (See [15, 19]) If the community matrix J in (2) associated with system (1) is stable and
Metzler, then Kij ∈ {0,+1} for all i, j ∈ {1, . . . , n}. Moreover, if matrix J is also irreducible, then
Kij = +1 for all i, j ∈ {1, . . . , n}.

A direct consequence of Theorem 1 is the following.

Theorem 2 Given S mutualistic with Sii < 0 for all i ∈ {1, . . . , n}, any stable J ∈ Q[S] has influence
matrix K such that Kij ∈ {0,+1} for all i, j ∈ {1, . . . , n}. If in addition G(S) is strongly connected,
then Kij = +1 for all i, j ∈ {1, . . . , n}.

It is worth stressing that the converse of Theorems 1 and 2 is not true. As discussed in [18, 19], there
are systems whose community matrix is not Metzler, and which nonetheless yield a fully positive influence
matrix. More on this below.

3.2 Monotone systems

Denote by x(t) the solution of (1) at time t with initial condition x(0). Consider a diagonal matrix
Σ = diag(σ) with diagonal entries σ = (σ1, . . . , σn), σi ∈ {±1}, which we call gauge matrix [14]. Vector
σ identifies a partial order for the n axes of Rn, which can be the “natural” one when all σi = +1, or
the opposite when all σi = −1, or any mixed sign combination. The system in (1) is said monotone with
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respect to the partial order σ if, for all initial conditions x1(0), x2(0) such that Σx1(0) 6 Σx2(0), it is
Σx1(t) 6 Σx2(t) ∀ t > 0 [36, 37, 39]. The ordering is strict if, in addition, strict inequality holds for at least
one of the coordinates of x1, x2, but not necessarily for all. The system in (1) is said strongly monotone
with respect to the partial order σ if, for all initial conditions x1(0), x2(0) such that Σx1(0) ≤ Σx2(0),
x1(0) 6= x2(0), it is Σx1(t) < Σx2(t) ∀ t > 0. Monotonicity of a system can be checked in terms of its

Jacobian J(x) = ∂f(x)
∂x

based on the Kamke condition [36, Lemma 2.1]: the system in (1) is monotone
w.r.t. the order σ if and only if

σiσjJij(x) > 0 ∀ x ∈ Rn, ∀ i, j = 1, . . . , n i 6= j, (12)

or, in matrix form, ΣJ(x)Σ is Metzler ∀ x ∈ Rn. This condition implies that J(x) must have the same
signature S = sgn(J(x)) everywhere, hence it can be stated equivalently in terms of S as

σiσjSij > 0 ∀ i, j = 1, . . . , n i 6= j. (13)

The condition in (13) admits a graph-theoretical reformulation. The system in (1) is monotone with
respect to some order if and only if all directed cycles of length > 1 of the signed digraph G(S) (or G(J))
have positive sign.

Monotonicity, combined with irreducibility of J(x) at all x, implies strong monotonicity of (1).
The following generalisation of Theorems 1 and 2 hold, based on well-known results on monotone

systems [36, 37, 39].

Theorem 3 If system (1) is monotone and, given a gauge transformation Σ, matrix ΣJΣ is stable and
Metzler, then K = ΣK̂Σ, where K̂ is a matrix containing only 0 and +1 terms (only +1 terms if the
system is strongly monotone, namely, matrix J is also irreducible).

Theorem 4 Given S such that ΣSΣ is Metzler for some gauge transformation Σ and Sii < 0 for all
i ∈ {1, . . . , n}, any stable J ∈ Q[S] is such that its influence matrix is K = ΣK̂Σ, where K̂ is a matrix
containing only 0 and +1 terms (only +1 terms if the system is strongly monotone, namely, G(S) is also
strongly connected).

4 Semi-qualitative responses to press perturbations

It is known, see for instance [18, 19], that even community matrices that are not Metzler can give rise
to elementwise positive influence matrices, meaning that complete mutualism of the community matrix
is not necessary, but just sufficient for the system to yield a nonnegative (and positive in the irreducible
case) influence matrix.

However, when G(S) is not mutualistic, we cannot resort to a purely qualitative approach to determine
the signature of the influence matrix K. Only semi-qualitative graph-based conditions can be stated to
identify community matrices that may yield a positive influence matrix for some choice of the values of
the parameters.

Here, we give a sufficient condition for a system to possibly admit a positive influence matrix (for
some values of the community matrix entries) that is exclusively based on the sign pattern of G(S):
the qualitative class Q[S] (in which all matrices have the same topology and the same signature of
S = sgn(J)) can contain at least one community matrix with a positive influence matrix provided that
the subgraph G(S+) (formed by taking only the positive edges of G(S)) forms a network-wide strongly
connected component. This can be seen as a strongly connected mutualistic “backbone”.
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4.1 Systems with a strongly connected mutualistic backbone

Given a matrix A, let A+ be the nonnegative part of A,

A+
ij =

{
Aij if Aij ≥ 0

0 if Aij < 0

and Â the following “lifting” of A to R2n×2n (see e.g. [7]):

Â =

[
0 A
−A> 0

]+

.

A matrix A is fully indecomposable if no permutation matrices P1, P2 exist such that

P1AP2 =

[
A1 0
A2 A3

]
where A1 and A3 are square matrices. Matrix A is fully indecomposable if and only if, for some permutation
matrix P , PA is irreducible and has nonzero diagonal entries (see for instance [4, p. 56]). We have the
following theorem by Fiedler and Grone [16].

Theorem 5 [16] Given a fully indecomposable signature matrix S, the following are equivalent:

1. there exists a matrix B ∈ Q[S] such that B−1 > 0;

2. matrix Ŝ =

[
0 S
−S> 0

]+

is irreducible;

3. S cannot be expressed in the form P1

[
S11 S12

S21 S22

]
P2,

where S11 need not be square, P1 and P2 are permutation matrices, S12 > 0 and S21 6 0, with at
least one of these two blocks being nonvoid.

Based on this result, we can derive qualitative sufficient conditions that allow a matrix with a given
sign structure to have a negative inverse with positive entries. In particular, we can prove the following.

Theorem 6 Given an irreducible matrix S, with Sii = −1 ∀ i = 1, . . . , n, if matrix S+ is irreducible, then
there exists a matrix J ∈ Q[S] such that −J−1 > 0.

Proof. Consider matrix −S: since −S is irreducible and −Sii > 0 ∀ i, then −S is fully indecomposable,
as required by Theorem 5. Consider then the corresponding lifting

Ŝneg =

[
0 −S
S> 0

]+

.

By construction, its upper right block has all nonzero diagonal entries, hence in the bipartite graph G(Ŝneg)
there exists a direct edge from each node n+ i to node i, with i ∈ {1, . . . , n}. If S+ is irreducible, then
(S>)+ is irreducible as well and there exists a path in G(Ŝneg) between each pair of nodes j and n + i,
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with i, j ∈ {1, . . . , n}. Hence, for any pair i, j ∈ {1, . . . , n}, there exists a path n+ j → j → n+ i→ i,
which means that the graph G(Ŝneg) is strongly connected, thus Ŝneg is irreducible.

Therefore, in view of Theorem 5, for some B ∈ Q[−S] it must be B−1 > 0. If we choose J = −B,
then J ∈ Q[S] and −J−1 = B−1 > 0.

The converse of Theorem 6 is not true, as the following example shows.

Example 1 Consider the irreducible signature matrix

S =


−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1
1 0 −1 −1

 .
The corresponding S+ is clearly reducible, but matrix

Ŝ =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0


is irreducible. Hence, Theorem 6 cannot be applied, while Theorem 5 still holds.

4.2 Systems with a strongly monotone backbone

Theorem 6 can be extended to systems that have a strongly monotone backbone, i.e., such that G
(
(ΣSΣ)+

)
is strongly connected, where Σ is a gauge transformation matrix.

Theorem 7 Given an irreducible matrix S, with Sii = −1 ∀ i = 1, . . . , n, if there exists a gauge trans-
formation Σ such that the matrix (ΣSΣ)+ is irreducible, then there exists a matrix J ∈ Q[S] such that
−(ΣJΣ)−1 = Σ(−J−1)Σ > 0.

5 Quantitative responses to press perturbations

In this section, we describe a class of matrices J that admit a positive influence matrix K = sign(−J−1),
although they are not associated with mutualistic systems. These matrices are related to eventually
nonnegative matrices [30, 31]: a matrix is eventually nonnegative if it becomes elementwise nonnegative
after a certain power (more rigorous definition below). Then, eventually nonnegative matrices with a proper
diagonal shift lead to community matrices having a positive influence matrix. In fact, if we consider an
irreducible and eventually nonnegative matrix B, then there exists an interval (ρ(B), β) of the real line
(where ρ(B) is the spectral radius of B) such that for all α ∈ (ρ(B), β), matrix J = B − αI is stable
and such that (−J)−1 > 0, implying that K > 0. This can be verified directly using the vertex algorithm



G. Giordano and C. Altafini, Qualitative and quantitative responses to press perturbations in ecological networks 11

described in Theorem 11, with uncertainty only on the diagonal parameters: Jii ∈ [ρ(B)− β, 0]. Notice
that B eventually nonnegative implies that also J is eventually nonnegative, but with eigenvalues of
different real part (more inside the left half of the complex plane, since α > 0). In fact, in J = B − αI,
the diagonal term αI plays the same role as the diagonal of a Metzler matrix: it guarantees Hurwitz
stability of J , which in turn ensures that det(−J) > 0. Since α > ρ(B), stability holds regardless of the
values on the diagonal of B.

5.1 Eventually nonnegative matrices

A matrix M ∈ Rn×n is eventually nonnegative if ∃ p0 ∈ N such that, ∀ p ≥ p0, Mp ≥ 0 elementwise;
equivalently, its spectral radius

ρ(M) = max
λi∈σ(M)

|λi|

is a real, positive eigenvalue of M , called the Perron-Frobenius eigenvalue, and the corresponding left and
right eigenvectors are elementwise nonnegative. Denote by indexλ(M) the multiplicity of the eigenvalue
λ of M as a root of the minimal polynomial (i.e., the dimension of the largest Jordan block associated
with λ). Then we have the following result, adapted from [24, Theorem 4.2].

Theorem 8 Consider J = B − αI, where B ∈ Rn×n is irreducible and eventually nonnegative, with
index0(B) 6 1. Then, ∃ β > ρ(B) such that ∀ α ∈ (ρ(B), β), −J = αI −B has a positive inverse.

More generally, if ∃ α such that J + αI = B is eventually nonnegative and satisfies Theorem 8, then the
influence matrix derived from J is positive: (−J)−1 > 0, hence K > 0 elementwise.

Remark 3 The condition index0(B) 6 1 is generically verified if B is irreducible, at least when the
coefficients of B are drawn randomly. All eigenvalues, including the 0 eigenvalue, are generically simple
in this case.

Note that the converse of Theorem 8 is not true.

5.2 Other cases: eventually positive and eventually exponentially positive

Other, similar, cases are described in [34]. For instance, if we consider the closely related class of eventually
positive matrices, then it is possible to obtain qualitative conditions in the spirit of those discussed in the
previous sections, namely conditions on the sign pattern that forbid a certain qualitative class of matrices
to have a representative that is eventually positive. A matrix M ∈ Rn×n is eventually positive if ∃ p0 ∈ N
such that, ∀ p ≥ p0, Mp > 0 elementwise; equivalently, its Perron-Frobenious eigenvalue ρ(M) is real,
positive, and the corresponding left and right eigenvectors are elementwise positive. A first necessary
condition for a qualitative class Q[S] to contain an eventually positive matrix is that S is irreducible [3].
The following theorem is also from [3].

Theorem 9 ([3], Thm. 5.2) Consider an irreducible signature matrix S. If S has the block sign pattern[
S11 S12

S21 S22

]
where S11 and S22 are square matrices and S12 = S+

12, −S21 = (−S21)+, then @B ∈ Q[S] such that B is
eventually positive.
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A matrix M is eventually exponentially positive if ∃ t0 ∈ R such that, ∀ t ≥ t0, eMt > 0 elementwise;
equivalently, the matrix enjoys the Perron-Frobenious property in terms of spectral abscissa: its dominant
eigenvalue λ∗ = arg maxλi∈σ(M)<(λi) (namely, that having the maximum real part) is real and the
corresponding left and right eigenvectors are elementwise positive.

The following result, adapted from [30, Theorem 2.2], [1, Lemma 2], links eventual positivity with
eventual exponential positivity. It allows to better understand the role of α in J = B − αI.

Theorem 10 A matrix A ∈ Rn×n is eventually exponentially positive if and only if A+ αI is eventually
positive for some α ≥ 0.

Remark 4 We can provide a graph-theoretical interpretation of Theorems 8 and 10. If M is the adjacency
matrix of a directed graph (so that |Mij| = 1 if an edge connects nodes i and j, Mij = 0 otherwise),
then its power Mk is such that Mk

ij is equal to the number of paths of length k that connect nodes i and
j. Then, let B be an eventually nonnegative or eventually positive matrix and the adjacency matrix of a
weighted directed graph (we can set Bii = 0, since self-loops are not relevant). The (i, j) entry of matrix
Bk,

Bk
ij =

∑
h1,h2,...,hk−1

Bi,h1Bh1,h2 . . . Bhk−1,j,

is the sum of all possible edge products (where each edge is weighted by the corresponding entry of B)
corresponding to all possible paths of length k in the graph. Hence, the sum of all possible paths of length
k becomes positive for large k. When B is eventually positive, in the expression of the exponential matrix
of J = B − αI, it is

e(B−αI)t = eBte−αIt =
∞∑
k=0

Bktk

k!
e−αIt,

where e−αIt is a diagonal matrix with positive diagonal entries and, in the infinite sum, the terms corre-
sponding to powers Bk with k > ko provide a positive contribution, because the sum of all possible paths
of length k > ko is positive in the graph.

6 When the community matrix is uncertain: qualitative influence
matrix computation

Following the approach in Section 2 and in [19], given x ∈ Rn, we consider the nonlinear system

ẋ(t) = f(x(t)) + Eu(t), y(t) = Hx(t), (14)

where f(·) is continuously differentiable, u ∈ R is an input, y ∈ R is an output, and we assume that
there exists an asymptotically stable equilibrium point x̄. Then, both the state asymptotic value x̄(u)
and the output asymptotic value ȳ(u) = Hx̄ are functions of u. The steady-state input-output influence
[19] is the ensuing variation of the steady state of the system output y, upon a variation in the input u
(a relevant variable or parameter). We assume that the considered input perturbation is small enough to
ensure that the stability of x̄(u) is preserved (being the eigenvalues of the Jacobian matrix continuously
dependent on the entries, which are in turn continuous functions of u). Of course, different variables of
interest for the system may respond with a steady-state variation that has the same sign as the input
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variation, the opposite sign, or is zero. The steady-state input-output influence is qualitatively signed if it
always has the same sign (positive, negative, or zero), regardless of the choice of parameter values [19].
Denoting by J the community matrix, in view of the implicit function theorem, the input-output influence
(or sensitivity) can be expressed as [19]

∂ȳ

∂ū
= H(−J)−1E =

det

[
−J − E
H 0

]
det(−J)

.
=
n(J,E,H)

det(−J)
, (15)

where det(−J) > 0, in view of stability. Each entry Kij of the influence matrix can be computed by
evaluating the sign of n(J,E,H) in (15) when E = Ej and H = Hi have a single non-zero entry (the
jthe and the ith, respectively) equal to one.

To evaluate the qualitative (parameter-free) input-output influence, [19] proposes a vertex algorithm
(applicable to any system that admits a BDC-decomposition [5, 6, 19]) to assess if increasing the input
always results in an increase in the output steady-state value, if it always results in a decrease, if the
steady-state output is unchanged, regardless of the choice of parameter values, or if the behaviour
is parameter-dependent. Along the same lines, we can apply a vertex algorithm to uncertain community
matrices where each entry belongs to a known (possibly bounded) interval: Jij ∈ [J−ij , J

+
ij ] (e.g.,

Jij ∈ [J∗ij − εij, J∗ij + εij]). For instance, we might have that the (i, j) entry has a nominal value J∗ij that
is affected by an uncertainty of amplitude εij, hence Jij ∈ [J∗ij − εij, J∗ij + εij].

In fact, also in the case of uncertain parameters belonging to given intervals, multiaffinity of n(J,E,H)
with respect to the entries of J guarantees the following result.

Theorem 11 Denote by J (v), v = 1, . . . , 2n
2
, the community matrices corresponding to all of the possible

choices of the entries with Jij ∈ {J−ij , J+
ij }. Then,

1. n(J,E,H) = 0 for all matrices J with Jij ∈ [J−ij , J
+
ij ] iff n(J (v), E,H) = 0 for all v,

2. n(J,E,H) > 0 for all matrices J with Jij ∈ [J−ij , J
+
ij ] iff n(J (v), E,H) > 0 for all v,

3. n(J,E,H) < 0 for all matrices J with Jij ∈ [J−ij , J
+
ij ] iff n(J (v), E,H) < 0 for all v,

4. n(J,E,H) > 0 for all matrices J with Jij ∈ (J−ij , J
+
ij ) iff n(J (v), E,H) ≥ 0 for all v and

n(J (v), E,H) > 0 for some v,
5. n(J,E,H) < 0 for all matrices J with Jij ∈ (J−ij , J

+
ij ) iff n(J (v), E,H) ≤ 0 for all v and

n(J (v), E,H) < 0 for some v.

Proof. Necessity is immediate in view of continuity. Sufficiency can be proved relying on the multiaffinity
of n(J,E,H) with respect to the entries of J . In fact, a multiaffine function defined on a hypercube
reaches its minimum (and maximum) value on a vertex of the hypercube. We prove sufficiency for the
second claim (the others can be proved similarly), by contradiction. Being the function multiaffine, it
must be n(J,E,H) ≥ 0 in the whole hypercube. Assume there is an internal point of the hypercube such
that n(J,E,H) = 0. Then, consider variations along the direction of J−11 ≤ J11 ≤ J+

11. The restricted
function is linear and nonnegative. Hence, if it is zero at one point, it must be zero at both the extrema:
n(J

(1)
− , E,H) = n(J

(1)
+ , E,H) = 0, where J

(1)
− is the matrix where J11 = J−11 and J

(1)
+ is the matrix where

J11 = J+
11. If we fix first J11 = J+

11 and then J11 = J−11, in both cases we can repeat the same argument
along the direction of each of the following entries, to conclude that it must be n(J,E,H) = 0 for all the
vertices of the matrix. However, this is in contradiction with the assumption that n(J (v), E,H) > 0 for
some v. Hence, it must be n(J,E,H) > 0 for all internal points of the hypercube.
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Remark 5 The number of community matrices to be tested is 2q, where q is the number of uncertain
nonzero entries. Therefore, q = n2 in the worst case. However, in ecological networks, community
matrices are typically sparse, hence we can expect to have q � n2.

The computational effort is paid back by a very strong knowledge. If we get a qualitative answer for
an entry, then the response to that press perturbation will have the same sign for all possible community
matrices having their entries in the given intervals.

7 Examples of ecological networks

7.1 Plankton-bacteria-protozoa community

Consider the ecological network described in [40, 9], whose interaction graph G(S) is shown in Fig. 3(a)
of the Main Paper. The nominal value of the community matrix according to [40], is

J =


−1 0.6 0 0 0
−0.6 −1 0.6 0.1 0

0.6 −0.6 −1 −0.5 0.2
0 0 0.5 −1 −0.2
0 0 0 0.2 −1

 , (16)

which yields the sign pattern matrix

S =


−1 1 0 0 0
−1 −1 1 1 0

1 −1 −1 −1 1
0 0 1 −1 −1
0 0 0 1 −1

 . (17)

The influence matrix corresponding to the nominal community matrix has sign pattern

K =


1 1 1 −1 1
−1 1 1 −1 1

1 −1 1 −1 1
1 −1 1 1 −1
1 −1 1 1 1

 . (18)

What happens in the case of uncertainties in the community matrix (16)? The vertex algorithm described
in the previous section (see Theorem 11) allows us to certify that the sign pattern in (18) is preserved, no
matter how the community matrix entries vary within bounded intervals, as follows:

−1± 0.15 0.6± 0.1 0 0 0
−0.6± 0.1 −1± 0.15 0.6± 0.1 0.1± 0.1 0
0.6± 0.1 −0.6± 0.01 −1± 0.01 −0.5± 0.01 0.2± 0.1

0 0 0.5± 0.1 −1± 0.1 −0.2± 0.01
0 0 0 0.2± 0.01 −1± 0.1

 , (19)
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where the notation Jij = J̄ij ± δij means that the entry can take values in the whole interval Jij ∈
[J̄ij − δij, J̄ij + δij].

As shown above, the nominal choice of the parameters (16) and the polytope of uncertainty given
in (19) lead to the influence matrix (18), which is not fully positive. However, since the graph G(S+)
(obtained by taking only the positive edges of G(S)) is strongly connected, the community must yield a
fully positive influence matrix for some other choice of the parameters having the sign pattern (17), in
view of Theorem 6.

An example is given by the choice

J̃pos =


d̄1 d̄2 0 0 0
d̄3 d̄4 d̄5 d̄6 0
d̄7 d̄8 d̄9 d̄10 d̄11

0 0 d̄12 d̄13 d̄14

0 0 0 d̄15 d̄16

 =


−1 0.6 0 0 0
−0.6 −1 1 0.1 0

0.6 −0.2 −1 −0.1 0.4
0 0 0.5 −1 −0.2
0 0 0 0.3 −1

 , (20)

which is such that −J̃−1
pos > 0 elementwise.

Figure 1 shows the outcome of a numerical sampling of the parameter space. In each of the plots, the
influence matrix is computed when two of the di’s vary in the range di ∈ [d̄i − 0.1, d̄i + 0.1], where d̄i is
the nominal choice of the parameters in (20), marked in the plots by the cyan diamond. Blue points in
the parameter space correspond to parameter choices that lead to a fully positive influence matrix, while
red points correspond to parameter choices that do not lead to a fully positive influence matrix.

It is worth pointing out that matrix J̃pos in (20) is eventually exponentially positive.
According to Theorem 10, since J̃pos is eventually exponentially positive, there must exist a choice of

α ≥ 0 such that J̃pos = B − αI, with B eventually positive. Indeed, for α = 1.37, B = J̃pos + αI is
eventually positive, irreducible and index0(B) 6 1, with ρ(B) = 0.898. Hence, in view of Theorem 8,
there exists β > ρ(B) such that ∀ α ∈ (ρ(B), β), αI −B has a positive inverse. In this case β = 1.421.
Clearly α = 1.37 belongs to the interval (ρ(B), β) = (0.898, 1.421).

Another choice of the community matrix entries that gives a fully positive influence matrix is

Jpos =


d̄1 d̄2 0 0 0
d̄3 d̄4 d̄5 d̄6 0
d̄7 d̄8 d̄9 d̄10 d̄11

0 0 d̄12 d̄13 d̄14

0 0 0 d̄15 d̄16

 =


−0.6 0.6 0 0 0
−0.6 −0.6 0.6 1 0

1 −0.8 −0.6 −0.6 1
0 0 0.6 −0.6 −1
0 0 0 0.6 −0.6

 . (21)

Also in this case, −J−1
pos > 0 elementwise. It is possible to show “robustness” of this parameter choice

based on the vertex algorithm (Theorem 11). In fact, running the algorithm certifies that the influence
matrix remains fully positive, no matter how the entries di vary within the following intervals:

−0.6± 0.03 0.6± 0.02 0 0 0
−0.6± 0.04 −0.6± 0.04 0.6± 0.04 1± 0.04 0

1± 0.02 −0.8± 0.01 −0.6± 0.01 −0.6± 0.05 1± 0.02
0 0 0.6± 0.01 −0.6± 0.05 −1± 0.01
0 0 0 0.6± 0.05 −0.6± 0.05

 .
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These intervals are fairly small because we want to guarantee positivity simultaneously for all variations.
Normally, only some of the parameters are uncertain. For instance, Figures 2 and 3 show the outcome of
a numerical sampling of the parameter space when only 2 parameters are varied at a time. In each of the
plots, the influence matrix is computed when two of the di’s vary in the range di ∈ [d̄i − 0.1, d̄i + 0.1]
(Figure 2) or di ∈ [d̄i− 0.2, d̄i + 0.2] (Figure 3), where d̄i is the nominal choice of the parameters in (21),
marked in the plots by the cyan diamond. Blue points in the parameter space correspond to parameter
choices that lead to a fully positive influence matrix, while red points correspond to parameter choices
that do not lead to a fully positive influence matrix and green points correspond to parameter choices
that make the community matrix singular (hence, its inverse cannot be computed). It can be seen that
all points included in the hyper-rectangle of parameters that has been successfully tested with the vertex
algorithm yield, as expected, a fully positive community matrix.

Interestingly, also matrix Jpos in (21) is eventually exponentially positive. Hence, according to The-
orem 10, there exists α ≥ 0 such that Jpos = B − αI, with B eventually positive. Indeed, for α = 2,
B = Jpos + αI is eventually positive, irreducible and index0(B) 6 1. Hence, in view of Theorem 8, there
exists β > ρ(B) such that ∀ α ∈ (ρ(B), β), αI − B has a positive inverse: in this case, α = 2 belongs
to the interval (ρ(B), β) = (1.91, 2.05).

7.2 Shallow lake community

The ecological network of the shallow lake community described in [21] corresponds to the interaction
graph G(S) shown in Fig. 3(b) of the Main Paper, which is in turn associated with the sign pattern S of
the community matrix J :

S =


−1 −1 1 1 0 0

1 −1 0 −1 0 0
−1 0 −1 0 0 1

0 0 −1 −1 −1 1
0 1 0 −1 −1 0
0 0 −1 −1 0 −1

 . (22)

Changing sign to the first, fourth and sixth variable, namely applying the gauge transformation

Σ = diag(−1 1 1 − 1 1 − 1),

leads to the new sign pattern

S ′ = ΣSΣ =


−1 1 −1 1 0 0
−1 −1 0 1 0 0

1 0 −1 0 0 −1
0 0 1 −1 1 1
0 1 0 1 −1 0
0 0 1 −1 0 −1

 , (23)

which corresponds to the graph in Fig. 3(c) of the Main Paper.
This new graph satisfies the assumptions of Theorem 6. Indeed, if we remove from G(S ′) all negative

edges, the resulting graph G(S ′+) is strongly connected. Hence, there must be a fully positive influence
matrix corresponding to some choice of the parameters having the sign pattern (23).
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Indeed, the choice

J ′pos =


−0.6 0.6 −0.6 0.6 0 0
−0.6 −0.6 0 0.6 0 0

0.6 0 −0.6 0 0 −0.6
0 0 0.6 −1 0.6 1
0 0.7 0 0.6 −1 0
0 0 1 −0.6 0 −0.8

 (24)

yields −(J ′pos)
−1 > 0 elementwise.

Which is then the sign pattern of the influence matrix for the original graph? As discussed in the Main
Paper, it can simply be achieved from the matrix O of all-ones by applying the same gauge transformation
Σ:

K = ΣOΣ =


1 −1 −1 1 −1 1
−1 1 1 −1 1 −1
−1 1 1 −1 1 −1

1 −1 −1 1 −1 1
−1 1 1 −1 1 −1

1 −1 −1 1 −1 1

 .

Note that also J ′pos in (24) is eventually exponentially positive. Therefore, according to Theorem 10,
there exists α ≥ 0 such that J ′pos = B−αI, with B eventually positive. Indeed, for α = 1.5, B = J ′pos+αI
is eventually positive, irreducible and index0(B) 6 1. Thus, Theorem 8 ensures that there exists β > ρ(B)
such that ∀ α ∈ (ρ(B), β), αI − B has a positive inverse: in this case, α = 1.5 clearly belongs to the
interval (ρ(B), β) = (1.47, 1.52).
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Figure 1: Phytoplankton example with nominal choice of the parameters given in (20). Sampling in the
parameter space: the parameters di are allowed to vary in the interval between d̄i−0.1 and d̄i+0.1, where
d̄i is the nominal value. Blue points correspond to parameter choices that lead to a fully positive influence
matrix, while red points correspond to parameter choices that do not lead to a fully positive influence
matrix and green point correspond to parameter choices that make the community matrix singular (hence,
its inverse cannot be computed). The cyan diamond in the center of each plot indicates the nominal
choice of the parameters in (20).
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Figure 2: Phytoplankton example with nominal choice of the parameters given in (21). Sampling in the
parameter space: the parameters di are allowed to vary in the interval between d̄i−0.1 and d̄i+0.1, where
d̄i is the nominal value. Blue points correspond to parameter choices that lead to a fully positive influence
matrix, while red points correspond to parameter choices that do not lead to a fully positive influence
matrix and green point correspond to parameter choices that make the community matrix singular (hence,
its inverse cannot be computed). The cyan diamond in the center of each plot indicates the nominal
choice of the parameters in (21).
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Figure 3: Phytoplankton example with nominal choice of the parameters given in (21). Sampling in the
parameter space: the parameters di are allowed to vary in the interval between d̄i−0.2 and d̄i+0.2, where
d̄i is the nominal value. Blue points correspond to parameter choices that lead to a fully positive influence
matrix, while red points correspond to parameter choices that do not lead to a fully positive influence
matrix and green point correspond to parameter choices that make the community matrix singular (hence,
its inverse cannot be computed). The cyan diamond in the center of each plot indicates the nominal
choice of the parameters in (21).
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