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Abstract We consider the problem of identifying structural influences of external inputs on steady–state

outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a

constant input, the ensuing variation of the steady–state output value has the same sign as the input (positive

influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of

the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (i, j)

entry indicates the sign of steady–state influence of the jth system variable on the ith variable (the output

caused by an external persistent input applied to the jth variable). Each entry is structurally determinate

if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle,

determining the influence matrix requires exhaustive testing of the system steady–state behaviour in the

widest range of parameter values. Here we show that, in a broad class of biological networks, the influence

matrix can be evaluated with an algorithm that tests the system steady–state behaviour only at a finite

number of points. This algorithm also allows us to assess the structural effect of any perturbation, such

as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction

networks and population dynamics drawn from the literature, providing a parameter–free insight into the

system dynamics.
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1 Introduction

Predictive mathematical models are crucial for highlighting the fundamental features of biological systems,

in order to perform both the study of natural systems and the design of synthetic biochemical circuits

(Kitano (2002); Alon (2006)). Yet, a significant challenge arises from the lack of exact quantitative knowledge

and from the variability of parameters. Interestingly, despite the large variability and intrinsic parametric

uncertainty, living organisms are able to perform robust regulatory tasks (Kitano (2004); Alon (2007);

Steuer et al (2011)); hence the need to understand the inherent roots of such an extraordinary robustness

(Gorban and Radulescu (2007); Kitano (2007)). Theoretic and computational tools are thus required to

assess parameter–independent (within a feasible domain), structural properties (Nikolov et al (2007); Shinar

and Feinberg (2010); Blanchini and Franco (2011); Franco and Blanchini (2013)).

Extensive numerical simulations exploring the parameter space are often employed to investigate robust-

ness of biological systems (Ma and Iglesias (2002); Kwon and Cho (2008)). However, many analytical tools

are available, based for instance on the renowned deficiency theory (Feinberg (1987, 1995a,b); Shinar et al

(2007)), the theory of monotone systems (Smith (2008); Sontag (2007); De Lenheer et al (2007)), algebraic

geometry and graph theory (Craciun and Feinberg (2005, 2006); Mincheva and Craciun (2008); Angeli and

Sontag (2009); Angeli et al (2010); Mincheva (2011); Domijan and Pécou (2011); Blanchini et al (2014)). To

robustly (or structurally) assess properties in a biological context, control theoretic models have also been

employed (El-Samad et al (2006)), providing criteria for robustness based on the analysis of the Jacobian

matrix (Blanchini et al (2012)) and on Lyapunov theory and set–invariance (Blanchini and Miani (2015);

Abate et al (2007); Chesi and Hung (2008); Blanchini and Franco (2011); Blanchini and Giordano (2014)).

Among the properties of interest, adaptation is widely observed in biological systems, e.g., in bacterial

chemotaxis (Barkai and Leibler (1997); Spiro et al (1997); Alon et al (1999)), eukaryotic gradient sensing

(Levchenko and Iglesias (2002)) and yeast osmoregulation (Muzzey et al (2009)). A variable embedded

in a system is adaptive if, in the presence of a persistent input, after a transient it reverts to its pre–

perturbation value; adaptation is perfect if the pre–perturbation value is exactly recovered at steady state.

Perfect adaptation obeys the internal model principle (Sontag (2003)) and is equivalent to the presence of

integral feedback (Yi et al (2000)) and of zeros at the origin in the system transfer function (Drengstig et al

(2008)). Efforts have been made to determine motifs that can achieve perfect adaptation (Ma et al (2009))

and to design biomolecular network modifications that enable perfect adaptation (Waldherr et al (2012)).

In this paper, we consider the general concept of steady–state influence, which includes perfect adaptation

as a special case. When a persistent input is applied to the system, the steady–state variation of a variable

(regarded as an output) may have the same or the opposite sign of the applied input, or may be zero (perfect
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adaptation). A structural influence is present if the sign of the variation does not depend on the value of

the system parameters. In particular, we are interested in the effect of an external input applied to one of

the system variables on the steady–state variation of each of the variables: in this case, the steady–state

interactions can be represented by the structural influence matrix.

The problem of determining structural influences is well known in the field of ecology, and is related to the

notion of community matrix (Levins (1968)), which is the Jacobian matrix of the system of growth equations

and thus describes interactions among and within species in a community near equilibrium. The community

matrix, expressing direct effects only, was first qualitatively analysed by Levins (1974, 1975) in terms of

signed entries, graphs and loops. The net steady–state effect, combining all direct and indirect effects, is

expressed by the adjoint matrix of the negative of the community matrix (Levins (1974, 1975); Dambacher

et al (2002, 2003a,b, 2005)). When the sign of some entries of the adjoint matrix is indeterminate, the net

response predicted by the model is uncertain: to quantify this uncertainty, a weighted–predictions matrix

was introduced (Dambacher et al (2002); Dambacher and Ramos Jiliberto (2007)) that assigns a probability

to the predicted sign of the response. Recently, a theoretical approach and an algorithm to determine

the sign of changes in steady states upon parameter perturbations in biochemical reaction networks have

been proposed by Sontag (2014a,b). Mochizuki and Fiedler (2015) have studied the structural variation

in species concentrations/fluxes when a reaction in the network is altered, under qualitative assumptions

(positivity, smoothness, monotonicity of rate functions). This type of investigation is focused on the steady–

state response to external stimuli, in contrast with other approaches that consider the dynamic interactions

between variables (Hernandez (2009)).

The main contribution of this paper is a rigorous and efficient computational approach to structurally

assess the steady–state input–output influences. The structural influence is determinate if, for any feasible

values of the system parameters, the steady–state variation in the output value is zero (‘0’, perfect adapta-

tion), or its sign is concordant (‘+’) or discordant (‘−’) with the sign of the external stimulus. In contrast,

if the sign of the variation depends on the magnitude of the parameters, the influence is indeterminate (‘?’).

A particular type of structural steady–state influences can be represented by means of the influence matrix:

the (i, j) entry of this matrix represents the influence on variable i (output) of an additive input persistently

applied to variable j. In ecological models (at least, in their Lotka–Volterra approximations), the structural

influence matrix corresponds to the sign pattern of the adjoint of the negative of the community matrix. We

propose an efficient algorithm to compute structural steady–state variations due to external stimuli (Sec-

tion 4), and in particular the structural influence matrix (Section 5). The algorithm exploits the structure

of a wide class of biological systems (Blanchini et al (2012); Blanchini and Giordano (2014)) whose model

can be written in terms of a “stoichiometry” matrix and a vector of “reaction rates”. For these systems, the
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Jacobian matrix can always be expressed as the product of three matrices that depend on the stoichiometry

matrix and on the partial derivatives of the reaction rate functions (which we call BDC–decomposition, de-

scribed in Section 3). Based on this decomposition, the algorithm allows us to determine the structural sign

of the input–output influence, for any feasible choice of the parameters, by checking just a finite number of

points in the parameter space corresponding to the vertices of the unit hypercube. This is possible because,

for systems admitting a BDC–decomposition, the expression of the input–output influence turns out to be

a multi–affine function defined on a hypercube, hence it reaches its extreme values on the vertices of the

hypercube.

An important feature of our algorithm is that it can handle parametric dependencies between the entries

of the Jacobian matrix; thus, the algorithm can assess structural sign determinacy of the influence even in

cases in which the Jacobian matrix is not sign–definite. This is a significant advantage relative to the existing

literature that considers solely matrices with independent entries. For systems with independent Jacobian

entries, we describe a tree–like recursive algorithm to enhance computational efficiency (Section 7). We also

consider the case of neutrally stable systems, whose trajectories evolve in the stoichiometric compatibility

class associated with the initial conditions. For these systems, any persistent input might cause divergence

of the trajectories in time; however, a structural input–output influence analysis can be carried out by

considering impulsive, rather than persistent, inputs (see Section 6).

The paper is organised as follows. Background and motivation are provided in Section 2 by analysing

meaningful case studies. Section 3 illustrates the BDC–decomposition and the concept of structural analy-

sis. Our vertex algorithm for an efficient computation of structural steady–state influences is described in

Section 4 and applied in Section 5 to the computation of the structural influence matrix. In Section 6, the

analysis is carried out for neutrally stable systems in their stoichiometric compatibility class, while Section 7

describes the tree–like algorithm that computes the influence matrix for systems with independent Jacobian

entries. In Section 8, to show the effectiveness of our algorithm in explaining the intrinsic behaviour of

the system in terms of steady–state response to external stimuli, we analyse several models of biochemical

and ecological systems proposed in the literature. Some future extensions and links with related problems

(partially) explored in the literature are finally discussed in the concluding Section 9.
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2 Background and motivating examples

We introduce the concept of influence matrix with two illustrative examples. Consider the following Lotka–

Volterra prey–predator model (May (1974))

Ḣ(t) = H(t)[r(1−H(t)/K)− aP (t)] + u1,

Ṗ (t) = P (t)(−b+ cH(t)) + u2,
(1)

where H(t) are the prey and P (t) the predators; a, b, c, r and K are positive parameters; u1 and u2

are persistent external inputs. The birth rate of the prey population is modelled with the Verhulst–Pearl

logistic term r(1 − H(t)/K). When u1 = u2 = 0, the stable equilibrium is E0: H̄0 = b
c , P̄0 = r

a

(
1− b

cK

)
(other equilibria are E1: H̄1 = K, P̄1 = 0 and E2: H̄2 = 0, P̄2 = 0). Consider equilibrium E0 and suppose

now that there is a constant injection or removal of prey or predators, i.e., inputs u1 or u2 become non–

zero and constant. How does this perturbation affect the equilibria? We assume that the perturbation is

sufficiently small that the equilibrium remains stable and non–zero, and does not disappear (for instance,

for large negative values of ui the equilibrium may not exist).

Assume there is an injection or removal of prey, i.e., input u1 6= 0, and denote as H̄ and P̄ the new

coordinates of the equilibrium E0. From the second equation we have

P̄ (−b+ cH̄) = 0,

so the steady–state value of the prey will be unchanged: H̄ = b/c. From the first equation

H̄[r(1− H̄/K)− aP̄ ] + u1 = 0,

being H̄ unchanged, we see that P̄ is an increasing function of u1.

The conclusion is that, no matter how the parameters are taken within the domain where E0 exists,

after a transient the predator population variation P̄ − P̄0 has the same sign of u1: P̄ > P̄0 if u1 > 0,

P̄ < P̄0 if u1 < 0. Hence, we say that the influence of u1 on P is structurally positive. Conversely, since

H̄ = H̄0 is unchanged, the influence of u1 on H is structurally zero. This phenomenon is known as perfect

adaptation: a positive (negative) u1 causes an initial increase (decrease) of the prey, but at steady–state the

prey population converges to the unperturbed value H̄0, due to a compensating effect associated with the

variation in the predator population.
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With similar computations we can argue that, if we consider a predator injection (input u2 6= 0), the

structural influence on H is negative and on P is positive: if u2 > 0 (u2 < 0 respectively), H̄ < H̄0 and

P̄ > P̄0 (H̄ > H̄0 and P̄ < P̄0).

Since the steady–state values H̄ and P̄ are functions of u1 and u2, H̄(u1, u2) and P̄ (u1, u2), implicitly de-

fined by the equilibrium conditions, we can equivalently compute and inspect the signs of the corresponding

partial derivatives. In this case we have that structurally ∂H̄/∂u1 = 0, ∂P̄ /∂u1 > 0, ∂H̄/∂u2 < 0, ∂P̄ /∂u2 > 0.

To visualise at once the steady–state interactions between inputs applied to each system variable and

outputs taken as a single system variable, we can build a structural steady–state influence matrix, which in

the following will be denoted as matrix M . We say that the (i, j) entry of matrix M is ‘+’, ‘−’, or ‘0’ if,

for any feasible choice of the model parameters, an input uj (representing a persistent external injection

applied to the jth population) causes a change of the same sign, opposite sign, or no change in the steady

state of the ith population (seen as an output). Based on our calculations, the influence matrix M for the

prey–predator system (1) is:

M =

 0 −

+ +

 .
The prey–predator model is a sufficiently simple case where the influence matrix can be computed

analytically. However, building matrix M in large and complex networks requires a more sophisticated and

computationally efficient approach. Two issues are worth pointing out.

(a) An equilibrium (steady–state) may not exist, or it may be unstable. However, in many cases of practical

interest in biology and ecology, the existence of a stable equilibrium is possible or even guaranteed. In

the following, we assume that an equilibrium exists and is stable. In the concluding section, we discuss

parameter–independent criteria for the existence of an equilibrium and its stability.

(b) Especially in complex systems, some entries of M may not be structurally determinate, namely the sign

may depend on the choice of the system parameters. The structural influence matrix M has a ‘?’ entry

in the position (i, j) whenever the sign of the variation in the steady state of the ith variable, due to an

additive input persistently applied to the jth variable, is not structurally determinate.

As shown by Dambacher et al (2002, 2003a), the influence matrix M corresponds to the sign pattern of

adj(−J), where J is the system Jacobian matrix computed at the equilibrium. This highlights the relationship

between the system Jacobian and the structural influence matrix M . However, sign–definiteness of the

Jacobian entries does not directly relate to the existence or absence of structural steady–state influences.
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Consider a synthetic gene network designed to regulate the transcription rate of RNA species, which

bind to form output products (Franco et al (2008); Franco and Murray (2008); Giordano et al (2013); Franco

et al (2014)). Two RNA species, transcribed by two separate genes, bind to form a product; the presence of

self–repression loops causes their transcription rates to be equated at steady state. The system is described

by the following equations (Franco et al (2008, 2014)):


ġi = αi(g

tot
i − gi)− δigiri

ṙi = βigi − δigiri − krirj

, i, j ∈ {1, 2}, i 6= j,

where gi are active gene template concentrations (active and inactive gene templates are present in a total

amount gtoti = gi + g∗i ), transcribed to produce RNA species (with concentrations ri), which in turn bind to

form a product; αi are gene activation rates, βi are transcription rates, δi is the self–repression coefficient

for subsystem gi–ri, while k is the product generation rate. Besides its rate regulatory task, we expect this

network to exhibit tracking properties when the total concentration of a gene template varies. In fact, if gtoti

increases (this is equivalent to an input ui acting on gi), then, at steady state, gi increases and so does

ri. Due to the increase in ri, more binding sites are created, hence rj decreases (the RNA species is more

required). Stoichiometric self–inhibition is reduced and gj increases. Of course, the concentration increases

provided that it can: since the reagents bind according to a given stoichiometry, the expected increase can

only occur if the reagent with the lowest concentration is augmented until it is no more a bottleneck for the

output production. Still, the behaviour of rj is not clearly predictable: the increase in ri should increase its

consumption, while the increase in gj should increase its production. Does one of the two opposite effects

structurally dominate?

The Jacobian matrix for this network is

J =



−(α1 + δ1r̄1) −δ1ḡ1 0 0

β1 − δ1r̄1 −(δ1ḡ1 + kr̄2) 0 −kr̄1

0 0 −(α2 + δ2r̄2) −δ2ḡ2

0 −kr̄2 β2 − δ2r̄2 −(δ2ḡ2 + kr̄1)


.

Computation of the steady–state influence shows that, for any feasible choice of the parameters, when

gtot1 increases, g1 increases too and this leads to an increase in r1 and in g2, while r2 decreases. Analogously,

when gtot2 decreases, g2 decreases as well and this leads to a reduction in r2 and in g1, while r1 increases.

Hence, the rate regulatory system exhibits tracking properties at steady state for any feasible choices of the
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parameters. The influence matrix M , which can be computed as the sign pattern of adj(−J), is

effect on variable

g1 {

r1 {

g2 {

r2 {

input applied to variable

g1︷︸︸︷
+

+

+

−

r1︷︸︸︷
−

+

+

−

g2︷︸︸︷
+

−

+

+

r2︷︸︸︷
+

−

−

+


.

Independent of the system parameters, an external input affecting ri decreases both gi and rj , while increases

gj and ri itself. The effect of an external input affecting gi is the same we obtain when incrementing gtoti .

We have thus gained a powerful parameter–free insight into the system behaviour, in terms of sign of the

change in the steady states of the variables due to an external stimulus.

Note that the entries J21 and J43 of the Jacobian are structurally positive, in view of the equilibrium

conditions (βi − δir̄i)ḡi = kr̄ir̄j .

The size and complexity of this second example are still tractable: the analytical computation of the

influence matrix is tedious but possible. However, for large and complex systems, algebraic calculations are

not scalable and a computational approach is needed. In this paper, we describe our systematic and efficient

numerical method to calculate steady–state influences.

Remark 1 As we will show, with respect to the work by Dambacher et al (2002, 2003a,b, 2005), the algorithm

we propose can deal with the existence of constraints due to parameters repeated in more than one entry

(e.g., in this second example, δ1r̄1 appearing in both J11 and J21).

3 BDC–decomposition and structural analysis

In this section we introduce the key mathematical tool that will be employed in the algorithm for com-

puting structural steady–state influences: the BDC–decomposition of the system Jacobian matrix. Since

this decomposition depends on the Jacobian only, in this section we temporarily neglect, for simplicity, the

presence of an input (and an output) in the system; we will comment on this at the end of the section.

Consider the generic nonlinear system

ẋ(t) = fx(x(t)), (2)

where fx(·) is continuously differentiable, x ∈ Rn and x̄ is an equilibrium point, fx(x̄) = 0.
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Definition 1 System (2) admits a BDC–decomposition iff its Jacobian matrix evaluated at x̄, J = (∂fx/∂x)x=x̄,

can be written as the positive linear combination of rank–one matrices, namely

J =

q∑
h=1

RhDh =

q∑
h=1

BhDhC
>
h , (3)

where Rh = [BhC
>
h ] are rank–one matrices1 and Dh, h = 1, . . . , q, are positive scalars.

In a compact form, we can write

J = BDC,

where D is a diagonal matrix with positive diagonal entries Dh, B is the matrix formed by the columns Bh

and C is the matrix formed by the rows C>h .

For a wide class of models, including (bio)chemical reaction networks, we show that a BDC–decomposition

(having a graph interpretation that will be described later) always exists, and can be easily and systemati-

cally computed. Consider the system

ẋ(t) = Sf(x(t)) + f0, (4)

where the state x(t) ∈ Rn+ represents species concentrations evolving over time, f(x(t)) ∈ Rm is a vector

of reaction rate functions and f0 ∈ Rn is a vector of constant influxes (f0 ≥ 0 componentwise); S ∈ Zn×m

is the stoichiometric (flow) matrix of the system, whose entries [S]ij represent the net amount of the ith

species produced or consumed by the jth reaction, excluding the contribution of constant influxes. This

class of models includes any chemical reaction network, or any phenomenological biomolecular model (e.g.,

gene regulatory models, signalling networks, etc.) that can be written as an equivalent chemical reaction

network. Also some models typically used in ecology and population dynamics (such as Lotka–Volterra

systems) can be rewritten as in (4), where x(t) and f(x(t)) represent population density and growth rate

functions, although not all ecological models fall in the category of systems we consider.

Assumption 1 Each function fj(·), for j = 1, . . . ,m, is nonnegative and continuously differentiable, with sign–

definite ( i.e., always positive, always negative or always zero) partial derivatives in the interior of the positive

orthant.

Assumption 2 Each function fj(·), for j = 1, . . . ,m, is zero if and only if at least one of its arguments is zero.

Furthermore, if [S]ij < 0, then fj(·) must have xi(t) as an argument.

The latter assumption ensures that (4) is a positive system, since for xi = 0 we have ẋi ≥ 0.

The following result guarantees that systems of the form (4) always admit a BDC–decomposition.

1 A rank–one matrix Rh can always be written as the product of a column vector Bh and a row vector C>
h .
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Proposition 1 Any system falling in the class (4) admits a BDC–decomposition: J = BDC. Matrices B and

C can be built systematically, based on the stoichiometric matrix S and on qualitative information about f(·).

Proof: To prove the statement constructively, we rewrite equation (4) as

ẋ =
s∑
j=1

Sj fj(x) + f0,

where Sj is the jth column of matrix S. The corresponding Jacobian is

J =
s∑
j=1

Sj

[
∂fj
∂x1

∂fj
∂x2

. . .
∂fj
∂xn

]
.

Denoting by D1, D2, . . . , Dq the absolute values of all the non–zero partial derivatives we can write

J =

q∑
h=1

BhDhC
>
h ,

where

• Dh =
∣∣∣∂fj∂xi

∣∣∣ for some i and j;

• Bh = Sj , the column of S associated with fj ;

• C>h has a single non–zero entry in the ith position, equal to the sign of
∂fj
∂xi

.

ut

We substantiate the claim in Proposition 1 by describing more in detail how to construct the decom-

position matrices. First of all, we identify all the distinct, non–zero partial derivatives
∂fj
∂xi

and we take

their absolute values, which we denote as Dh; second, we assign an order to elements Dh and we build the

diagonal matrix D = diag{D1, . . . , Dq} ∈ Rq×q. Then, in correspondence to each element Dh =
∣∣∣∂fj∂xi

∣∣∣, matrix

B ∈ Zn×q includes the column Sj of S associated with fj . Since each function fj may depend on pj different

variables, the corresponding column Sj will be repeated pj times in matrix B. Finally, in correspondence to

each element Dh =
∣∣∣∂fj∂xi

∣∣∣, matrix C ∈ Zq×n includes a row that has a +1 or −1 entry in the i–th position

(corresponding to the variable xi with respect to which the derivative in Dh is taken), while the other entries

are zero; the sign of the non–zero entry depends on the sign of the corresponding derivative.

We build the BDC–decomposition step by step in the following example.

Example 1 We consider the metabolic network proposed by Chen et al (2005), p. 106., defined by reactions

∅ a0−−⇀ A, A + B
fab−−⇀ C + D, D

fd−−⇀ B, C
fc−⇀ ∅. We denote chemical species with uppercase letters and

their concentrations with the corresponding lowercase letters. Note that species B and D, involved in the
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second and third reactions, are linked by a mass conservation constraint: b + d = K is constant. Hence,

ḋ = −ḃ and variable d can be neglected, so as to obtain the reduced–order system


ȧ = a0 − fab(a, b)

ḃ = −fab(a, b) + fd(K − b)

ċ = fab(a, b)− fc(c).

This system can be rewritten as in model (4) defining

x =


a

b

c

 , S =


−1 0 0

−1 1 0

1 0 −1

 , f(x) =


fab(a, b)

fd(K − b)

fc(c)

 , f0 =


a0

0

0

 .

The Jacobian matrix and its BDC–decomposition are

J =


−α −β 0

−α −(β + δ) 0

α β −γ

 =


−1 −1 0 0

−1 −1 0 1

1 1 −1 0


︸ ︷︷ ︸

=B

diag{α, β, γ, δ}︸ ︷︷ ︸
=D


1 0 0

0 1 0

0 0 1

0 −1 0


︸ ︷︷ ︸

=C

,

where the Greek letters denote partial derivatives, in absolute value: α = ∂fab/∂a > 0, β = ∂fab/∂b > 0,

γ = ∂fc/∂c > 0, δ = |∂fd/∂b|. To compute the BDC–decomposition, we choose an order for the non–zero

partial derivatives: 1) α, 2) β, 3) γ and 4) δ. Then:

1) the first column of B corresponds to S1, associated with the reaction rate function fab(·, ·), and the first

row of C has a 1 entry in the first position, corresponding to variable a;

2) the second column of B corresponds to S1, associated with fab(·, ·), and the second row of C has a 1

entry in the second position, corresponding to b;

3) the third column of B corresponds to S3, associated with fc(·), and the third row of C has a 1 entry in

the third position, corresponding to c;

4) the fourth column of B corresponds to S2, associated with fd(·), and the fourth row of C has a −1 entry

in the second position, corresponding to b (since δ is the opposite of ∂fd/∂b < 0).

Note that column S1 is repeated twice in B because fab(·, ·) has two arguments. �
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Remark 2 The BDC–decomposition is not unique. Even when an order for the diagonal entries of D is

assigned, we can change the sign of both Bk and C>k , obtaining matrices B̂ and Ĉ, and still have that

J = B̂DĈ. The only requirement is that matrix D, containing the free positive parameters, is diagonal.

The BDC–decomposition can be extended to non–positive systems and also to the case of dependencies

between partial derivatives. For instance, the system
ȧ = a0 − fab(a− b)

ḃ = fab(a− b)− fb(b)
with S =

 −1 0

1 −1

 , f =

fab(a− b)
fb(b)

 , f0 =

a0

0

 ,
would have the BDC–decomposition

J =

−α β

α −(β + γ)

 =

−1 −1 0

1 1 −1


︸ ︷︷ ︸

=B

diag{α, β, γ}︸ ︷︷ ︸
=D


1 0

0 −1

0 1


︸ ︷︷ ︸

=C

if we considered the three parameters α = ∂fab/∂a > 0, β = |∂fab/∂b| and γ = ∂fb/∂b > 0. However, since

β = α, we need two parameters only, α and γ. Hence:

J =

−α α

α −(α+ γ)

 =

−1 0

1 −1


︸ ︷︷ ︸

=B

diag{α, γ}︸ ︷︷ ︸
=D

 1 −1

0 1


︸ ︷︷ ︸

=C

.

Also when the Jacobian of system (4) has independent (hence sign–definite, due to Assumption 1)

entries, the system always admits a BDC–decomposition. For instance, for the prey–predator model (1), at

the equilibrium E0, we have

J =

−rH̄/K −aH̄

cP̄ 0

 =

−α −β
γ 0

 =

 1 1 0

0 0 1


︸ ︷︷ ︸

=B

diag{α, β, γ}︸ ︷︷ ︸
=D


−1 0

0 −1

1 0


︸ ︷︷ ︸

=C

. (5)

Remark 3 In system (1), an external input is present. We underline that a system can admit a BDC–

decomposition also when an external input u is introduced, affecting the system, or when one of the system

parameters is considered as an external input u,

ẋ(t) = fx(x(t), u(t)),
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as long as fx(·, ·) is continuously differentiable and the system Jacobian can be written as the positive linear

combination of rank–one matrices (3).

The BDC–decomposition plays a key role in our main problem of assessing the structural steady–state

influence between the input and the output of a system. The parameter–independent results we are pursuing

must be valid for families of systems having the same structure. In the case of systems admitting a BDC–

decomposition, we provide the following definition.

Definition 2 The structure of a family of systems admitting a BDC–decomposition is given by the matrices

B and C. A realisation of the structure is given by a choice of the positive diagonal entries of D, Dk > 0,

k = 1, . . . , q.

The BDC–decomposition is a structural representation associated with the Jacobian matrix of the

system, which can be equivalently represented by a graph whose nodes and arcs denote, respectively, species

and interactions among them. Examples are provided by the graphs in Fig. 1. Each arc is associated with

positive parameters that are in the diagonal of D; if the arc has k tails, it is associated with k parameters.

The arc corresponds to k identical columns of matrix B (having a negative entry in the positions associated

with the nodes from which the arc tails start, a positive entry in the positions associated with the nodes

reached by the arc arrows, zero entries elsewhere) and to k rows of matrix C, each having a single non–zero

entry in one of the positions associated with the nodes from which the arc tails start.

Example 2 Consider the system


ȧ = −fab(a, b) + fc(c)

ḃ = −fab(a, b)− fb(b) + fc(c) + f∗c (c)

ċ = fab(a, b) + fb(b)− fc(c)− f∗c (c)

with S =


−1 1 0 0

−1 1 −1 1

1 −1 1 −1

 , f =



fab(a, b)

fc(c)

fb(b)

f∗c (c)


. (6)

Denoting by α = ∂fab/∂a, β = ∂fab/∂b, γ = ∂fc/∂c, δ = ∂fb/∂b and ε = ∂f∗c /∂c the positive partial

derivatives, the system Jacobian matrix, along with its BDC–decomposition,

J =


−α −β γ

−α −(β + δ) γ + ε

α β + δ −(γ + ε)

 =


−1 −1 1 0 0

−1 −1 1 −1 1

1 1 −1 1 −1


︸ ︷︷ ︸

=B

diag{α, β, γ, δ, ε}︸ ︷︷ ︸
=D



1 0 0

0 1 0

0 0 1

0 1 0

0 0 1


︸ ︷︷ ︸

=C

(7)

corresponds to the graph in Fig. 1 (a).
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(a) System in Example 2. (b) System in Example 5. (c) System in Section 8.1.

Fig. 1: Graphs corresponding to the Jacobian structure of three examples in this paper.

In the next section, we show how parameter–independent steady–state influences between the input and

the output of any system admitting a BDC–decomposition can be structurally assessed based on matrices

B and C.

4 A vertex algorithm to identify structural steady–state influences

In this section we describe an efficient algorithm to assess structural steady–state input–output influences

for any system admitting a BDC–decomposition. The algorithm is based on the evaluation of the sign of

the determinant of a matrix at a finite number of points. We begin by specifying the assumptions required

for evaluating a steady–state input–output influence.

Consider a general nonlinear system

ẋ(t) = f(x(t), u(t)), (8)

y(t) = g(x(t)), (9)

where f(·, ·) and g(·) are continuously differentiable, x ∈ Rn, u ∈ R is an input and y ∈ R is an output. Assume

that there exists an equilibrium point x̄ > 0 (componentwise), corresponding to ū, such that f(x̄, ū) = 0,

and consider the corresponding output steady–state value ȳ = g(x̄). So both the steady–state values x̄(u)

and ȳ(u) are functions of u. We work under the following assumptions.

B1 The considered equilibrium x̄ is asymptotically stable.

B2 The input perturbation u is small enough to ensure that the stability of x̄(u) is preserved.2

2 We remind that the eigenvalues of the Jacobian matrix are continuous functions of its entries, which, in turn, are
continuous functions of u.

14



The influence is determined by the derivative of the steady–state map that relates a given input u to

a specific output y. For system (8)–(9), the implicit function theorem provides an analytical expression for

the derivative of the steady–state input–output map:

∂ȳ

∂ū
=

∂g

∂x

∣∣∣∣
x̄

(
−∂f
∂x

∣∣∣∣
(x̄,ū)

)−1
∂f

∂u

∣∣∣∣
(x̄,ū)

. (10)

If we consider the linear approximation of the nonlinear system in a neighborhood of the equilibrium x̄,

denoting by z(t) = x(t)− x̄, v(t) = u(t)− ū, w(t) = y(t)− ȳ, we obtain the linearised system:

ż(t) = Jz(t) + Ev(t),

w(t) = Hz(t),

where [J ]ij = ∂fi
∂xj

∣∣∣
(x̄,ū)

, [E]i = ∂fi
∂u

∣∣∣
(x̄,ū)

and [H]j = dg
dxj

∣∣∣
x̄
. J is the Jacobian matrix, while E and H are

a column and a row vector representing, respectively, how the input acts on the system state and how the

output depends on the system state in the linearised system.

Proposition 2 For system (8)–(9),

∂ȳ

∂ū
= H(−J)−1E =

1

det(−J)
det

−J −E

H 0

 . (11)

Proof: The first equality is immediate in view of (10). As for the second equality, since

−J −E

H 0

 =

 In 0

−HJ−1 1


−J −E

0 H(−J)−1E

 ,
where the matrices in the product are block–triangular and H(−J)−1E is a scalar, we have that

det

−J −E

H 0

 = 1 · det(−J)
[
H(−J)−1E

]
.

ut

Since the equilibrium is assumed stable, det(−J) is always positive. For any system whose Jacobian J

admits a BDC–decomposition, to evaluate the sign of ∂ȳ
∂ū we just need to consider the sign of

r(D)
.
= det

−J −E

H 0

 = det

−BDC −E

H 0

 . (12)
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To assess the structural influence on the output y due to the input u, we need to verify whether function

r(D) is sign–definite, namely it has the same sign for all the possible choices of D. The following result states

that the structural sign of r(D) in (12) can be determined by checking a finite number of points, namely the

vertices of the unit hypercube

CD = {Dk : 0 ≤ Dk ≤ 1, k = 1, . . . , q}.

Theorem 1 Denote by D(v) the matrices corresponding to the vertices of the hypercube CD, v = 1, . . . , 2q. Then:

a) r(D) > 0 structurally if and only if r(D(v)) ≥ 0 for all v and r(D) > 0 for D = I;

b) r(D) < 0 structurally if and only if r(D(v)) ≤ 0 for all v and r(D) < 0 for D = I;

c) r(D) = 0 structurally if and only if r(D(v)) = 0 for all v.

Proof: First of all, note that the sign of r(D), with Di > 0, does not change if we scale D with a positive

factor: sign[r(D)] = sign[r(ϕD)] for any positive ϕ. Indeed, consider ϕJ = B(ϕD)C. Then

det

−ϕJ −E

H 0

 = det

ϕIn 0

0 1

det

−J −E

H 0

det

 In 0

0 1/ϕ

 = ϕn−1 det

−J −E

H 0

 .
Therefore, r(D) is positive (negative, zero) for all Di > 0 if and only if it is positive (negative, zero) in all

points Di > 0 in the unite cube.

We just prove the first claim, since the others can be proved similarly. Necessity is immediately based

on continuity arguments. To prove sufficiency by contradiction, we recall that a multi–affine function

defined on a hypercube reaches its minimum (and maximum) value on a vertex of the hypercube, thus

r(D1, D2, . . . , Dq) ≥ 0 in the whole cube. Assume there is an internal point D∗ > 0 of the hypercube such

that r(D∗1 , D
∗
2 , . . . , D

∗
q ) = 0. Consider variations along the direction of 0 ≤ D1 ≤ 1. The restricted function

is linear and nonnegative; since it is zero in one point, it must be zero in the extrema: r(0, D∗2 , . . . , D
∗
q ) = 0,

r(1, D∗2 , . . . , D
∗
q ) = 0. Fix D1 = 1, corresponding to the second condition: the new point (1, D∗2 , . . . , D

∗
q ) is in

the relative interior of the (q− 1)–dimensional cube where D1 = 1. Then we can repeat the same argument

along the direction of D2, to conclude that r(1, 1, D∗3 , . . . , D
∗
q ) = 0. Proceeding in the same way for all the

directions, we finally get r(1, 1, 1, . . . , 1) = 0, in contradiction with r(D) > 0 for D = I. ut

Based on Theorem 1, for any system (8) admitting a BDC–decomposition, the structural steady–state

influence of any input provided to the system on any output of the form (9) can be tested as follows.3

3 A Matlab implementation of our algorithm is available at: https://users.dimi.uniud.it/~franco.blanchini/
influence.zip.
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�

(a) Increase: the structural influence is ‘+’.

�

(b) Perfect adaptation: the structural influence is ‘0’.

�

(c) Decrease: the structural influence is ‘−’.

�

(d) Indeterminate: the structural influence is ‘?’.

Fig. 2: Illustration of the structural input–output influence. The structural influence is determinate if a step
in the input causes a positive (a), zero (b), or negative (c) change in the output steady state, for any feasible
choice of the system parameters. The structural influence is indeterminate when the output variation can
be positive, zero, or negative, depending on the system parameters (d).

Procedure 1 Vertex algorithm.

Input: Matrices B and C of the BDC–decomposition and matrices E and H appearing in (12).

Output: The steady–state structural influence sign σ ∈ {+,−, 0, ?}.

1. Let ωmax = ωmin := 0.

2. For k = 0, 1, . . . , 2q − 1, consider its binary representation kbin := [D1, D2, . . . , Dq] ∈ {0, 1}q.

(a) Let D = diag{D1, D2, . . . , Dq}.

(b) Let ωmin := min{ωmin, sign[r(D)]} and ωmax := min{ωmax, sign[r(D)]};

3. IF ωmin = 0 and ωmax = 1, then σ := +;

4. IF ωmin = −1 and ωmax = 0, then σ := −;

5. IF ωmin = 0 and ωmax = 0, then σ := 0;

6. IF ωmin = −1 and ωmax = 1, then σ :=?.

The outcome of the procedure is one of the four cases represented in Fig. 2. Figures 2 (a)–(c) illustrate

the cases where the sign of the output variation, when the input varies as a step function, is structurally

determinate; Fig. 2 (d) depicts the case where no structural influence can be identified, because the output

could either increase, decrease or not vary, depending on the specific choice of the parameters.

Remark 4 The algorithm has exponential complexity: if the diagonal matrix D has dimension q, the sign of

r(D) must be explored on the 2q vertices of the hypercube.
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We stress that our result exploits the fact that J is the positive linear combination of rank–one matrices,

hence r(D) is a multi–affine function defined on a hypercube (or a hyper–box) and reaches its extrema on

the vertices, which is crucial in the proof of Theorem 1. In the general case of a convex combination of

matrices that do not have rank one, such a vertex result is not assured. For instance,

det

 a 0

0 a− b

 = a(a− b)

is not multi–affine in the parameters. If we consider the square 0 ≤ a, b ≤ 1, this determinant is never

negative on the four vertices. However, for b = 1 and a = 1/2 the determinant is −1/4 < 0. This happens

because the matrix associated with a (which is the identity I2 ∈ R2×2) has rank two.

Remark 5 The vectors E and H are in general functions of the parameters, namely of the partial derivatives

(with respect to x and to u): [E]i = ∂fi
∂u

∣∣∣
(x̄,ū)

and [H]j = dg
dxj

∣∣∣
x̄
. This not an issue, because r(D) is still a

multi–affine function of the parameters.

The method presented in this section will be used to compute the structural steady–state influence

matrix M in Section 5.

4.1 Structural influence of system parameters on the system outputs

Our approach can be used to establish the existence of a structural influence of any input on a given output.

Since uncertain parameters (for example, binding rates, dissociation constants, or Hill coefficients) can be

considered as inputs subject to variations, our method can be applied to identify the structural influence of

a parameter on system outputs. We illustrate this case with an example.

Example 3 Consider the system
ẋ1 = −pf1(x1, x2) + f3(x3) + x1,0

ẋ2 = −pf1(x1, x2)− f2(x2) + x2,0

ẋ3 = pf1(x1, x2)− f3(x3)− f4(x3)

, J =


−α̃ −β̃ γ

−α̃ −(β̃ + δ) 0

α̃ β̃ −(γ + ε)

 , α̃ = pα, β̃ = pβ,
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where p is a positive parameter that we consider as input, u = p, and where the Greek letters denote the

absolute value of the partial derivatives |∂fj/∂xi|. The BDC–decomposition and vector E are

J =


−1 −1 1 0 0

−1 −1 0 −1 0

1 1 −1 0 −1


︸ ︷︷ ︸

=B

diag{α̃, β̃, γ, δ, ε}︸ ︷︷ ︸
=D



1 0 0

0 1 0

0 0 1

0 1 0

0 0 1


︸ ︷︷ ︸

=C

, E =


−ζ

−ζ

ζ

 ,

where ζ = |∂ẋi/∂p| = f1 (see Remark 5). If we are interested in considering as an output the variable xi, then

H = Hi will have a 1 in the ith position and zero elsewhere. By means of the proposed vertex algorithm,

we can derive the following steady–state influence of p on the variables x1, x2 and x3: 4

x1 {

x2 {

x3 {

p︷ ︸︸ ︷
−

0

0

 .

We see that both x2 and x3 are subject to a perfect adaptation with respect to variations of p. This fact,

although surprising, can be explained by considering the system steady state. We can see that x̄3 and x̄2

depend on the constant influx only (since by adding the first and third equation at steady state we have

f4(x̄3) = x1,0, and by subtracting the second to the first we have f3(x̄3) + f2(x̄2) = x2,0 − x1,0), while x̄1

depends on p and can thus compensate any variation in p, preventing it from affecting x̄2 and x̄3. �

The observation in Example 3 can be generalised.

Proposition 3 Consider a system of the form (4) and assume that the jth reaction has rate fj(·) = pf̃j(·), with

p a positive parameter, and that (at least) one of the species, having concentration xi, is involved as a reagent in

the jth reaction only and in no other reactions (hence the corresponding column Ji of the Jacobian matrix contains

one coefficient only). Then all the variables of the system are insensitive to variations in p, except for xi itself.

Proof: Since E and Ji are linearly dependent columns, the determinant in (12) is zero as long as hi is zero.

4 In this simple case, the reader can easily check the results by direct computation of det

[
−J −E
Hi 0

]
, by considering Hi

associated with the considered variable (e.g., for x1, H1 = [ 1 0 0 ]).
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5 Structural influence matrix

To assess the structural influence on the ith variable of a persistent, additive input applied to the jth

variable, we consider a system (8)–(9) having the form

ẋ(t) = f(x(t)) + Eu(t), (13)

y(t) = Hx(t), (14)

and we take vectors E = Ej and H = Hi with a single non–zero entry equal to one

Ej = [0 . . . 0 1︸︷︷︸
position j

0 . . . 0]>, Hi = [0 . . . 0 1︸︷︷︸
position i

0 . . . 0].

If the system admits a BDC–decomposition, then we can generate each entry [M ]ij of the influence matrix

M ∈ Rn×n by means of the numerical vertex algorithm described in Procedure 1, choosing the corresponding

Ej and Hi. [M ]ij is:

• ‘+’ if the influence is positive for any realisation of the structure;

• ‘0’ if there is perfect adaptation for any realisation of the structure;

• ‘−’ if the influence is negative for any realisation of the structure;

• ‘?’ if the influence is not structurally sign–definite.

As illustrated in Fig. 2, each entry of the influence matrix (or, more in general, any structural steady–

state derivative) can be interpreted as the response of the system output to a step input.

Remark 6 Consistently with the results by Dambacher et al (2002, 2003a,b, 2005); Dambacher and Ramos Jilib-

erto (2007), computing the influence matrix is equivalent to determining the sign pattern of the adjoint

matrix adj(−J) of −J , namely the matrix such that (−J)−1 = adj(−J)/det(−J).

Example 4 (Metabolic network: influence matrix). Reconsider the system proposed in Example 1: det(−J) is

structurally positive and the vertex algorithm provides the influence matrix

M =


+ − 0

− + 0

+ 0 +

 .
�
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Example 5 The system in Fig. 1 (b) corresponds to the Jacobian matrix

J =



−(α+ ζ) 0 0 0 −η 0 0

α −(γ + ε) 0 −δ 0 0 0

0 0 −(β + ι) 0 0 −λ 0

0 −γ β −(δ + ϕ) 0 0 0

−ζ ε 0 0 −η 0 0

0 0 −ι ϕ 0 −λ 0

0 γ 0 δ 0 0 −µ


.

By means of the proposed algorithm, we find that det(−J) > 0 structurally and

M =



+ − + + − − 0

+ + − − − + 0

+ + + − − − 0

− − + + + − 0

? + − − + + 0

− − ? + + + 0

+ + + + − − +



.

�

We conclude the section with some remarks on the influence matrix in two particular classes of systems.

We begin with monotone systems. A system of the form ẋ(t) = f(x(t)), with f differentiable, is monotone

(Smith (2008); Sontag (2007)) iff its Jacobian J(x) is a Metzler matrix for any x, i.e., its off–diagonal entries

are nonnegative. We have the following.

Proposition 4 Given a monotone system, denote by J its Jacobian evaluated at a stable equilibrium. Then its

influence matrix is such that [M ]ij ∈ {+, 0} for all (i, j). If furthermore J is irreducible, [M ]ij = + for all (i, j).

Proof: If J is a stable Metzler matrix (hence its diagonal entries are negative, see Farina and Rinaldi

(2000)), then (−J)−1 ≥ 0, where the inequality has to be intended componentwise; if, moreover, the matrix

is irreducible, the inequality is strict: (−J)−1 > 0 (Hale et al (2014)). Since the equilibrium is stable,

det(−J) > 0. Then adj(−J) = (−J)−1 det(−J) ≥ 0 (> 0 in the irreducible case), which proves the thesis. ut

Yet monotonicity is not necessary to have a positive influence matrix. In fact, there are stable matrices

which are not Metzler, but for which all of the entries of adj(−J) are positive.
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Another remarkable case is that in which some diagonal entries of the influence matrix are zero, as in

the prey–predator case in Section 2, or even negative. Consider the system

J =

 −α β

−γ δ

 , for which M =

 − +

− +

 .
Assuming stability, if we apply a constant additive input on the first state variable, we have that its own

steady–state value decreases. This situation may arise because this is a non minimum–phase system; such

systems have been recently studied in a biological context (Motee et al (2010); Yeung et al (2013)).

6 Analysis within the stoichiometric compatibility class

In some chemical reaction networks, the system represented by (4) is neutrally stable, and its state is forced

to stay inside the stoichiometric compatibility class associated with the initial conditions:

x(t) ∈ C(x(0)) = {x(0) + Ra[S]} ∩ Rn+.

This happens, for instance, in the presence of mass conservation constraints. Therefore, the rank of the

stoichiometric matrix S (hence of B) corresponds to the dimension of the stoichiometric compatibility class.

If matrix B is not full row rank, the system trajectories evolve inside a subspace having dimension smaller

than n and, of course, BDC is structurally singular. We assume however that 0 is the only eigenvalue of the

system having nonnegative real part.

In this case, to restrict our analysis to the stoichiometric compatibility class, we can consider a trans-

formation that provides a full row rank B̃. Let z(t) = x(t)− x̄, v(t) = u(t)− ū, w(t) = y(t)− ȳ and consider

the linearised system

ż(t) = BDCz(t) + Ev(t), (15)

w(t) = Hz(t). (16)

Consider the state transformationM
N

 z =

 zM
zN

 , z =

[
P Q

] zM
zN

 ,
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where M> is a basis of ker[B>] (ker denotes the kernel of a matrix; i.e., M> is such that MB = 0) and N

is a basis of Ra[B]. The transformed system is

 żM
żN

 =

 0 0

NBDCP NBDCQ


 zM
zN

+

ME

NE

 v .
=

 0 0

BNDCP BNDCQ


 zM
zN

+

EM
EN

 v,

y =

[
HP HQ

] zM
zN

 .
=

[
HP HQ

] zM
zN

 .
If EM = 0, we can compute the step response of the system: zM (t) ≡ zM (0) = 0 ∀t and the zN–subsystem

is asymptotically stable by assumption. Then we can consider det(−BNDCN ) and the sign of

det

−BNDCQ −EN

HQ 0


and our analysis can be carried out without changes.

If instead EM 6= 0, the equation for zM would be żM = EMu, so that zM (t) = zM (0) + EMut would

diverge. The analysis can be carried out by considering the impulse response of the system, namely by

assuming u to be the Dirac delta function. In this case we have that zM (t) ≡ zM (0+) = EM is constant and

can be considered as the input for the zN–subsystem, which is asymptotically stable (therefore its impulse

response converges to zero) so that the sign of the steady–state derivative is given by the sign of

det

−BNDCQ −BNDCPEM

HQ HPEM

 .

In the previous cases, we have assumed that BNDCQ is non–singular. If BNDCQ is singular because

C does not have full column rank, we can consider an additional state transformation that provides a full

column rank C̃, as previously done for B. However, even when both B and C have full rank, matrix BDC

can be structurally singular. In this case, as long as zero is a simple eigenvalue, the (i, j) entry of the

structural influence matrix can represent the sign of the steady–state variation of the i–th variable due to

an impulsive additive input applied to the j–th variable. Otherwise, unfortunately, it is useless to resort to

further transformations.

Example 6 Consider the system introduced in Example 2 and depicted in Fig. 1 (a). Its Jacobian matrix,

provided in (7) along with its BDC–decomposition, is structurally singular. Note that a mass conservation

constraint is present, because ḃ+ ċ = 0 in system (6), hence b+ c is constant. Since zero is a simple root of
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the characteristic polynomial p(s) = s3 + (α+ β + γ + δ+ ε)s2 +α(δ+ ε)s, the influence matrix can be used

to describe structural steady–state variations induced by impulsive inputs:

M =


0 ? ?

0 + +

0 + +

 . (17)

Note that, while C has full column rank, rank(B) = 2. Therefore, we can restrict our analysis to the

stoichiometric compatibility class. A basis of ker[B>] is given by the vector [0 1 1]>. Completing with a

basis of Ra[B], we achieve the following state transformation:

T−1 =


0 1 1

0 1 0

1 0 0

 , T =


0 0 1

0 1 0

1 −1 0

 .

To account for all the possible variable selections, we take E = I3 and H = I3 as the identity matrices, so

that the influence (i, j) is achieved by selecting the jth column of E and the ith row of H. The transformed

system becomes

T−1JT =


0 0 0

γ + ε −(β + γ + δ + ε) −α

γ −(β + γ) −α

 =

 0 0

BNDCP BNDCQ

 ,

T−1E =


0 1 1

0 1 0

1 0 0

 =

EM
EN

 , HT =


0 0 1

0 1 0

1 −1 0

 =

[
HP HQ

]
.

We denote by E
(j)
M the jth column of EM and by H

(i)
Q the ith row of HQ. Now det(−BNDCQ) is structurally

positive and, by considering the sign of

det

−BNDCQ −BNDCPE
(j)
M

H
(i)
Q H

(i)
P E

(j)
M

 ,
we can compute the (i, j) entry of the influence matrix associated with the impulse response:

M(scc) =


0 ? ?

0 + +

0 + +

 . (18)
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As expected, matrix (18) is equal to (17), which we had been previously able to compute without any state

transformation just because dim(ker[B>]) = 1. If the kernel had a higher dimension, a state transformation

would be necessary to compute the influence matrix in the stoichiometric compatibility class. �

Example 1, with mass conservation constraints, was previously analysed in a reduced–order form, ne-

glecting the variable d = K − b. Yet, it is also possible to consider all of the four variables: in this case, the

influence matrix in the stoichiometric compatibility class can be computed as illustrated in this section.

7 Tree–like algorithm for the influence matrix of systems with independent Jacobian entries

Most of our analysis in Section 5 focuses on flow–governed systems, in which a simultaneous production and

consumption occur: with a given reaction rate, one or more species are converted into other species, leading

to Jacobian matrices with coefficients appearing repeatedly on the same column (possibly with different

sign). Yet, in several cases all the Jacobian entries are independent (hence, due to Assumption 1, J is a

sign–definite matrix), as in the prey–predator system (1), having Jacobian (5).

When the entries are independent, the problem can still be solved by adopting the proposed vertex

algorithm. However, this can involve a very large number of parameters. For instance, in Example 1 we have

4 parameters, thus 16 vertices; if all the non–zero entries were independent, we would have 128 vertices. If

all the non–zero entries of Example 5 were independent, the number of vertices would be 219 = 524288.

Example 7 (Snowshoe hare population dynamics). To describe the interactions among vegetation, snowshoe

hare and predators in boreal forests, a simple model is proposed by Dambacher and Ramos Jiliberto (2007),

corresponding to the sign–definite community matrix

J =


−α −β 0

γ −δ −ε

ϕ η −ψ

 , having sign pattern ΣJ =


− − 0

+ − −

+ + −

 . (19)

The influence matrix

M =


+ − +

? + −

+ ? +

 (20)

can be found by simply computing the adjoint, as well as by means of the proposed vertex algorithm, which

involves 8 parameters, hence 256 vertices. �
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For systems with very high dimension, complexity could render the vertex algorithm unfeasible. Yet,

complexity can be reduced by adopting a tree–like algorithm that takes advantage of the sparsity of the

Jacobian (namely, of the presence of several zero entries). To determine the influence matrix, we have to

structurally assess the sign of the determinant (12) for all input–output pairs, or, equivalently, to establish

the sign of the entries of adj(−J), which are just determinants of sub–matrices.

Procedure 2 Tree Recursive Algorithm for Determinant Sign: TRADS(Σn).

Input: Σn ∈ Rn×n, the sign matrix which forms the root of the tree.

Output: The structural sign of the determinant of Σn, σ ∈ {+,−, 0, ?}.

1. Consider the first row of matrix Σn.

2. For each non zero entry [Σn]1i, create a link to a new node, marked by ‘−’ or by ‘+’ depending on the sign

of [Σn]1i (−1)i+1, and associate with this node the sign matrix Σn−1 (of dimension n − 1), which is the

complementary matrix of the considered entry.

3. For each new node connected to the original node with a ‘−’ arc, change sign to the first row of the corresponding

matrix Σn−1.

4. Apply the procedure TRADS(Σn−1) to all the new nodes.

The procedure stops when all of the sign matrices have dimension 1. Then σ = + if all the matrices are [+], or

[0] with at least a [+] matrix; σ = − if all the matrices are [−], or [0] with at least a [−] matrix; σ = 0 if all the

matrices are [0]; σ = ? otherwise.

Obviously, the outcome of the procedure is the same if we alter the matrix by transposing it or by per-

muting rows and/or columns, with appropriate sign changes. This can be done at each iteration, preferably

choosing the row or column having most zero entries.

Example 8 (Snowshoe hare population dynamics). Consider the signed Jacobian matrix (19), in Example 7.
We want to find the sign of the structural influence on the third variable of an additive input persistently
applied to the first variable. The algorithm (applied without transposing or permuting) would produce

Σ4 =



+ + 0 −

− + + 0

− − + 0

0 0 + 0



Σ3 =


+ + 0

− + 0

0 + 0


(+) 

+ − 0

− + 0

0 + 0


(−) 

− + +

− − +

0 0 +


(+)

Σ2 =

 + 0

+ 0


(+)  + 0

0 0


(−)

|

 + 0

+ 0


(+)  − 0

0 0


(+)

|

 + −

0 +


(−)  + −

0 +


(−)  − −

0 0


(+)

Σ1 =

[
0

](+)
|

[
0

](+)
|

[
0

](+)
|

[
0

](−)
|
[

+

](+) [
0

](+)
|
[

+

](+) [
0

](+)
|
[

0

](−) [
0

](+)

Indices [](−)/[](+) mean that the sign of the first row is changed/unchanged. Since the final matrices are

all [0] with at least a [+], the determinant is structurally positive, consistently with [M ]31 = + in (20). Of
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course, the number of computations dramatically reduces if we notice that the most convenient choice at

the beginning is the last row, or the last column, having a single non–zero entry. �

Remark 7 In the worst case in which all the entries are non–zero, the tree algorithm would have a complexity

of n!, where n is the matrix dimension. This complexity is negligible if compared to that of the vertex

algorithm directly applied, which would be 2n
2

. For instance, for a 5× 5 matrix we have 5! = 120 instead of

225 (roughly 32 · 106). In general, meaningful matrices are sparse; therefore, the operation count would be

at most ν1× ν2× . . . × νn, where νi is the number of non–zero entries of the ith row. Note also that sparsity

is typical in several cases of practical interest.

Example 9 (Population dynamics in Danish shallow lakes). Two models are analysed by Dambacher and

Ramos Jiliberto (2007) to describe the interactions among 10 different species in Danish shallow lakes:

model “I” considers modified or non–linear interactions in a model of eutrophic shallow lakes, while model

“J” considers only linear trophic interactions in a model of mesotrophic lakes. In both cases, starting from

a sign–definite community matrix A, a qualitative adjoint matrix adj(−A) is computed. The qualitative ad-

joint matrices of the two models are then compared with experimental responses measured in field studies:

model J is considered less reliable, because the resulting signs are largely inconsistent with the observed re-

sponse. By means of the proposed algorithm, we can compute the structural influence matrices. The entries

are all indeterminate for model “I”. Also for model “J” most entries are indeterminate, however there are

notable exceptions: [M ]34 = +, [M ]43 = −, [M ]44 = +, [M ]99 = + have sign consistent with that reported

by Dambacher and Ramos Jiliberto (2007) and, interestingly, are not among the entries reported to be

inconsistent with field observations. �

8 Examples

8.1 Escherichia coli EnvZ-OmpR osmoregulation system

The proposed vertex algorithm can be applied to the biochemical network in Fig. 1 (c), representing the

complex E. coli EnvZ-OmpR osmoregulation model studied in Shinar and Feinberg (2010), with additional

auto–degradation reactions for species C and D. For this system, steady–state effects are not easy to foresee
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based on qualitative considerations. The system has Jacobian matrix

J =



−(α+ β) γ 0 0 ϑ 0 0 µ

β −(γ + δ) 0 0 0 −ε κ+ λ 0

0 0 −(ζ + ϕ) −η ξ 0 0 ν

0 0 −ζ −(η + ψ) ξ 0 κ 0

0 0 ζ η −(ξ + ϑ) 0 0 0

0 −δ 0 0 ϑ −ε λ 0

0 δ 0 0 0 ε −(κ+ λ) 0

α 0 0 0 0 0 0 −(µ+ ν)



.

By means of the vertex algorithm, we can see that det(−J) is structurally positive and the influence matrix

is

M =



+ + + + + + + +

+ + + + + + + +

+ + + 0 + 0 + +

0 0 0 + + + + 0

+ + + + + + + +

? ? ? ? ? ? ? ?

+ + + + + + + +

+ + + + + + + +



.

8.2 A case study: biofuel production

In this section, we structurally compare two biofuel production models and we show that their peculiar

properties can be inferred independent of parameter values. An important issue of microbial biofuel produc-

tion methods, based on engineered bacteria, is that production cannot be unrestrictedly increased because

biofuel is toxic to the cell that is producing it. Efflux pumps have been shown to be effective at increasing

tolerance to biofuel, but an over–expression of efflux pumps hinders the growth of the cell population, hence

decreases biofuel production: the toxicity of biofuel and of pump over–expression must then be properly

balanced to maximise the biofuel output. We consider the two models for cell growth and biofuel production

provided by Harrison and Dunlop (2012): in the former, efflux pumps are expressed at a constant level; in

the latter, a synthetic feedback loop is implemented, using a biosensor to control efflux pump expression.
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The feedback system is described by the equations



ṅ = n
[
αn
(
1− n

nmax

)
− δnbi − αnp

p+γp

]
Ṙ = αR + kR

(
I

I+γI

)
− βRR

ṗ = αp + kp
1

R
1+kbbi

+γR
− βpp

ḃi = αbn− δbpbi

,

where n is the cell density, R is the concentration of repressor proteins, p is the concentration of pumps, bi

is the concentration of intracellular biofuel; nmax is the maximum population size. Both biofuel toxicity and

pump toxicity can prevent population growth. Repressor activation by the inducer is modelled as I/(I+γI),

where γI indicates the inducer value that corresponds to half maximal activation of the repressor and I can

be considered as a constant input. Since R reaches its steady state independently of all other state variables,

it can be considered just as an external inflow.

Note that n has two possible equilibrium values: the trivial n̄ = 0 (all the cells are dead) and the

nontrivial n̄ we are interested in, such that
[
αn
(
1− n̄

nmax

)
− δnb̄i − αnp̄

p̄+γp

]
= 0. Thus [J ]11, i.e., the partial

derivative computed at the equilibrium point, is simply − αnn
nmax

. Denote by ϕp the positive partial derivative

of p
p+γp

with respect to p and by ψbi the positive partial derivative of kp 1
R

1+kbbi
+γR

with respect to bi. The

Jacobian matrix of the reduced system, including only the variables n, p, bi, is then:

JFL =


− αnn̄
nmax

−αnn̄ϕp −δnn̄

0 −βp ψbi

αb −δbb̄i −δbp̄

 .

It can be seen that det(−JFL) is structurally positive and the influence matrix is

MFL =


+ ? −

+ + +

+ − +

 .

As expected, bi is reduced by a positive input applied to p and augmented by a positive input applied

to n; a positive input applied to bi reduces n, due to the biofuel toxicity for the cells. The effect on n of

an input applied to p is not structurally determinate, which is consistent with the considerations about

the trade–off regarding efflux pumps expression: a significant level of p helps increasing cell tolerance to

biofuel (enhancing population growth), but, when over–expressed, pumps burden cells (hindering population

growth). We finally point out the effect of the feedback, which allows modulating the expression of efflux
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pumps. In fact, an input applied to n increases p, to adjust it to the needs of a grown population, and

an input applied to bi also increases p, because more efflux pumps are needed to protect the cells from an

increased level of toxicity.

We now consider the system in which efflux pumps are expressed at a constant level. The repressor

equation is no longer present in the system, since an inducer is now directly used to control pump expression,

while the other equations remain unchanged:
ṅ = n

[
αn
(
1− n

nmax

)
− δnbi − αnp

p+γp

]
ṗ = αp + kp

(
I

I+γI

)
− βpp

ḃi = αbn− δbpbi

, JC =


− αnn̄
nmax

−αnn̄ϕp −δnn̄

0 −βp 0

αb −δbb̄i −δbp̄

 .

It can be seen that det(−JC) is structurally positive. The influence matrix is:

MC =


+ ? −

0 + 0

+ − +

 .

The comparison between MC and MFL immediately highlights the effect of the feedback loop: all the

structural influences are the same but those on p due to a persistent input applied to n and to bi. In the

absence of feedback, p is completely insensitive to both inputs applied to n and to bi; feedback allows to

tune the expression of efflux pumps, increasing it when a positive input is applied to n or to bi. Thanks to

the feedback regulation, pumps can be produced at the exact amount needed for increasing cell tolerance

to toxic biofuel, without excessively burdening cells.

According to the sensitivity analysis performed by Harrison and Dunlop (2012), the feedback model is

almost insensitive to many system parameters, while a few key parameters (αn, δn, γp, nmax, αb, δb) strongly

influence growth and production. To assess if the sign of such an influence is independent of the other

parameter values, we can perform a structural analysis by computing the determinant in (12) for each

parameter κ, where Eκ = [∂ṅ/∂κ ∂ṗ/∂κ ∂ḃi/∂κ]> and H selects the desired output among n, p and bi. The

influence of parameter variations on the steady–state of the state variables can be summarised as follows:

n {

p {

bi {



αn︷︸︸︷
+

+

+

δn︷︸︸︷
−

−

−

γp︷︸︸︷
+

+

+

nmax︷︸︸︷
+

+

+

αb︷︸︸︷
−

+

+

δb︷︸︸︷
+

−

−

αp︷︸︸︷
?

+

−

kp︷︸︸︷
?

+

−

βp︷︸︸︷
?

−

+

kb︷︸︸︷
?

+

−

γR︷︸︸︷
?

−

+

.
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The obtained structural influences are fully consistent with numerical results, but now we have an advantage:

we can guarantee that the same trends are achieved independently of the other system parameters.

9 Discussions and future work

We have considered the problem of structurally assessing the steady–state influence of a stimulus, regarded

as a persistent input provided to a system, on a system variable, regarded as an output. Based on theoretical

results that exploit the particular structure of a broad class of biological systems, we have proposed an effi-

cient algorithm to compute the structural steady–state input–output influence by checking the determinant

of a matrix only at a finite number of points (the vertices of the hypercube defined by the space of parame-

ters). Under asymptotic stability assumptions, the steady–state influence can be used to describe the system

response to a step input. In the case of neutrally stable systems, it can be used instead to describe the system

response to an impulsive input in the stoichiometric compatibility class, after a suitable state transformation.

Such a vertex algorithm has exponential complexity: to enhance computational efficiency, we have proposed

a tree–like algorithm for systems whose Jacobian has independent entries. The outcome of our investigation

is the influence matrix, which summarises the steady–state net influence on each variable due to an additive

input persistently applied to a single variable. In some cases, entries with indeterminate sign are found in

the influence matrix. Interestingly, we have noticed that several complex systems proposed in the literature

have a surprisingly small fraction of indeterminate entries, so revealing an intrinsic robustness aspect in the

system steady–state interactions.

An interesting side result of our approach is its ability to structurally identify perfect adaptation, a

property widely observed and studied in the literature (Yi et al (2000); Drengstig et al (2008); Ma et al

(2009); Waldherr et al (2012)). In our framework, a 0 influence represents a structural perfect adaptation.

This phenomenon may occur in two different cases: the first is the trivial case in which there is no path

leading from the input to the output variable in the system graph (this corresponds to a reducible Jacobian);

the second is the case in which a path between the input and the output variables exists and has a zero

complement, resulting in zero complementary feedback (Puccia and Levins (1985); Dambacher et al (2002)).

Another promising future direction concerns robust stability analysis, which may be a preliminary step

for the application of the proposed algorithm. We have assumed that the equilibrium exists and is locally

stable. However, we may need to check if this assumption holds. The existence of an equilibrium is assured

if the system solutions are bounded. Some structural boundedness criteria have been suggested by Blanchini

and Giordano (2014), along with stability criteria based on Lyapunov theory. Stability investigation can

be also carried out with the methodologies presented in the book by Barmish (1993). For instance, the
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robust stability test for a system admitting a BDC–decomposition can be achieved by noticing that the

corresponding characteristic polynomial

det(λI −BDC) = p0(D) + p1(D)λ+ p2(D)λ2 + · · ·+ λn

has coefficients pi(D) which are multi–affine functions of the coefficients Dk. So, if reasonable bounds 0 <

D−k ≤ Dk ≤ D+
k can be assumed for each coefficient Dk, then the graphical test based on the Mapping

Theorem (Barmish (1993), Sections 14.6–14.10) provides a nice sufficient condition for stability.

Finally, we note that an important extension of our approach (and algorithm) would be the inclusion of a

priori information to determine structural influences. Consider for instance the community matrix associated

with a stable three–dimensional system involving two species in competition, x1 and x2, preyed upon by a

common predator x3 (Levins (1975), Figure 6b):

J =


−a11 −a12 −a13

−a21 −a22 −a23

a31 a32 0

 , M =


+ − ?

− + ?

? ? (−)

 .

Without any additional information, the entry M33 of the influence matrix would be ‘?’. However, if we

assume that the system involving only the prey x1 and x2 is unstable, so that a11a22 < a12a21 (thus the

overall system is stabilised by the presence of the predator), then we have M33 = −. Hence, a positive input

to the predator population results in a steady–state decline in the abundance of the predator itself, due to

the instability of the competing–prey subsystem.
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